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B The score, Hessian and information matrix

Let € denote a K-dimensional random vector with density function fx(e;p, ), where the
p + ¢ parameters of interest are p (correlation) and ¢ (shape), whose true values are (pf, ()’
Similarly, let fix(e; ) and Fii(e; ) denote the marginal density and distribution functions of
the k* element of this distribution, so that ;(¢), which is implicitly defined by

ek ()
/ fik(esp)de = Fiiler(p): ] = uk,

—00
is the quantile with respect to the k" marginal distribution of the assumed joint distribution

evaluated at the probability integral transform of the k® observation, u, = G ().

Assumption 2 fx(e;p, ) is a well defined density function, strictly positive over its domain

and twice continuously differentiable with respect to all its arguments.

This assumption holds for the GH distribution, at least in the vicinity of the Gaussian null,
as shown in the Supplemental Appendix of Mencia and Sentana (2012); see also Supplemental
Appendix C.

Although we will relax it in Supplemental Appendix E.3, for clarity of exposition we also

assume that:

Assumption 3 The vectors of probability integral transforms of the observations, u,, n =

1,2,...N, are independent and identically distributed according to the assumed copula.

Given our assumptions, the log-likelihood function of the copula derived from e for a sample

of size N will take the form 25:1 In c(uy; p, @), where

K
nc(up,¢) = nfxle(@)ipel = Infirler(e);e], (B1)
k=1
e(@) = le1(@),mrex (@) = [Fii (ur; @), o, Fiyt (urs )]

Let s(p, ) denote the score function, and partition it into s,(p, ¢) = dlnc(u; p, ¢)/0p and
sx(p, ) = 0lnc(u; p, ) /0p, whose dimensions conform to those of p and ¢. Then

| din fic[e(p):p. ]

sp(p, ¢ ap = —Z(p)es(p, #),
where
20 = 2O e pe )
es(p,p) = wvec {IK + mnf[e;i’i’ #)i¢] -€"(p, <p)}

and €*(p, ) = P Y%(p)e(p), because p only enters through the joint distribution and not

through the marginals or the quantile functions.



On the other hand,

_ dnfr[e(@)ip el dIn fi [er(0); )
Sp(p, @) = io —; ip

_ Olnfkle(e)ip, ] i dfik en(); ]
O — Op

S [om frlele); ool Ofik (o) @] Den()
+Z[ Dey, - Oz, dp

(B2)

Expression (B2) decomposes the copula score into three easy to interpret components. The first
one corresponds to the score of the joint distribution. The second one to the scores of the K
marginal distributions. Finally, for the third component, we have to multiply the difference
between the log-derivatives of the joint and marginal distributions with respect to each of their
arguments by the derivatives of the corresponding marginal quantile functions with respect to
the shape parameters, whose existence is guaranteed by our assumptions.

Let h(p, ¢) denote the Hessian function ds(p, ¢)/d(p’, ¢’'). We can then show that

dse (p. @) _ dInficle(p)ip o] g~ & Infik [ei(p): o
h«p«p(Pa ‘P) = £ = _Z
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+ZZ Oer(p [OZIHfK[E(go);p,cp} 0%1n fip [er(p); q Oei(p)

= 1] - Oey,0¢; Oe,0¢; 0’

Per(p) [0*In file(e);p ] 0*In fix [ex(); 4]
Z Opdy’ [ Oey; B Oc}, ] ’ (B3)
hpp(p, ) = Zs(p)ae“’égw + [el(p) @ L] a“eca[if(p)]’

and
hou(p, ) = Zs(p)des(p, ¢) /0.

Importantly, while Zs(p) and dvec|Zs(p)]/0p’ depend on the specification of the correlation
structure, the first and second derivatives of In fx (g; p, ) depend on the specific distributional
assumption.

Finally, the (minus) expected value of h(p, ¢) will give us the information matrix.



C A reparametrization of the GH distribution

To simplify the exposition, we focus on the symmetric case. In the vicinity of Gaussianity,

Mencia and Sentana (2012) found that

K(K +2)
2

and s, (1,9 =0%) =54 (1 =07,9) = 54 (n =07,9) = 0. Since s, (n =0",¢) and s,, (n = 07, )

have opposite signs, we consider each case separately.

sy (n=0"9) = =8y (n=07,¢) =2xsy (.9 = 07) = x La(s),

Case I: 1 < 0,9 > 0: We introduce the following reparametrization:

2n+
N

T1=n-% and 7T9=

As a result,

4

V573 + /673 — 811
Y(11,72) = 5 :

n(t1,72) =
When evaluated at the Gaussian limit,

0(0,72) = ~v/B(ry — [ral) and (0, 72) = 2v/B(ra + 72),

4 2
whence
on 1 on V5
— = , = = — x 1{ry < 0},
I711r,—0 7ol VB OTal; g 2 {r2 <0}
0 2 0
9 = — , and il =5 x 1{r9 > 0}.
o7 71=0 72| \/B o7 71=0
When 71 = 0,72 > 0, the chain rule implies
1 K(K +2)
S, (11 =0,79 >0) = -— X Lo(s),
L (11 2 >0) 2[5 5 2(<)
872(T1:O,7’2>0) = 0.
Similarly, when 71 = 0,79 < 0,
2 1 |K(K+2
s7(11=0,72<0) = — ( )L2(§),

X —_
|7-2‘ \/5 2 2
S7, (T1=0,72<0) = 0.

Notice that we have used the fact that 79 = 0,79 > 0, which implies that in the limit n = 0 and
1 > 0, while for 71 = 0,72 < 0 we have n < 0 and ¢ = 0 in the limit.
Case II: n > 0,v > 0: We introduce the following reparametrization:
2n -1
V5

T1=n-v% and T9=



Analogous calculations deliver

1 K(K +2)
Sr (11 =0,79 >0 X Ls(¢),
L (11 2> 0) ol V5 5 2(¢)
Sr, (T1=0,72>0) = 0,
and
2 1 [K(K+2)
T :07 0 = a5 L ;
Srqy (T1 T9 < 0) ‘7-2|\/5X2 5 2(¢)
STQ(T1:0,T2<0) = 0.

D Local power comparisons

We can assess the local power of the different score tests that we have proposed by computing
the probability of rejecting the null hypothesis when it is false as a function of the shape para-
meters ¢ under the assumption that the asymptotic non-central chi-square distributions of the
different LM and KT tests provide reliable rejection probabilities in finite samples. But given
that the degrees of freedom are the same for copula and distributional tests, we can compare
these two approaches against local alternatives by directly comparing their non-centrality para-
meters. In this regard, we explain in detail in Supplemental Appendix D.1 the way in which we
compute the non-centrality parameters of our proposed tests, as well as the non-centrality para-
meters of distributional tests of Gaussian vs. Student ¢ and Gaussian vs. asymmetric Student
t, which ignore that the margins of the copula are Gaussian by construction.

Figures D1a-c depict the non-centrality parameters of symmetric Student ¢ tests under asym-
metric Student ¢ local alternatives, while Figures D2a-c do the same for asymmetric Student
t tests. In those plots, LM and LMN? denote the LM versions of the copula tests applied to
the Gaussian ranks when the marginal distributions of the observations are known and when
they are estimated nonparametrically, respectively, while Dist™ ¥ indicates the LM version of the
distributional test applied to the same ranks when the margins are estimated nonparametrically.

In Figures Dla and D2a we have represented 7 in the z-axis for fixed values of p = .75 and
b = 0. As can be seen, the distributional tests have less power than the copula tests when the
margins are estimated nonparametrically, which in turn have less power than the copula tests
when they are known.

We then look at the non-centrality parameters for different values of p in the z-axis for fixed
values of 7 = .1 and b, =-.5 in Figures D1b and D2b. Interestingly, LM, LMN? and Dist™F
tend to have the same power as p approaches zero.

Finally, we plot the non-centrality parameters against asymmetric Student ¢ alternatives
with increasing skewness when n = .1 and p = .75. Not surprisingly, the Student ¢ tests are not
sensitive to the different values of b (Figure Dlc), while the asymmetric Student ¢ tests have

more power as b moves away from zero.



D.1 Local power calculations

Let my,(p, ) denote the h influence functions used to develop the following moment test
of Hy: p = 0:
MN =N X mipN(pO) O)W_lﬁlcpN(pl)a 0)7 (Dl)

where my N (pg,0) is the sample average of my,(p, ¢) evaluated under the null, and ¥ is the
corresponding asymptotic covariance matrix. In order to obtain the non-centrality parameter
of this test under Pitman sequences of local alternatives of the form H; : ¢y= @/V/N, it is
convenient to linearize mey,, (py, 0) with respect to ¢ around its true value . This linearization

yields

N
_ _ 1 Omy,(p, ") _
VN ,0)=VN ) + e )

where ¢* is some “intermediate” value between ¢, and 0. As a result,
_ d _
\/ﬁm‘PN(p()a 0) - N[M(p(): 0)‘107 \Il]v

under standard regularity conditions, where

Mipy,0) = & | 2220

dy’

so that the non-centrality parameter of the moment test (D1) will be
@lM,<pO7O)‘P_1M(p07O)S—0' <D2)

On this basis, we can easily obtain the limiting probability of My exceeding some prespecified
quantile of a central X;QL distribution from the cdf of a non-central y? distribution with h degrees
of freedom and non-centrality parameter (D2).

Finally, note that (D2) remains valid when we replace p, by its ML estimator under the
null if m,(p, 0) and the scores corresponding to p are asymptotically uncorrelated when Hy is
true, as in all our tests. In addition, both M(p,, 0) and ¥ coincide with the (2,2) block of the
information matrix when m,,(p, ) are the scores with respect to ¢.

To simplify the exposition, in what follows we focus on the bivariate case.

D.2 Student t alternatives

Propositions 1 and 5 contain expressions for s, (p) and n, (p), respectively, which allow us

to compute

c

sy (P) = 54 (p) =19 () -
Given that in the bivariate case both V' [m,,(p)] and E [0my,(p)/0n] coincide with the (2,2)

block of the information matrix, we only need to compute

3 2

Vs ()l =1+



and

. 3, 3
V[sh ()] = 14 30" + 15 (0" + %)

in order to obtain the corresponding non-centrality parameters. Similarly, for the distributional

version of the test, we have that my,(p) = d°(p) with

d®(p) = 2Lz [<(p)] — \/E[H4(y1) + Ha(y2)]-

Hence
V[ (p)] =1+3p"
and

cov [d (p) 5 (p)] = 1= 2P

D.3 Asymmetric Student t alternatives

The required quantities to compute the non-centrality parameters of the score test in the
bivariate case are

V [, (p)] = 26 + 24p* + 48p", for k= 1,2
cov [y, (p) , 5, ()] = 48p + 26p° + 24p°,

2 4
Visi, (0)] =2+ % (p° +p*) + gp6, for k= 1,2

3
and
10 2
covlsi, (p) s, (P)] = 50" + 5 (0" + 7).,
while cov [sy (p) , sp,, (p)] = covlsy (p),s5, (p)] = 0, for k = 1,2. The same argument can be

applied to the distributional test, yielding

b (p) =—2 [\/§H3(yl) + ﬂ\/gﬂ?,(yz) +y1[s(p) — 4]
and
by (P) = —2 [\/§H3(y2) + ﬂ\/zH?)(yl) +y2 [s(p) —4].

As in the case of the score test, dj (p) for k = 1,2 is orthogonal to dj (p). Therefore, the

additional quantities required to compute the corresponding non-centrality parameters are

16
V[ gk (P)] :2—§p2+8p4, fork=1,2

8
cov [d, (p),mg, (p)] = —4p + 6p° + = p°,

3
10 4
cov [m, ()55, ()] = 2= 5" = 20" = 2%, for k=1,2,
and
2, 10
cov [m, (p), 85, (p)] = =20+ 30" = 5",



D.4 Interpretation of copula and distributional tests

D.4.1 When marginals are known

We can easily express both score copula tests as well as distributional LM tests in terms of
Hermite polynomials of the marginal Gaussian ranks. Taking into account that ms, (y1,y2; p) =
mp, (Y2, y1;p) and dp, (Y1, y2; p) = dp, (y2,91; p), the relevant coefficients are in Table D1.

In order to characterize the loss of power of the distributional version of the test, for a given

element ¢ of ¢ we could write
dy (p) = /650590 (p) + U,

where

5, o0l )55 ()]
Vs (p)]
so that the non-centrality parameter of dy, (p) under the sequence of local alternatives H; : ¢ =
@/v/'N can be written as
B2V 15 (0)]
BEV s, (p)] + V(up)

For instance, when ¢ = n we have that

and
cov [dy (p) 5 ()] = 1.
so that the power reduction of the distributional test relative to the copula one is captured by

4

S
V() 4+ 3p2’

where we have used the fact that V'[d, (p)] = 4. Similarly, doing the same calculations for ¢ = b,
we find that
v’[< My, (p) >}4_ { 2 2p3] v,[<<%1(p)>} __[ 8 80]
= 5 , =
my, (p) 2p° 2 dy, (p) 8p 8

ool (meie ) (i V=[P 7 |

In this way, it is clear that for by,

and

_ 1=/
14+ p2 4t

p+2p°

d __rFrerF
bl(p> 1+p2+p4

Mp,y (,0) by (p) + Up,

so that the power reduction of the distributional test relative to the copula one is captured by

V(up,) = 61 +2/°)

2T e k=1,2,
1+ p% 4 pt

because V[d, (p)] = 4.



D.4.2 Accounting for margins uncertainty

Direct application of Proposition 5 yields

ny (p) = i\/§P2 [Ha(y1) + Ha(y2)],  ma, (p) = \/gp [pH3(y1) + H3(y2)],

for k = 1,2 and ny, (y1,y2; p) = np, (Y2, y1; p). Analogous calculations for the distributional test

moments deliver

ng (p) = \/g[fh(yl) + Hy(y2)], m, (p) = V6Hs(y1) + 29\/215’3@2),

and again ny, (y1,y2; p) = np, (Y2,91; p). In Table D2 we summarize the modified moments that
account for nonparametric estimation of the marginals.
Again, in order to characterize the loss of power of the distributional version of the test we
could write
dP (p) = BIPST (p) + i,

where

cov [dg” (p) , 5 ()]

cov ST (p) 54 (p)]

so that the non-centrality parameter of dy, (p) under the sequence of local alternatives H; : o =

CO/\/N can be written as

np __
6@ -

Bacov (s’ (p) 54 (p)]

BZeov [ (p) .55 () + V ()

because cov [sg” (p) ,ui'] = 0. For instance, when ¢ = 7 we have that
np 3 2
cov [si” (p) sy (p)] =1+ 7p

and
cov [dyP (p) , sy (p)] = 1,
so that the power reduction of the distributional test relative to the copula one is captured by

12(1 + p? 2p%)2
V() = ( ﬂ(tﬁ)éz; %) 7

where we have used the fact that V[d," (p)] = 1 + 3p™.

E Computational details
E.1 Simulation of random vectors

We simulate the distribution under the null and the symmetric Student ¢, as well as gamma
and uniform random variables underlying the generation of the asymmetric Student ¢ and dis-
crete location-scale mixture of normals, using off-the-shelf MATLAB routines. Namely, we use
mvnrnd.m for the bivariate normal, mvtrnd.m times /(v — 2)/2, where v denotes the degrees
of freedom, for the bivariate symmetric Student ¢, gamrnd.m for the gamma distribution, and

rand.m for the uniform. For the remaining ones, the procedure is as follows.



E.1.1 Generalized hyperbolic distributions

The simplest way of simulating a GH distribution exploits its interpretation as a location-
scale mixture of normals in which the mixing variable is a Generalized Inverse Gaussian (GIG).

Specifically, if € is a GH vector, then it can be expressed as
e=a+ YR L E Y0, (E1)

where o, 3 € RX, Y is a symmetric positive definite matrix of order K, €° ~ iid N(0,1Ik)
and the positive mixing variable £ is an independent iid GIG with parameters —v, v and 9, or
& ~ GIG (—v,~,6) for short, where v € R and ~,6 € R" (see Jgrgensen (1982) and Johnson,
Kotz and Balakrishnan (1994) for details). Since e given £ is Gaussian with conditional mean
a+Y B¢ ! and covariance matrix Y¢ 1, it is clear that o and Y play the roles of location vector
and dispersion matrix, respectively. There is a further scale parameter, d, two other scalars, v
and v, to allow for flexible tail modelling, and the vector 3, which introduces skewness in this
distribution, although for testing purposes it is more convenient to work with n = —.5v~! and
¢ = (1 +v)~1. The distribution of € becomes a simple scale mixture of normals, and thereby
spherical, when 3 is zero. In the symmetric and asymmetric Student ¢ cases, £ reduces to a
gamma random variable with mean N and shape parameter v, which is the most important

special case of the GIG. In that case, the relevant expressions for a« and Y become

SR G S TR I Y
(Bt ¥ = {ne- FE D g

where

1—4n/1+86"8n/(1 —4n) — 1
2 26'8 '

c(B,n) =

E.1.2 Skew t-distributions

The family of multivariate Skew ¢ distributions is an alternative extension of the multi-
variate Student ¢ family via the introduction of another vector of parameters a € R¥ which
regulates asymmetry. Specifically, when o = 0, the Skew t¢-distribution reduces to the symmet-
ric multivariate Student ¢. As in the case of the GH, we choose its scale and location parameters
so that the mean vector is 0 and the covariance matrix the identity. For additional information,

see Section 6.2 of Azzalini and Capitanio (2014).

E.2 Monte Carlo details

The Monte Carlo analysis of the properties of our tests when we obtain the critical values

through the parametric bootstrap can be divided in two main blocks:

1. Construction of the table with critical values.

2. Estimation of the correlation parameters and evaluation of the test size and power.



E.2.1 Construction of the table with critical values

To obtain the distribution of the test as a function of the estimated p’s, the steps of the

code are the following:

1. Create a grid of H points, H = {p(l), oy pth) ...,p(H)}, that covers (—1,1). In our design,
we consider 199 equally spaced points between —.99 and .99.

2. Fix the seed to s;.

3. For each point h =1,..., H:

(a) Simulate data Xyxx with exponential margins and Gaussian copula. Obviously,
the choice of margins is inconsequential when we assume them known or when we
estimate them nonparametrically. We use N = 200, 800 and 3,200, and K = 2 and
10.

i. Simulate X; from N(0, P%)) iid across n.

i Xpp = F,;l[]:'},ﬁ(f(nk)7 Akol, with Fjy(z) = 1 — e~ 0% and Fj(z) is the true distri-
bution of X,, i.e. under the null, Fj,(z) = ®(z). (The parameters we used are
A0 = A0 = 1.)

(b) Keep the copula and convert the marginal distributions to Gaussian to get the
Gaussian ranks Y yx k.

i. For known margins, V¥ = @71 [Fj (X5 Ako)] = & [Fp(X,;)]. Under the null,
we naturally use Yfk = X,,;, directly.
ii. For parametric margins, Y = O Fp(Xok; j\k)], with A estimated by ML.
iii. For non-parametric margins, Y, = ® '[F}(X,)], where F(z,;) denotes the
empirical CDF of {z,x}\_;.
(c) Estimate the correlation parameters p¥, P, p™ by ML using Y* Y7, Y".

(d) Compute the tests evaluated at the parameter estimates in step c: Test®(s;h),
TestP(s; h) and Test™(s;h), say.

Steps 3a—c are repeated 10,000 times, saving the test statistics for each p(h).

E.2.2 Estimation of the correlation parameters and evaluation of the test size and
power

To obtain the size or power of the tests, the steps of the code are the following;:

1. Load the results obtained in E.2.1.

2. For each test statistic, compute the relevant (1 — «) quantiles of the Test(s, h) for each h:
Q“ say.

10



3. Fix the seed to so # s1.

4. Simulate X from the relevant joint distribution E for one of the two chosen correlation

matrices (e.g. Gaussian with p = .25 for size).

5. Compute the Y¥) Y(®) vy () of these simulated observations following 3(a)ii and 3b and
then estimate the parameter p by ML. For the asymmetric Student ¢ and the Skew ¢
Student alternatives, the calculation of F}, is very time-consuming, so we did not calculate
it for each sample. Instead, we first generated N = 5, 000, 000 draws from F and calculated
the empirical marginal cdf for X,i. Given that N is very large, for all practical purposes
Fnk’%ﬁk()znk) We save X, and the approximate value of Fnk, and then draw samples of

X using our bootstrap procedure.
6. Compute the test evaluated at p: Test(s), say.

7. Find the critical value (c¢) of the test at significance level a through a linear interpolation

of the quantiles computed from the results in E.2.1.

Steps 4 to 7 are repeated 10,000 times and the number of times Test(s) > ¢® is recorded for

each test to compute size and power.

E.3 Pooled estimation and testing

For a given cross-section, we have Y; = {(y{1,%%), - (Y1, ¥5n)> - (Win,» ¥sn,)}- The full
sample would then consist of Z?:l N bivariate observations Y = {Y7, ..., Yr}. At each ¢, we can

compute the average modified score, accounting for non-parametric estimation of the margins:

Ny
_ 1 s5(Yin; p)
c . _ P )
wwitien) =5, 2| Lo |
which is the basis for the pooled average corrected score §g,(Yy; p) = 71! Zthl St (Y25 p).

As for Spearman’s correlation coefficient, we can simplify our calculations by noticing that
for large N, S22 ®(ysm) =~ 1/2 and 3N | ®2(yy,) =~ 1/3 so that

VN SN ®(y1) @ (y2n) — 1/4
N, 1/12

is the relevant moment function required to compute HAC robust standard errors.

Finally, to estimate Pearson correlation coefficient and its corresponding robust standard

error, we can consider the following moment functions

Ny
1 ’
m(Xt) :Nt E [:L‘gn’ xén’ (:Ulin)2’ (:L‘gn)27 :Egn:l"gn] :

n=1

Specifically, if we introduce g : R® — R3,

mg(Xt) ml(Xt) o —2m1 0 1 0 0
g [m(Xy)] = my(X;) — m2(X,) s0 thatﬁ: 0 —2mp 0 1 0
ms(Xy) — my (X;)m,(Xy) -my —mp 0 0 1

11



and £: R? — [-1,1],

- - 1
{g[m(Xy)]} = 93 <o that % = 93 , 93 ,
V9192 og 291\/9192 " 2921/9192 /9192

we can apply the Delta method twice to obtain the corresponding asymptotic variance.

E.4 Variances of the moment functions

Below we present the relevant expressions for the bivariate copula testing procedures. See

Amengual and Sentana (2015) for the corresponding expressions for the trivariate case.

E.4.1 Known marginals

The variances are

Vs ()] = 14 20?

and
Vimg, (p)] =2, for k=1,2,

while the covariances are
cov [mb1 (P) y Mpy (P)] = 2P3

and

cov [STI (p) y My, (p)] =0, for k=1,2.

E.4.2 Accounting for non-parametric estimation of the marginals

The variances are
3 3
VI[sp? (p)] = 1+ 20 + — (p* + %)
4 16
and

n, 2
V[mb: (p)] =2+ 3 (p2 + ot + 2p6) , for k=1,2,

while the covariances are

2
cov[my? (p),myy (p)] = 20° + 2p° (24 p* + p')

and
cov[syP (p),my, (p)] =0, for k=1,2.

F Additional Monte Carlo results

In this section we present the finite sample performance of the proposed tests for the same
designs as in the main text when the correlation coefficient p is .75. Table F1 reports the
parametric bootstrap rejection rates for all the different samples sizes and significance levels we
consider. Specifically, Panel A reports rejection rates under the null at the 1%, 5% and 10%

levels for the bivariate case while Panel B does the same for K = 10.

12



Similarly, Tables F2-4 report the Monte Carlo rejection rates at the 1%, 5% and 10% signif-
icance levels for the symmetric, asymmetric and Skew ¢, respectively. As in the case of p = .25,
the behavior of the different test statistics is in accordance with expectations. In line with the
evidence on local power in Supplemental Appendix D, the rejection rates are higher the higher

the correlation.

G Additional empirical results
G.1 Industry level results

Industry definitions: Non Durables: Consumer NonDurables — Food, Tobacco, Textiles,
Apparel, Leather, Toys; Durables :Consumer Durables — Cars, TV’s, Furniture, Household Ap-
pliances; Manufacturing: Manufacturing — Machinery, Trucks, Planes, Off Furn, Paper, Com
Printing; Energy: Oil, Gas, and Coal Extraction and Products; Chemicals: Chemicals and
Allied Products; Business : Business Equipment — Computers, Software, and Electronic Equip-
ment; Telecom: Telephone and Television Transmission; Utilities; Shops: Wholesale, Retail,
and Some Services (Laundries, Repair Shops); Healthcare: Healthcare, Medical Equipment, and
Drugs; Financials; and Other: Mines, Constr, BIdMt, Trans, Hotels, Bus Serv, Entertainment.
See Ken French’s website for details.

As can be seen in Table G1, both Spearman and Gaussian rank correlations have the expected
sign for all the industries when looking at momentum strategies, and the same is true for reversals
with the exception of Telecommunications. In contrast, Pearson correlation estimates have the
wrong sign for most of the industries, especially for short term reversals, which once again
confirms their sensitivity to influential observations.

In Table G2 we report the Gaussian copula test statistics, with KT—t and KT—At denoting
the Kuhn-Tucker versions of the tests against Student ¢ and asymmetric Student ¢ copulas, and
Skew the Lagrange multiplier test based on the two moment conditions my, (p) in Proposition
3. We omit the Lagrange multiplier versions since they are numerically identical in our data.
As can be seen, in all cases we reject the null hypothesis of a Gaussian copula for both short
term reversals and momentum by a long margin.

Finally, in Table G3, we report the resulting pooled estimates of the correlation and shape
parameters based on simulated sample paths of size 100,000. We find moderate negative tail

dependence but quite substantive “leptokurtosis”.

G.2 Trading implications of a non-Gaussian copula

The dependence between the (Gaussian) rank of a stock in period ¢ and the rank of some
of its characteristics in period t — 1 we have found allows us to design sound trading strategies

along the following lines:

1. We look at the rank of the chosen characteristic of an individual stock over the relevant
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observation period.

2. Conditional on that rank, our estimated copula allows us to make probabilistic predictions

about the rank of the return on that stock over the next month.
3. If the predicted probability of the rank being high is large, we buy the stock.
4. If the predicted probability of the rank being low is large, we sell it short.

5. Otherwise, we do not hold any position on it.

The Gaussian rank correlation is obviously very important in deriving probabilistic predic-
tions about the rank of a stock over the next month given the current rank of its characteristic,
but it is by no means the only determinant. In general, non-linear tail dependence also matters.
To illustrate the importance of looking at the entire copula, we use the parameter estimates
for the Gaussian, Student ¢ and asymmetric Student ¢ copulas in Table 5 to compute the prob-
abilities that a stock will be in the bottom 30, middle 40 or top 30 percentiles during period
t conditional on the same stock being in the bottom 5%, next 25%, middle 40%, next 25%
and top 5% according to its short-term reversal or momentum characteristics at time ¢t — 1. A
possible trading rule would be as follows: if the predicted probability of the rank being in the
top/bottom 30% percentile is larger than the respective probabilities of being in the bottom/top
30% and middle 40%, we buy/short-sell the stock; otherwise, we do not hold any position on it
(see Gagliardini, Gouriéroux and Rubin (2014) for a formal discussion of portfolio choice based
on the maximization of the expected utility of the ranks).

Figure G1 presents the results for short-term reversals. As can be observed, the estimated
negative correlation is not large enough for the Gaussian copula to suggest any position. In
contrast, the non-linear dependence of both the symmetric and asymmetric Student ¢ copulas
results in long positions on recent losers (5%) and short positions on recent winners (95%).

Figure G2 contains the result of a similar exercise with momentum strategies. Once again, we
find that the small positive correlation of the Gaussian copula is too weak to lead to any position.
But the non-linear dependence of the symmetric Student ¢ copula changes the probabilities
enough to recommend taking short positions on past losers (5%) and long positions on past
winners (95%). Somewhat surprisingly, though, the negative tail dependence of the asymmetric
Student ¢ in this case, which is higher than for short-term reversals, leads to the opposite trading

strategy for the case of winners.
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Table D1: Hermite polynomial coefficients for bivariate score copula tests and distributional

LM tests when marginals are known

Copula LM test Distributional LM test

Hermite polynomial S (,0)2 mp, (p) d,Zl (,0)2 dp, (p)
2p"+p 2p"+p
! (= N (= 0
Hi(y1) 0 26" 0 2,
—p —p
3
(1) 0 Ay 0o -
pz(p2+3) 31/2p2
HQ(y1> W 0 (1_p2p)2 0
Hi(y) Ha (y2) R 20y g
3p2(p?+3 2
Halye) =
Hs(y1) 0 0 0 .
—p
Hy(y1) Hi(y2) 0 - 0 — 22
V2(p?+1
Hy (31) Ho(ye) 0 () 0 2,
Hs(y2) 0 — L 0 0
3,2 \/E
Hy(y1) 22)2 0 (1,;2)2 0
2p(p?+3)
H3(y1)H1(y2) \/1 — ) —(1f§;5)2
2 2
H2(y1)H2(92) 2p 42_)12 0 (36;2_)12 0
2p(p*+3)
Hl(yl)H?)(y?) \/71 22 0 _(1§§)2 0
307 >
Ha(y2) 077 0 -7 0
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Table D2: Hermite polynomial coefficients for bivariate score copula tests and distributional

LM tests when marginals are estimated nonparametrically

Copula LM test

Distributional LM test

Hermite polynomial sy’ (p) my” (p) dn? (p) dy! (p)
1 2p4+p2 0 2p4+p2 0
(1-p?)? b2 (1-p%)2 2
Hi(y) 0 2, 0 o,
2(p3+
A 0 Ao 0 -
3p2(p2+3) 3v/22
Haly1) A1) 0 (=T 0
2(20%+ 2(20%+
Hl(yl)Hl(yg) - ((Efpz)pz)) 0 - ((1_Pp2)ﬁ;) 0
3p2(p°+3 3v/2p?
HQ(yQ) W 0 (lfpg)Q 0
2
H3(y1) 0 30 0 %
Hy(y1) Hi(y2) 0 - 0 -3
V2(p*+1
Hi (31) o) 0 () 0 2,
3o(r°+2
H3(y2) 0 — 1£p2 ) 0 —24/2p
§p2(p472p2+5) §p2(p272)
Halyr) [mp) 0 —\[up) 0
Sp(P*+3
Hy(y1)Hi(y2) —Q)) % 0
HZ(yl)HQ(y2> (?i;;Z 0 (?6;2_)12
Sp(P*+3
Hi(y1)Hs(y2) —M 0 (1\_[%)2 0
§p2(p472p2+5) §p2(p272)
Ha(y2) f T 0 o
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Table F1: Rejection rates under the null at 1%, 5%, and 10% significance levels
N =200 N =800 N = 3,200
Margins 10% 5% 1% 10% 5% 1% 10% 5% 1%
Panel A: K =2 and p=0.75
LM-¢ 9.5 4.6 1.0 10.0 5.1 0.9 10.2 5.1 0.8
LM-At 94 4.8 1.0 10.4 5.2 1.0 9.8 5.0 1.0
Known Skew 9.6 4.9 1.1 10.2 5.2 1.0 10.2 5.1 1.0
KT-t 9.8 5.0 1.0 10.4 5.0 0.9 10.1 5.2 0.8
KT-At 9.6 4.8 1.0 10.4 5.1 1.0 10.4 4.8 1.1

LM-t¢ 9.5 4.6 1.0 10.0 5.0 0.9 10.3 5.0 0.8
LM-At 9.6 4.8 1.0 10.4 5.2 1.0 10.0 5.1 1.0
Parametric Skew 9.8 4.9 1.2 10.3 5.2 1.0 10.1 5.3 1.0
KT-t¢ 9.9 4.8 1.0 10.1 5.1 0.8 10.2 5.1 0.9
KT-At 9.5 4.8 1.0 10.1 5.0 0.9 10.4 4.8 1.1

LM-t 9.4 4.6 0.9 9.9 5.1 0.9 9.8 4.9 0.9
LM-At 10.0 5.2 1.0 10.5 5.2 1.0 10.0 4.8 0.9
Skew 10.3 5.1 1.1 10.2 5.2 0.9 9.8 5.1 1.0

KT-t 9.8 4.6 0.9 10.1 4.9 0.9 9.9 5.0 1.0
KT-At 10.0 5.2 1.0 10.2 5.2 1.0 10.2 4.9 1.1

Emp. CDF
S©) 104 55 1.2 103 49 1.0
S(B) 103 55 1.1 101 49 1.0
Q 105 53 0.9 109 53 1.1
KS 10.1 52 1.1 104 50 1.0
CvM 103 50 1.0 96 44 0.7
Panel B: K =10 and p; = 0.75
LM-¢ 95 49 09 101 50 1.1 101 53 0.9
LM-A¢t 103 54 1.1 103 49 1.0 9.8 49 1.1
Known Skew 103 5.6 1.2 99 50 09 103 50 0.9
KT-t 98 49 1.0 96 50 1.1 97 50 1.2
KT-At 104 53 1.1 10.2 49 1.0 9.7 49 1.0
LM-¢ 9.6 45 0.8 91 47 0.8 99 48 1.0
LM-At 98 50 1.0 9.6 4.7 1.1 10.1 48 1.0
Emp. CDF Skew  10.1 5.0 1.1 96 50 1.3 102 50 1.0
KT-t 9.6 45 08 92 47 09 98 48 1.1
KT-At 9.7 50 1.0 9.7 48 1.1 103 49 1.0

Notes: Critical values are computed using parametric bootstrap. LM—t and LM-At are the Lagrange
multiplier tests based on the score of the symmetric and asymmetric Student ¢ copula, respectively;
while KT-¢ and KT-A¢ are the corresponding Kuhn-Tucker versions (see Section 3 for details). Skew
corresponds to the Lagrange multiplier test based on the moment conditions my, (p) of Proposition 3.
S(©) and SP) refer to procedures based on Rosenblatt’s transform proposed by Genest et al. (2009), Q
denotes the test statistic of Panchenko (2005), while KS and CvM denote the Kolmogorov—Smirnov and
the Cramér—von Mises tests for copula models (see Rémillard (2017) for details). Parametric correspond
to a DGP with exponential marginals whose parameters are estimated by maximum likelihood.
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Table F2: Monte Carlo rejection rates at 1%, 5%, and 10% significance levels under the

Student ¢ alternative
N =200 N = 800 N = 3,200

Margins 10% 5% 1% 10% 5% 1% 10% 5% 1%
Panel A: K =2 and p=0.75

LM-t 24.3 18.0 8.2 51.3 41.6 24.2 93.3 89.5 77.9

LM-At 234 16.3 7.0 44.4 344 19.1 87.2 81.5 66.7

Known Skew 15.8 9.2 3.0 172 104 3.2 16.4 9.8 3.0

KT-¢ 31.9 21.7 8.2 61.2 489 258 96.4 929 80.9

KT-At 253 17.0 7.1 474 369 19.5 89.5 83.7 68.5

LM-t 24.5 18.1 8.1 51.0 41.4 244 93.3 89.4 78.2
LM-At 23.6 16.3 6.9 44.2 34.5 19.0 87.3 81.6 66.7
Parametric Skew 16.0 9.3 3.1 171 104 3.2 16.5 9.8 2.9
KT-t 31.7 21.6 8.2 60.9 48.8 26.1 96.3 92.9 80.8
KT-At 254 17.1 7.0 474 36.7 19.3 89.5 83.6 68.7

LM-t 267 185 7.2 53.1 427 233 93.4 89.8 T7.6
LM-At 241 159 6.3 45.2  35.0 18.4 87.5 81.7 66.9
Skew 159 9.0 29 16.8 102 3.1 162 98 29
KT-t 293 191 7.2 58.2  45.5 23.7 95.5 91.6 78.9
KT-At 249 161 6.3 472 36.0 18.6 89.0 832 682
Emp. CDF
S©) 11.8 6.1 1.3 16.3 89 23
S(B) 119 6.1 1.2 161 9.1 23
Q 9.7 50 1.1 10.3 49 0.9
KS 103 53 1.1 115 58 1.3
CvM 102 50 1.0 11.0 53 1.0
Panel B: K =10 and p;; = 0.75
LM-t 274 193 83 61.1 50.2 294 98.1 96.4 89.0
LM-A¢t 23.7 154 5.4 411 29.7  14.2 86.4 785 60.3
Known Skew 174 98 2.7 17.9 107 2.9 185 103 2.7
KT-t 385 260 9.7 732 60.5 34.7 99.3 982 93.1
KT-At 244 158 5.5 42.8 314 144 87.5 80.5 61.8

LM-t 30.9 19.9 6.5 65.7 53.0 28.5 98.3 96.6 89.2
LM-At 247 15.7 4.8 45.5 34.0 16.2 879 80.6 62.2
Emp. CDF  Skew 16.4 9.3 2.3 18.0 10.1 3.1 179 10.6 3.1
KT-t¢ 31.1  20.0 6.5 67.3 539 28.6 98.7 97.1 90.3
KT-At 24.7 15.7 4.8 46.2 34.1 16.5 88.5 81.5 62.8

Notes: DGP: Student ¢ copula with 20 (100) degrees of freedom in Panel A (B). Critical values
are computed using parametric bootstrap. LM-t¢ and LM-At are the Lagrange multiplier tests based
on the score of the symmetric and asymmetric Student ¢ copula, respectively; while KT—t and KT-
At are the corresponding Kuhn-Tucker versions (see Section 3 for details). Skew corresponds to the
Lagrange multiplier test based on the moment conditions my, (p) of Proposition 3. S(©) and S refer
to procedures based on Rosenblatt’s transform proposed by Genest et al. (2009), @ denotes the test
statistic of Panchenko (2005), while KS and CvM denote the Kolmogorov—Smirnov and the Cramér—von
Mises tests for copula models (see Rémillard (2017) for details). Parametric correspond to a DGP with
exponential marginals whose parameters are estimated by maximum likelihood.
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Table F3: Rejection rates at 1%, 5%, and 10% significance levels under the Asymmetric ¢

alternative
N =200 N =800 N = 3,200
Margins 10% 5% 1% 10% 5% 1% 10% 5% 1%
Panel A: K =2 and p=0.75
LM-t 272 204 9.7 56.9 474 295 96.1 93.5 845
LM-At 374 273 126 80.6 723 525 100.0 99.9 99.7
Known Skew 34.0 239 10.0 74.9  65.2 44.3 99.8 99.6 984
KT-t¢ 35.1  24.1 9.9 66.5 54.6 314 98.0 95.8  86.9
KT-At 395 283 128 82.7 742 53.0 100.0 100.0 99.7

LM-t 271 20.1 9.7 56.6  47.5  29.7 96.3 93.6 84.7
LM-At 370 26.6 123 804 719 519 100.0  99.9  99.7

Parametric Skew 334 234 9.8 74.7 64.9 43.6 99.8 99.6 98.4
KT-¢ 34.7  23.7 9.8 66.5 54.2 31.3 98.0 96.0 87.1
KT-At 39.0 276 124 82.7 74.1 52.5 100.0 100.0 99.7

LM-t 289  20.1 8.1 58.6 486 279 96.2 93.7 839

LM-At 340 242 98 75.9  66.9  45.0 99.9 99.8 99.1
Skew 203 196 84 67.8 57.3 36.4 99.5 989  96.3
KT-t 31.7 207 8.1 63.7 51.4 284 97.4 950 85.1
KT-At 344 244 98 774 67.8 452 99.9 999 99.1
Emp. CDF
S©) 157 87 23 385 257 9.3
S(B) 16.7 9.7 28 39.6 273 98
Q 9.6 46 0.8 139 72 1.7
KS 98 48 0.9 19.8 113 3.0
CvM 106 55 1.3 203 12.0 3.1

Panel B: K =10 and p;; = 0.75

LM-t 27.05 19.12 8.54 61.12  49.6 29.66 97.97  96.4 88.03
LM-At 2477 16.53 5.99 46.33 34.32 16.78 93.08 87.81 74.04
Known Skew 18.58 11.22 3.43 24.5 1546  5.02 4777 3444 14.64
KT-t 37.9 25.66 9.79 724 60.44 35.01 99.05 97.98 92.76
KT-At 2563 16.93 6.15 48.31 35.95 17.07 93.83 89.49 75.55

LM-t 30.82  20.05 7.1 65.64 52.91 28.59 98.32 96.44 88.56
LM-At 25.38 16.78 5.57 49.51 37.29 18.32 93.09 88.07 73.37
Emp. CDF  Skew 17.29 10.34 3.1 22.83 13.84 447 42.41 30.09 12.56
KT-t¢ 30.98  20.12 7.1 66.99 53.75 28.68 98.77 96.88 89.46
KT-At 2543 16.79 5.57 00.22 37.48 18.55 93.47 88.47 73.69

Notes: DGP: Asymmetric Student ¢ copula with 20 (100) degrees of freedom and skewness vector
b = —.75¢ (b = —.15¢) in Panel A (B). Critical values are computed using parametric bootstrap. LM-
t and LM-At are the Lagrange multiplier tests based on the score of the symmetric and asymmetric
Student ¢ copula, respectively; while KT—¢ and KT-A¢ are the corresponding Kuhn-Tucker versions (see
Section 3 for details). Skew corresponds to the Lagrange multiplier test based on the moment conditions
my,, (p) of Proposition 3. S (©) and S refer to procedures based on Rosenblatt’s transform proposed
by Genest et al. (2009), @ denotes the test statistic of Panchenko (2005), while KS and CvM denote
the Kolmogorov—Smirnov and the Cramér—von Mises tests for copula models (see Rémillard (2017) for
details). Parametric correspond to a DGP with exponential marginals whose parameters are estimated
by maximum likelihood.
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Table F4: Rejection rates at 1%, 5%, and 10% significance levels under the Skew t alternative
N =200 N =800 N = 3,200

Margins 10% 5% 1% 10% 5% 1% 10% 5% 1%
Panel A: K =2 and p=0.75

LM-¢ 240 176 7.8 51.0 415 238 93.7 899 777
LM-At 23.7 164 6.7 454 354 19.5 90.3 848 704
Known Skew 16.5  10.0 2.7 19.6 124 4.1 29.5  20.0 7.8
KT-t¢ 32.1 213 7.9 61.6 48.7 25.3 96.6 933 81.2
KT-At 25,6 17.2 6.7 49.0 374 199 92.0 87.0 721

LM-t¢ 243 177 7.8 0.9 415 24.0 93.7 89.8 777

LM-At 237 16.3 6.6 451 353 194 904 84.8 70.2
Parametric  Skew 16.2  10.2 2.8 19.4 122 4.1 29.2  20.1 7.6
KT-t¢ 319 214 7.9 61.4 48,5  25.7 96.5 93.2 81.1
KT-At 25,5 17.3 6.6 48.8 377 19.7 92.1  86.8 T72.1
LM-t 26.9 18.7 6.9 53.7 43.1 224 939 903 774
LM-At 25.0 16.8 6.4 46.5 357 18.8 89.7 839 693
Skew 16.3 9.7 3.1 18.3  11.3 3.6 249 159 5.6

KT-t 297 194 6.9 99.0 45.8 229 95.9 922 79.0
KT-At 25.6 17.0 6.4 48.5  36.7  19.0 91.0 853 70.5

Emp. CDF
S©) 12.8 6.9 1.5 189  10.9 3.0
S(B) 12.8 7.1 1.6 19.0 114 3.1
Q 93 46 0.9 98 46 0.8
KS 96 5.1 0.9 10.7 5.6 1.1
CvM 10.8 52 09 11.0 5.6 1.0

Panel B: K =10 and py; = 0.75

LM-t¢ 27.87 19.28 8.64 61.11  50.1 28.75 98.47 97.07 90.22
LM-At 2499 16.21 5.55 41.15 304 15.58 89.37 82,5 66.58
Known Skew 18,59 11.11  3.15 18.92 11.15  3.37 25.83 15.7 5.8
KT-t¢ 38.82  26.87 10.01 73.64 609 34.44 99.38 98.44 93.55
KT-At 2588 16.54 5.83 43.61 31.76 15.82 90.53 84.17 67.88

LM-t 3147 20.52  7.45 64.69 52.45 27.51 98.54 969 89.37
LM-At 2574 16.33 5.54 44.32 3297 14.93 88.32 81.38 63.95
Emp. CDF  Skew 17.38 10.06  2.86 16.85 9.9 253 18.05 10.93  3.22
KT-t 31.65 20.56 7.45 66.05 53.04 27.54 98.98 97.36 90.29
KT-At 2592 16.36 5.54 44.81 33.15 14.93 89.03 82.08 64.68

Notes: DGP: Skew ¢ copula with 20 (100) degrees of freedom and skew parameter « = —.25 (o = —.05)
in Panel A (B) (see Azzalini and Capitanio (2003) for details). Critical values are computed using
parametric bootstrap. LM-t¢ and LM—-At are the Lagrange multiplier tests based on the score of the
symmetric and asymmetric Student ¢ copula, respectively; while KT—t and KT—At are the corresponding
Kuhn-Tucker versions (see Section 3 for details). Skew corresponds to the Lagrange multiplier test
based on the moment conditions my, (p) of Proposition 4. S(©) and S(B) refer to procedures based
on Rosenblatt’s transform proposed by Genest et al. (2009), @ denotes the test statistic of Panchenko
(2005), while KS and CvM denote the Kolmogorov—Smirnov and the Cramér—von Mises tests for copula
models (see Rémillard (2017) for details). Parametric correspond to a DGP with exponential marginals
whose parameters are estimated by maximum likelihood.
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Table G3: Constrained indirect estimates of the shape parameters

Panel A: Short term reversals strategies

Student ¢ Asymmetric Student ¢

P 7 P 1 by ba
Sector
Non Durables -.032 154 -.029 155 -.135 -.049
Durables -.047 .093 -.045 .093 -.156 -.219
Manufacturing -.040 .144 -.039 .144 -.065 -.045
Energy -.029 .139 -.027 139 -.076 -.091
Chemicals -.049 .119 -.048 120 -.103 -.014
Business -.028 .108 -.027 109 -.125 -.064
Telecom 022  .131 .027 130 -.154 -.142
Utilities -.040 .146 -.036 .146 -.124 -.108
Shops -.028 .146 -.026 .146 -.109 -.057
Healthcare -.028 .124 -.026 .124 -.117 -.075
Financials -.058 .209 -.042 207 -.117 -.091
Others -.027 .133 -.024 134 -.163 -.069
All -.025 .187 -.018 .187 -.112 -.069

Panel B: Momentum strategies

Student ¢ Asymmetric Student ¢

P 7 P i by ba
Sector
Non Durables 032 .179 .051 178 -170 -.176
Durables .046  .105 .051 .104 -.262 -.225
Manufacturing 022 .176 028 176 -.087 -.114
Energy 023 144 028 143 -.131 -.159
Chemicals .006 .131 .007 .130 -.054 -.140
Business 010 .141 .014 .140 -.146 -.113
Telecom 057 123 062 118 -.113 -.467
Utilities 010 .152 014 152 -117 -.102
Shops 032 172 .046 170 -.136 -.208
Healthcare 026 .139 034 137 -.162 -.247
Financials 033 211 .080 .209 -.139 -.252
Others .035 .155 .047 153 -.150 -.259
All 034 213 074 212 -124 -.190

Notes: The data is collected from CRSP and contains monthly series from January 1997 to December
2012. Estimates are obtained by generating sample paths of size 100,000 from this copula and matching
in the simulated data the values in the original data of both the Gaussian rank correlation coefficients
and the corresponding test statistics.
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Figure D1: Power of Student ¢-based tests under asymmetric Student ¢ local alternatives

Figure Dla: Non-centrality parameter for different kurtosis parameter values
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Figure D1b: Non-centrality parameter for different correlation parameter values
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Figure D1c: Non-centrality parameter for different skewness parameter values
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Notes: Non-centrality parameters of the Student ¢ LM-copula and LM-distributional tests under asym-
metric Student ¢ alternatives. LM and LMN? denote the LM-copula tests when marginals are known and
when they are estimated nonparametrically, respectively; while DistN' denotes the LM-distributional
test when marginals are estimated nonparametrically. Figure Dla, power against asymmetric Student
t alternatives with p = .75 and by =-.5 for £k = 1,2. Figure D1b, power against asymmetric Student
t alternatives with different correlation parameter and n = .1, by =-.5 for k£ = 1,2. Figure Dlc, power
against asymmetric Student ¢ alternatives with increasing skewness and n = .1, p = .75. Figures D1b-c
share the legend of Figure Dla.
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Figure D2: Power of asymmetric Student ¢-based tests under asymmetric Student ¢ local

alternatives

Figure D2a: Non-centrality parameter for different kurtosis parameter values
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Notes: Non-centrality parameters of the Student ¢ LM-copula and LM-distributional tests under asym-
metric Student ¢ alternatives. LM and LM denote the LM-copula tests when marginals are known and
when they are estimated nonparametrically, respectively; while Dist¥* denotes the LM-distributional
test when marginals are estimated nonparametrically. Figure D2a, power against asymmetric Student
t alternatives with p = .75 and b, =-.5 for k = 1,2. Figure D2b, power against asymmetric Student
t alternatives with different correlation parameter and n = .1, by =-.5 for k = 1,2. Figure D2c, power
against asymmetric Student ¢ alternatives with increasing skewness and n = .1, p = .75. Figures D2b-c



Figure G1: Transition probabilities for short term reversals strategies
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Notes: The data is collected from CRSP and contains monthly series from January 1997 to December

2012. Gaussian copula with correlation coefficient p =-.022. For the Student ¢ copula, p =-.025 and
n = .187; while for the asymmetric Student ¢ copula, p =-.018, n = .187, by =-.112 and by =-.069

(obtained by constrained indirect estimation).
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Figure G2: Transition probabilities for momentum strategies
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Notes: The data is collected from CRSP and contains monthly series from January 1997 to December
2012. Gaussian copula with correlation coefficient p = .035. For the Student ¢ copula, p = .034 and
n = .213; while for the asymmetric Student ¢ copula, p = .074, n = .212, by =-.124 and by =-.190
(obtained by constrained indirect estimation).
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