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B The score, Hessian and information matrix

Let ε denote a K-dimensional random vector with density function fK(ε;ρ,ϕ), where the

p+ q parameters of interest are ρ (correlation) and ϕ (shape), whose true values are (ρ′0,ϕ
′
0)
′.

Similarly, let f1k(ε;ϕ) and F1k(ε;ϕ) denote the marginal density and distribution functions of

the kth element of this distribution, so that εk(ϕ), which is implicitly defined by∫ εk(ϕ)

−∞
f1k(e;ϕ)de = F1k[εk(ϕ);ϕ] = uK ,

is the quantile with respect to the kth marginal distribution of the assumed joint distribution

evaluated at the probability integral transform of the kth observation, uk = G1k(xk).

Assumption 2 fK(ε;ρ,ϕ) is a well defined density function, strictly positive over its domain

and twice continuously differentiable with respect to all its arguments.

This assumption holds for the GH distribution, at least in the vicinity of the Gaussian null,

as shown in the Supplemental Appendix of Mencía and Sentana (2012); see also Supplemental

Appendix C.

Although we will relax it in Supplemental Appendix E.3, for clarity of exposition we also

assume that:

Assumption 3 The vectors of probability integral transforms of the observations, un, n =

1, 2, ...N , are independent and identically distributed according to the assumed copula.

Given our assumptions, the log-likelihood function of the copula derived from ε for a sample

of size N will take the form
∑N

n=1 ln c(un;ρ,ϕ), where

ln c (u;ρ,ϕ) = ln fK [ε(ϕ);ρ,ϕ]−
K∑
k=1

ln f1k [εk(ϕ);ϕ] , (B1)

ε(ϕ) = [ε1(ϕ), ..., εK(ϕ)]′ =
[
F−111 (u1;ϕ), ..., F−11K (uK ;ϕ)

]′
.

Let s(ρ,ϕ) denote the score function, and partition it into sρ(ρ,ϕ) = ∂ ln c(u;ρ,ϕ)/∂ρ and

sϕ(ρ,ϕ) = ∂ ln c(u;ρ,ϕ)/∂ϕ, whose dimensions conform to those of ρ and ϕ. Then

sρ(ρ,ϕ) =
d ln fK [ε(ϕ);ρ,ϕ]

dρ
= −Zs(ρ)es(ρ,ϕ),

where

Zs(ρ) =
∂vec′[P1/2(ρ)]

∂ρ
· [IK ⊗P−1/2′(ρ)],

es(ρ,ϕ) = vec

{
IK +

∂ ln f [ε∗(ρ,ϕ);ϕ]

∂ε∗
· ε∗′(ρ,ϕ)

}
and ε∗(ρ,ϕ) = P−1/2(ρ)ε(ϕ), because ρ only enters through the joint distribution and not

through the marginals or the quantile functions.
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On the other hand,

sϕ(ρ,ϕ) =
d ln fK [ε(ϕ);ρ,ϕ]

dϕ
−

K∑
k=1

d ln f1k [εk(ϕ);ϕ]

dϕ

=
∂ ln fK [ε(ϕ);ρ,ϕ]

∂ϕ
−

K∑
k=1

∂f1k [εk(ϕ);ϕ]

∂ϕ

+
K∑
k=1

[
∂ ln fK [ε(ϕ);ρ,ϕ]

∂εk
− ∂f1k [εk(ϕ);ϕ]

∂εk

]
∂εk(ϕ)

∂ϕ
. (B2)

Expression (B2) decomposes the copula score into three easy to interpret components. The first

one corresponds to the score of the joint distribution. The second one to the scores of the K

marginal distributions. Finally, for the third component, we have to multiply the difference

between the log-derivatives of the joint and marginal distributions with respect to each of their

arguments by the derivatives of the corresponding marginal quantile functions with respect to

the shape parameters, whose existence is guaranteed by our assumptions.

Let h(ρ,ϕ) denote the Hessian function ds(ρ,ϕ)/d(ρ′,ϕ′). We can then show that

hϕϕ(ρ,ϕ) =
dsϕ (ρ,ϕ)

dϕ′
=
d2 ln fK [ε(ϕ);ρ,ϕ]

dϕ∂ϕ′
−

K∑
k=1

d2 ln f1k [εk(ϕ);ϕ]

dϕdϕ′

=
∂2 ln fK [ε(ϕ);ρ,ϕ]

∂ϕ∂ϕ′
−

K∑
k=1

∂2 ln f1k [εk(ϕ);ϕ]

∂ϕ∂ϕ′

+2
K∑
k=1

∂εk(ϕ)

∂ϕ

[
∂2 ln fK [ε(ϕ);ρ,ϕ]

∂εk∂ϕ′
− ∂2 ln f1k [εk(ϕ);ϕ]

∂εk∂ϕ′

]

+

K∑
k=1

K∑
j=1

∂εk(ϕ)

∂ϕ

[
∂2 ln fK [ε(ϕ);ρ,ϕ]

∂εk∂εj
− ∂2 ln f1k [εk(ϕ);ϕ]

∂εk∂εj

]
∂εj(ϕ)

∂ϕ′

+
K∑
k=1

∂2εk(ϕ)

∂ϕ∂ϕ′

[
∂2 ln fK [ε(ϕ);ρ,ϕ]

∂εk
− ∂2 ln f1k [εk(ϕ);ϕ]

∂εk

]
, (B3)

hρρ(ρ,ϕ) = Zs(ρ)
∂es(ρ,ϕ)

∂ρ′
+
[
e′s(φ)⊗ Ip

] ∂vec[Zs(ρ)]

∂ρ′
,

and

hρϕ(ρ,ϕ) = Zs(ρ)∂es(ρ,ϕ)/∂ϕ′.

Importantly, while Zs(ρ) and ∂vec[Zs(ρ)]/∂ρ′ depend on the specification of the correlation

structure, the first and second derivatives of ln fK(ε;ρ,ϕ) depend on the specific distributional

assumption.

Finally, the (minus) expected value of h(ρ,ϕ) will give us the information matrix.
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C A reparametrization of the GH distribution

To simplify the exposition, we focus on the symmetric case. In the vicinity of Gaussianity,

Mencía and Sentana (2012) found that

sη
(
η = 0+, ψ

)
= −sη

(
η = 0−, ψ

)
= 2× sψ

(
η, ψ = 0+

)
=

√
K(K + 2)

2
× L2(ς),

and sη (η, ψ = 0+) = sψ (η = 0−, ψ) = sψ (η = 0−, ψ) = 0. Since sη (η = 0+, ψ) and sη (η = 0−, ψ)

have opposite signs, we consider each case separately.

Case I : η ≤ 0, ψ ≥ 0: We introduce the following reparametrization:

τ1 = η · ψ and τ2 =
2η + ψ√

5
.

As a result,

η(τ1, τ2) =

√
5τ2 −

√
5τ22 − 8τ1

4
and ψ(τ1, τ2) =

√
5τ2 +

√
5τ22 − 8τ1

2
.

When evaluated at the Gaussian limit,

η(0, τ2) =
1

4

√
5(τ2 − |τ2|) and ψ(0, τ2) =

1

2

√
5(τ2 + |τ2|),

whence

∂η

∂τ1

∣∣∣∣
τ1=0

=
1

|τ2|
√

5
,

∂η

∂τ2

∣∣∣∣
τ1=0

=

√
5

2
× 1{τ2 < 0},

∂ψ

∂τ1

∣∣∣∣
τ1=0

= − 2

|τ2|
√

5
, and

∂ψ

∂τ2

∣∣∣∣
τ1=0

=
√

5× 1{τ2 > 0}.

When τ1 = 0, τ2 > 0, the chain rule implies

sτ1 (τ1 = 0, τ2 > 0) = − 1

|τ2|
√

5
×
√
K(K + 2)

2
L2(ς),

sτ2 (τ1 = 0, τ2 > 0) = 0.

Similarly, when τ1 = 0, τ2 < 0,

sτ1 (τ1 = 0, τ2 < 0) = − 2

|τ2|
√

5
× 1

2

√
K(K + 2)

2
L2(ς),

sτ2 (τ1 = 0, τ2 < 0) = 0.

Notice that we have used the fact that τ1 = 0, τ2 > 0, which implies that in the limit η = 0 and

ψ > 0, while for τ1 = 0, τ2 < 0 we have η < 0 and ψ = 0 in the limit.

Case II : η ≥ 0, ψ ≥ 0: We introduce the following reparametrization:

τ1 = η · ψ and τ2 =
2η − ψ√

5
.
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Analogous calculations deliver

sτ1 (τ1 = 0, τ2 > 0) =
1

|τ2|
√

5
×
√
K(K + 2)

2
L2(ς),

sτ2 (τ1 = 0, τ2 > 0) = 0,

and

sτ1 (τ1 = 0, τ2 < 0) =
2

|τ2|
√

5
× 1

2

√
K(K + 2)

2
L2(ς),

sτ2 (τ1 = 0, τ2 < 0) = 0.

D Local power comparisons

We can assess the local power of the different score tests that we have proposed by computing

the probability of rejecting the null hypothesis when it is false as a function of the shape para-

meters ϕ under the assumption that the asymptotic non-central chi-square distributions of the

different LM and KT tests provide reliable rejection probabilities in finite samples. But given

that the degrees of freedom are the same for copula and distributional tests, we can compare

these two approaches against local alternatives by directly comparing their non-centrality para-

meters. In this regard, we explain in detail in Supplemental Appendix D.1 the way in which we

compute the non-centrality parameters of our proposed tests, as well as the non-centrality para-

meters of distributional tests of Gaussian vs. Student t and Gaussian vs. asymmetric Student

t, which ignore that the margins of the copula are Gaussian by construction.

Figures D1a-c depict the non-centrality parameters of symmetric Student t tests under asym-

metric Student t local alternatives, while Figures D2a-c do the same for asymmetric Student

t tests. In those plots, LM and LMNP denote the LM versions of the copula tests applied to

the Gaussian ranks when the marginal distributions of the observations are known and when

they are estimated nonparametrically, respectively, whileDistNP indicates the LM version of the

distributional test applied to the same ranks when the margins are estimated nonparametrically.

In Figures D1a and D2a we have represented η in the x-axis for fixed values of ρ = .75 and

bk = 0. As can be seen, the distributional tests have less power than the copula tests when the

margins are estimated nonparametrically, which in turn have less power than the copula tests

when they are known.

We then look at the non-centrality parameters for different values of ρ in the x-axis for fixed

values of η = .1 and bk =-.5 in Figures D1b and D2b. Interestingly, LM , LMNP and DistNP

tend to have the same power as ρ approaches zero.

Finally, we plot the non-centrality parameters against asymmetric Student t alternatives

with increasing skewness when η = .1 and ρ = .75. Not surprisingly, the Student t tests are not

sensitive to the different values of b (Figure D1c), while the asymmetric Student t tests have

more power as b moves away from zero.
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D.1 Local power calculations

Let mϕn(ρ,ϕ) denote the h influence functions used to develop the following moment test

of H0 : ϕ = 0:

MN = N × m̄′ϕN (ρ0,0)Ψ−1m̄ϕN (ρ0,0), (D1)

where m̄ϕN (ρ0,0) is the sample average of mϕn(ρ,ϕ) evaluated under the null, and Ψ is the

corresponding asymptotic covariance matrix. In order to obtain the non-centrality parameter

of this test under Pitman sequences of local alternatives of the form Hl : ϕN= ϕ̄/
√
N , it is

convenient to linearizemϕn(ρ0,0) with respect to ϕ around its true value ϕN . This linearization

yields
√
Nm̄ϕN (ρ0,0) =

√
Nm̄ϕN (ρ0,ϕN ) +

1√
N

N∑
n=1

∂mϕn(ρ,ϕ∗)

∂ϕ′
ϕ̄,

where ϕ∗ is some “intermediate”value between ϕN and 0. As a result,

√
Nm̄ϕN (ρ0,0)

d→ N [M(ρ0,0)ϕ̄,Ψ],

under standard regularity conditions, where

M(ρ0,0) = E

[
∂mϕn(ρ,0)

∂ϕ′

]
,

so that the non-centrality parameter of the moment test (D1) will be

ϕ̄′M′(ρ0,0)Ψ−1M(ρ0,0)ϕ̄. (D2)

On this basis, we can easily obtain the limiting probability ofMN exceeding some prespecified

quantile of a central χ2h distribution from the cdf of a non-central χ2 distribution with h degrees

of freedom and non-centrality parameter (D2).

Finally, note that (D2) remains valid when we replace ρ0 by its ML estimator under the

null if mϕn(ρ,0) and the scores corresponding to ρ are asymptotically uncorrelated when H0 is

true, as in all our tests. In addition, both M(ρ0,0) and Ψ coincide with the (2, 2) block of the

information matrix when mϕn(ρ,ϕ) are the scores with respect to ϕ.

To simplify the exposition, in what follows we focus on the bivariate case.

D.2 Student t alternatives

Propositions 1 and 5 contain expressions for sη (ρ) and nη (ρ), respectively, which allow us

to compute

scη (ρ) = sη (ρ)− nη (ρ) .

Given that in the bivariate case both V [mηn(ρ)] and E [∂mηn(ρ)/∂η] coincide with the (2, 2)

block of the information matrix, we only need to compute

V [sη (ρ)] = 1 +
3

4
ρ2
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and

V
[
scη (ρ)

]
= 1 +

3

4
ρ2 +

3

16

(
ρ4 + ρ8

)
in order to obtain the corresponding non-centrality parameters. Similarly, for the distributional

version of the test, we have that mηn(ρ) = dc (ρ) with

dc (ρ) = 2L2 [ς(ρ)]−
√

3

2
[H4(y1) +H4(y2)] .

Hence

V [dc (ρ)] = 1 + 3ρ4

and

cov
[
dc (ρ) , scη (ρ)

]
= 1− 3

4
ρ6.

D.3 Asymmetric Student t alternatives

The required quantities to compute the non-centrality parameters of the score test in the

bivariate case are

V [sbk (ρ)] = 26 + 24ρ2 + 48ρ4, for k = 1, 2

cov [sb1 (ρ) , sb2 (ρ)] = 48ρ+ 26ρ3 + 24ρ5,

V [scbk (ρ)] = 2 +
2

3

(
ρ2 + ρ4

)
+

4

3
ρ6, for k = 1, 2

and

cov[scb1 (ρ) , scb2 (ρ)] =
10

3
ρ3 +

2

3

(
ρ5 + ρ7

)
,

while cov [sη (ρ) , sbk (ρ)] = cov[scη (ρ) , scbk (ρ)] = 0, for k = 1, 2. The same argument can be

applied to the distributional test, yielding

dcb1 (ρ) = −2

[√
3

2
H3(y1) + ρ

√
2

3
H3(y2)

]
+ y1 [ς(ρ)− 4]

and

dcb2 (ρ) = −2

[√
3

2
H3(y2) + ρ

√
2

3
H3(y1)

]
+ y2 [ς(ρ)− 4] .

As in the case of the score test, dcbk (ρ) for k = 1, 2 is orthogonal to dcη (ρ). Therefore, the

additional quantities required to compute the corresponding non-centrality parameters are

V
[
dcbk (ρ)

]
= 2− 16

3
ρ2 + 8ρ4, for k = 1, 2

cov
[
dcb1 (ρ) ,mc

b2 (ρ)
]

= −4ρ+ 6ρ3 +
8

3
ρ5,

cov
[
mc
bk

(ρ) , scbk (ρ)
]

= 2− 10

3
ρ2 − 2ρ4 − 4

3
ρ6, for k = 1, 2,

and

cov
[
mc
b1 (ρ) , scb2 (ρ)

]
= −2ρ+

2

3
ρ3 − 10

3
ρ5.
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D.4 Interpretation of copula and distributional tests

D.4.1 When marginals are known

We can easily express both score copula tests as well as distributional LM tests in terms of

Hermite polynomials of the marginal Gaussian ranks. Taking into account that mb2 (y1, y2; ρ) =

mb1 (y2, y1; ρ) and db2 (y1, y2; ρ) = db1 (y2, y1; ρ), the relevant coeffi cients are in Table D1.

In order to characterize the loss of power of the distributional version of the test, for a given

element ϕ of ϕ we could write

dϕ (ρ) = βϕsϕ (ρ) + uϕ,

where

βϕ =
cov [dϕ (ρ) , sϕ (ρ)]

V [sϕ (ρ)]
,

so that the non-centrality parameter of dϕ (ρ) under the sequence of local alternatives Hl : ϕN =

ϕ̄/
√
N can be written as

β2ϕV [sϕ (ρ)]

β2ϕV [sϕ (ρ)] + V (uϕ)
.

For instance, when ϕ = η we have that

V [sη (ρ)] = 1 +
3

4
ρ2

and

cov [dη (ρ) , sη (ρ)] = 1,

so that the power reduction of the distributional test relative to the copula one is captured by

V (uη) = 4− 4

4 + 3ρ2
,

where we have used the fact that V [dη (ρ)] = 4. Similarly, doing the same calculations for ϕ = bi,

we find that

V

[(
mb1 (ρ)
mb2 (ρ)

)]
=

[
2 2ρ3

2ρ3 2

]
, V

[(
db1 (ρ)
db2 (ρ)

)]
=

[
8 8ρ
8ρ 8

]
and

cov

[(
mb1 (ρ)
mb2 (ρ)

)
,

(
db1 (ρ)
db2 (ρ)

)′]
=

[
2− 4ρ2 −2ρ
−2ρ 2− 4ρ2

]
.

In this way, it is clear that for b1,

db1 (ρ) =
1− ρ2

1 + ρ2 + ρ4
mb1 (ρ)− ρ+ 2ρ3

1 + ρ2 + ρ4
mb2 (ρ) + ub1 ,

so that the power reduction of the distributional test relative to the copula one is captured by

V (ubk) =
6(1 + 2ρ2)

1 + ρ2 + ρ4
, for k = 1, 2,

because V [dη (ρ)] = 4.
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D.4.2 Accounting for margins uncertainty

Direct application of Proposition 5 yields

nη (ρ) =
1

4

√
3

2
ρ2 [H4(y1) +H4(y2)] , nbk (ρ) =

√
2

3
ρ [ρH3(y1) +H3(y2)] ,

for k = 1, 2 and nb2 (y1, y2; ρ) = nb1 (y2, y1; ρ). Analogous calculations for the distributional test

moments deliver

ndη (ρ) =

√
3

2
[H4(y1) +H4(y2)] , nb1 (ρ) =

√
6H3(y1) + 2ρ

√
2

3
H3(y2),

and again nb2 (y1, y2; ρ) = nb1 (y2, y1; ρ). In Table D2 we summarize the modified moments that

account for nonparametric estimation of the marginals.

Again, in order to characterize the loss of power of the distributional version of the test we

could write

dnpϕ (ρ) = βnpϕ s
np
ϕ (ρ) + unpϕ ,

where

βnpϕ =
cov [dnpϕ (ρ) , sϕ (ρ)]

cov [snpϕ (ρ) , sϕ (ρ)]
,

so that the non-centrality parameter of dϕ (ρ) under the sequence of local alternatives Hl : ϕN =

ϕ̄/
√
N can be written as

β2ϕcov [snpϕ (ρ) , sϕ (ρ)]

β2ϕcov [snpϕ (ρ) , sϕ (ρ)] + V (unpϕ )

because cov [snpϕ (ρ) , unpϕ ] = 0. For instance, when ϕ = η we have that

cov
[
snpη (ρ) , sη (ρ)

]
= 1 +

3

4
ρ2

and

cov
[
dnpη (ρ) , sη (ρ)

]
= 1,

so that the power reduction of the distributional test relative to the copula one is captured by

V (uη) =
12(1 + ρ2)(ρ+ 2ρ3)2

(4 + 3ρ2)2
,

where we have used the fact that V [dnpη (ρ)] = 1 + 3ρ4.

E Computational details

E.1 Simulation of random vectors

We simulate the distribution under the null and the symmetric Student t, as well as gamma

and uniform random variables underlying the generation of the asymmetric Student t and dis-

crete location-scale mixture of normals, using off-the-shelf Matlab routines. Namely, we use

mvnrnd.m for the bivariate normal, mvtrnd.m times
√

(ν − 2)/2, where ν denotes the degrees

of freedom, for the bivariate symmetric Student t, gamrnd.m for the gamma distribution, and

rand.m for the uniform. For the remaining ones, the procedure is as follows.
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E.1.1 Generalized hyperbolic distributions

The simplest way of simulating a GH distribution exploits its interpretation as a location-

scale mixture of normals in which the mixing variable is a Generalized Inverse Gaussian (GIG).

Specifically, if ε is a GH vector, then it can be expressed as

ε = α+ Υβξ−1 + ξ−
1
2Υ

1
2ε◦, (E1)

where α,β ∈ RK , Υ is a symmetric positive definite matrix of order K, ε◦ ∼ iidN(0, IK)

and the positive mixing variable ξ is an independent iid GIG with parameters −ν, γ and δ, or
ξ ∼ GIG (−ν, γ, δ) for short, where ν ∈ R and γ, δ ∈ R+ (see Jørgensen (1982) and Johnson,
Kotz and Balakrishnan (1994) for details). Since ε given ξ is Gaussian with conditional mean

α+Υβξ−1 and covariance matrixΥξ−1, it is clear that α andΥ play the roles of location vector

and dispersion matrix, respectively. There is a further scale parameter, δ, two other scalars, ν

and γ, to allow for flexible tail modelling, and the vector β, which introduces skewness in this

distribution, although for testing purposes it is more convenient to work with η = −.5ν−1 and
ψ = (1 + γ)−1. The distribution of ε becomes a simple scale mixture of normals, and thereby

spherical, when β is zero. In the symmetric and asymmetric Student t cases, ξ reduces to a

gamma random variable with mean N and shape parameter ν, which is the most important

special case of the GIG. In that case, the relevant expressions for α and Υ become

α = −c(β, η)β and Υ =
1

c(β, η)

{
IK −

[c(β, η)− 1]

β′β
ββ′

}
,

where

c(β, η) =
1− 4η

2η

√
1 + 8β′βη/(1− 4η)− 1

2β′β
.

E.1.2 Skew t-distributions

The family of multivariate Skew t distributions is an alternative extension of the multi-

variate Student t family via the introduction of another vector of parameters α ∈ RK which

regulates asymmetry. Specifically, when α = 0, the Skew t-distribution reduces to the symmet-

ric multivariate Student t. As in the case of the GH, we choose its scale and location parameters

so that the mean vector is 0 and the covariance matrix the identity. For additional information,

see Section 6.2 of Azzalini and Capitanio (2014).

E.2 Monte Carlo details

The Monte Carlo analysis of the properties of our tests when we obtain the critical values

through the parametric bootstrap can be divided in two main blocks:

1. Construction of the table with critical values.

2. Estimation of the correlation parameters and evaluation of the test size and power.
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E.2.1 Construction of the table with critical values

To obtain the distribution of the test as a function of the estimated ρ’s, the steps of the

code are the following:

1. Create a grid of H points, H = {ρ(1), ..., ρ(h), ..., ρ(H)}, that covers (−1, 1). In our design,

we consider 199 equally spaced points between −.99 and .99.

2. Fix the seed to s1.

3. For each point h = 1, ...,H:

(a) Simulate data XN×K with exponential margins and Gaussian copula. Obviously,

the choice of margins is inconsequential when we assume them known or when we

estimate them nonparametrically. We use N = 200, 800 and 3, 200, and K = 2 and

10.

i. Simulate X̃i from N(0,P
(h)
K ) iid across n.

ii. Xnk = F−1k [F̃k(X̃nk);λk0], with Fk(x) = 1 − e−λk0x and F̃k(x) is the true distri-

bution of X̃nk, i.e. under the null, F̃k(x) = Φ(x). (The parameters we used are

λ10 = λ20 = 1.)

(b) Keep the copula and convert the marginal distributions to Gaussian to get the

Gaussian ranks YN×K .

i. For known margins, Y k
nk = Φ−1[Fk(Xnk;λk0)] = Φ−1[F̃k(X̃nk)]. Under the null,

we naturally use Y k
nk = X̃nk directly.

ii. For parametric margins, Y p
nk = Φ−1[Fk(Xnk; λ̂k)], with λ̂k estimated by ML.

iii. For non-parametric margins, Y n
nk = Φ−1[F̂k(Xnk)], where F̂ (xnk) denotes the

empirical CDF of {xnk}Nn=1.

(c) Estimate the correlation parameters ρ̂k, ρ̂p, ρ̂n by ML using Yk,Yp,Yn.

(d) Compute the tests evaluated at the parameter estimates in step c: Testk(s;h),

Testp(s;h) and Testn(s;h), say.

Steps 3a—c are repeated 10,000 times, saving the test statistics for each ρ(h).

E.2.2 Estimation of the correlation parameters and evaluation of the test size and
power

To obtain the size or power of the tests, the steps of the code are the following:

1. Load the results obtained in E.2.1.

2. For each test statistic, compute the relevant (1−α) quantiles of the Test(s, h) for each h:

Qα say.
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3. Fix the seed to s2 6= s1.

4. Simulate X̃ from the relevant joint distribution F̃ for one of the two chosen correlation

matrices (e.g. Gaussian with ρ = .25 for size).

5. Compute the Y (k), Y (p), Y (n) of these simulated observations following 3(a)ii and 3b and

then estimate the parameter ρ by ML. For the asymmetric Student t and the Skew t

Student alternatives, the calculation of F̃k is very time-consuming, so we did not calculate

it for each sample. Instead, we first generated N = 5, 000, 000 draws from F̃ and calculated

the empirical marginal cdf for X̃nk. Given that N is very large, for all practical purposes

F̃nk≈F̂k(X̃nk). We save X̃nk and the approximate value of F̃nk, and then draw samples of

X̃ using our bootstrap procedure.

6. Compute the test evaluated at ρ̂: Test(s), say.

7. Find the critical value (cα) of the test at significance level α through a linear interpolation

of the quantiles computed from the results in E.2.1.

Steps 4 to 7 are repeated 10,000 times and the number of times Test(s) > cα is recorded for

each test to compute size and power.

E.3 Pooled estimation and testing

For a given cross-section, we have Yt = {(yt11, yt21), ..., (yt1n, yt2n), ..., (yt1Nt , y
t
2Nt

)}. The full
sample would then consist of

∑T
t=1Nt bivariate observations Y = {Y1, ..., YT }. At each t, we can

compute the average modified score, accounting for non-parametric estimation of the margins:

s̄cφt(Yt; ρ) =
1

Nt

Nt∑
n=1

[
scρ(Ytn; ρ)

scϕ(Ytn; ρ)

]
,

which is the basis for the pooled average corrected score s̄cφ(Yt; ρ) = T−1
∑T

t=1 s̄cφt(Yt; ρ).

As for Spearman’s correlation coeffi cient, we can simplify our calculations by noticing that

for large N ,
∑Nt

n=1 Φ(ytn) ≈ 1/2 and
∑Nt

n=1 Φ2(ytn) ≈ 1/3 so that
√
Nt

Nt

∑Nt
n=1 Φ(y1n)Φ(y2n)− 1/4

1/12

is the relevant moment function required to compute HAC robust standard errors.

Finally, to estimate Pearson correlation coeffi cient and its corresponding robust standard

error, we can consider the following moment functions

m(Xt) =
1

Nt

Nt∑
n=1

[
xt1n, x

t
2n, (xt1n)2, (xt2n)2, xt1nx

t
2n

]′
.

Specifically, if we introduce g : R5 → R3,

g [m(Xt)] =

 m3(Xt)−m2
1(Xt)

m4(Xt)−m2
2(Xt)

m5(Xt)−m1(Xt)m2(Xt)

 so that
∂g

∂m
=

 −2m1 0 1 0 0
0 −2m2 0 1 0
−m2 −m1 0 0 1


11



and ` : R3 → [−1, 1],

` {g [m(Xt)]} =
g3√
g1g2

so that
∂`

∂g
=

[
−g3

2g1
√
g1g2

,
−g3

2g2
√
g1g2

,
1

√
g1g2

]
we can apply the Delta method twice to obtain the corresponding asymptotic variance.

E.4 Variances of the moment functions

Below we present the relevant expressions for the bivariate copula testing procedures. See

Amengual and Sentana (2015) for the corresponding expressions for the trivariate case.

E.4.1 Known marginals

The variances are

V [sη (ρ)] = 1 +
3

4
ρ2

and

V [mbk (ρ)] = 2, for k = 1, 2,

while the covariances are

cov [mb1 (ρ) ,mb2 (ρ)] = 2ρ3

and

cov [sη (ρ) ,mbk (ρ)] = 0, for k = 1, 2.

E.4.2 Accounting for non-parametric estimation of the marginals

The variances are

V [snpη (ρ)] = 1 +
3

4
ρ2 +

3

16

(
ρ4 + ρ8

)
and

V [mnp
bk

(ρ)] = 2 +
2

3

(
ρ2 + ρ4 + 2ρ6

)
, for k = 1, 2,

while the covariances are

cov[mnp
b1

(ρ) ,mnp
b2

(ρ)] = 2ρ3 +
2

3
ρ3
(
2 + ρ2 + ρ4

)
and

cov[snpη (ρ) ,mnp
bk

(ρ)] = 0, for k = 1, 2.

F Additional Monte Carlo results

In this section we present the finite sample performance of the proposed tests for the same

designs as in the main text when the correlation coeffi cient ρ is .75. Table F1 reports the

parametric bootstrap rejection rates for all the different samples sizes and significance levels we

consider. Specifically, Panel A reports rejection rates under the null at the 1%, 5% and 10%

levels for the bivariate case while Panel B does the same for K = 10.

12



Similarly, Tables F2—4 report the Monte Carlo rejection rates at the 1%, 5% and 10% signif-

icance levels for the symmetric, asymmetric and Skew t, respectively. As in the case of ρ = .25,

the behavior of the different test statistics is in accordance with expectations. In line with the

evidence on local power in Supplemental Appendix D, the rejection rates are higher the higher

the correlation.

G Additional empirical results

G.1 Industry level results

Industry definitions: Non Durables: Consumer NonDurables — Food, Tobacco, Textiles,

Apparel, Leather, Toys; Durables :Consumer Durables —Cars, TV’s, Furniture, Household Ap-

pliances; Manufacturing: Manufacturing —Machinery, Trucks, Planes, Off Furn, Paper, Com

Printing; Energy: Oil, Gas, and Coal Extraction and Products; Chemicals: Chemicals and

Allied Products; Business : Business Equipment —Computers, Software, and Electronic Equip-

ment; Telecom: Telephone and Television Transmission; Utilities; Shops: Wholesale, Retail,

and Some Services (Laundries, Repair Shops); Healthcare: Healthcare, Medical Equipment, and

Drugs; Financials; and Other: Mines, Constr, BldMt, Trans, Hotels, Bus Serv, Entertainment.

See Ken French’s website for details.

As can be seen in Table G1, both Spearman and Gaussian rank correlations have the expected

sign for all the industries when looking at momentum strategies, and the same is true for reversals

with the exception of Telecommunications. In contrast, Pearson correlation estimates have the

wrong sign for most of the industries, especially for short term reversals, which once again

confirms their sensitivity to influential observations.

In Table G2 we report the Gaussian copula test statistics, with KT—t and KT—At denoting

the Kuhn-Tucker versions of the tests against Student t and asymmetric Student t copulas, and

Skew the Lagrange multiplier test based on the two moment conditions mbk (ρ) in Proposition

3. We omit the Lagrange multiplier versions since they are numerically identical in our data.

As can be seen, in all cases we reject the null hypothesis of a Gaussian copula for both short

term reversals and momentum by a long margin.

Finally, in Table G3, we report the resulting pooled estimates of the correlation and shape

parameters based on simulated sample paths of size 100,000. We find moderate negative tail

dependence but quite substantive “leptokurtosis”.

G.2 Trading implications of a non-Gaussian copula

The dependence between the (Gaussian) rank of a stock in period t and the rank of some

of its characteristics in period t− 1 we have found allows us to design sound trading strategies

along the following lines:

1. We look at the rank of the chosen characteristic of an individual stock over the relevant

13



observation period.

2. Conditional on that rank, our estimated copula allows us to make probabilistic predictions

about the rank of the return on that stock over the next month.

3. If the predicted probability of the rank being high is large, we buy the stock.

4. If the predicted probability of the rank being low is large, we sell it short.

5. Otherwise, we do not hold any position on it.

The Gaussian rank correlation is obviously very important in deriving probabilistic predic-

tions about the rank of a stock over the next month given the current rank of its characteristic,

but it is by no means the only determinant. In general, non-linear tail dependence also matters.

To illustrate the importance of looking at the entire copula, we use the parameter estimates

for the Gaussian, Student t and asymmetric Student t copulas in Table 5 to compute the prob-

abilities that a stock will be in the bottom 30, middle 40 or top 30 percentiles during period

t conditional on the same stock being in the bottom 5%, next 25%, middle 40%, next 25%

and top 5% according to its short-term reversal or momentum characteristics at time t − 1. A

possible trading rule would be as follows: if the predicted probability of the rank being in the

top/bottom 30% percentile is larger than the respective probabilities of being in the bottom/top

30% and middle 40%, we buy/short-sell the stock; otherwise, we do not hold any position on it

(see Gagliardini, Gouriéroux and Rubin (2014) for a formal discussion of portfolio choice based

on the maximization of the expected utility of the ranks).

Figure G1 presents the results for short-term reversals. As can be observed, the estimated

negative correlation is not large enough for the Gaussian copula to suggest any position. In

contrast, the non-linear dependence of both the symmetric and asymmetric Student t copulas

results in long positions on recent losers (5%) and short positions on recent winners (95%).

Figure G2 contains the result of a similar exercise with momentum strategies. Once again, we

find that the small positive correlation of the Gaussian copula is too weak to lead to any position.

But the non-linear dependence of the symmetric Student t copula changes the probabilities

enough to recommend taking short positions on past losers (5%) and long positions on past

winners (95%). Somewhat surprisingly, though, the negative tail dependence of the asymmetric

Student t in this case, which is higher than for short-term reversals, leads to the opposite trading

strategy for the case of winners.
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Table D1: Hermite polynomial coeffi cients for bivariate score copula tests and distributional

LM tests when marginals are known

Copula LM test Distributional LM test
Hermite polynomial sη (ρ) mb1 (ρ) dη (ρ) db1 (ρ)

1 2ρ4+ρ2

(1−ρ2)2 0 2ρ4+ρ2

(1−ρ2)2 0

H1(y1) 0 2ρ2

1−ρ2 0 4ρ2

1−ρ2

H1(y2) 0 −2(ρ
3+ρ)

1−ρ2 0 − 2ρ
1−ρ2

H2(y1)
3ρ2(ρ2+3)
2
√
2(1−ρ2)2 0 3

√
2ρ2

(1−ρ2)2 0

H1(y1)H1(y2) −2(2ρ
3+ρ)

(1−ρ2)2 0 −2(2ρ
3+ρ)

(1−ρ2)2 0

H2(y2)
3ρ2(ρ2+3)
2
√
2(1−ρ2)2 0 3

√
2ρ2

(1−ρ2)2 0

H3(y1) 0 0 0
√
6

1−ρ2

H2(y1)H1(y2) 0 −
√
2ρ

1−ρ2 0 −2
√
2ρ

1−ρ2

H1(y1)H2(y2) 0
√
2(ρ2+1)
1−ρ2 0

√
2

1−ρ2

H3(y2) 0 −
√
6ρ

1−ρ2 0 0

H4(y1)

√
3
2
ρ2

(1−ρ2)2 0

√
3
2

(1−ρ2)2 0

H3(y1)H1(y2) −
√

3
2
ρ(ρ2+3)

2(1−ρ2)2 0 −
√
6ρ

(1−ρ2)2 0

H2(y1)H2(y2)
2ρ2+1
(1−ρ2)2 0 2ρ2+1

(1−ρ2)2 0

H1(y1)H3(y2) −
√

3
2
ρ(ρ2+3)

2(1−ρ2)2 0 −
√
6ρ

(1−ρ2)2 0

H4(y2)

√
3
2
ρ2

(1−ρ2)2 0

√
3
2

(1−ρ2)2 0
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Table D2: Hermite polynomial coeffi cients for bivariate score copula tests and distributional

LM tests when marginals are estimated nonparametrically

Copula LM test Distributional LM test
Hermite polynomial snpη (ρ) mnp

b1
(ρ) dnpη (ρ) dnpb1 (ρ)

1 2ρ4+ρ2

(1−ρ2)2 0 2ρ4+ρ2

(1−ρ2)2 0

H1(y1) 0 2ρ2

1−ρ2 0 4ρ2

1−ρ2

H1(y2) 0 −2(ρ
3+ρ)

1−ρ2 0 − 2ρ
1−ρ2

H2(y1)
3ρ2(ρ2+3)
2
√
2(1−ρ2)2 0 3

√
2ρ2

(1−ρ2)2 0

H1(y1)H1(y2) −2(2ρ
3+ρ)

(1−ρ2)2 0 −2(2ρ
3+ρ)

(1−ρ2)2 0

H2(y2)
3ρ2(ρ2+3)
2
√
2(1−ρ2)2 0 3

√
2ρ2

(1−ρ2)2 0

H3(y1) 0
√

2
3ρ
2 0

√
6ρ2

1−ρ2

H2(y1)H1(y2) 0 −
√
2ρ

1−ρ2 0 −2
√
2ρ

1−ρ2

H1(y1)H2(y2) 0
√
2(ρ2+1)
1−ρ2 0

√
2

1−ρ2

H3(y2) 0 −
√

2
3
ρ(ρ2+2)
1−ρ2 0 −2

√
2
3ρ

H4(y1)

√
3
2
ρ2(ρ4−2ρ2+5)
4(1−ρ2)2 0 −

√
3
2
ρ2(ρ2−2)
(1−ρ2)2 0

H3(y1)H1(y2) −
√

3
2
ρ(ρ2+3)

2(1−ρ2)2 0 −
√
6ρ

(1−ρ2)2 0

H2(y1)H2(y2)
2ρ2+1
(1−ρ2)2 0 2ρ2+1

(1−ρ2)2 0

H1(y1)H3(y2) −
√

3
2
ρ(ρ2+3)

2(1−ρ2)2 0 −
√
6ρ

(1−ρ2)2 0

H4(y2)

√
3
2
ρ2(ρ4−2ρ2+5)
4(1−ρ2)2 0 −

√
3
2
ρ2(ρ2−2)
(1−ρ2)2 0
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Table F1: Rejection rates under the null at 1%, 5%, and 10% significance levels
N = 200 N = 800 N = 3, 200

Margins 10% 5% 1% 10% 5% 1% 10% 5% 1%
Panel A: K = 2 and ρ = 0.75

LM-t 9.5 4.6 1.0 10.0 5.1 0.9 10.2 5.1 0.8
LM-At 9.4 4.8 1.0 10.4 5.2 1.0 9.8 5.0 1.0

Known Skew 9.6 4.9 1.1 10.2 5.2 1.0 10.2 5.1 1.0
KT-t 9.8 5.0 1.0 10.4 5.0 0.9 10.1 5.2 0.8
KT-At 9.6 4.8 1.0 10.4 5.1 1.0 10.4 4.8 1.1

LM-t 9.5 4.6 1.0 10.0 5.0 0.9 10.3 5.0 0.8
LM-At 9.6 4.8 1.0 10.4 5.2 1.0 10.0 5.1 1.0

Parametric Skew 9.8 4.9 1.2 10.3 5.2 1.0 10.1 5.3 1.0
KT-t 9.9 4.8 1.0 10.1 5.1 0.8 10.2 5.1 0.9
KT-At 9.5 4.8 1.0 10.1 5.0 0.9 10.4 4.8 1.1

LM-t 9.4 4.6 0.9 9.9 5.1 0.9 9.8 4.9 0.9
LM-At 10.0 5.2 1.0 10.5 5.2 1.0 10.0 4.8 0.9
Skew 10.3 5.1 1.1 10.2 5.2 0.9 9.8 5.1 1.0
KT-t 9.8 4.6 0.9 10.1 4.9 0.9 9.9 5.0 1.0
KT-At 10.0 5.2 1.0 10.2 5.2 1.0 10.2 4.9 1.1

Emp. CDF
S(C) 10.4 5.5 1.2 10.3 4.9 1.0
S(B) 10.3 5.5 1.1 10.1 4.9 1.0
Q 10.5 5.3 0.9 10.9 5.3 1.1
KS 10.1 5.2 1.1 10.4 5.0 1.0
CvM 10.3 5.0 1.0 9.6 4.4 0.7

Panel B: K = 10 and ρkj = 0.75

LM-t 9.5 4.9 0.9 10.1 5.0 1.1 10.1 5.3 0.9
LM-At 10.3 5.4 1.1 10.3 4.9 1.0 9.8 4.9 1.1

Known Skew 10.3 5.6 1.2 9.9 5.0 0.9 10.3 5.0 0.9
KT-t 9.8 4.9 1.0 9.6 5.0 1.1 9.7 5.0 1.2
KT-At 10.4 5.3 1.1 10.2 4.9 1.0 9.7 4.9 1.0

LM-t 9.6 4.5 0.8 9.1 4.7 0.8 9.9 4.8 1.0
LM-At 9.8 5.0 1.0 9.6 4.7 1.1 10.1 4.8 1.0

Emp. CDF Skew 10.1 5.0 1.1 9.6 5.0 1.3 10.2 5.0 1.0
KT-t 9.6 4.5 0.8 9.2 4.7 0.9 9.8 4.8 1.1
KT-At 9.7 5.0 1.0 9.7 4.8 1.1 10.3 4.9 1.0

Notes: Critical values are computed using parametric bootstrap. LM—t and LM—At are the Lagrange
multiplier tests based on the score of the symmetric and asymmetric Student t copula, respectively;
while KT—t and KT—At are the corresponding Kuhn-Tucker versions (see Section 3 for details). Skew
corresponds to the Lagrange multiplier test based on the moment conditions mbk (ρ) of Proposition 3.
S(C) and S(B) refer to procedures based on Rosenblatt’s transform proposed by Genest et al. (2009), Q
denotes the test statistic of Panchenko (2005), while KS and CvM denote the Kolmogorov—Smirnov and
the Cramér—von Mises tests for copula models (see Rémillard (2017) for details). Parametric correspond
to a DGP with exponential marginals whose parameters are estimated by maximum likelihood.
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Table F2: Monte Carlo rejection rates at 1%, 5%, and 10% significance levels under the

Student t alternative
N = 200 N = 800 N = 3, 200

Margins 10% 5% 1% 10% 5% 1% 10% 5% 1%
Panel A: K = 2 and ρ = 0.75

LM-t 24.3 18.0 8.2 51.3 41.6 24.2 93.3 89.5 77.9
LM-At 23.4 16.3 7.0 44.4 34.4 19.1 87.2 81.5 66.7

Known Skew 15.8 9.2 3.0 17.2 10.4 3.2 16.4 9.8 3.0
KT-t 31.9 21.7 8.2 61.2 48.9 25.8 96.4 92.9 80.9
KT-At 25.3 17.0 7.1 47.4 36.9 19.5 89.5 83.7 68.5

LM-t 24.5 18.1 8.1 51.0 41.4 24.4 93.3 89.4 78.2
LM-At 23.6 16.3 6.9 44.2 34.5 19.0 87.3 81.6 66.7

Parametric Skew 16.0 9.3 3.1 17.1 10.4 3.2 16.5 9.8 2.9
KT-t 31.7 21.6 8.2 60.9 48.8 26.1 96.3 92.9 80.8
KT-At 25.4 17.1 7.0 47.4 36.7 19.3 89.5 83.6 68.7

LM-t 26.7 18.5 7.2 53.1 42.7 23.3 93.4 89.8 77.6
LM-At 24.1 15.9 6.3 45.2 35.0 18.4 87.5 81.7 66.9
Skew 15.9 9.0 2.9 16.8 10.2 3.1 16.2 9.8 2.9
KT-t 29.3 19.1 7.2 58.2 45.5 23.7 95.5 91.6 78.9
KT-At 24.9 16.1 6.3 47.2 36.0 18.6 89.0 83.2 68.2

Emp. CDF
S(C) 11.8 6.1 1.3 16.3 8.9 2.3
S(B) 11.9 6.1 1.2 16.1 9.1 2.3
Q 9.7 5.0 1.1 10.3 4.9 0.9
KS 10.3 5.3 1.1 11.5 5.8 1.3
CvM 10.2 5.0 1.0 11.0 5.3 1.0

Panel B: K = 10 and ρkj = 0.75

LM-t 27.4 19.3 8.3 61.1 50.2 29.4 98.1 96.4 89.0
LM-At 23.7 15.4 5.4 41.1 29.7 14.2 86.4 78.5 60.3

Known Skew 17.4 9.8 2.7 17.9 10.7 2.9 18.5 10.3 2.7
KT-t 38.5 26.0 9.7 73.2 60.5 34.7 99.3 98.2 93.1
KT-At 24.4 15.8 5.5 42.8 31.4 14.4 87.5 80.5 61.8

LM-t 30.9 19.9 6.5 65.7 53.0 28.5 98.3 96.6 89.2
LM-At 24.7 15.7 4.8 45.5 34.0 16.2 87.9 80.6 62.2

Emp. CDF Skew 16.4 9.3 2.3 18.0 10.1 3.1 17.9 10.6 3.1
KT-t 31.1 20.0 6.5 67.3 53.9 28.6 98.7 97.1 90.3
KT-At 24.7 15.7 4.8 46.2 34.1 16.5 88.5 81.5 62.8

Notes: DGP: Student t copula with 20 (100) degrees of freedom in Panel A (B). Critical values
are computed using parametric bootstrap. LM—t and LM—At are the Lagrange multiplier tests based
on the score of the symmetric and asymmetric Student t copula, respectively; while KT—t and KT—
At are the corresponding Kuhn-Tucker versions (see Section 3 for details). Skew corresponds to the
Lagrange multiplier test based on the moment conditions mbk (ρ) of Proposition 3. S(C) and S(B) refer
to procedures based on Rosenblatt’s transform proposed by Genest et al. (2009), Q denotes the test
statistic of Panchenko (2005), while KS and CvM denote the Kolmogorov—Smirnov and the Cramér—von
Mises tests for copula models (see Rémillard (2017) for details). Parametric correspond to a DGP with
exponential marginals whose parameters are estimated by maximum likelihood.
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Table F3: Rejection rates at 1%, 5%, and 10% significance levels under the Asymmetric t

alternative
N = 200 N = 800 N = 3, 200

Margins 10% 5% 1% 10% 5% 1% 10% 5% 1%
Panel A: K = 2 and ρ = 0.75

LM-t 27.2 20.4 9.7 56.9 47.4 29.5 96.1 93.5 84.5
LM-At 37.4 27.3 12.6 80.6 72.3 52.5 100.0 99.9 99.7

Known Skew 34.0 23.9 10.0 74.9 65.2 44.3 99.8 99.6 98.4
KT-t 35.1 24.1 9.9 66.5 54.6 31.4 98.0 95.8 86.9
KT-At 39.5 28.3 12.8 82.7 74.2 53.0 100.0 100.0 99.7

LM-t 27.1 20.1 9.7 56.6 47.5 29.7 96.3 93.6 84.7
LM-At 37.0 26.6 12.3 80.4 71.9 51.9 100.0 99.9 99.7

Parametric Skew 33.4 23.4 9.8 74.7 64.9 43.6 99.8 99.6 98.4
KT-t 34.7 23.7 9.8 66.5 54.2 31.3 98.0 96.0 87.1
KT-At 39.0 27.6 12.4 82.7 74.1 52.5 100.0 100.0 99.7

LM-t 28.9 20.1 8.1 58.6 48.6 27.9 96.2 93.7 83.9
LM-At 34.0 24.2 9.8 75.9 66.9 45.0 99.9 99.8 99.1
Skew 29.3 19.6 8.4 67.8 57.3 36.4 99.5 98.9 96.3
KT-t 31.7 20.7 8.1 63.7 51.4 28.4 97.4 95.0 85.1
KT-At 34.4 24.4 9.8 77.4 67.8 45.2 99.9 99.9 99.1

Emp. CDF
S(C) 15.7 8.7 2.3 38.5 25.7 9.3
S(B) 16.7 9.7 2.8 39.6 27.3 9.8
Q 9.6 4.6 0.8 13.9 7.2 1.7
KS 9.8 4.8 0.9 19.8 11.3 3.0
CvM 10.6 5.5 1.3 20.3 12.0 3.1

Panel B: K = 10 and ρkj = 0.75

LM-t 27.05 19.12 8.54 61.12 49.6 29.66 97.97 96.4 88.03
LM-At 24.77 16.53 5.99 46.33 34.32 16.78 93.08 87.81 74.04

Known Skew 18.58 11.22 3.43 24.5 15.46 5.02 47.77 34.44 14.64
KT-t 37.9 25.66 9.79 72.4 60.44 35.01 99.05 97.98 92.76
KT-At 25.63 16.93 6.15 48.31 35.95 17.07 93.83 89.49 75.55

LM-t 30.82 20.05 7.1 65.64 52.91 28.59 98.32 96.44 88.56
LM-At 25.38 16.78 5.57 49.51 37.29 18.32 93.09 88.07 73.37

Emp. CDF Skew 17.29 10.34 3.1 22.83 13.84 4.47 42.41 30.09 12.56
KT-t 30.98 20.12 7.1 66.99 53.75 28.68 98.77 96.88 89.46
KT-At 25.43 16.79 5.57 50.22 37.48 18.55 93.47 88.47 73.69

Notes: DGP: Asymmetric Student t copula with 20 (100) degrees of freedom and skewness vector
b = −.75` (b = −.15`) in Panel A (B). Critical values are computed using parametric bootstrap. LM—
t and LM—At are the Lagrange multiplier tests based on the score of the symmetric and asymmetric
Student t copula, respectively; while KT—t and KT—At are the corresponding Kuhn-Tucker versions (see
Section 3 for details). Skew corresponds to the Lagrange multiplier test based on the moment conditions
mbk (ρ) of Proposition 3. S(C) and S(B) refer to procedures based on Rosenblatt’s transform proposed
by Genest et al. (2009), Q denotes the test statistic of Panchenko (2005), while KS and CvM denote
the Kolmogorov—Smirnov and the Cramér—von Mises tests for copula models (see Rémillard (2017) for
details). Parametric correspond to a DGP with exponential marginals whose parameters are estimated
by maximum likelihood.
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Table F4: Rejection rates at 1%, 5%, and 10% significance levels under the Skew t alternative
N = 200 N = 800 N = 3, 200

Margins 10% 5% 1% 10% 5% 1% 10% 5% 1%
Panel A: K = 2 and ρ = 0.75

LM-t 24.0 17.6 7.8 51.0 41.5 23.8 93.7 89.9 77.7
LM-At 23.7 16.4 6.7 45.4 35.4 19.5 90.3 84.8 70.4

Known Skew 16.5 10.0 2.7 19.6 12.4 4.1 29.5 20.0 7.8
KT-t 32.1 21.3 7.9 61.6 48.7 25.3 96.6 93.3 81.2
KT-At 25.6 17.2 6.7 49.0 37.4 19.9 92.0 87.0 72.1

LM-t 24.3 17.7 7.8 50.9 41.5 24.0 93.7 89.8 77.7
LM-At 23.7 16.3 6.6 45.1 35.3 19.4 90.4 84.8 70.2

Parametric Skew 16.2 10.2 2.8 19.4 12.2 4.1 29.2 20.1 7.6
KT-t 31.9 21.4 7.9 61.4 48.5 25.7 96.5 93.2 81.1
KT-At 25.5 17.3 6.6 48.8 37.7 19.7 92.1 86.8 72.1

LM-t 26.9 18.7 6.9 53.7 43.1 22.4 93.9 90.3 77.4
LM-At 25.0 16.8 6.4 46.5 35.7 18.8 89.7 83.9 69.3
Skew 16.3 9.7 3.1 18.3 11.3 3.6 24.9 15.9 5.6
KT-t 29.7 19.4 6.9 59.0 45.8 22.9 95.9 92.2 79.0
KT-At 25.6 17.0 6.4 48.5 36.7 19.0 91.0 85.3 70.5

Emp. CDF
S(C) 12.8 6.9 1.5 18.9 10.9 3.0
S(B) 12.8 7.1 1.6 19.0 11.4 3.1
Q 9.3 4.6 0.9 9.8 4.6 0.8
KS 9.6 5.1 0.9 10.7 5.6 1.1
CvM 10.8 5.2 0.9 11.0 5.6 1.0

Panel B: K = 10 and ρkj = 0.75

LM-t 27.87 19.28 8.64 61.11 50.1 28.75 98.47 97.07 90.22
LM-At 24.99 16.21 5.55 41.15 30.4 15.58 89.37 82.5 66.58

Known Skew 18.59 11.11 3.15 18.92 11.15 3.37 25.83 15.7 5.18
KT-t 38.82 26.87 10.01 73.64 60.9 34.44 99.38 98.44 93.55
KT-At 25.88 16.54 5.83 43.61 31.76 15.82 90.53 84.17 67.88

LM-t 31.47 20.52 7.45 64.69 52.45 27.51 98.54 96.9 89.37
LM-At 25.74 16.33 5.54 44.32 32.97 14.93 88.32 81.38 63.95

Emp. CDF Skew 17.38 10.05 2.86 16.85 9.9 2.53 18.05 10.93 3.22
KT-t 31.65 20.56 7.45 66.05 53.04 27.54 98.98 97.36 90.29
KT-At 25.92 16.36 5.54 44.81 33.15 14.93 89.03 82.08 64.68

Notes: DGP: Skew t copula with 20 (100) degrees of freedom and skew parameter α = −.25 (α = −.05)
in Panel A (B) (see Azzalini and Capitanio (2003) for details). Critical values are computed using
parametric bootstrap. LM—t and LM—At are the Lagrange multiplier tests based on the score of the
symmetric and asymmetric Student t copula, respectively; while KT—t and KT—At are the corresponding
Kuhn-Tucker versions (see Section 3 for details). Skew corresponds to the Lagrange multiplier test
based on the moment conditions mbk (ρ) of Proposition 4. S(C) and S(B) refer to procedures based
on Rosenblatt’s transform proposed by Genest et al. (2009), Q denotes the test statistic of Panchenko
(2005), while KS and CvM denote the Kolmogorov—Smirnov and the Cramér—von Mises tests for copula
models (see Rémillard (2017) for details). Parametric correspond to a DGP with exponential marginals
whose parameters are estimated by maximum likelihood.
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Table G3: Constrained indirect estimates of the shape parameters

Panel A: Short term reversals strategies
Student t Asymmetric Student t
ρ̂ η̂ ρ̂ η̂ b̂1 b̂2

Sector
Non Durables -.032 .154 -.029 .155 -.135 -.049
Durables -.047 .093 -.045 .093 -.156 -.219
Manufacturing -.040 .144 -.039 .144 -.065 -.045
Energy -.029 .139 -.027 .139 -.076 -.091
Chemicals -.049 .119 -.048 .120 -.103 -.014
Business -.028 .108 -.027 .109 -.125 -.064
Telecom .022 .131 .027 .130 -.154 -.142
Utilities -.040 .146 -.036 .146 -.124 -.108
Shops -.028 .146 -.026 .146 -.109 -.057
Healthcare -.028 .124 -.026 .124 -.117 -.075
Financials -.058 .209 -.042 .207 -.117 -.091
Others -.027 .133 -.024 .134 -.163 -.069

All -.025 .187 -.018 .187 -.112 -.069

Panel B: Momentum strategies
Student t Asymmetric Student t
ρ̂ η̂ ρ̂ η̂ b̂1 b̂2

Sector
Non Durables .032 .179 .051 .178 -.170 -.176
Durables .046 .105 .051 .104 -.262 -.225
Manufacturing .022 .176 .028 .176 -.087 -.114
Energy .023 .144 .028 .143 -.131 -.159
Chemicals .006 .131 .007 .130 -.054 -.140
Business .010 .141 .014 .140 -.146 -.113
Telecom .057 .123 .062 .118 -.113 -.467
Utilities .010 .152 .014 .152 -.117 -.102
Shops .032 .172 .046 .170 -.136 -.208
Healthcare .026 .139 .034 .137 -.162 -.247
Financials .033 .211 .080 .209 -.139 -.252
Others .035 .155 .047 .153 -.150 -.259

All .034 .213 .074 .212 -.124 -.190

Notes: The data is collected from CRSP and contains monthly series from January 1997 to December
2012. Estimates are obtained by generating sample paths of size 100,000 from this copula and matching
in the simulated data the values in the original data of both the Gaussian rank correlation coeffi cients
and the corresponding test statistics.
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Figure D1: Power of Student t-based tests under asymmetric Student t local alternatives

Figure D1a: Non-centrality parameter for different kurtosis parameter values
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Figure D1b: Non-centrality parameter for different correlation parameter values
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Figure D1c: Non-centrality parameter for different skewness parameter values
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Notes: Non-centrality parameters of the Student t LM-copula and LM-distributional tests under asym-
metric Student t alternatives. LM and LMNP denote the LM-copula tests when marginals are known and
when they are estimated nonparametrically, respectively; while DistNP denotes the LM-distributional
test when marginals are estimated nonparametrically. Figure D1a, power against asymmetric Student
t alternatives with ρ = .75 and bk =-.5 for k = 1, 2. Figure D1b, power against asymmetric Student
t alternatives with different correlation parameter and η = .1, bk =-.5 for k = 1, 2. Figure D1c, power
against asymmetric Student t alternatives with increasing skewness and η = .1, ρ = .75. Figures D1b-c
share the legend of Figure D1a.

24



Figure D2: Power of asymmetric Student t-based tests under asymmetric Student t local

alternatives

Figure D2a: Non-centrality parameter for different kurtosis parameter values
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Figure D2b: Non-centrality parameter for different correlation parameter values
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Figure D2c: Non-centrality parameter for different skewness parameter values
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Notes: Non-centrality parameters of the Student t LM-copula and LM-distributional tests under asym-
metric Student t alternatives. LM and LMNP denote the LM-copula tests when marginals are known and
when they are estimated nonparametrically, respectively; while DistNP denotes the LM-distributional
test when marginals are estimated nonparametrically. Figure D2a, power against asymmetric Student
t alternatives with ρ = .75 and bk =-.5 for k = 1, 2. Figure D2b, power against asymmetric Student
t alternatives with different correlation parameter and η = .1, bk =-.5 for k = 1, 2. Figure D2c, power
against asymmetric Student t alternatives with increasing skewness and η = .1, ρ = .75. Figures D2b-c
share the legend of Figure D2a.
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Figure G1: Transition probabilities for short term reversals strategies
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Figure G1d: Middle-Top 25%
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Notes: The data is collected from CRSP and contains monthly series from January 1997 to December
2012. Gaussian copula with correlation coeffi cient ρ =-.022. For the Student t copula, ρ =-.025 and
η = .187; while for the asymmetric Student t copula, ρ =-.018, η = .187, b1 =-.112 and b2 =-.069

(obtained by constrained indirect estimation).
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Figure G2: Transition probabilities for momentum strategies

Figure G2a: Bottom 5%
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Figure G2b: Bottom-Middle 25%
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Figure G2c: Middle 40%
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Figure G2d: Middle-Top 25%
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Notes: The data is collected from CRSP and contains monthly series from January 1997 to December
2012. Gaussian copula with correlation coeffi cient ρ = .035. For the Student t copula, ρ = .034 and
η = .213; while for the asymmetric Student t copula, ρ = .074, η = .212, b1 =-.124 and b2 =-.190

(obtained by constrained indirect estimation).
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