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B Reduced form of a multivariate AR(p) plus noise
The purpose of this appendix is to find the Wold representation (5) of theVma(p) component

mt = cft + (1− α1L− ...− αpLp)ut,

of process (6). Since we can trivially recover xt from yt without error when |Γu| = 0, we rule
this possibility out henceforth. As a result, we can work with the transformed system

y∗t = Γ−1/2u yt = Γ−1/2u cxt + Γ−1/2u ut = c∗xt + u∗t ,

which has the advantage that the covariance matrix of u∗t is the identity matrix. Importantly,

the diagonality of Γu plays no role in this transformation. Similarly, given that we are focusing

on second order properties of the observable process, normality will play no role either.

In this context, our goal is to obtain the invertible reduced form representation

m∗t = [Γ
−1/2
u D(L)Γ1/2u ]Γ−1/2u wt = D∗(L)w∗t = (IN +D∗1L+ . . .+D∗pL

p)w∗t ,

with w∗t |yt−1,yt−2, . . . ∼ N(0,Σ∗). Having done so, we can easily recover Σ = Γ
1/2
u Σ∗Γ

1/2
u and

Di = Γ
1/2
u D∗iΓ

−1/2
u for i = 1, . . . , p.

As we mentioned in section 2.2, m∗t also has a dynamic factor structure, although in this

case the common factor is white noise while the specific factors follow a Vma(p) process with

scalar polynomial (1− α1L− ...− αpLp)IN . Thus, the autocovariance matrices of m∗t will be:

V (m∗t ) = γfc
∗c∗′ + γ(0)IN ; cov(m

∗
t ,m

∗
t−j) = γ(j)IN , j = 1, . . . , p; cov(m

∗
t ,m

∗
t−j) = 0 j > p,

where γ(0), γ(1), . . . , γ(p) are the autocovariances of a univariateMa(p) process with polynomial

(1− α1L− ...− αpLp) and standardised innovations. But we also know that

V (m∗t ) = Σ∗ +D∗1Σ
∗D∗′1 + . . .+D∗pΣ

∗D∗′p ,

cov(m∗t ,m
∗
t−1) = D∗1Σ

∗ + . . .+D∗pΣ
∗D∗′p−1, . . . , cov(m

∗
t ,m

∗
t−p) = D∗pΣ

∗,

so we can obtain the required reduced form coeffi cients by matching the structural and reduced

form expressions for the autocovariance matrices of m∗t . There are several well-known methods

for solving the resulting equations in the univariate case (see Fiorentini and Planas (1998) for

a comparison), but the task is far more daunting in the multivariate context. Nevertheless, the

dynamic factor structure imposes many restrictions that we can successfully exploit.

First of all, the one-period ahead forecast errors of m∗t based on its past values alone coincide

with the one-period ahead forecast errors in y∗t given the past of the observed series. In turn, it

is easy to see that the state space representation of yt implies that the covariance matrix of the

one-period ahead forecasting errors of y∗t based on its entire past history will have a restricted

single factor structure regardless of p (see appendix A in Fiorentini and Sentana (2013) for

p = 2). Therefore, we can safely conclude that

Σ∗ = a0c
∗c∗′ + b0IN .
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On this basis, we begin by conjecturing that

D∗1 = a1c
∗c∗′ + b1IN , . . . ,D

∗
p = apc

∗c∗′ + bpIN ,

where a0, b0, . . . ap, bp are unknown scalars to be determined, and then verify our conjecture. As

an illustration, suppose p = 2, in which case the system of equations becomes

Σ∗+D∗1Σ
∗D∗′1 +D∗2Σ

∗D∗′2 = γfc
∗c∗′+γ(0)IN ; D∗1Σ

∗+D∗2Σ
∗D∗′1 =γ(1)IN ; D∗2Σ

∗=γ(2)IN ,

γ(0) = 1 + α21 + α
2
2; γ(1) = −α1(1− α2); γ(2) = −α2.

The last matrix equation immediately implies that

D∗2 = γ(2)Σ∗−1 =
γ(2)

b0
IN −

γ(2)

b20(a
−1
0 + b−10 |c∗|2)

c∗c∗′,

where |c∗|2 = c∗′c∗ = c′Γ−1u c, which means that

a2 = −
γ(2)

b20(a
−1
0 + b−10 |c∗|2)

= b2
γ(2)

b0a
−1
0 + |c∗|2

, b2 =
γ(2)

b0
.

If we then replace D∗2 by this expression in the equation for cov(m
∗
t ,m

∗
t−1), we end up with

D∗1Σ
∗ + γ(2)D∗′1 = γ(1)IN .

But D∗1Σ
∗ = (a1c∗c∗′+ b1IN )(a0c

∗c∗′+ b0IN ) = (a1a0|c∗|2+ a1b0+ a0b1)c∗c∗′+ b1b0IN , whence
(a1a0|c∗|2+ a1b0+ a0b1+ γ(2)a1)c∗c∗′+ b1(b0+ γ(2))IN = γ(1)IN , which leads to the equations

b1 =
γ(1)

b0 + γ(2)
, a1 =

−a0b1
a0|c∗|2 + b0 + γ(2)

.

Finally, the equation for the covariance matrix of m∗t becomes

a0c
∗c∗′ + b0IN + [a

2
1a0|c∗|4 + (a21b0 + 2a1a0b1 + a1b1b0)]|c∗|2 + 2a1b1b0 + a0b21]c∗c∗′

+b21b0IN +
γ2(2)

b0
IN −

γ2(2)

b20(a
−1
0 + b−10 |c∗|2)

c∗c∗′,

where we have exploited the fact that

D∗1Σ
∗D∗′1 = [(a1a0|c∗|2 + a1b0 + a0b1)c∗c∗′ + b1b0IN ](a1c∗c∗′ + b1IN )

= [a21a0|c∗|4 + (a21b0 + 2a1a0b1 + a1b1b0)]|c∗|2 + 2a1b1b0 + a0b21]c∗c∗′ + b21b0IN .

This expression leads to the following two scalar equations

a0 + a
2
1a0|c∗|4 + (a21b0 + 2a1a0b1 + a1b1b0)]|c∗|2 + 2a1b1b0 + a0b21 −

γ2(2)

b20(a
−1
0 + b−10 |c∗|2)

= γf ,

b0 + b
2
1b0 +

γ2(2)

b0
= γ(0),

which can be used in combination with the expressions for a1 and b1 to find all the necessary

parameters. Importantly, we must choose the solution to this system of equations that renders

the reduced form process invertible, but this is easy to verify.

An extension of this procedure for higher values of p is tedious but straightforward.
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C Reduced form tests
Given the local asymptotic equivalence between Var and Vma alternatives, for simplicity,

but without loss of generality, in this appendix we generalise Proposition 1 by focusing on testing

the null hypothesis that the reduced form residuals wt in (5) are serially uncorrelated against

the alternative that they follow a Vma(1) process by considering the following structural model

yt = µ+A−1(L)(I−ΨwL)A(L)c(L)xt+ut, αx(L)xt = βx(L)ft, A(L)ut = (I−ΨwL)B(L)vt,

whose reduced form will be

αx(L)A(L)(yt − µ) = (I−ΨwL)[A(L)c(L)βx(L)ft + αx(L)B(L)vt].

Under this alternative, the spectral density matrix becomes

Gyy(λ) = A−1(e−iλ)(I−Ψwe
−iλ)A(e−iλ)c(e−iλ)gxx(λ)c

′(eiλ)A(eiλ)(I−Ψ′we
iλ)A−1(eiλ)

+A−1(e−iλ)(I−Ψwe
−iλ)B(e−iλ)ΣvvB(e

iλ)(I−Ψ′we
iλ)A−1(eiλ).

Since we already have all the other gradients under the null, we assume that all parameters

except Ψw are known, in which case the differential of Gyy(λ) will be given by

dGyy(λ) = −A−1(e−iλ)e−iλdΨwA(e−iλ)c(e−iλ)gxx(λ)c
′(eiλ)A(eiλ)(I−Ψ′we

iλ)A−1(eiλ)

−A−1(e−iλ)(I−Ψwe
−iλ)A(e−iλ)c(e−iλ)gxx(λ)c

′(eiλ)A(eiλ)dΨ′we
iλA−1(eiλ)

−A−1(e−iλ)e−iλdΨwB(e−iλ)ΣvvB(e
iλ)(I−Ψ′we

iλ)A−1(eiλ)

−A−1(e−iλ)(I−Ψwe
−iλ)B(e−iλ)ΣvvB(e

iλ)dΨ′we
iλA−1(eiλ).

Hence, we obtain that dvec[Gyy(λ)] will be given by

−KNN [A
−1(e−iλ)⊗A−1(eiλ)(I−Ψwe

iλ)A(eiλ)c(eiλ)gxx(λ)c
′(e−iλ)A(e−iλ)]e−iλdvec(Ψ′w)

−[A−1(eiλ)⊗A−1(e−iλ)(I−Ψwe
−iλ)A(e−iλ)c(e−iλ)gxx(λ)c

′(eiλ)A(eiλ)]eiλdvec(Ψ′w)

−KNN [A
−1(e−iλ)⊗A−1(eiλ)(I−Ψwe

iλ)B(eiλ)ΣvvB(e
−iλ)]e−iλdvec(Ψ′w)

−[A−1(eiλ)⊗A−1(e−iλ)(I−Ψwe
−iλ)B(e−iλ)ΣvvB(e

iλ)]eiλdvec(Ψ′w),

where KNN is the commutation matrix of orders (N,N) such that vec(Ψw) = KNNvec(Ψ
′
w).

As a result, the Jacobian of vec[Gyy(λ)] with respect to vec(Ψ′w) at Ψw = 0 will be

dvec[Gyy(λ)]

dvec′(Ψ′w)
= −KNN [A

−1(e−iλ)⊗G′yy(λ)A(e
−iλ)]e−iλ − [A−1(eiλ)⊗Gyy(λ)A(e

iλ)]eiλ,

where we have used the fact that

A−1(e−iλ)B(e−iλ)ΣvvB(e
iλ) = Guu(λ)A(e

iλ), A−1(eiλ)B(eiλ)ΣvvB(e
−iλ) = G′uu(λ)A(e

−iλ).

Given thatA(e−iλ) andA−1(e−iλ) are diagonal matrices, the required Kronecker products adopt

particularly simple forms. Finally, the advantage of working with dvec(Ψ′w) instead of dvec(Ψw)

is that we can easily test for neglected serial correlation in a single series if desired.
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D Asymptotic distribution of the spectral ML estimators
In this appendix we formally derive the asymptotic distribution of the spectral maximum

likelihood estimators of the dynamic factor model parameters on the basis of the results in

Dunsmuir (1979), who made the following three assumptions on the spectral matrix

1. Gyy(λ;φ) is positive definite for all frequencies and all values of φ in the admissible

parameter space Φ ⊆ Rd, a twice differentiable manifold of dimension d < ∞, and φ0 ∈
int(Φ) is locally identified.

2. Gyy(λ;φ) is twice continuously differentiable with respect to φ, and those second deriva-

tives are continuous in λ.

3. The elements of Gyy(λ;φ) belong to the Lipschitz class of order α, with 1/2 < α ≤ 1.

and the following four assumptions on the vector of N + 1 latent innovations ξt

4.1 E(ξt|It−1) = 0 a.s.

4.2 V (ξt|It−1) = Γ a.s.

4.3 E[vec(ξtξ
′
t)⊗ ξ′|It−1] = Ψ a.s.

4.4 E[vec(ξtξ
′
t)⊗ vec′(ξtξ′t)] = (Γ⊗Γ)(I(N+1)2 +KN+1,N+1) + vec(Γ)vec

′(Γ) +Υ.

As long as the identification conditions discussed in section 3.1 are satisfied, the dynamic

factor model in (1) will fulfill conditions 1, 2 and 3 because Gyy(λ;φ) is a linear combination of

the rational spectral densities of the underlying univariate Arma models. As for assumptions

4.1-4.4, we impose them by design in the Monte Carlo experiments in section 4. Thus, we can

apply the generalised version of Theorem 2.1 in Dunsmuir (1979), § 3, p. 502, to prove that

√
T s̄φT (φ0) → N(0,B0),

√
T (φT − φ0) → N(0,C0),

C0 = A−10 B0A
−1
0 ,

A0 = −p lim
T→∞

∂s̄φT (φ0)/∂φ
′.

Before providing detailed expressions for A and B, though, let us highlight some incon-

sequential but potentially confusing differences in notational conventions between Dunsmuir’s

paper and ours. First of all, he does not divide the spectral log-likelihood function by 2, so that

A =
1

2
Ω, B =

1

4
(2Ω+Π) = A+

1

4
Π.

In addition, he defines the periodogram as

1

2πT

∑T

t=1

∑T

s=1
(yt − µ)(ys − µ)′ei(t−s)λj = 2πz′jz

c
j

and the spectral density matrix as E(2πz′jz
c
j), which means that what we callGyy(λ;φ) following

e.g. Harvey (1981, p. 91), is the (simple) transpose of his spectral density and what we have

called Iyy(λj) is the transpose of his periodogram. Finally, he considers frequencies in the

interval (−π, π) while we look at (0, 2π).
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In our notation, Dunsmuir (1979) expression for the (j, k)th element of Ω is

Ωjl =
1

2π

∫ π

−π
tr{G′−1yy (λ;φ)[∂G′yy(λ;φ)/∂φj ]G

′−1
yy (λ;φ)[∂G′yy(λ;φ)/∂φk]}dλ

=
1

2π

∫ π

−π
vec′{[∂G′yy(λ;φ)/∂φj ]G

−1
yy(λ;φ)}vec{

[
G′−1yy (λ;φ)[∂G′yy(λ;φ)/∂φk]}

]
dλ

=
1

2π

∫ π

−π
vec′[∂G′yy(λ;φ)/∂φk]

[
G−1yy(λ;φ)⊗G′−1yy (λ;φ)

]
KNNvec[∂G′yy(λ;φ)/∂φk]dλ.

Given that ∂vec [Gyy(λ;φ)] /∂φk is the k
th column of ∂vec [Gyy(λ;φ)] /∂φ

′, while the jth

row of ∂vec′ [Gyy(λ;φ)] /∂φ is ∂vec′ [Gyy(λ;φ)] /∂φj , we can write

Ω =
1

2π

∫ π

−π
∂vec′ [Gyy(λ;φ)] /∂φ

[
G−1yy(λ;φ)⊗G−1′yy (λ;φ)

]
KNN∂vec [Gyy(λ;φ)] /∂φ

′dλ.

The Hermitian nature of Gyy(λ;φ) implies that Ω coincides with 2I(φ) in (16).
Let us now move on to Π for the dynamic single factor model in (1), but replacing the

normality assumption by conditions 4.1-4.4. To do so, it is convenient to write the observed

series as in (2), so that their spectral density matrix will be

Gyy(λ;φ) = ∆(e−iλ)Γ∆′(eiλ) = c(e−iλ)
βx(e

−iλ)

αx(e−iλ)
γf
βx(e

iλ)

αx(eiλ)
c′(eiλ)

+diag

[
β1(e

−iλ)

α1(e−iλ)
γv1

β1(e
iλ)

α1(eiλ)
,
β2(e

−iλ)

α2(e−iλ)
γ2
β2(e

iλ)

α2(eiλ)
, . . .

βN (e
−iλ)

αN (e−iλ)
γvN

βN (e
iλ)

αN (eiλ)

]
.

As stated in condition 4.4, the (1 + N)2 × (1 + N)2 matrix of fourth-order cumulants

Υ is the difference between E[vec(ξtξ
′
t)vec

′(ξtξ
′
t)] and its value under normality, which is

(Γ⊗Γ)(I(N+1)2 +KN+1,N+1) + vec(Γ)vec′(Γ). For example, in the case of N = 2 the fourth-

order cumulant matrix is 9 × 9 with typical element υabcd = E(ξaξbξcξd) − E(ξaξb)E(ξcξd) −
E(ξaξc)E(ξbξd)− E(ξaξd)E(ξbξc).

In addition to the multivariate Gaussian case, in which all fourth order cumulants are 0,

closed-form expressions for Υ can be obtained in some other interesting cases. Specifically, if

we follow section 4 in Dunsmuir (1979) in assuming that the elements of ξt are stochastically

independent, the only non-zero elements of Υ are υff,ff , υ11,11 and υ22,22, whose values coincide

with the univariate fourth-order marginal cumulants of the corresponding series.

In our notation, Dunsmuir’s (1979) expression for the (j, k)th element of Π is

Πjk =
∑1+N

a=1

∑1+N

b=1

∑1+N

c=1

∑1+N

d=1
υabcdΦ

(j)
ab Φ

(k)
cd ,

where Φ
(j)
ab denotes the (a, b)

th element of the (1 +N)× (1 +N) matrix

Φ(j) =

∫ π

−π
∆′(e−iλ)[∂G′−1yy (λ;φ)/∂φj ]∆(e

iλ)dλ.

Tedious algebra shows that

Πjk =
∑1+N

a=1

∑1+N

b=1

∑1+N

c=1

∑1+N

d=1
υabcdΦ

(j)
ab Φ

(k)
cd = vec′[Φ(j)]Υvec[Φ(k)],

vec[Φ(j)] =

∫ π

−π
vec

[
∆′(e−iλ)[∂G′−1yy (λ;φ)/∂φj ]∆(e

iλ)
]
dλ

=

∫ π

−π

[
∆′(eiλ)⊗∆′(e−iλ)

]
{∂vec[G′−1yy (λ;φ)]/∂φj}dλ.
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But since dG′−1yy (λ;φ) = −G′−1yy (λ;φ)dG
′
yy(λ;φ)G

′−1
yy (λ;φ), we can write

vec[Φ(j)] = −
∫ π

−π

[
∆′(eiλ)⊗∆′(e−iλ)

] [
G−1yy(λ;φ)⊗G′−1yy (λ;φ)

] ∂vec[G′yy(λ;φ)]
∂φj

dλ

= −
∫ π

−π

[
∆′(eiλ)G−1yy(λ;φ)⊗∆′(e−iλ)G′−1yy (λ;φ)

]
KNN

∂vec[Gyy(λ;φ)]

∂φj
dλ.

Therefore, we can finally write

Π =

∫ π

−π
{∂vec′[Gyy(λ;φ)]/∂φ}

[
G−1yy(λ;φ)∆(e

−iλ)⊗G′−1yy (λ;φ)∆(e
iλ)
]
dλ

×Υ×
∫ π

−π

[
∆′(e−iλ)G′−1yy (λ;φ)⊗∆′(eiλ)G−1yy(λ;φ)

]
{∂vec[Gyy(λ;φ)]/∂φ

′}dλ

because

KN+1,N+1ΥKN+1,N+1=KN+1,N+1E[vec(ξtξ
′
t)⊗vec′(ξtξ′t)]KN+1,N+1=E[vec(ξtξ

′
t)⊗vec′(ξtξ′t)].

The Φ(j) matrices simplify considerably in restricted Varma models with no latent variables

because the matrix ∆(L) is square and the integrals of the derivatives of the spectral density

with respect to the dynamic parameters are all 0. In the general case, we can once again use the

Woodbury formula in (10) to expressG−1yy(λ;φ) in terms of its constituents under the assumption

that neither Gxx(λ) nor Guu(λ) are singular at any frequency.
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