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B Reduced form of a multivariate AR(p) plus noise

The purpose of this appendix is to find the Wold representation (5) of the VMA (p) component
m; = Cft + (1 — OélL — .. apr)ut,

of process (6). Since we can trivially recover z; from y; without error when |T',| = 0, we rule

this possibility out henceforth. As a result, we can work with the transformed system
yi =T, Py =T, Peay + T, 20y = ¢y + 1,

which has the advantage that the covariance matrix of uj is the identity matrix. Importantly,
the diagonality of I';, plays no role in this transformation. Similarly, given that we are focusing
on second order properties of the observable process, normality will play no role either.

In this context, our goal is to obtain the invertible reduced form representation
m; = [[,"/*D(L)TY*T, *w; = D*(L)w; = (Iy + DL + ... + D}LP)w},

with w}|y:—1,y¢—2,... ~ N(0,3*). Having done so, we can easily recover ¥ = I‘}/QE*I‘}P and
D, =TV/’D:T, 2 fori=1,...,p.

As we mentioned in section 2.2, mj also has a dynamic factor structure, although in this
case the common factor is white noise while the specific factors follow a VMA(p) process with

scalar polynomial (1 — oy L — ... — o, LP)Iy. Thus, the autocovariance matrices of mj will be:

* _x/

V(my) =vypc*c” +v(0)In; cov(my, my_;) =~(j)In, j=1,...,p; cov(mi,m; ;) =0 j>p,

where v(0),v(1),...,v(p) are the autocovariances of a univariate M A (p) process with polynomial

(1 —a1L — ... — apLP) and standardised innovations. But we also know that
V(m;) = X¥"+Di¥'D} +...+D;¥*Dy,

* * * * * * */ * * * *
cov(my,m; ;) = Di¥"+...+D;¥*D;,,..., cov(m;, m;_,) = D, %",

so we can obtain the required reduced form coefficients by matching the structural and reduced
form expressions for the autocovariance matrices of mj. There are several well-known methods
for solving the resulting equations in the univariate case (see Fiorentini and Planas (1998) for
a comparison), but the task is far more daunting in the multivariate context. Nevertheless, the
dynamic factor structure imposes many restrictions that we can successfully exploit.

First of all, the one-period ahead forecast errors of mj based on its past values alone coincide
with the one-period ahead forecast errors in y; given the past of the observed series. In turn, it
is easy to see that the state space representation of y; implies that the covariance matrix of the
one-period ahead forecasting errors of y; based on its entire past history will have a restricted
single factor structure regardless of p (see appendix A in Fiorentini and Sentana (2013) for

p = 2). Therefore, we can safely conclude that

3= CLOC*C*/ + boln.



On this basis, we begin by conjecturing that
DT = CL1C*C*/ + bllN, . ,D; = apc*c*/ + prN,

where ag, by, . . . ap, b, are unknown scalars to be determined, and then verify our conjecture. As

an illustration, suppose p = 2, in which case the system of equations becomes
SULDIS DY) = yctc” +9(0)Ly; DIS D DY =y(1ly; DS =7 (2)Ly,

7(0)

1+af +a3; 7(1) = —a1(l - az); 7(2) = —aa.

The last matrix equation immediately implies that

)

1 (2 v(2) ,
2=72) bo W(agt + by tle?)

where |c*|? = c¢¥c* = ¢/T'; 'c, which means that

7(2) _ b 7(2) IC))

az = — - - =bo—— , b2 .
be(ag Ly bo 1]c*|2) boay Ly |c*|? bo

If we then replace D} by this expression in the equation for cov(mj, m; ,), we end up with
D{S* +(2)D}’ = A(1)1y.

But DiX* = (aic*c® +bi1Iy)(aoc*c” + boly) = (arap|c*|* + a1bo + agbr)c*c* + b1byly, whence

(arag|c*|? + arbo + agby +7(2)a1)c*c* + by (bg +v(2)) Iy = v(1)Iy, which leads to the equations

_ ~(1) 0 — —apb;
bo +(2) aolc*|? 4+ bo +v(2)

Finally, the equation for the covariance matrix of mj becomes

1

aoc*c*’ + bOIN =+ [CL%CLO‘C*’Z’L + (a%bo + 2a1a0b1 + alblbo)]‘C*F + 2@1[)1[)0 =+ agb%]c*c*'

7*(2)4 7*(2) .

+b2boIn + —
O e T B b e )

where we have exploited the fact that

DTE*DT/ = [(alao\c*lz + albo + aobl)C*C*, + blboINKalC*C*, + bllN)
= [a%aolc*\4 + (a%bo + 2a1a0b1 + alblbo)”C*‘Q + 2a1b1bg + aob%]c*c*' + b%boIN.

This expression leads to the following two scalar equations

2
* * 2
ag + afao|c*[* + (aTbo + 2a1a0by + a1bibo)]|c*|? + 2a1b1bo + apb? — — ,17 ( 21 T = F
bo(ag ™ + by " |c*|?)

2
2
m+ﬁm+n£)= 7(0),

which can be used in combination with the expressions for a; and by to find all the necessary
parameters. Importantly, we must choose the solution to this system of equations that renders
the reduced form process invertible, but this is easy to verify.

An extension of this procedure for higher values of p is tedious but straightforward.
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C Reduced form tests

Given the local asymptotic equivalence between VAR and VMA alternatives, for simplicity,
but without loss of generality, in this appendix we generalise Proposition 1 by focusing on testing
the null hypothesis that the reduced form residuals w; in (5) are serially uncorrelated against

the alternative that they follow a VMA(1) process by considering the following structural model
yi = p+A Y LD)(I-¥, L)A(L)c(L)zit+wy, au(L)zy = B, (L) f;, A(L)u, = (I-%,L)B(L)vy,
whose reduced form will be
ar(D)A(L)(yi — ) = (I - ¥, L)[A(L)e(L)B, (L) fi + ar(D)B(L)vy]
Under this alternative, the spectral density matrix becomes
Gyy(\) = AN e ™I - Tye ™Al (e ™) gra (N (D) A(eM)(I - W) AT ()
FA T (eI = Type MB(e By B(e) (I — Wl,e) AT ().

Since we already have all the other gradients under the null, we assume that all parameters

except ¥, are known, in which case the differential of Gy () will be given by

dGyy(\) = —A 7 e e A dT , A (e )e(e™™) gun (V) (e A(e™) (T — L M)A~ ()
—Afl(e*’)‘)(I — \Ilwe*i)‘)A(e*i)‘)c(e*i’\)gw()\)c'(eM)A(ei)‘)d\I!iuei)‘Afl(ei)‘)

—A e M) e W, B(e )2, B(e) (I — ¥/ ) A (e?)
—A (eI - Tue™B(e )2, B(e)dP! M AT ().

Hence, we obtain that dvec[Gyy (A)] will be given by

—Kyn[A 7 (e™™) @ A7 eI = @) A(eM)c(eM) gre( V) (e N A(e™ )] e P dvec(P!)
—[A7H ) @ AT em NI — e M A(em M) e(em M) gra( V) (€M) A(eM) e dvec(P),)
~Kyn[A 7 (e @ A7HeM (T - ©,e)B(e)2,,B(e™ ™) e P dvec(P,)
—[A7He?) @ A7 He (I - e ) B(e M2, B(e?)]eP dvec(®!),
where Ky is the commutation matrix of orders (N, N) such that vec(¥,,) = Ky yvec(¥l,).

As a result, the Jacobian of vec[Gyy ()] with respect to vec(¥),) at ¥,, = 0 will be

dvec|Gyy (N)]

Joed(U1) ~Knn[AT (€)@ Gy (MA(e™)]e™™ — [AT! (™) ® Gyy (M) A(e™)]e?,

where we have used the fact that
A e MB(e M2, B(e?) = Gua(V)A(e?), A7 eMB(eMZ,,Ble ™) = G, (MA(e ™).

Given that A(e~) and A~!(e~*) are diagonal matrices, the required Kronecker products adopt
particularly simple forms. Finally, the advantage of working with dvec(¥/,) instead of dvec(®,,)

is that we can easily test for neglected serial correlation in a single series if desired.
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D Asymptotic distribution of the spectral ML estimators

In this appendix we formally derive the asymptotic distribution of the spectral maximum
likelihood estimators of the dynamic factor model parameters on the basis of the results in

Dunsmuir (1979), who made the following three assumptions on the spectral matrix

1. Gyy(X;¢) is positive definite for all frequencies and all values of ¢ in the admissible
parameter space ® C R%, a twice differentiable manifold of dimension d < oo, and ¢, €
int(®) is locally identified.

2. Gyy(A; @) is twice continuously differentiable with respect to ¢, and those second deriva-
tives are continuous in A.

3. The elements of Gyy (A; @) belong to the Lipschitz class of order o, with 1/2 < a < 1.

and the following four assumptions on the vector of N + 1 latent innovations &,

4.1 E(&|Li—1) =0 as.

4.2 V(&]|Li—1) =T as.

4.3 Elvec(&,£)) @ €' |[;_1] = ¥ a.s.

4.4 Elvec(€,£}) @ ved (€,€})] = (TRL) (I yi1y2 + Kng1,n41) + vee(T)ved (T) + X

As long as the identification conditions discussed in section 3.1 are satisfied, the dynamic

factor model in (1) will fulfill conditions 1, 2 and 3 because Gyy(\; @) is a linear combination of
the rational spectral densities of the underlying univariate ARMA models. As for assumptions
4.1-4.4, we impose them by design in the Monte Carlo experiments in section 4. Thus, we can

apply the generalised version of Theorem 2.1 in Dunsmuir (1979), § 3, p. 502, to prove that

\/T§¢T(¢O) - N(O’B0>v
\/T(¢T_¢O) —  N(0,Cy),

Co = A['BoA,t,
Ay = —pTlifgoagch(d’o)/a(ﬁ'-

Before providing detailed expressions for A and B, though, let us highlight some incon-
sequential but potentially confusing differences in notational conventions between Dunsmuir’s
paper and ours. First of all, he does not divide the spectral log-likelihood function by 2, so that

A-to B-lpos+m-A+im
2 4 4
In addition, he defines the periodogram as
T oy o = ) e 2
and the spectral density matrix as £(27z’z), which means that what we call Gyy (; ¢) following
e.g. Harvey (1981, p. 91), is the (simple) transpose of his spectral density and what we have
called Iyy(A;) is the transpose of his periodogram. Finally, he considers frequencies in the

interval (—m, ) while we look at (0, 27).



In our notation, Dunsmuir (1979) expression for the (j, k)" element of € is

Q= o / tr{Gyy (X @)[0Gyy (X 8)/00,1Gy (X @) [0Gy (X; ¢) /06y A
= g 3 vec{[aG’ (X 0)/00;1Gyy (X @) hvec] [Gy! (X 9)[0GY, (A; ¢) /0y ] }] dA
= % _7; vec [0Gy, (A; ) /0¢y] [Gyy (A @) © Giy'(A; @) ] Kynvec[dGly, (A; @) /0] dA

Given that dvec [Gyy(\; @)] /0y, is the k' column of dvec [Gyy(X; @)] /0@, while the jih
row of duec [Gyy (X; @)] /0¢ is Dvec [Gyy(A; @)] /0¢;, we can write
1 [7 _ _
Q=50 dvec [Gyy (X 9)] /09 [Gop (X @) ® G (X ¢)] Kvwdvec [Gyy (X; )] /0¢d.
The Hermitian nature of Gyy (\; ¢) implies that € coincides with 2Z(¢) in (16).
Let us now move on to II for the dynamic single factor model in (1), but replacing the

normality assumption by conditions 4.1-4.4. To do so, it is convenient to write the observed

series as in (2), so that their spectral density matrix will be

. . ) —i)\ ez)\
ny<A;¢>—A<e“)rA'<e“>—c<e“>i§ e (e

Bie™™)  Bi(e™) Byle™)  By(e?)  By(e™)  By(e)
ai(e™) " ar (@) as(e ™) Zag(en) 'cm( =) T ()

As stated in condition 4.4, the (1 + N)? x (1 + N)? matrix of fourth-order cumulants

+diag

Y is the difference between FElvec(€,£})vec (€,£})] and its value under normality, which is
(TRC) (L yy1y2 + Knt1,n41) + vee(T)ved (T'). For example, in the case of N = 2 the fourth-
order cumulant matrix is 9 x 9 with typical element vapeqa = E(£,08.6q) — E(E.6p) E (L) —
B(€,£)B(EE) — E(€aL)BEL,).

In addition to the multivariate Gaussian case, in which all fourth order cumulants are 0,
closed-form expressions for Y can be obtained in some other interesting cases. Specifically, if
we follow section 4 in Dunsmuir (1979) in assuming that the elements of &, are stochastically
independent, the only non-zero elements of X are vys ¢r, v11,11 and v 22, whose values coincide
with the univariate fourth-order marginal cumulants of the corresponding series.

In our notation, Dunsmuir’s (1979) expression for the (j, k) element of IT is
14N = I+N = 1+N < 1+N K
LSO DD DIRD DIND DRI -8 22
where @ijl;) denotes the (a,b)™ element of the (14 N) x (1 + N) matrix
30 = [ A/ )G (1 9)/06;] AP,

—T

Tedious algebra shows that

1+N 1+N 1+N 1+N .
Il = Z Z ZC_ Z Uabcdq)ab (Z):vecl[Q(J)]Tvec[tI)(k)],

vect] = [ ﬂvec[A'(e PG (4 )/00,1A ()] dx
_ / 7; (A6 © A'(e)] {Bvecl Gt (: )]/00, A
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But since dG};! (A @) = =G (X 0)dG, (X §) Gy (X @), we can write

vec@9] = — /_7r [A/(ei/\)®A/(e—iA)] [Gyi( ¢) © Gt (N ¢)] 3vec[(2§(,;()\§¢)] i\
= _/_ﬂ' [A’(ei)\)(};;()\; ¢>®A/(67M)Glyfyl<)\; ¢)] KNNaUGC[Ga);,A()\; d))]d)\

Therefore, we can finally write
M= | {0ved[Gyy (X §)]/08} |Gyy (N @) A(™) @ Gy (X @) A(e™)| dA
XXX /_ AN N ) © A'(eM) Gt (A 6)] {DveclGyy (A 6)]/06 1N

because

Ky, v 1 YKy v i1 =Ky vy Elvec(§,€)@ved (6,61 Kni1,n 1= Elvec(§,£;)@vec (£,£1)].

The &) matrices simplify considerably in restricted VARMA models with no latent variables
because the matrix A(L) is square and the integrals of the derivatives of the spectral density
with respect to the dynamic parameters are all 0. In the general case, we can once again use the
Woodbury formula in (10) to express G;;()\; ¢) in terms of its constituents under the assumption

that neither Gy5(\) nor Guu(A) are singular at any frequency.



