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B Computational details of the simulations

We simulate n random draws from the multivariate skew normal distribution in (1)

using the following rejection sampling method. First, we simulate x ∼ N [ϕM ,Σ(ϕV )] to-

gether with an independent scalar random variable u with a uniform distribution between

0 and 1. If u ≤ Φ
[
ϑ′dg−1/2 (ϕD) (x−ϕM)

]
, then y = x, otherwise we discard it.

Arellano-Valle and Azzalini (2008) introduce an alternative parametrization of the

multivariate skew normal distribution, which they call the central parametrization, such

that the parameters of interest coincide with the means, variance and covariances of the

observed variables, as well as their marginal skewness coeffi cients. They go from the

original parametrization (ϕM ,ϕV ,ϑ) to the central one in two steps. First, they consider

an intermediate vector of parameters such that

µ = E(y) = ϕM + τ ,

Υ(υ) = V (y) = Σ(ϕV )− ττ ′,

τ =

√
2

π
dg1/2(ϕD)δ

where

δ = [1 + ϑ′Ψ(ϕV )ϑ]−1/2Ψ(ϕV )ϑ,

Ψ(ϕV ) = dg−1/2(ϕD)Σ(ϕV )dg−1/2(ϕD)

and υ = (υ′D,υ
′
L)′, with υD = vecd[Υ(υ)] and υL = vecl[Υ(υ)]. This reparametrization

is a one-to-one mapping with a non-zero Jacobian determinant even at the Gaussian null.

In addition, it is easy to prove that the scores corresponding to µ evaluated at τ = 0

coincide with the scores corresponding to ϕM evaluated at ϑ = 0, the same being true of

the scores for υ and ϕV . This is not entirely surprising in view of the fact that ϕM and

Σ(ϕV ) directly yield E(y) and V (y) under normality. In contrast, all the elements of

the score vector and Hessian matrix corresponding to τ are 0 when evaluated at τ = 0,

thereby achieving the goal of confining the singularities to those elements, as in the proof

of Proposition 1. Nevertheless, the third derivatives are no longer 0. Specifically,

∂3l

∂τ 3k

∣∣∣∣
τ=0

=
4− π

2
Hkkk[y;µ,Υ(υ)] +

12

(1−R2k)υD,k
sµk
∣∣
τ=0

, (B1)
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where Hkkk[y;µ,Υ(υ)] is one of the K(K+1)(K+2)/6 third-order multivariate Hermite

polynomials in (3) and R2k is the coeffi cient of determination in the regression of yk on a

constant and the remaining elements of y.

Next, Arellano-Valle and Azzalini (2008) replace each τ k with the corresponding mar-

ginal skewness coeffi cient

γk =
E(yk − µk)3

υ
3/2
D,k

=
4− π

2

(
τ k√
υD,k

)3
.

The problem with this reparametrization is that its first and second derivatives are

0 under the Gaussian null, but this is precisely the trick that Lee and Chesher (1986)

used to re-interpret their extremum test as an LM test in the case of a single para-

meter. Specifically, after applying L’Hopital’s rule twice, the score of γk evaluated at

γ = (γ1, . . . , γK)′ = 0 is

∂l

∂γi

∣∣∣∣
γ=0

=
υD,k

6
Hkkk[y;µ,Υ(υ)] +

4υD,k
(4− π)(1−R2k)

sµk
∣∣
γ=0

, (B2)

which is proportional to (B1). Once we purge these derivatives from the effects of esti-

mating the sample mean vector and covariance matrix by regressing them on the scores

with respect to µ and υ and retaining the residuals, we end up with the moment test

based on Hkkk[y;µ,Υ(υ)] for k = 1, . . . , K.

Clearly, this procedure ignores all the other K(K−1)(K+4)/6 third cross-derivatives

of τ and γ, which depend on the remaining third-order multivariate Hermite polynomials

in (3).
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Figure A1: Alignment of GET and LR under the Gaussian null

Figure A1a: Bivariate case
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Figure A1b: Trivariate case
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Notes: Scatter plots of the GET and LR test statistics based on 10,000 samples. Upper
and lower panels display results for bivariate and trivariate models, respectively. The true mean
and covariance matrix of the simulated Gaussian data are set to 0 and Ik, while the mean
and variance parameters ϕM and ϕV are estimated under the null using the sample mean and
covariance matrix, respectively.
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