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Abstract

We propose a multivariate normality test against skew normal distributions us-

ing higher-order log-likelihood derivatives which is asymptotically equivalent to the

likelihood ratio but only requires estimation under the null. Numerically, it is the

supremum of the univariate skewness coeffi cient test over all linear combinations of

the variables. We can simulate its exact finite sample distribution for any multi-

variate dimension and sample size. Our Monte Carlo exercises confirm its power

advantages over alternative approaches. Finally, we apply it to the joint distribu-

tion of US city sizes in two consecutive censuses finding that non-normality is very

clearly seen in their growth rates.
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1 Introduction

The skew-normal distribution is a generalization of the normal distribution intro-

duced by Azzalini (1985) in the univariate case and Azzalini and Dalla Valle (1996) in the

multivariate one, which allows for asymmetry and positive excess kurtosis but retains a

fair amount of analytical tractability with only one additional parameters for each element

of the random vector (see Azzalini and Capitanio (2014) for a thorough study of this and

other closely related distributions). Among its many empirical applications across a wide

range of disciplines, in economics this distribution is increasingly popular in finance and

insurance, and also for stochastic frontier models (see Adcock et al (2014) and Amsler et

al (2016), respectively).

However, testing normality against skew normality has been hampered by the fact

that the information matrix of the unrestricted model is singular under the null of nor-

mality despite the skew normal model parameters being locally identified (see Ley and

Paindaveine (2010) and Hallin and Ley (2012)). This violates one of the crucial regularity

conditions that guarantees an asymptotic chi-square distribution for the Likelihood ratio

(LR), Wald and score/Lagrange Multiplier (LM) tests under the null.

In the univariate case, one can overcome this problem by using the “extremum test”of

Lee and Chesher (1986), which exploits the restrictions that the null imposes on higher-

order optimality conditions, but which is asymptotically equivalent to the LR tests under

the null and sequences of local alternatives in unrestricted contexts. Using earlier re-

sults by Cox and Hinkley (1974), Lee and Chesher (1986) explain that this equivalence

intuitively follows from the fact that their extremum tests can often be re-interpreted as

standard LM tests of a suitable transformation of the parameter whose first derivative is 0

on average such that the new score is no longer so. In contrast, Wald tests are extremely

sensitive to reparametrization under these circumstances.1

In the multivariate case, though, the information matrix of the skew normal is repeat-

edly singular, in the sense that its nullity coincides with the dimension of random vector

K. In addition, there are K linear combinations involving the elements of the score vector

and the Hessian matrix which are also 0 under the null, which means that it is necessary

1Rotnitzky el al (2000) rigorously study the asymptotic distribution of the maximum likelihood (ML)
estimators when there is a single singularity, while Bottai (2003) looks at the validity of confidence
intervals obtained by inverting the three classical test statistics in the same setup.
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to look at third-order derivatives. Unfortunately, the number of such derivatives exceeds

the number of parameters effectively affected by the singularity by two orders of magni-

tude, so there is no natural reparametrization leading to a regular information matrix. In

particular, transforming each of the parameters individually along the lines suggested by

Lee and Chesher (1986) does not give rise to a test asymptotically equivalent to the LR.

On the contrary, different reparametrizations will typically give rise to scores that span

different linear subspaces, which in turn produce different test statistics.

The purpose of our paper is to derive a test of multivariate normality against skew

normal distributions which is asymptotically equivalent to the LR test, but which only

requires estimation under the null. To do so, we rely on the generalized extremum tests

we proposed in a companion paper (see Amengual, Bei and Sentana (2021)). As we show

below, the resulting test statistic has a very simple interpretation in terms of moment

tests. Specifically, it numerically coincides with the supremum of the tests for univariate

asymmetry based on the sample skewness coeffi cient over all possible linear combinations

of the observed variables.

Importantly, we explicitly address the widespread and often justified concern that

tests based on higher-order derivatives are unreliable in finite samples by explaining how

to simulate its exact, parameter-free, finite sample distribution to any desired degree of

accuracy for any dimension of the random vector and sample size. In this respect, we

prove the numerical invariance of the test statistic to affi ne transformations of the observed

variables, which allows us to quickly simulate draws from a spherical normal distribution.

We conduct extensive Monte Carlo exercises that study the finite sample size and

power properties of our proposal and compare it to other multivariate skewness tests.

We find that our suggested parametric bootstrap procedure yields very reliable sizes. In

addition, we confirm the power superiority of our test over the alternatives. We also

confirm its computational superiority over the LR test, which is due to the fact that it

does not require the estimation of any additional shape parameters using a log-likelihood

function which is incredibly flat under the null.

Finally, we illustrate our test by looking at the joint distribution of city sizes in the

2000 and 2010 US censuses. The starting point of our empirical analysis is Eeckhout

(2004), who forcefully argued that if one looked at the entire non-truncated sample of
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cities and places in the 2000 US census, their size distribution was approximately log-

normal, in marked contrast to earlier studies. Subsequent studies have analyzed the same

issue for other datasets for the US and other countries (see e.g. Gónzalez-Val (2019) and

the references therein). But an important advantage of looking at two censuses is that

we can immediately study the joint distribution of city sizes and their rates of growth.

In this respect, a useful shared property of multivariate normality and multivariate skew

normality is that they are both closed under affi ne transformations of the original variables

(see Azzalini and Capitanio (2014)). Importantly, we find that skewness is a common

feature that is much more clearly seen in the growth rate of cities than in their (log) sizes.

The rest of the paper is organized as follows. In Section 2, we derive our proposed

test and study its properties. This is followed by the simulation exercises in Section 3,

and the empirical application in Section 4. Finally, we present our conclusions in section

5. Proofs and auxiliary results are gathered in appendices.

2 Testing Gaussian vs Skew Normal

The probability density function (pdf) of a K-dimensional skew-normal random vari-

able y is given by

fSN(y;%) = 2fN(y;ϕM ,ϕV ) · Φ[ϑ′dg−1/2(ϕD)(y −ϕM)], (1)

where fN(y;ϕM ,ϕV ) denotes the pdf of a K-variate Gaussian random vector with mean

ϕM and covariance matrixΣ(ϕV ), ϕV = (ϕ′D,ϕ
′
L)′, ϕD = vecd[Σ(ϕV )], ϕL = vecl[Σ(ϕV )],

%′ = (ϕ′,ϑ′) = (ϕ′M ,ϕ
′
V ,ϑ

′), dg(ϕD) a diagonal matrix with ϕD along its main diagonal,

and Φ(.) the univariate standard normal cumulative distribution function (cdf). This

joint distribution simplifies to the K-variate normal when the shape parameters ϑ are

equal to 0.

For expositional purposes, we use the bivariate case, which is the relevant one for our

empirical application. Nevertheless, our theoretical results apply to any K.

Let ϕ = (ϕM1
, ϕM2

, ϕD1 , ϕD2 , ϕL1)
′ and ϑ = (ϑ1, ϑ2)

′ denote the vectors that contain

the two mean and three covariance parameters, and the two shape parameters, respec-
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tively, so that

fSN(y;ϕ,ϑ)=2fN

 y1

y2

;

 ϕM1

ϕM2

,
 ϕD1 ϕL1

ϕL1 ϕD2

·Φ[ϑ1(y1 − ϕM1√
ϕD1

)
+ϑ2

(
y2 − ϕM2√

ϕD2

)]
.

As explained by Azzalini and Capitanio (2014), the information matrix of this model is

generally regular, so that the unrestricted Maximum Likelihood estimators (MLEs) of ϕM ,

ϕV and ϑ based on a random sample of y will have an asymptotic normal distribution.

In addition, the restricted MLEs of ϕM and ϕV under the null of multivariate normality

will coincide with the sample mean vector and covariance matrix of the observations

(with denominator the sample size n), which also have a well-known asymptotic normal

distribution under the null.

Nevertheless, it is easy to prove that when evaluated at ϑ = 0, the score of each element

of ϑ is proportional to the score of the corresponding element ϕM regardless of the sample

size, which confirms the repeated singularity of the information matrix of the model under

the null. Moreover, it is also easy to prove that K(K+1)/2 additional independent linear

combinations of the elements of the Hessian matrix and the score vector are also 0 when

ϑ = 0. As a result, the joint asymptotic distribution of the unrestricted MLEs of ϕM , ϕV

and ϑ will not be normal when the true distribution is normal, and the LR test will not

have a chi-square distribution either. In addition, obtaining the distribution of the LR test

under the null by simulation is an extremely challenging procedure from a computational

point of view because for each simulated sample it requires the maximization with respect

to all the elements of ϕM , ϕV and ϑ of a log-likelihood function which is extremely flat

along those directions of the parameter space whose first and second derivatives are 0.

In this context, we can state our main result:

Proposition 1 The difference between LR test of H0 : ϑ = 0 in model (1) based on a
random sample of n observations on y and the following test statistic

GETn = sup
λ 6=0

1

6n

[
n∑
i=1

H3

(
λ′ei√
λ′λ

)]2
(2)

is Op(n
−1/6), where H3(z) = z3−3z is the third-order Hermite polynomial of a standardized

variable z, λ is a real vector of dimension K and e denotes an affi ne transformation of
the observed variables whose sample mean vector and covariance matrix are 0 and IK,
respectively.
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In simple terms, our test statistics numerically coincides with the supremum of the

moment tests for univariate skewness based on the third Hermite polynomial over all

possible linear combinations of the observed variables that have 0 mean and unit variance

in the sample. In fact, the standardization is unnecessary because the moment test for

univariate skewness is numerically invariant to affi ne transformations of the observations,

which in turn confirms that the test statistic (2) is homogeneous of degree 0 in λ. Thus,

when K = 1 our proposed test reduces to the well known moment test for univariate

skewness based on the third Hermite polynomial of the standardized observations. This

test of normality versus skew normality, which Carota (2010) derived using a divergence-

based Bayesian method, can be obtained as a straightforward application of the Lee and

Chesher (1986) extremum test by replacing the skewness coeffi cient ϑ by its cubic root.

As we shall formally show in Proposition 2 below, the particular transformation that

orthonormalizes the variables in the sample is numerically irrelevant. For example, in the

bivariate case, we could define e1 as the standardized value y1 and e2 as the standardized

value of the residual in the OLS regression of y2 on a constant and y1. But we could also

define them the other way round.

The bivariate case provides some further insight. Given that the sample means and

variances of e1 and e2 are 0 and 1, respectively, we can write the test statistic as

GETn = sup
‖λ‖=1

1

6n

 λ31
∑n

i=1H3(e1i) + 3λ21λ2
∑n

i=1H2(e1i)H1(e2i)

+3λ1λ
2
2

∑n
i=1H1(e1i)H2(e2i) + λ32

∑n
i=1H3(e2i)

2

where H1(z) = z and H2(z) = z2− 1 are the first- and second-order Hermite polynomials

of the standardized variable z. Therefore, the first and last of the four terms of the test

statistic effectively check the asymmetry of the marginal distributions of e1 and e2 by

looking at their third-order Hermite polynomials H3(e1) and H3(e2), respectively, while

the two middle ones check the co-asymmetries between those two random variables by

focusing on H2(e1)H1(e2) and H1(e1)H2(e2).

Consider now the following full-rank affi ne transformation y∗ = a + By with |B| 6= 0.

A convenient property of the skew normal distribution that it shares with its Gaussian

special case is that it is closed under affi ne transformations (see Azzalini and Capitanio

(2014)). Thus, y∗ will be normal if and only if y is normal, but it will be skew normal

otherwise. Our next result shows that the test statistic in Proposition 1 is numerically
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invariant to the values of a and B:

Proposition 2 The generalized extremum test statistic of model (1) numerically coin-
cides with the analogous test statistic for y∗.

This numerical invariance is not only a very desirable property of any multivariate

normality test, as forcefully argued by Henze (2002), but it also implies that the sample

mean vector and covariance matrix of the observations do not affect the null distribution

of our proposed test in finite samples. As a result, it is possible to simulate its exact,

parameter-free, finite sample distribution to any desired degree of accuracy for any di-

mension of the random vector and sample size. In particular, it suffi ces to simulate R

times a random sample of size n of a spherical Gaussian random vector of dimension K

to obtain R independent draws of the test statistic for multivariate normality against a

skew normal. This can be regarded as a parametric bootstrap procedure that provides the

exact p-value of the test statistic obtained in a real sample as the number of bootstrap

replications R grows without bound. But the fact that the only characteristics of the

original sample that matter are the values of n and K implies that a researcher could

obtain tables with exact critical values before observing the data.

It is worth emphasizing that the maximization required to compute (2) is over K − 1

dimensions only, as opposed to the maximization required for the computation of the

LR test, which is effectively over 2K parameters because ϕV can be concentrated out

(see Azzalini and Capitanio (2014, sec. 5.2.1)). For example, in the bivariate case, if we

express λ1 = cosω and λ2 = sinω, it simply requires finding the optimal angle ω over

(0, π), which can be done very accurately in very little time.

3 Simulation evidence

In this section, we study the finite sample size and power properties of the test we have

introduced in Proposition 1 by means of some extensive Monte Carlo exercises, comparing

it to other skewness tests. Specifically, for each of the distributional assumptions we

describe below, we generate 10,000 samples of size n = 400 and n = 1, 600 and in each of

them we compute (2) together with the following three alternative testing procedures:

1) A joint test that looks at the moment conditions E{H3[ϕ
−1/2
D,k (yk − ϕM,k)]} = 0 for

k = 1, . . . , K, where yk is the kth element of y.

6



2) A joint test that looks at the moment conditions E[Hklm(y;ϕM ,ϕV )] = 0 for all

the K(K+1)(K+2)/6 different third-order multivariate Hermite polynomials of the form

Hklm(y;ϕM ,ϕV )=−e 12 (y−ϕM )′Σ−1(ϕV )(y−ϕM ) ∂3

∂yk∂yl∂ym

[
e−

1
2
(y−ϕM )′Σ−1(ϕV )(y−ϕM )

]
, (3)

with k, l,m = 1, . . . , K.

3) A joint test that looks at the moment conditions E[Hkkk(y;ϕMϕV )] = 0 for k =

1, . . . , K.

The first test, which is simply looking at the marginal skewness of the observed vari-

ables, ignores all the K(K − 1)(K + 4)/6 co-skewness terms. As a result, the value of the

test statistic changes when we consider affi ne transformations of the observations. More

importantly, its power will crucially depend on the marginal skewness of the transformed

variables, so it cannot be asymptotically equivalent to the LR test, which is numerically

and therefore asymptotically invariant to affi ne transformations because both normal and

skew normal distributions are closed under such transformations.

Similarly, the third test, which we derive in Supplemental Appendix B by applying the

Lee and Chesher (1986) approach to each of the shape parameters of the central parame-

trization proposed by Arellano-Valle and Azzalini (2008), is not numerically invariant to

affi ne transformations either because those shape parameters also capture the marginal

skewness of the transformed variables. For that reason, this test cannot be asymptotically

equivalent to the LR test.2

In contrast, the second test, which coincides with the skewness component of Mardia’s

(1970) test for multivariate normality, is numerically invariant to affi ne transformations of

the observations. Therefore, it is also possible to simulate its finite sample distribution to

any desired degree of accuracy for any dimension of the random vector and sample size.

Unfortunately, this test fails to exploit that for multivariate skew normal distributions

skewness is a common feature (see Engle and Kozicki (1993)). Specifically, Theorem 5.12

in Azzalini and Capitanio (2014) states that there is always a linear “canonical” trans-

formation of the observed variables in which one marginal distribution is univariate skew

normal but the other N −1 variables are Gaussian and stochastically independent. Given

2We can prove that Hkkk(y;ϕM ,ϕV ) ∝ H3(z∗k), where z∗k is the residual in the theoretical regression
of yk on a constant and the remaining elements of y divided by the standard error from that regression,
so that the tests in 1) and 3) will only be asymptotically equivalent under the null when the original
variables are orthogonal to each other, as in our simulations.
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that all the remaining third and fourth multivariate cumulants are 0, this representation

implies that the only effect of increasing K is to add more independent Gaussian com-

ponents, which in turn add more 0 (co-)skewness and (co-)kurtosis terms. As a result,

the non-centrality parameter of the second test remains the same as K grows, while the

number of degrees of freedom increases, which results in a loss of power.

The main advantage of these three tests is that their asymptotic distribution under

the null hypothesis is chi-square with as many degrees of freedom as moments involved.

In contrast, the test in Proposition 1 has a non-standard asymptotic distribution, which

it shares with the LR test. In principle, we could bound this asymptotic distribution from

below by the univariate skewness test of any linear combination of the observed series,

including the margins, which converges to a χ21 for fixed λ. Similarly, we could bound it

from above by the skewness component of Mardia’s (1970) multivariate normality test,

which converges to a χ2K(K+1)(K+2)/6. However, those bounds become increasingly loose

as K increases. As we explained in the previous section, though, in practice we can easily

compute by simulation very good approximations to the exact critical values under the

null for any n and K.

As alternative hypotheses, we keep ϕM = 0 and Σ(ϕV ) = IN but consider

ϑ′ =

(√
3

2
,

√
3

2

)
(Ha1) and ϑ′ =

(√
3

10
, 2

√
3

10

)
(Ha2)

in the bivariate case, and

ϑ′ =

(√
2

2
,

√
2

2
,

√
2

2

)
(Ha1) and ϑ′ =

(
1√
6
,

2√
6
,

2√
6

)
(Ha2)

in the trivariate one. All these distributions are such that the skewness coeffi cient of the

linear combination of the observed variables that absorbs all the skewness in the canonical

representation is
√

3/2. Consequently, the power of our proposed test should be the same

for each combination of n andK regardless of the value of ϑ. The same is true of Mardia’s

(1970) test but not of the other two.

Panels A and B of Table 1 report the results for bivariate and trivariate models,

respectively. The first three columns contain rejection rates under the null at the 1%, 5%

and 10% levels. As mentioned above, we use “exact” simulated critical values for both

our proposed test and the skewness component of Mardia’s (1970) test, which explains
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their perfect sizes, and asymptotic ones for the other two statistics, which nevertheless

seem reliable for both sample sizes.3

In turn, the last six columns present the rejection rates at the 1%, 5% and 10% levels

for the alternatives we consider. The first thing we observe is that the powers of both GET

and Mardia’s (1970) tests are effectively identical for Ha1 and Ha2 for each combination

of n and K, unlike what happens to the other two tests.

More importantly, our proposed test is more powerful than the third test above for

all alternatives. It also beats by far the test based on the skewness coeffi cients of the

margins. Interestingly, the skewness component of Mardia’s (1970) test has similar power

to ours in the bivariate case, but it losses power in the trivariate case, as expected from

our previous discussion.

Finally, Figure A1a in the Supplemental Appendix visually confirms that the Gaussian

rank correlation coeffi cients4 between the GET and LR test statistics across Monte Carlo

samples of size n = 400 and 1,600 generated under the null are .97 and .98, respectively.

The same pattern is also present in the trivariate case depicted in Figure A1b, which is in

line with the asymptotic equivalence result in Proposition 1. Our results also indicate that

the LR takes between 12 and 75 times as much CPU time to compute as GET does. More

importantly, we often find that the log-likelihood function has many flat areas under the

alternative, which leads the numerical optimization algorithm to stop at a value below the

maximum. In this respect, we find that using as starting value for the skewness direction

the λ that maximizes GETn helps.

4 The distribution US city sizes and their growth
rates

As we mentioned in the introduction, Eeckhout (2004) forcefully argued that if one

looked at the entire untruncated sample of cities and places in the 2000 US census, their

size distribution was approximately log-normal, in marked contrast to earlier studies.

3With 10,000 Monte Carlo replications, the 95% asymptotic confidence intervals for the rejection
probabilities under the null are (.80,1.20), (4.57,5.43) and (9.41,10.59) at the 1, 5 and 10% levels.

4The Gaussian rank correlation coeffi cient between two variables is the usual Pearson correlation
coeffi cient between the Gaussian scores of those variables, which are obtained by applying the inverse
Gaussian cdf transform to the ranks of the observations on each variable divided by n+1 (see Amengual,
Sentana and Tian (2022)). Like the Spearman correlation coeffi cient, it is is less sensitive to outliers than
the Pearson one.
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Subsequent papers have analyzed the same issue for other datasets from the US and other

countries (see e.g. González-Val (2019) and the references therein). But an important

advantage of looking at two censuses is that we can simultaneously study the joint distri-

bution of initial (log) city size and its (geometric) rate of growth, whose independence is

at the core of Gibrat’s law.

We follow the extant literature and treat Alaska, Hawaii and the remaining off-shore

insular territories like Puerto Rico separately from the remaining contiguous 48 states in

the North American continent. Changes in boundaries and city names, as well as the

creation of new entities and the dissolution of others, imply that there is no one-to-one

relationship between the entity names and codes in the 2000 and 2010 censuses files. In

practice, though, the differences are small. Specifically, in the 2010 census we can match

24,023 of the 24,670 places that appeared in the 2000 census. For that reason, we follow

Eeckhout (2004) and look at the joint distribution of the matched cities with a population

of at least one in both years.

Figure 1 contains kernel density estimates of the marginal distributions of (log) city

sizes for the contiguous states in 2000 and 2010, together with the best normal approx-

imations to them, which share their sample means and standard deviations. Although

both estimated densities differ from their normal approximations, at first sight there is not

much evidence of kurtosis and only some evidence of asymmetries around the mode of the

distributions rather than at the tails. Standard normality tests for univariate distributions

confirm both these impressions. Specifically, the kurtosis of the marginal distributions in

the two periods is 3.03 and 2.98, which are not statistically significantly different from 3.

As acknowledged by Eeckhout (2004) for the 2000 data, though, the skewness coeffi cients

are positive ( 0.25 and 0.21, respectively) and statistically significant in view of the large

number of observations.

Our main interest, though, is the bivariate distribution. Figure 1 also contains a

scatter plot of (log) city sizes for the contiguous states in 2000 and 2010. Clearly, the

joint distribution seems far more non-normal than any of the margins. This is confirmed

by our GET test, which is equal to 1,772,758 with a negligible exact p-value.

Interestingly, we can reverse engineer the fact that our test statistic is the supremum

of the moment tests for skewness of all possible linear combinations of the two log-sizes
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to find out which linear combination is the most non-normal. Somewhat surprisingly, we

find that the transformation of the original variables that maximizes the statistic in the

sample has weights (proportional to) (−1.04, 1), which means that skewness is a feature

that is much more clearly seen in the growth rate of cities than in their (log) sizes.

We confirm this finding by looking at the marginal distribution of growth rates between

2000 and 2010 in Figure 2, which is not only far more peaked (kurtosis = 45.09) but

also substantially more asymmetric (skewness = 0.32). We can obtain a complementary

perspective by looking at the joint distribution of (log) city sizes in 2000 and (geometric)

growth rates between 2000 and 2010. Although the scatter plot in Figure 2 is a simple

linear transformation of the one in Figure 1 in which the previous 45o degree line has

become the new vertical axis, it arguably makes the non-normality of the joint distribution

far more evident. Our test statistic, though, is invariant to this transformation.

5 Conclusions

In this paper, we have developed a multivariate normality test against skew normal

distributions which is asymptotically equivalent to the LR but only requires estimation

under the null. It overcomes the singularities of the elements of the score vector and

Hessian matrix associated to the shape parameters by working with third-order deriva-

tives. Importantly, we prove that it coincides with the supremum of the univariate skew-

ness coeffi cient test over all linear combinations of the variables. We also explain how to

simulate its exact finite sample distribution for any dimension of the random vector and

sample size. Our Monte Carlo exercises confirm its power advantages over alternative

approaches and its computational advantages over the LR. When we apply it to the joint

distribution of US city sizes in two consecutive censuses, we find that non-normality is

very clearly seen in their growth rates.

From the theoretical point of view, the development of tests of multivariate normality

against multivariate skewed t distributions provides an interesting avenue for additional

research. A more thorough study of the potential dependence of the distribution of growth

rates and initial city size also deserves further investigation. Similarly, we could study the

possibility of using the test in Proposition 1 to obtain uniform confidence intervals, as in

Bottai (2003).
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Appendix

A Proofs

A.1 Proof of Proposition 1

Given the density of a multivariate skew normal random vector in (1), the contribu-

tion of y to the log-likelihood function is

l(y;%) = const+ T1(y;%) + T2(y;%) + T3(y;%), (A1)

where % = (ϕ′M ,ϕ
′
V ,ϑ

′)′,

T1(y;%) = −1

2
log{det[Σ(ϕV )]}, (A2)

T2(y;%) = −1

2
(y −ϕM)′Σ−1 (ϕV ) (y −ϕM), (A3)

T3(y;%) = log{Φ[ϑ′dg−
1
2 (ϕD) (y −ϕM)]}. (A4)

Since the information matrix is repeatedly singular, the first thing we do is to express

the model in terms of an alternative set of parameters ρ = (φ′M ,φ
′
V ,θ

′)′ such that:

ϕM = φM −
√

2

π
Ω(φV )dg−

1
2 (φD)θ

Σ(ϕV ) = Ω(φV ) +
2

π
Ω(φV )dg−

1
2 (φD)θθ′dg−

1
2 (φD)Ω(φV )

ϑ = θ

whereΩ(φV ) is aK×K symmetric matrix such that vecd[Ω(φV )] = φD and vecl[Ω(φV )] =

φL, with φV = (φ′D,φ
′
L)′. This one-to-one reparametrization simply concentrates the sin-

gularity of the information matrix on the new skewness parameters so that all the elements

of the score vector and Hessian matrix corresponding to θ are zero at once.

We skip the verification of the regularity conditions in Assumption 1 in Amengual, Bei

and Sentana (2021) because they are straightforward. To check that their Assumption

2 holds for ρ, in what follows we avoid the complex notation necessary for higher-order

matrix derivatives by letting θ = λη for a fixed arbitrary vector λ ∈ RK , λ 6= 0, so that

we can simply take higher order derivatives with respect to the scalar η. Intuitively, the

reason is that

λ⊗r′
∂rl

(∂θ)⊗r
=
drl
dηr

,
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where λ⊗r = λ⊗ r. . .⊗ λ︸ ︷︷ ︸ denotes the kth Kronecker power of the vector λ, and
∂kl

(∂θ)⊗k
= vec

{
∂

∂θ

[
∂k−1l

∂θ⊗(k−1)

]′}
.

In this notation, Assumption 2.1 in Amengual, Bei and Sentana (2021) is equivalent

to

λ′
∂l

∂θ
= 0, λ⊗2′

∂2l

(∂θ)⊗2
= 0 ∀λ, (A5)

while Assumption 2.2 is equivalent to the matrix(
∂l

∂ϕM
,
∂l

∂ϕV
,λ⊗′3

∂l

(∂θ)⊗3

)
(A6)

having full rank ∀λ 6= 0.

The first derivative of (A2) with respect to η is

dT1(y;%)

dη
= −1

2
tr
[
Σ−1(ϕV )

dΣ(ϕV )

dη

]
= − 2

π
tr[Σ−1(ϕV )Ω(φV )dg−

1
2 (φD)λλ′dg−

1
2 (φD)Ω(φV )]η. (A7)

Thus, we have that
dT1(y;%0)

dη
= 0 (A8)

because (A7) is linear in η, where by df(%0)/dη we mean the partial derivative of the

function f(%) with respect to η evaluated at % = %0.

If we derive (A7) with respect to η again, we obtain

d2T1(y;%)

(dη)2
=− 2

π
tr[Σ−1(ϕV )Ω(φV )dg−

1
2 (φD)λλ′dg−

1
2 (φD)Ω(φV )]

− 2

π

d tr[Σ−1(ϕV )Ω(φV )dg−
1
2 (φD)λλ′dg−

1
2 (φD)Ω(φV )]

dη
η. (A9)

Letting

Ψ(φV ) = dg−
1
2 (φD)Ω(φV )dg−

1
2 (φD), (A10)

we have that

d2T1(y;%0)

(dη)2
= − 2

π
tr[dg−

1
2 (φD)λλ′dg−

1
2 (φD)Ω(φV )] = − 2

π
λ′Ψ(φV )λ, (A11)

where in the first equality we have used the fact that Σ−1(ϕV )Ω(φV ) = IK under the

Gaussian null, while the second equality follows from the invariance of the trace of a

matrix product to cyclic permutations of the factors.
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We can also show that the derivative of (A9) with respect to η evaluated under the

Gaussian null will be
d3T1(y;%0)

(dη)3
= 0. (A12)

Let

Ξ(%,φ,λ,y) = λ′dg−
1
2 (φD) Ω (φV ) Σ (ϕV )−1 (y −ϕM).

We can easily prove that the first derivative of (A3) with respect to η is

dT2(y;%)

dη
=
dϕ′M
dη

Σ (ϕV )−1 (y −ϕM)− 1

2
(y −ϕM)′

dΣ (ϕV )−1

dη
(y −ϕM)

=−
√

2

π
Ξ(%,φ,λ,y) +

2

π
Ξ′(%,φ,λ,y)Ξ(%,φ,λ,y)η, (A13)

where the second line follows from the fact that

dϕ′M
dη

= −
√

2

π
λ′dg−

1
2 (φD) Ω (φV )

and

dΣ−1 (ϕV )

dη
= −Σ−1 (ϕV )

dΣ (ϕV )

dη
Σ−1 (ϕV )

= − 4

π
Σ−1 (ϕV ) Ω (φV ) dg−

1
2 (φD)λλ′dg−

1
2 (φD) Ω (φV ) Σ−1 (ϕV ) η.

Under the Gaussian null, Ω (φV ) Σ−1 (ϕV ) = IK and the linear term in η vanishes, so

that
dT2(y;%0)

dη
= −

√
2

π
[λ′Ψ (φV )λ]

1
2Zλ̃, (A14)

where

Zλ̃ ≡ [λ′Ψ(φV )λ]−
1
2 λ̃
′
Z, (A15)

λ̃ = Ψ
1
2 (φV )λ

and

Z = Ψ−
1
2 (φV )dg−

1
2 (φD)(y −ϕM)

in view of (A10). Importantly, the choice of square root matrix Ψ
1
2 (φV ) is irrelevant.

The derivative of (A13) with respect to η yields

d2T2(y;%)

(dη)2
=−

√
2

π
λ′dg−

1
2 (φD) Ω (φV )

d
[
Σ−1 (ϕV ) (y −ϕM)

]
dη

+
4

π
Ξ′(%,φ,λ,y)λ′dg−

1
2 (φD) Ω (φV )

d
[
Σ−1 (ϕV ) (y −ϕM)

]
dη

η

+
2

π
Ξ′(%,φ,λ,y)Ξ(%,φ,λ,y). (A16)
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Since the linear term in η vanishes under the Gaussian null, using (A10) and (A15) we

obtain
d2T2(y;%0)

(dη)2
= − 2

π
λ′Ψ (φV )λ+

2

π
λ′Ψ (φV )λZ2

λ̃
. (A17)

If we then derive (A16) with respect to η and evaluate under the Gaussian null once

again, we can show that

d3T2(y;%0)

(dη)3
=

12

π

√
2

π
[λ′Ψ (φV )λ]

3
2Zλ̃. (A18)

To deal with (A4), let

h(y;%) = λ′dg−1/2 (ϕD) (y −ϕM) η,

so that T3(y;%) =log[Φ(h)]. A straightforward application of the chain rule implies that

dT3(y;%)

dη
=
φ(h)

Φ(h)

dh
dη
, (A19)

d2T3(y;%)

(dη)2
=

[
φ(h)

Φ(h)

]′(dh
dη

)2
+
φ(h)

Φ(h)

d2h
(dη)2

(A20)

and
d3T3(y;%)

(dη)3
=

[
φ(h)

Φ(h)

]′′(dh
dη

)3
+ 3

[
φ(h)

Φ(h)

]′ dh
dη

d2h
(dη)2

+
φ(h)

Φ(h)

d3h
(dη)3

, (A21)

where we have omitted the dependence of h on y and % to simplify the notation.

As a consequence, we need to consider the first three derivatives of h evaluated under

the Gaussian null. The first one is given by

dh(y;%)

dη
= λ′

d dg−
1
2 (ϕD)

dη
(y −ϕM) η +

√
2

π
λ′dg−

1
2 (ϕD) Ω (φV ) dg−

1
2 (φD)λη

+λ′dg−
1
2 (ϕD) (y −ϕM) , (A22)

which evaluated under the null yields

dh(y;%0)

dη
=
√
λ′Ψ (φV )λZλ̃, (A23)

where we have used (A10) and (A15), as well as the fact that η = 0.
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Similarly, the derivative of (A22) with respect to η is

d2h(y;%)

(dη)2
= λ′

d2dg−
1
2 (ϕD)

(dη)2
(y −ϕM) η − λ′d dg−

1
2 (ϕD)

dη
dϕM
dη

η

+ λ′
d dg−

1
2 (ϕD)

dη
(y −ϕM) +

√
2

π
λ′
d dg−

1
2 (ϕD)

dη
Ω (φV ) dg−

1
2 (φD)λη

+

√
2

π
λ′dg−

1
2 (ϕD) Ω (φV ) dg−

1
2 (φD)λ+ λ′

d dg−
1
2 (ϕD)

dη
(y −ϕM)

+

√
2

π
λ′dg−

1
2 (ϕD) Ω (φV ) dg−

1
2 (φD)λ, (A24)

which, evaluated at the null simplifies to

d2h(y;%0)

(dη)2
= 2

√
2

π
λ′Ψ (φV )λ. (A25)

Similarly, the derivative of (A24) with respect to η evaluated under the Gaussian null

is
d3h(y;%0)

(dη)3
= 3λ′

d2dg−
1
2 (ϕD)

dη2
(y −ϕM) . (A26)

Finally, we can use the fact that

φ(h)

Φ(h)
=

√
2

π
,
[
φ(h)

Φ(h)

]′
= − 2

π
and

[
φ(h)

Φ(h)

]′′
=

√
2(4− π)

π3/2
,

together with (A10) and (A15), to show that (A19) and (A23) imply that

dT3(y;%0)

dη
=

√
2

π

√
λ′Ψ (φV )λZλ̃. (A27)

In turn, (A20), (A23) and (A25) yield

d2T3(y;%0)

(dη)2
= − 2

π
λ′Ψ (φV )λZ2

λ̃
+

4

π
λ′Ψ (φV )λ. (A28)

Finally,

d3T3(y;%0)

(dη)3
=

4− π
π

√
2

π
[λ′Ψ (φV )λ]

3
2Z3

λ̃
− 12

π

√
2

π
[λ′Ψ (φV )λ]

3
2Zλ̃

+ 3

√
2

π
λ′
d2dg−

1
2 (ϕD)

(dη)2
(y −ϕM) (A29)

where we have used (A21), (A23), (A25) and (A26).

Given (A1), its first order condition with respect to η will be

dl(y;%0)

dη
=
dT1(y;%0)

dη
+
dT2(y;%0)

dη
+
dT3(y;%0)

dη
= 0
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by virtue of (A8), (A14) and (A27).

Similarly,

d2l(y;%0)

(dη)2
=
d2T1(y;%0)

(dη)2
+
d2T2(y;%0)

(dη)2
+
d2T3(y;%0)

(dη)2
= 0

because of (A11), (A17) and (A28). Therefore, we have verified condition (A5), which

guarantees Assumption 2.1 in Amengual, Bei and Sentana (2021).

As for the third derivative, if we combine (A12), (A18) and (A29), we can show that

d3l(y;%0)

(dη)3
=

d3T1(y;%0)

(dη)3
+
d3T2(y;%0)

(dη)3
+
d3T3(y;%0)

(dη)3

=

√
2(4− π)

π
3
2

[λ′Ψ (φV )λ]
3
2Z3

λ̃
+ 3

√
2

π
λ′
d2[dg−

1
2 (ϕD)]

(dη)2
Ψ

1
2 (φV )dg

1
2 (φD)Z

≡ AZ3
λ̃

+ B′Z. (A30)

Therefore, we have also verified condition (A6), so that Assumption 2.2 in Amengual, Bei

and Sentana (2021) holds too.

Finally, we must purge the third derivatives in (A30) of the sampling uncertainty

in estimating the mean vector and covariance matrix under the null. We can do this by

orthogonalizing them with respect to the scores of the first and second moment parameters

φ.

Given that
∂l(y;%0)

∂ϕM
= Σ−1 (ϕV ) (y −ϕM) ≡ CZ

and
∂l(y;%0)

∂Σ(ϕV )
=

1

2
Σ−1(ϕV )[Z′Σ(ϕV )Z−Σ(ϕV )]Σ−1(ϕV ),

it is easy to see that the effects of estimation uncertainty only come through ϕM . As a

consequence, we will have that the adjusted variance of d3l(y;%0)/(dη)3 will be given by

Vadj =Vη − VηηMV
−1
ϕM
VϕMη

=V ar (AH3(Zλ̃) + B′Z)

− cov (AH3(Zλ̃) + B′Z, CZ)V ar−1 (CZ) cov(CZ,AH3(Zλ̃) + B′Z)

=A2V ar(Z3
λ̃
)

=6A2.

On this basis, Theorem 1 in Amengual, Bei and Sentana (2021) implies that
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LRn =
1

6
supλ̃6=0

[
n∑
i=1

H3

(
λ̃
′√
λ̃
′
λ̃

Zi

)]2
+Op(n

− 1
6 ),

as desired. �

A.2 Proof of Proposition 2

Let e denote an affi ne transformation of the observed variables whose sample mean

vector and covariance matrix are 0 and IK , respectively. It is easy to see that e can also

be written as an affi ne transformation of y∗ = a + By. Hence, expression (2) implies

that the tests based on y and y∗ are numerically the same. �
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Figure 1: Distribution of (log) city sizes for US contiguous states
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Notes: Scatter plot of (log) city sizes for the contiguous states in 2000 and 2010 as well
as kernel density estimates of their marginal distributions (continuous lines), together with the
best normal approximation to them (dotted lines), which share their sample means and standard
deviations. We follow Eeckhout (2004) in looking at the 24,009 matched cities in both censuses
with a population of at least one in both years and exclude Alaska, Hawaii and the remaining
off-shore insular territories like Puerto Rico.
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Figure 2: Distribution of (log) city sizes in 2000 and growth rates between 2000 and
2010.
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Notes: Scatter plot of (log) city sizes for the contiguous US states in 2000 and their (geo-
metric) growth rates between 2000 and 2010 as well as kernel density estimates of their marginal
distributions (continuous lines), together with the best normal approximation to them (dotted
lines), which share their sample means and standard deviations. We follow Eeckhout (2004)
in looking at the 24,009 matched cities in both censuses with a population of at least one in
both years and exclude Alaska, Hawaii and the remaining off-shore insular territories like Puerto
Rico.
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Table 1: Monte Carlo rejection rates (in %) under null and alternative hypotheses for the
multivariate Gaussian versus skew normal test

Null Alternative hypotheses
hypothesis Ha1 Ha2

1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A: Bivariate
n = 400

GET 1 5 10 9.9 24.2 35.3 10.1 25.0 35.8
LM-AA 0.95 4.89 9.42 5.6 16.1 25.4 8.8 22.0 32.3
GMM 1 5 10 9.4 23.7 35.0 9.4 24.5 35.6
Margins 0.99 4.59 9.29 1.8 7.6 14.3 4.8 14.1 22.7

n = 1, 600
GET 1 5 10 61.9 79.4 85.5 61.8 80.4 86.8
LM-AA 0.93 4.78 9.96 30.1 53.3 65.1 46.6 69.4 79.1
GMM 1 5 10 56.5 77.7 85.3 56.1 77.7 85.4
Margins 1.12 4.92 9.73 5.6 16.4 25.2 21.8 42.8 55.4

Panel B: Trivariate
n = 400

GET 1 5 10 6.2 18.5 28.7 5.8 18.2 28.3
LM-AA 1.02 4.85 9.56 2.8 9.9 17.6 3.3 12.1 19.7
GMM 1 5 10 5.6 17.0 26.0 5.5 16.3 25.5
Margins 1.02 4.75 9.61 1.7 6.1 10.9 1.4 5.9 11.7

n = 1, 600
GET 1 5 10 51.6 70.7 79.9 50.6 70.6 80.2
LM-AA 1.10 5.13 10.12 11.9 28.5 40.2 17.5 37.4 49.2
GMM 1 5 10 38.2 61.4 71.8 37.9 61.7 72.1
Margins 1.04 5.02 10.02 2.1 8.2 14.9 3.1 10.7 18.6

Notes: Results based on 10,000 samples. Panel A and B report rejection rates for bivariate and
trivariate models, respectively. The mean and variance parameters ϕM and ϕV are estimated
under the null using the sample mean and covariance matrix, respectively. LM-AA denotes the
Lagrange multiplier test based on the score of the skewness parameters under the parametrization
proposed in Arellano-Valle and Azzalini (2008). GMM refers to the J-test based on the influence
functions underlying GET. Margins denotes tests on marginal skewness —à la Jarque-Bera—
for each of the components. GET and GMM use finite sample critical values computed by
simulation while LM-AA and Margins rely on asymptotic critical values. DGPs: the true mean
and covariance matrix of the generated data are set to 0 and Ik, respectively, under both
the null and alternative hypotheses. As for the alternative hypotheses, in the bivariate case

Ha1 : ϑ
′ =

(√
3
2 ,
√
3
2

)
and Ha2 : ϑ

′ =
(√

3
10 , 2

√
3
10

)
, while Ha1 : ϑ

′ =
(√

2
2 ,
√
2
2 ,
√
2
2

)
and Ha2 :

ϑ′ =
(
1√
6
, 2√

6
, 2√

6

)
in the trivariate case.
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B Computational details of the simulations

We simulate n random draws from the multivariate skew normal distribution in (1)

using the following rejection sampling method. First, we simulate x ∼ N [ϕM ,Σ(ϕV )] to-

gether with an independent scalar random variable u with a uniform distribution between

0 and 1. If u ≤ Φ
[
ϑ′dg−1/2 (ϕD) (x−ϕM)

]
, then y = x, otherwise we discard it.

Arellano-Valle and Azzalini (2008) introduce an alternative parametrization of the

multivariate skew normal distribution, which they call the central parametrization, such

that the parameters of interest coincide with the means, variance and covariances of the

observed variables, as well as their marginal skewness coeffi cients. They go from the

original parametrization (ϕM ,ϕV ,ϑ) to the central one in two steps. First, they consider

an intermediate vector of parameters such that

µ = E(y) = ϕM + τ ,

Υ(υ) = V (y) = Σ(ϕV )− ττ ′,

τ =

√
2

π
dg1/2(ϕD)δ

where

δ = [1 + ϑ′Ψ(ϕV )ϑ]−1/2Ψ(ϕV )ϑ,

Ψ(ϕV ) = dg−1/2(ϕD)Σ(ϕV )dg−1/2(ϕD)

and υ = (υ′D,υ
′
L)′, with υD = vecd[Υ(υ)] and υL = vecl[Υ(υ)]. This reparametrization

is a one-to-one mapping with a non-zero Jacobian determinant even at the Gaussian null.

In addition, it is easy to prove that the scores corresponding to µ evaluated at τ = 0

coincide with the scores corresponding to ϕM evaluated at ϑ = 0, the same being true of

the scores for υ and ϕV . This is not entirely surprising in view of the fact that ϕM and

Σ(ϕV ) directly yield E(y) and V (y) under normality. In contrast, all the elements of

the score vector and Hessian matrix corresponding to τ are 0 when evaluated at τ = 0,

thereby achieving the goal of confining the singularities to those elements, as in the proof

of Proposition 1. Nevertheless, the third derivatives are no longer 0. Specifically,

∂3l

∂τ 3k

∣∣∣∣
τ=0

=
4− π

2
Hkkk[y;µ,Υ(υ)] +

12

(1−R2k)υD,k
sµk
∣∣
τ=0

, (B1)
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where Hkkk[y;µ,Υ(υ)] is one of the K(K+1)(K+2)/6 third-order multivariate Hermite

polynomials in (3) and R2k is the coeffi cient of determination in the regression of yk on a

constant and the remaining elements of y.

Next, Arellano-Valle and Azzalini (2008) replace each τ k with the corresponding mar-

ginal skewness coeffi cient

γk =
E(yk − µk)3

υ
3/2
D,k

=
4− π

2

(
τ k√
υD,k

)3
.

The problem with this reparametrization is that its first and second derivatives are

0 under the Gaussian null, but this is precisely the trick that Lee and Chesher (1986)

used to re-interpret their extremum test as an LM test in the case of a single para-

meter. Specifically, after applying L’Hopital’s rule twice, the score of γk evaluated at

γ = (γ1, . . . , γK)′ = 0 is

∂l

∂γi

∣∣∣∣
γ=0

=
υD,k

6
Hkkk[y;µ,Υ(υ)] +

4υD,k
(4− π)(1−R2k)

sµk
∣∣
γ=0

, (B2)

which is proportional to (B1). Once we purge these derivatives from the effects of esti-

mating the sample mean vector and covariance matrix by regressing them on the scores

with respect to µ and υ and retaining the residuals, we end up with the moment test

based on Hkkk[y;µ,Υ(υ)] for k = 1, . . . , K.

Clearly, this procedure ignores all the other K(K−1)(K+4)/6 third cross-derivatives

of τ and γ, which depend on the remaining third-order multivariate Hermite polynomials

in (3).
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Figure A1: Alignment of GET and LR under the Gaussian null

Figure A1a: Bivariate case
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Figure A1b: Trivariate case
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Notes: Scatter plots of the GET and LR test statistics based on 10,000 samples. Upper
and lower panels display results for bivariate and trivariate models, respectively. The true mean
and covariance matrix of the simulated Gaussian data are set to 0 and Ik, while the mean
and variance parameters ϕM and ϕV are estimated under the null using the sample mean and
covariance matrix, respectively.
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