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B Proof of Lemmas and Propositions
B.1 Lemmata

In lemmas 1-5 we define LM,,(p) as in (A2) with S,, and A (¢, 0) defined in Assumption 5.
Lemma 1 If Assumptions 1 and 5.1, 5.2, 5.3 hold, then
(i) pM 20, and (i) n2 A(p"M) = Op(1).

Proof. Let us start with Lemma 1.(4¢). If we fix € > 0, then by Assumption 5.2, we have that
nfésn((b*) = Op(1), which in turn means that there exists an M; such that for all n > N,

Pr(|[n” 28, (¢")|| > My) < e. (B1)

Next, let M = (2M;1 + 1)/emin[Z(¢™)], which is a positive real number because of Assumption
5.3. We can then prove that

1 _1 *
Pr({[[n2X (p"M) || > M} n{[[n"28,(¢")]] < Mi}) = 0. (B2)
To see (B2), note that if ||n%)\ (p¥™) ]| > M and ||n_%8n(¢*)|| < M, then we have that
_1 X 1 1 a1
20 35.(6")) I3 A (p2)] — [m3 A (05 Z(6")nd A (o))
_1 * 1 % 1
< 2|ln"28u (@)l - lInZ A (p") || = ewmin[Z(#*)]l[n2 (0|
1 w) L
< [[n2 X (") || - [2M: — enin[Z(¢)]lInz A (p") ||
< —M = LM,(¢*,0) — M,
where the first two inequalities are straightforward, the third one follows from ||n7%Sn(q§*)|| <
M; and Hn%)\ (p*M) || > M = (2M1+1)/emin[Z(¢*)], while the last one follows from LM,,(¢*,0) =
0, which contradicts p“™ being the minimizer. Thus (B2) holds. As a consequence,
1 1 _1 X
Pr(|lnz X (p"M) || > M) =Pr({|[nz X (") || > M} 0 {||n"2Sa(e")|| < Mi})
1 -1 *
+Pr({[[n2 X (p"M) || > M} {|[n"2S,(6%)]| > Mi})  (B3)
1
<Pr([[n"28,(¢")|| > My) <, (B4)
where from (B3) to (B4) we have used (B1) and (B2). Therefore, (B4) trivially implies that for
all ¢ > 0 there exists M > 0 such that Pr({Hn%}\ (p¥™) || > M} < € and, hence, Lemma 1.(4)

holds.
As for Lemma 1.(7), for all € > 0 there exists d. > 0 such that

Pr ([ — (¢",0)]| = €) < Pr(|[n2X (p"M) || = n26,) — 0,
where the inequality follows from Assumption 5.1 and the convergence from Lemma 1.(i3). O

Lemma 2 If Assumptions 1 and 5.1—4 hold, then n%)\(i)) = 0p(1).



Proof. Assumption 1 implies the consistency of p, while Assumption 5.4 implies that

Rn(P)

Trna@r oW

Therefore, for any fixed € > 0 there exists an N such that for all n > IV,

Pr(4,)>1- % (B5)
with A 1
4, = {‘MH;’?) Seann 20}
In turn, given that n~2S,(¢*) is O,(1), there exists an Mj such that for all n,
Pr(|[n28,(¢")|| > M) < 3, (B6)
so that, letting M = max{(6M; + 3)/emin[Z(¢*)], 1}, we can then show that
Pr({lln#A () | = M} {lln~38a(6") | < My} 1 An) = 0. (B7)
To prove this by contradiction, suppose we have
IW3A @)1= M, [l 38.(6")]| < My and ]m < lenlZ(@). (B9
Then
LR(p) = 2[n"28,(¢")[n2 A (B)] — [n2 X (D) Z(¢")[n2 X ()] + 2R (D)
< 20| [n5A (9) ] — ewin Z@nIA () + 2P (1 g )12
— A @) {le eI Ind A (5) | + (@) (Hmi( TR )H)}

< b A @)1 {200 - ennlZ(@ It A ) 1+ 22 x ) 1

— x| {20 — 2Bt )11} < o = Lr(67.0) -

which is inconsistent with the definition of LR(p). The first equality follows from Assumption 5,
the first inequality from (B8), the next three lines are straightforward, the subsequent inequality
follows from ]|n2 A(P)|| > M > (6M1+3)/enin[Z(¢¥)], and the last equality from LR(¢*,0) = 0.
Therefore,
Pr(In?X (p)[| = M) <Pr({llnzx (p) || = M} N {|ln"28,(¢")]| < Mi} 1 Ay)
+Pr(A9) + Pr(|ln"28,(¢%)]| > M) < e

for all n > N, where the inequalities follow from (B5), (B6) and (B7). O

Lemma 3 If Assumptions 1 and 5.1/ hold, then LR, (p) = LM, (p™) + 0,(1).



Proof. Given that max{n%)\ (p) RPN (p¥M)} = Op(1), for all € > 0, there exists an M such
that for all n,

Pr(max{n%/\(i)) n2A (P} < M) >1- % (B9)

Letting P, = {p € P: n3 IA (¢, 0)|| < M}, we can use Assumption 5.1 to choose a sequence of
v,, — 0 satisfying

o IA@.0) >

in : :

which in turn implies that P, C {p € P: ||p — (¢*,0)]| < ~,,}. But then,

sup |LRn(p) — LMn(p)| = 2 sup |Rn(p)]

pePiAp)|< 2L 1+ 1 [|A (4, 0)]
R (¢,0)]

<2(14 M)? = 0,(1),

su 3
pEP:|p—(6*,0)[|<v, 1 + 1 [[A (e, 0)]|

where the first line follows from Assumption 5, the second one from the definition of P, the
third one from A, = {p €P: n2 |A(,0)| < M} C {p P : ||p— (¢*,0)| < 7,}, and the last
equality from v,, — 0 and Assumption 5.4. Therefore, there exists an N such that for all n > N,

Pr (sup |LR,(p) — LM, (p)| < e> >1— -, (B10)
pPEP, 2
As a consequence, we will have that for n > N,
Pr (|LR,(p) — LM, (p"™)| < ¢)
>Pr ({|LRn(p) — LM, (p"")| < e} n{p e P} n{p"" € P,}) (B11)
> Pr ({ sup |LRn(p) — LM,(p)| < e} n{peP}tn{p" e Pn}> (B12)
pEP,
> Pr <sup |LR,(p) — LM,(p)| < e> +Pr({peP}n{pep,}) -1 (B13)
pEP,
>1-S4l-S-1=1- (B14)
-_ 2 2 - 67

where to go from (B11) to (B12) we have used

)

sSup ’LRn(p) - LMn(p)’ 2
pEP,

sup LR, (p) — sup LM,(p)
pEP, pEP

from (B12) to (B13) the fact that Pr(E; N Ey) > Pr(E;)+Pr(E;) — 1, while from (B13) to (B14)
we relied on (B9) and (B10). Therefore, for all € > 0, there exists an N such that for all n > N,

Pr (|LR,(p) — LM, (p"M)| <€) > 1—.

as desired. O



Lemma 4 If Assumptions 1, 5.1-4 and 5.7 hold, then LR, (p) = LM, (p"™) + O,(n=").
Proof. We want to show that for all € > 0 there exists a constant K. such that for all n,
Pr (LR, (p) — LM, (p"™)| < Ken™") > 1 —e.

The proof is almost analogous to the one of Lemma 3. Letting M and P, be as the ones in that

lemma, by Assumption 5.6,

sup |LRn(p) - LMn(p)| =2 sup ‘Rn(p” = Op(nir)v
pEP, pEP,

which is equivalent to saying that there exists an K, such that for all n,

Pr <sup \LRn(p) — LM, (p)| < Ken_’"> >1- % (B15)
pEP,

Thus,

Pr (|LR,(p) — LM, (p™M)| < Kn™")
> Pr ({|LRn(p) — LM, (p"")| < K"} n{p e P} n{p"" € P,})

> Pr ({ sup |LR,(p) — LM,(p)| < Ken_r} N{pePr,}n {pLM € Pn}> (B16)
pEP,
> Pr (Sup |LR,(p) — LM, (p)| < Km‘”) +Pr({pepPin{p™epr,})-1 (BL7)
peby

>1-S41-S 121 (B18)

_° S 1=1—¢

- 2 2 ’
where the last inequality follows from (B9) and (B15). O

Lemma 5 If Assumptions 1 and 5.1—4 hold, then LRn((.f'), 0) = sup LM,(¢,0)+o0,(1). More-
(¢,0)eP

over, if Assumption 5.7 also holds, then LRn(cz, 0) = sup LM,(¢,0)+Op(n™").
(¢,0)eP

Proof. The proof is omitted because it is entirely analogous to the proofs of Lemmas 3 and 4
after fixing @ = 0 and changing P to {¢ : (¢,0) €P}. O

Although the following result holds for any proper ordering over N?, we follow Constantine
and Savits (1996) in saying that k, < k; if at least one the following three conditions hold:
(1) |kal < |kpl; (2) |ka| = |ks| but ka1 < kp1; (3) |ka| = |ks|, ka1 = Kb1,...kaj = kpj but
kajy1 < kpjq1 for some 1 < j < gq.

Lemma 6 (Multivariate Faa di Bruno’s formula) The arbitrary partial derivative of the com-

position of functions

lx1,y .y xq) = log[f(x1, ..., zq)]



18 given by

- 1 f[ka] e
Wl = Z (—1)h+t m!( 7 , where

ps('v,h):{(ml, Mg Ky k) 1me >0,0<ky <. < kg, Y mg=h and Zmaka:v}. (B19)

a=1 a=1

Proof. : See p. 505 of Constantine and Savits (1996).

Proof of Proposition 1

Let
€k = Uk — r(k)(‘»bL)u(k)a
where uy (o, oP) = (yr — pM'x) /P and T(k)(¢L> denotes the coefficients in the theoretical

least squares projection of uj on to (the linear span of) ugy = (u1,..., up—1,Ugs1,- - Jug)

Straightforward calculations allow us to show that

ol B S
W =won(p”'w) [(I)N

d _ 1—-d }
(p°'w)  On(—¢"w)
ol _ det R (0]
O¢r’ ¢ det [R(¢")]

=d |:akk (up — 1) + Z ayp, (urun — ‘Pﬁh)]

hk

dxe k

oL
dor

ol
=d |:Z b;mh (u,% — 1) + Z bkj,ih (Uz‘uh - ‘Pfh)]
h

(%éj heti
o _
90, 00,00,
al INE ol
a7 = Cdet [Ray(9")] <l + Avgg
1 ) .
ooz, ~ O [Ri(@))" det [Rey (64)] by + Ay and
931 —Cd L INE, . | Y
90,00;00, det R (#")] det [Rej) (¢™)] det [Riy ()] erejen + A

where R(k)(gbL ) the (K —1) x (K — 1) matrix obtained from R(¢*) after eliminating its k*" row

and column,

_ 1 2 [¢N($)]
det[R(¢™)? | ®n(z)

and agp, brjin, Ak, Akj, Agjn for k,j,h =1, ..., K are some terms whose detailed expressions

9
x:(bsa

(available on request) are irrelevant for the proof.



Thus, we have that the test depends on the influence function

1 T38 [ 1 ]LQ T 8 [
Z 6" g07 © Z Jae)?ae h;k VNN S g a0 00,00,00;,

3
ol ol
{Z ddet [R)(o")] wkvz} AT@(,‘Z) x dH3 <\;)%> —|—A%,

so that, by suitably choosing v in the last expression,

deet d)L)] ekvk x dv'e,
which allows to show that the test has form in (13). O

Proof of Proposition 2
For those observations with d = 1, we can write
R (¢") =99 (") (y — V%) = [R(97) ~ 99" Dus + 4

where z' ~ N (0,1x) by construction. Given that the test is based on the standardized residuals,

the statistics which use either y or
—-1/2 -1
[R(¢") =09 7 (e7) " (v - ¢"x)
as inputs are numerically the same. Therefore, for any v we will have that

R (¢F) — 99" (6P) " (y — oMx) = ol [R (¢F) — 99']* Yug + o7zt

x ug + ! 7 vz,
o [R (%) —99'] "9

which implies that the distribution of the test statistic conditional on x and w is determined by

the unconditional distribution of

[ il T] (B20)
— Z ,US o -
ot [R(e%) 09 0 ],
Next, let
L n—1/2
R (¢) M] Y and y—\/ﬂ’ — 990,
\/19' — 990

with £ = 1, which means that I —£¢' has rank K — 1, so that the singular value decomposition
implies the existence of a (K — 1) x K matrix A with full row rank such that A’A =1 — £'¢.
Defining v’ = v7[( £ A )~!, we then have that

-1
g ¢
1 1% A |: e, :| 1 'U,
— v'z' = 1 A z = 7 )
ol [R (d)L) _1919/] 1/219 i [ Vi ] [ Vi }EV v'ew
A A



which in turn implies that

t v
,us o~ mz yUS ¢
vt £0 v#0

/
zZ = [ ¢ ]ZT,ZX,WNN(O,IK),

o
Lw R (¢5) - 09] 9
where
A

which confirms that the power will depend on v exclusively. Finally, the Woodbury formula

implies that we can rewrite v as
9 [R(¢") — 99'] Yy =—9R! (") 9+ YR (¢) 9 [1 - R (¢7) 9] IR (9") ¥
__OR(¢H)9
C1-9'R (¢Y) 9]

which confirms the exclusive role played by ¥R ™! ((;‘)L ) . O

Proof of Proposition 3

Let @; = (y; — &L)/\/ g?bv and Hy = Y7 | Hy(@;). Then it is easy to see that H; = Hy = 0,

which in turn implies that
LR, = sup {25 ,Xe (8) — nXy (0) TogXe (8) } + Op(n~ /%) (B21)
0co
by virtue of Theorem 3, with Sp = (Hs, Hy)',

!
(8
M@z(ﬂﬁ%%-ﬁ%+€%>,

and Zgg = Io. The rate O,(n~1/®) follows from the 8th-order Taylor expansion. Finally, after
some tedious calculations available on request, we can verify that the conditions for Theorem
3 are satisfied in this example. In fact, we can further simplify the right-hand side of (B21) as
follows. First, it is easy to see that an upper bound will be given by

, , 1., 1.2 1.2
sup {289,71)\9 (0) - TL)\O (0) 1-60)\0 (0)} S *Se’n-,z—gg Se,n - *Hg + *H4.
6co n n n

Second, we can construct 67 and #5 such that

{—2\/5\/59192 = n_l/QI:Ig

) (B22)
—VB\/nb} + S/l = n~V2Hy + Op(n 1Y)

which implies that a lower bound is
lz2 1-2 1
“H;+-H .
n8 + o4 + Op(n )
Specifically, if n=1/2H, > 0, then we solve for

—2\/3\/59192 = n_l/QI:Ig
@ﬁ@‘f = n71/2ﬁ4

7



which gives 61 = O,(n~'/8), 03 = O,(n3/8), so that (B22) holds with \/n63 = O,(n~'/4). On
the other hand, if n~%/2H, < 0, then we solve for

—2\/§\/ﬁ9192 = n71/2ﬁ3
Byh = n 12,

which gives 0; = O,(n~/%), 62 = O,(n~/*), so that (B22) holds with /nf] = O,(n=/2).
Therefore, we end up with
1~ 1.~
LR, = ~Hs+ “H+ Oy(n /%),

as desired. O

Proof of Proposition 4

In this example,

Xo(0) = [ Jgfﬁejggg) ] A =R and Zog(d) — Zop($)T 4y ($)Toy(d) = Io.

Therefore, under the sequence

lim \/ﬁ)‘e(aoo) = Aoroo 5
n—oo
we will have

GET, L sup {2(S+ Awo) Ao — ApAg}
AgEA

= (S 4+ Aoop) (S + Ao)

as claimed. OJ

Proof of Proposition 5

The proof is entirely analogous to the proof of Proposition 8 in Amengual et al (2025), so

we omit it for the sake of brevity. O

C Reparametrizations
C.1 Sequential reparametrization method

In what follows we explain how to obtain the reparametrization alluded to in section 2.1

using a sequential approach. To do so, we make the following:

Assumption 10 1) The asymptotic covariance matriz of the sample averages of (Se,S9,) eval-
uated at (@, 0) scaled by \/n has full rank.

s
) a;:j:::l oo = 0, for all index vectors such that ¢}, j,, <1 — 1.
3) There eaz’sts a set of coefficients {qur,k}bﬁ"jqr=T*1:k=17--~,p*fh which may be functions of ¢
such that
Hrardar]
My, 180, oo F MGy pSo + Mj, pr189y, + oo+ My, 0 S, + X =0

for all ¢}, jq, =7 — 1, where the default argument is (4, 0).

8



In this context, a convenient way of reparametrizing the model from (¢, ) to (¢, 0) is as

follows:
Mg, 1 pig, Mar 2 piar

splngl—}— Z .q! Of,q,...,gop:@,-i- Z .q! 0‘1]”{17 (023)

Lflr-ilh‘:r_l gr thjq,r =r—1 dr

Mg 041 pigr Mg p+a1 pigr

1911 == 911 + Z jqugg*q yooo ,191q1 = 91q1 + Z #9&1 ) (024)

Lo dgr=r—1 " Lo dgr=r—1 "
Op1 = 011, ooy Ong, = Org,. (C25)

Then, if we use Faa di Bruno (1859) formulas, which generalize the usual chain rule to

higher-order derivatives, we can show that

o 9"ardar]
3925” = Mo, 180, T oo+ My pSp + My pr1891; + oo T My prgr S914, T S

for all ¢, j4, = r — 1 as desired, where the default argument is again (¢, 0).

=0

Finally, we need to check whether ZLQT Sap=r j‘;ZT, 82;; evaluated at (¢, 0) is linearly indepen-
dent of (s¢,sg,) for all Moot )\2,‘ =1, so that Theorem 1 applies. Otherwise, we can check
whether:

1) there exists a new set of coefficients {m}qr k}bgrjqr:%:L,,_,erql which may be functions of ¢

such that

8L:1T.jqr l
89‘1117“ B

when evaluated under the null, in which case we can do a further reparametrization from (¢, 6)

Tiar T T T
my " S, + ...+ quwps% + quwpﬂseu 4+ ...+ qur,p+Q1891q1 +

0 (C26)

to (¢T, GT) in such a way that we set all the 7' partial derivatives with respect to 81 to zero, or

2) we can use Theorem 3, which covers far more general cases.

C.2 Numerical invariance to reparametrization

For simplicity of notation, consider the simple case in which r = 2 and 8 = 65, so that
we can omit the subscript 2 from € henceforth, and we also drop the subscript ¢ from the
contributions of each observation to the log-likelihood function.

Define g = (¢, 1) as the original parameter vector, where ¢ and 9 are vectors of dimension
p and ¢, respectively. In what follows, (¢,0) are the omitted arguments for all the relevant
quantities that depend on (¢, ).

We maintain that Assumption 3 holds with » = 2 for the original parameters g, so that 1)
the asymptotic variance of the sample average of s, has full rank, 2) there is a ¢ x p matrix M

of possible functions of ¢ such that
Msyi(¢,0) +s9i(4,0) =0 (C27)

holds, and 3) the asymptotic variance of the sample average of

o o M\ 91 /W "
# I, 0000 I,



has full rank under the null for all v such that ||v|| # 0. If we reparametrize from g to p as
p=¢+M8, and 9 =0,

then, we can easily check that

ol ol

% = %7 (C28)
ol ol ol

96~ Mg, * gg ~ Msei+50i =0, (C29)

02l 0?1 \Y i
0000’ M, 1] o Joled < I, >

In addition, (C28) and (C29) hold when evaluated under the null, with

0000' I, ) 9000 \ 1,

linearly independent of 91/0¢, which implies that Assumption 3 is satisfied with » = 2 for the
transformed parameters p = (¢,0’)’ too. Therefore, we can apply Theorem 1, which yields
GET?, = sup|jy|20 ET% (v), where

[H(@)v)* 1 [v'H(@)v > 0]

ETH(v) = V.5) ;
(M o) M/
H(p) = < I, > 9200 ((P’O)( 1, ) (C30)

and  V;(v,¢) = V[v'H(e)v] — Cov[v'H(p)v, s4(¢)]Var™"[s¢(#)]Couvsg (), v'H(¢)v]
is the adjusted variance of v'H(gp)v.

Consider now an alternative reparametrization from g to p' characterized by
d=(¢ 9 )=[g?s"0" &°0¢' 0" =gl

where g(-) is a vector of second-order continuously differentiable functions that represent a
suitable diffeomorphism, at least locally around the null. Such an alternative reparametrization

must also ensure that: (i) s, has full rank, (ii) syt is identically 0 at Ho : 6" = 0, and (iii)

!/

v v is linearly independent of s for all [[v|[ # 0.

021
007061
Given that the first order derivative of ¢ under the null is given by
ol 8g¢/ 8g9/ agdﬂ 8g9/
7:754‘94—7_‘_5'&: T_ TM S(p,
Pt 0! d¢ g ¢

where we have used the chain rule in the first equality and (C27) in the second one, we need to

assume that

@/ 0/
det <8g — %8
o' 0o
for 1/0¢' to have full rank. Similarly, given that (C27) and the chain rule imply that

o _og” . 08" _<8g¢”_8g9’ >S
o0t — 06" ¢ 06" " \ o8t o6 #

M) £0 (C31)

10



we must also assume that
ag¢/ agﬂl

oot o6t
to ensure that 9/ 00" = 0 under the null irrespective of ¢! because s, has full rank.

(C32)

Let us now turn to condition (iii), for which we first need to compute the corresponding
second-order derivatives. Applying the chain rule once again, we obtain
0%l ol 0%g®?  og? 9’1 o0g? og? 9% og?
o600 0% oplon] | ool 0907 o] | onl 900 o]
ol 9%g? og? 921 og? o0g? 9% 0og?
0 oplo] ool 0909 op] | o6l 0909 o]

In this context, (C32) and (C27) imply that
2 2 ;¢ o/ 2] 7] o/ 2] 0
aT : T =S, 6Tg t 8gf M /M,agf 6gf o / ,agT
9000 0000y 001 Opde’ el 96 900" Ho!
, M/ 82g9 N agﬂl 821 agﬂ N agﬂl 821 8g0
v o0lot a0t 0009 gpf a0l 0pdd oo!

o 32g¢> Y 82g0 N 8g0' ( M’ >/ 921 ( M ) ige
“\ooloot — oofool ) o0t \ 1o ) 000e' \ Ly ) 06}

when evaluated at the null, so

821 B S/ 82g¢> _M, a2g0 +ag0/Hag
06961 ?\ o0l o0! o6l00] ) |~ 00" 06T

Hence, (C30) implies that

82
v’ v=s, a—i—’UT]I-]IvJr for allv # 0
“ o606 7
when evaluated at the null, where a = (a1, ..., aq)" with

a; =v 82g? -M 82gi9 v and vl = 8g‘9 v
’ 06t o' 0610’

If we further assume that
det g9 #0 C33
€ aeT, ) ( )

021
007007
v"Ho' is linearly independent of s, and (b) s ot 18 & linear combination of s,.

Therefore, once we guarantee that (C31), (C32) and (C33) hold, the parametrization from

then v’ v will be linearly independent of s for all vl such that |[vf|| # 0 because (a)

o0 to p! satisfies the rank deficiency condition in Assumption 3 with r = 2.

Finally, let us define the adjusted asymptotic variance of v’ %Zlmfu as

v Ny 0%l c , 0% Var—1 c , 0%
nT(’U, o) =Var 8 T80T —Cov v WU’SW ar (SqﬁT) ov ( Syt v Wu
= Var(s,a + vl Hot ) — Cov(s,a + vl Hot, a's o)Var~(a's,)Cov(a's,,, Spa + 'UT/H’UT)
= VCL’I”('UTIHUT) — C’ov('uT Ho' ,sp)Var™ (s¢)Cov(s(P,vT Ho') = Vn(’UT, o).

11



Then, we will have that

! 9% (ﬁT)’U]Ql[’U/ 821 (,Z)T)’UZO]

t 007907 201001
ET (v) = Vi (v,0)
S(@)a -+ v H@) 1 s, ()a + vl H(@)v' > 0]
V,(v1,9)
_ bH@u o Bt 2]
B V,(vf, ) IR

where the third equality follows from the fact that s, (¢) = 0. Given that the mapping from v
to v is bijective, taking the sup will finally imply that

T i
GET®' = sup)jy20ETY (v) = sup|,i) 2 ETE (v1) = GETY,
as desired.

D Example 3: Testing Gaussian vs Hermite copulas

D.1 The model and its log-likelihood function

The validity of the Gaussian copula in finance has been the subject of considerable debate.
As a result, it is not surprising that several authors have considered more flexible copulas. For
example, Amengual and Sentana (2020) look at the Generalized Hyperbolic copula, a location-
scale Gaussian mixture which nests the popular Student ¢ copula discussed by Fan and Patton
(2014), which in turn nests the Gaussian one. In this section, we consider Hermite copulas
instead, which can potentially provide much more flexible alternatives.
As is well known, Hermite polynomial expansions of the multivariate normal pdf can be
understood as Edgeworth-like expansions of its characteristic function. They are based on
multivariate Hermite polynomials of order ¢/.j where j € N K which are defined as differentials

of the multivariate normal density:

I
Hj(x,¢) = fnx(x;R)™! ((9;?) vk (xR, (D34)

@ = vecl(R), and R is a positive definite correlation matrix.

To keep the expressions manageable, we only consider explicitly pure fourth-order expansions
in the bivariate case. We could also include third-order Hermite polynomials, but at a consider-
able cost in terms of notation. Similarly, extensions to higher dimensions would be tedious but
otherwise straightforward.

We say that (z1,z2) follow a pure fourth-order Hermite expansion of the Gaussian distribu-

tion when their joint density function is given by

fa(w1,22;0,9) = fN2 K i; > ; ( ; f ﬂ P(xq,x2; 0,9), (D35)
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where
4

P(1,0950,9) = 1+ Y dj01Hajj(w1,29;0)
=0

with ¢ being the correlation between x7 and x2, which we assume is different from 0, and
Y1, ...,05 the coefficients of the expansion. The leading term in (D35) is the normal pdf and
the remaining terms represent departures from normality. Indeed, fy(x1,z2; ¢, ) reduces to a
Gaussian distribution when ¢ = 0.

It is then straightforward to show that the corresponding marginal distributions are given
by

fru(x1;91) = ¢(21)[1 + 91 Hyo(21, 72)] } (D36)

fu(w2;95) = ¢(x2)[1 + V5 Hoa(w1,72)]
where ¢(.) the standard normal pdf and Hyo(z1,22) and Hos(z1,22) are the (non-standardized)
fourth-order univariate Hermite polynomials for x1 and x2, respectively.

Hermite expansion copulas are based on Hermite expansion distributions: lettingy = (y1,y2)
denote the original data, defining u = (uj,u2) = [Fi(y1), F2(y2)] as the uniform ranks of y,
and finally x = (21,72) = [Fy'(u1;91), Fy' (ua; 95)], where Fy;'(.;9;) are the inverse cdfs (or
quantile functions) of the univariate fourth-order Hermite expansions with parameter ©J; in
(D36).

Consequently, the pdf of the pure fourth-order Hermite expansion copula is

fulzr,x20)  bal@,m0)[1+ S0 Vis1Hajj(x1, 725 0)]
fr(@;91) fr(@2;95) ¢y (1)1 + 1 Hao(w1, 2)]d1 (22)[1 + U5 Hoa (21, 22)]

D.2 The null hypothesis and the GET test statistic

Straightforward calculations allow us to show that in this case

59, (0,0) + 3059, (10,0) + 3959, (¢, 0) + ©’s9,(1p, 0)

0,
$95(0,0) + 3089, (10, 0) + 3059, (,0) + ¥ 59, (0, 0) = 0

)

and, hence, our proposed reparametrization, namely

o=¢, U1=0, VU2=~011+3002 + 0,
O3 = 012 + 3¢%021 + 39020, V4 = 013 + 3d020 + ¢°021, V5 = 09,

confines the singularity to the scores of 27 and 625. Therefore, we need to obtain the second
order derivatives with respect to 021 and 092. Specifically, we can prove that the asymptotic
covariance matrix of

oL ol ol o 9’1 9% and 0%l
dp’ 0011 012" 0013" 903, 003, 00910029

scaled by y/n has full rank. Although the algebra is a bit messy, after orthogonalizing those sec-

ond derivatives with respect to the score of ¢ to eliminate the effect of the sampling uncertainty
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in estimating this correlation coefficient under the null, we can express the three second-order
derivatives as linear combinations of all the even-order multivariate Hermite polynomials of
(x1,29) up to the 8" order, whose coefficients depend on ¢, as we explain below.

Let 051 = vin and 099 = von with U% + v% = 1, and consider the simplified null hypothesis
Hy : 011 = 012 = 013 = n = 0. Then, it is easy to see that the GET statistic will be

1 _ 1 _ _
St Vi Sin+ o sup (Vg = Vi Vi 'Vag) " DL Dy > 0], (D37)

" lv|=1

where

Dn(@%”) = Hnn(¢7n7v)_‘/;71(¢7nvv)vlil(¢)sln(¢aO)a

- P921021,i(P)  Pos1600,i(P) ] < U1 >
Hyn(d,n,v) = U1 v 21021, 21022, :
K <¢ 7 ) ;( ! 2) [ h921922,i(p> h922922,i<p) V2

Sln(¢a O) = 8911 (¢7 O), 5912 (d)a O)a 5913 (¢7 O)]/>

where the omitted arguments are ((}5, 0,v) for D,, (c}b, v) for V;,, Vi1 and Vi), (&5, 0) for Sy, and
55 for V11.

As a consequence, the asymptotic distribution of GET is bounded above by a X% distribution
because of the six influence functions, while it is bounded below by a 50:50 mixture of X% and
XZ because 011, 012 and 613 are first-order identified parameters and an even-order derivative of

7 is involved.
D.3 Computational details
D.3.1 Influence functions

In practice, the calculation of the GET statistic requires explicit expressions for all the

different ingredients that appear in (D37). Tedious but straightforward algebra implies that

ol
% = (O) 170) : H2($1,$2;¢),
ol ol ol
20, = Hsi(x1,22; 9), BT = Hao(x1,22; 9), 1 = Hy3(z1,22; 9),
W = (076¢7 0) : H2(x1ax2;¢) + (07 18¢7 36¢ 718¢ 70) : H4(.%'1,.’IJ2;¢)
21
+ (0,96, 366, 54¢°, 366,94, 0) - He (21, 22; ¢)
+(0,0,6¢°,15¢%, 209", 15¢°,6¢°, ¢",0) - Hs(z1, z2; 8),
% = —(0,6¢%,0) - Hy(x1, 205 ) — [0,18¢%, 18 (¢* + ¢*) , 18¢%,0] - Ha(z1, 225 @)
80218922 ) ) b b) b ) b ) b )

— [0,9¢%,18 (¢* + ¢%),9 (¢° + 49" + ¢) , 18 (¢* + ¢?) , 9¢°,0] - He (1, v2; ¢)
—[0,¢°,3 (¢* +¢°) .3 (¢° + 3¢° + ¢) , ¢ + 99"
+9¢% + 1,3 (¢° + 3¢ + ¢) , 3 (¢* + ¢%) , ¢°,0] - Hs (1, 725 9)
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and

ol

g2 = (0,60,0) - Ha(wr,25;.6) + (0,18, 36¢°, 189, 0) - Hy(1, 223 )
22

+(0,9¢4°,36¢*,54¢%, 3667, 9¢,0) - He (w1, 72; )

+ (0,07, 6¢°% 15¢°,20¢*,15¢°,6¢%, ¢,0) - Hs(z1, 22; §),
where Hy, (21, 225 ¢) = [Hyo(1, 22; @), Hi—1,1(x1, T2 @), ..., Ho (w1, 725 )] .
D.3.2 Positivity of the Hermite expansion of the Gaussian copula

The foregoing derivations, though, ignore that the positivity of the Hermite copula density
for all values of y imposes highly nonlinear inequality constraints on the elements of 8 = (6, 85)’
with 61 = (011, 012,013)" and O3 = (621,022)’, the latter being the ones affecting the marginal
distributions after reparametrization. Therefore, Assumption 1.1 fails because p, lies at the
boundary of the admissible parameter space. Nevertheless, we can still derive an LR~equivalent
test. Specifically, given that under the null hypothesis of a Gaussian copula the UMLE estimators
of 81 and 05 converge at rates n=2 and n_i, respectively, the elements of the sequence 61,, are
negligible and we simply need to find the asymptotes of the feasible set for (021,6022). Let
021 = nui = nysin(w) and O3 = nuy = ncos(w) with w € [0,27) to ensure a unit norm for
v = (v1,v2)". These parameters lead to a positive density when 7 is small enough if and only if
w € (wy,wy), with w; and w,, defined in (D40) and, therefore, an asymptotically equivalent GET
statistic that imposes positivity of the Hermite expansion copula under admissible alternatives
local to the null will be given by
%S{nVﬁlSm + 1w;;1[17)wu)D;1 (Vi — V,ﬂVﬁle)fl D,1[D,, > 0], (D38)
which is asymptotically equivalent to the LR test by imposing positivity because a zero density
gives rise to an infinitely penalized log-likelihood. Importantly, our test is again far more com-
putationally convenient than the LR test because the positivity constraints effectively become
linear under local alternatives.
To justify these claims, it is convenient to remember that in the original parametrization,

P(z1,29;9,19) is equal to
1+ 91 Hyo(x1, 225 ) + V2 Hzi (21, 2; ) + V3 Hoo (21, 225 @) + VaHiz(x1, 23 0) + s Hoa(x1, 225 ).

But as mentioned before, 61 is dominated, at least asymptotically. For that reason, we first
discuss the positivity constraint on @2 when 67 = 0, and then explain how to simplify the
asymptotic positivity constraint and the extremum test statistic.

Let o = txy, 022 = kbfs1, K > 0 so that the polynomial that multiplies the Gaussian pdf
simplifies to

p($1,¢,k,t,921) == P[$17t$1;¢, (0217070707k021)/]

3021

0
= 1+ 392100(]4?) + 17¢202(k7t, ¢)$% + 2

1—¢?

Cy(k,t,¢)x], where
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Co(k) = k+1, Co(k,t,¢) =k (¢* — 2) 2+ (k + 1) pt+¢*—2 and Cu(k,t, ¢) = kt* —kot® — gt +1.

It is easy then to see that min, P(x, ¢, k. t,0s1) is finite if and only if (1) Cy(k,t,¢) > 0 or
(ii) Ca(k,t,¢) = 0 and Ca(k,t,¢) > 0. In addition, when 3; is very small under either (i) or
(i), we have that min, P(x, ¢, k,t,02;) is greater than 0. Thus, we need to find a set K (¢) such
that Vo # 0, Vk € K(¢) C [0,+00) and Vt € R, we have either (i) or (ii), and, thereby, we need
Cylk,t,¢) = kt* — kot® — ¢t +1 > 0 V.

To guarantee the positivity of this expression, we need k > 0. If the discriminant of Cy(k, t, ¢)
is positive, then Cy(-,t,-) = 0 has either only real or only complex roots, while if the discriminant
is negative, then Cy(-,¢,-) = 0 will have both two real and two complex roots, while if the
discriminant is zero, then at least two roots must be equal. Therefore, to ensure discriminant
of Cy(k,t,¢) to be non-negative, we need to find two functions, b(¢) and ub(¢) such that
Ib(¢) < k < ub(¢) if and only if the discriminant is positive while k € {Ib(¢), ub(¢)} if and only
if the discriminant is zero. Moreover, Ib(¢) € (0,1), ub(¢) € (1,400), and 1b(¢)ub(¢) = 1. The
proof of these statements is as follows:

Specifically, we can show that
Disci[Cy(k,t,¢)] = —k*[2Tk*¢* + 2k (2¢° + 34" + 969 — 128) + 274",

so that the solution to
Disc[Cy(k,t,¢)] =0
2¢° + 3¢t + 964* + 2(\/(¢2 —4)% (6 =1) (6 +8)° — 64)
27¢*
2¢° + 3¢* + 96¢° — 2(\/(¢2 —4)° (6* — 1) (6> +8) + 64)
27¢

is given by | 1p(¢) =

ub(¢) =

Thus, when k € [Ib(¢), ub(¢)], the discriminant is positive and we simply need to check whether
Cua(k,t,¢) > 0. First, consider ¢ > 0 and Cy(k, 1, ¢) = kt*(t—d) —dt+1. When t > ¢, Calk, t, b)
is increasing in k. In this context, we can prove that mingsCy[lb(¢),t, ¢] = 0. In turn, when
t € [0,9), Cy(k,t,¢) is decreasing in k, and we have min;>,Cys[ub(¢),t,¢] = 0. Finally, when
t < 0, it is obvious that Cy(k,t,¢) > 0.

However, when either k = [b(¢) or k = ub(¢), we have t;,t, defined by Ca[lb(¢),t;,¢] =0
and Cy[ub(¢),ty, ¢] = 0, respectively, so that

Callb(¢), 1, ¢] <0 and Calub(¢),ty, ¢] <0 for all ¢,

which in turn implies that k& € {lb(¢),ub(¢)} does not hold.
Therefore, when 67 = 0, the asymptotes of the feasible set near 0 are fa2 = lb(¢)021 and
022 = ub(¢)f21, and Theorem 1 implies that

LR = ET(0"T) + O,(n"2r) (D39)
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with

n%01 I n 2Sgl(¢, 0) n%01 / n%01
19 L2 . 142
pro)=2| M| | T @00 | ko) | i
12021022 n 2H921922(¢, 0) n2021022 n2021022
1 1 1
n§‘932 n 2H922922(¢a ) n§0%2 n§032
0"T = arg maxgco ET,(0),

where O is the set of parameters that satisfies the positivity constraint. Unfortunately, ETn(HET)
is not very easy to calculate because O is difficult to characterize explicitly. For that reason, we

below show that
ET,(6°T) = GET,, + 0,(1), where

1., - - -~ D*(¢,v)1[D(,v) > 0]
GET, = ~Sp (¢,0)V;7'(4)Se, (0,0 = = —
n 0,(9: 0V (9)56:(6,0) + we(saljlll,)wu)n Voo (6, v) — Va1 (¢, v) Vi1 (0) Via (o, v)

with v1 = sin(w) and ve = cos(w) so that ||v]| = 1, and

w; = arctan[lb(@)], w, = arctan[ub(¢)], (D40)

so that letting 021 = v1m and 62 = van, then

o= 5 ) (o ) ()Lt e () o
- seon= () [l ann ] ()

Similarly, letting %) = max{n®",n="} with < k < 1 it is easy to notice that

To(0°T 77, vPT) = ET, (057, nFT vET) + 0,(1). (D42)
Next, considering (67, n*, v*) :argmaxpc/\{n>n,k}ETn(91, n,v), where pc={(61,nv1,nvs) € O},
it is easy to see that w.p.a.l,
ET, (077,07, v"") > BT,(67,n",v") > ET, (677, 7,v"") (D43)

because (AET, nET ET)

(OFT 7,057 € pc and {# > n~*} happens w.p.a.1. Combining (D42) and (D43), we get

= argmaxy. ET,(01,n,v) is over a larger feasible set, and the event

T.(03, 7", v*) = ET, (07", n"", vPT) + 0,(1), (D44)

so we only need to calculate (67, n*, v*).

Next, noticing that there exists a &’ € (k, 1) such that

kl

lim, Pr(]|0%]] < n™% <n™F <9*) =1, (D45)

0] becomes asymptotically irrelevant for the positivity constraints because it is effectively un-
restricted and, consequently, (D45) implies that the only relevant restriction will affect the

direction of 0.
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In view of (D41), the first order condition for 87 for given n* and v* implies that
n20i (", v") = Viy ()l 255,(9,0) - Via(d, v )
and, hence, if we substitute 67(n*, v*) in the expression for ET'(61,n,v), we end up with
BT,(8},1°,0%) = - 8,(5, 0)Vi7'(5)S0,(5,0)

=022 [Vas(6,07) = Var (6, 07V () Vaa($, v
+ 2022 [n "2 Sp, (6,0,0%) — Var (6, 0" ) Vi1 (9)n 286, (6,0).  (D46)

Given that (D46) is quadratic in 7*2, if take into account the restriction 7* > n=*, we obtain

n*(v7) Zmax{” %\/[Vm(gﬁ, v*) = Va1 (&, v*) Vi1 () Va6, v*)In ™2 D(, v*)1[D(6, v*) > 0],71’“},

where D(¢,v) = S, (¢,0,v*) — Va1 (¢, v)Vi7 (¢)Se, (¢,0). Finally, if we replace the previous

expression for n*(v*) into (D46), we end up with

1 - - -
ET,(07,n",v*) = ESél(qb,O)Vﬁl(cb)Sel(sb,O)
1 D?(,v*)1[D($,v*) > 0]
1 Voo (¢, v*) — Va1 (6, v*) Vi1 (9) Vaa (g, v*)

part 2

+o,(1).  (D47)

But since part 2 in (D47) is a function of v*, which by definition is a maximizer of ET,,, we end

up with

ET,(6577,0%) = - 55,(5,00V;;'(9)5,(5,0)

1 D?(¢, v)1[D(¢,v) > 0]
- _ _ = - 1),
+w€?:}zl,)wu)” Voo (¢, v) — Var (¢, v) Vi1 (0) Via(6,v) o)

which, in view of (D44), confirms that

ET(0F 0" 0PT) = 55, (5,0)Vi7(3)56,(5,0)

1 D%, v)1[D(3,v) > 0]
— - — - - 1).
e Vi(@,0) = Ve oV @V ) TP

D.4 Simulation evidence

For simplicity, we assume the marginal distributions are known, so that we can directly work
with the uniform ranks, which we immediately convert into Gaussian ranks (see Amengual and
Sentana (2020)). We estimate the correlation parameter, whose true value we set to 0.5 under
both the null and alternative hypotheses using the Gaussian rank correlation in Amengual,
Sentana and Tian (2022), which effectively imposes the null. As alternative hypotheses, we

consider two Hermite expansion copulas: one with 9 = (0.03,0,0,0,0) (H,,) and another
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with 9/ = (0.02,0,0,0,0.02) (Ha). While the second one generates a copula density which is
symmetric around the 45° line, the first one does not. In any event, both departures from the
Gaussian copula are rather mild, as they only involve one or two parameters different from 0.

If the correlation coefficient were known, we could again compute exact critical values under
the null for any sample size to any degree of accuracy by repeatedly simulating samples of iid
bivariate normals with correlation ¢. In practice, though, we fix the correlation coefficient to
its estimated value in each sample in what is effectively the parametric bootstrap procedure
described in section 2.3 (see Appendix D.1 in Amengual and Sentana (2015) for further details).

In Table 3 we compare the results of our tests with three alternative procedures: KS, which
denotes the non-parametric Kolmogorov—Smirnov test for copula models (see Rémillard (2017)),
KT-AS, which is the Kuhn-Tucker test based on the score of a symmetric Student ¢ copula
evaluated under Gaussianity (see Amengual and Sentana (2020)), and GMM, which refers to
the moment test based on the underlying influence functions in GET.

Following the structure of Table 1, the first three columns of Table 3 report rejection rates
under the null at the 1%, 5% and 10% levels for n = 400 (Panel A) and n = 1600 (Panel B).
The results make clear that the parametric bootstrap works remarkably well for both sample
sizes. In turn, the last six columns present the rejection rates at the same levels for the two
alternatives. By and large, the behavior of the different test statistics is in accordance with
expectations: first, when the sample size is large our proposal is the most powerful as it is
designed to direct power against alternatives in which the copula follows a Hermite expansion
of the Gaussian one and, second, its non-parametric competitor has close to trivial power in
samples of 400 observations, a situation that improves marginally when n = 1600. Interestingly,
the Kuhn-Tucker version of the Gaussian versus Student ¢ copula test in Amengual and Sentana
(2020) performs quite well when n is large in spite of not being designed for these alternatives.
Importantly, GET does a better job than the moment test based on the influence functions S,
implied by the higher-order expansion of the log-likelihood on which it is based, which is partly
due to the fact that it takes into account the partially one-sided nature of the alternatives.

Finally, it is important to mention that in this example the log-likelihood function under the
alternative is particularly difficult to maximize over the five parameters involved. In fact, we
systematically encounter multiple local maxima in samples of up to 100,000 observations even
if we fix the correlation parameter to its true value and use global optimization methods, which
forced us to repeat the calculations over a huge grid of initial values. For that reason, we have
only computed the Gaussian rank correlation coefficient between the LR test and GET across

ten such simulated samples, obtaining a high value of .96.
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E Example 4: Purely non-linear predictive regression
E.1 The model and its log-likelihood function

Consider the following extension of the nonlinear regression model in Bottai (2003), where

n observations on y = (y1,y2,ys) are drawn from a joint distribution characterized by f(y;0) =

F(ysly1, y2;0) f(y1,y2) with f(y1,y2) fixed and known, and
1
f(yslyi, y2;0) = ¢ |ys — exp (O1y1 + O2y2) + 61y1 + G2y + §9§y§ , (E48)

with @ = (61,603) unknown. This model has an interesting interpretation in the context of
predictive regressions. Specifically, a Taylor expansion of the exponential function immediately
shows that the mean predictability of y3 does not come from the terms that also enter outside
the exponent (namely, y1, y2 and y3) but rather, from higher order powers of the two regressors
as well as their cross-products. Therefore, model (E48) provides an interesting functional form
for predictive regressions of variables such as financial returns when a researcher believes in
predictability but not through standard linear terms (see for example Spiegel (2008) and the

references therein for a discussion of return predictability).

E.2 The null hypothesis and the GET test statistic

In the case of a single regressor, Bottai (2003) showed that the nullity of the information
matrix is one when the regressand is unpredictable. Not surprisingly, the information matrix
has several rank deficiencies under the null hypothesis Hp : @ = 0 in the multiple regressor case.

The relevant derivatives of the log-likelihood function with respect to 81, 65 evaluated under Hy

are
ol ol
8791 - 0) 8792 - Oa
2, 021 021 931
= —1), —— = —1), = =0 and — = y3(y3 — 1).
o6 yi(ys — 1) 96,00, y1y2(ys — 1) 262 an 263 y5(ys — 1)

Therefore, we have a situation in which the degree of underidentification is different for the
two regression coefficients. But since Assumption 5 is satisfied with C' = {(2,0), (1,1),(0,3)}, a
straightforward application of Theorem 2 implies that

LR, = GET,, + O,(n"s)

L Tu Tie Tis\ [ 62 1
=sup 2(02,0105,03) | LY | —n(02,0105,03) [ To1 Too Tos 91§2 +0,(n"8), (E49)
’ 03] T3 Is2 Iss 0
T T2 Tis 1120
where 1—21 IQQ 223 = lim Var \/ﬁ l[l’l]
I31 I3z Iss e 1[0:3]

In this case, though, we need to obtain the maximum with respect to 6, and 65 over the entire

Euclidean space of dimension 2 rather than over the unit circle.
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Nevertheless, we can provide an asymptotically equivalent but much simpler statistic. Let
p1 = Vn(0FT)2, py = /nbFT0LT and p3 = /n(657)3. 1t is then straightforward to show that
12
nspip; = ps.
As a result, we must have that either p; or ps are negligible when n is large because p is Op(1)
from Lemma 1 in Appendix B. If p; is negligible, then (E49) is asymptotically equivalent to

[1,1] 7 / 0.0
Mn : 3 n 9 9 ’03 ( 22 23 > < 192 )
supL 1 —9531322(6162 62) ( EL?,B] > n( 172 2) I?ﬁ 133 2

-1 (1,1]
_ l(L[l’l] L3 Too Zos Ly .
no "o T30 I3 03]

If instead p3 is negligible, then (E49) becomes asymptotically equivalent to
Ly T T 63
LMs,, = sup 2(6%,0,6 n —n(62,0,0 (11 12>< 1>
upLMan = oup 201, 0102) ( S A LA O

Ioo T — T1oToy Ion

n

1L — 77 b > 0]} .

Consequently, we could obtain an asymptotically equivalent statistic up to a term of order o0,(1)
by simply retaining GET,, = max {supL M,,, supLMay }.
In addition to computational advantages, it turns out that the asymptotic distribution of

our test is easy to obtain. Specifically, letting

n = n_% n 12722 7 , Jop = n_%inj and Zg, = n_% n 32792 ~n , Where
\/ Ti1 — T12T55' I V.22 \/ Ts3 — T32T0y To3
Zln Zl 0 1 0 13
Zom | & Zo | ~N|[ 0 ]:[ 0 1 o0 and
ZSn ZS 0 713 0 1
. Th3 — T12Z5 To3

13 — )

\/ T — T12T55 I \/ Ts3 — T32T05 Io3
then, sup LMy, = Z22n + Z?%n and sup M Lo, = Z%n + Z12n1 [Z1n > 0]. As a consequence,
GET, % max{Z21 {7, > 0}, 7%} + Z2.

That is, the asymptotic distribution of GET,, will be a 2 50% of the time (when Z; < 0) and
the sum of a x? with the largest of two other possibly dependent x¥s (when Z; > 0). If we
further assume that the regressors y; and yo are two independent normals with 0 means and

variances o2 and o3, respectively, then the Z’s will be three independent standard normals.

E.3 Simulation evidence

As alternatives, we consider #; = 0.3, 2 = 0 (H,1) and 6; = 0, 03 = 0.5 (Hg2) in model
(E48). And like in the normal versus SNP example, if we maintain that y; and y2 are uncor-
related, we can compute exact critical values for any sample size to any degree of accuracy by

repeatedly drawing iid spherical normal vectors (y1, y2,y3), which effectively imposes the null.
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In Table 4 we compare the results of the two versions of our tests discussed above, with
the GMM test mentioned at the end of section 2.2 and two simple alternative procedures.
First, a standard LM test based on pseudo-Gaussian ML that checks the joint significance of
y3 and y1y2 in the OLS regression of y3 on a constant and these two variables, which are the
transformations of the predictors missing from the part outside the exponent in the conditional
mean specification. And second, a closely related LM test based on pseudo-Gaussian ML which
augments the previous regression with the following four cubic terms y3, y2y2, y1y3 and y3. We
refer to these tests as OLS; and OLSs, respectively.

The first three columns of Table 4 report rejection rates under the null at the 1%, 5% and
10% levels for n = 400 (Panel A) and n = 1600 (Panel B) for the first alternative hypothesis
we consider while the last three do the same for the second one. Once again, the behavior
of the different test statistics is in accordance with expectations. In particular, our proposed
statistics are the most powerful in both cases. Part of the reason has to do with the fact that the
linear regressions only provide an approximation to the true non-linear conditional expectation.
However, the fraction of the theoretical variance of y3 explained by v, y1y2, ¥3, y3y2, 193 and
Y3 is essentially the same as the fraction explained by the true conditional mean in Hyz. As a
result, the superior power of our tests relative to OLSy comes from the reduction in degrees of
freedom.

Given that in this case our test has a relatively standard asymptotic distribution —namely,
a 50:50 mixture of x3 and the sum of x? with the larger of two other independent y3’s— we can
also compute Davidson and MacKinnon (1998)’s p-value discrepancy plots to assess the finite
sample reliability of this large sample approximation for every possible significance level. The
results for the two sample sizes we consider, which are available on request, confirm the high
quality of the asymptotic approximation.

Finally, our results indicate a .94-.95 Gaussian rank correlation between our proposed test
statistic and the LR across Monte Carlo simulations generated under the null, which is in
line with our asymptotic equivalence results in Theorem 2. At the same time, they con-
firm that the LR test typically takes about 200 times as much CPU time to compute as the

max {supLMji,,, supLMas,} version of our test.

F Relationship to the previous literature

Davies (1987) proposed perhaps the most cited sup-type test, so it is illustrative to provide
a link between Theorem 1 and his results. In view of the fact that ||0,| remains irrelevant
regardless of ¢., without loss of generality we consider the reparametrization 8, = nv, with
v € R, ||lv|]l =1 and n > 0, so that 7 and v represent the magnitude and direction of the
parameter vector 8,., respectively. Given that

sup Ly(¢,01,nv) = sup L,(¢,01,6,),
¢7617HU”:177720 ¢791707'
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we can rewrite the null hypothesis as Hy : 1 = 0,77 = 0, where v is a nuisance parameter that
only appears under the alternative. If we considered the 7" derivative of I;(p) along a specific
direction v, which would effectively coincide with the r*" derivative with respect to 7, then we
could directly apply the Lee and Chesher (1986) approach to obtain the relationship between
the LR and ET tests along that direction. We then look at the supremum of those tests over all
possible directions, as suggested by Davies (1987), which would effectively yield GET,.
Nevertheless, this intuitive explanation in terms of 7 and v has some limitations. First, Lee
and Chesher (1986) would yield a pointwise result for a given v, while Theorem 1 relies on
uniform convergence. More importantly, Davies (1987) method is designed for models in which
the log-likelihood function is absolutely flat for some parameters under the null, so regardless
of its analytic nature, no higher order derivatives will provide moments to test. In contrast, we
consider situations in which the log-likelihood function written in terms of @ only has a finite
number of zero derivatives, so a test statistic can be based on the first round of non-zero ones.
In this respect, the underidentification of v is an artifact of the 8,, = nv reparametrization that
would persist even if the information matrix had full rank, in which case the supremum over v
of the test of Hyg : 1 = 0,7 = 0 will yield the usual LM test. In any event, in Theorems 2 and
3 we derive generalized extremum tests in more general contexts without resorting to any such

reparametrization.
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Table 3: Monte Carlo rejection rates (in %) under null and alternative hypotheses for the
Gaussian versus Hermite expansion copula test

Null Alternative hypotheses
hypothesis H,, H,,
1% 5%  10% 1% 5%  10% 1% 5%  10%
Panel A: n = 400

GET 1.1 5.1 10.2 184 49.7 65.1 26.9 60.9 74.2
KS 0.9 4.7 9.3 0.9 4.7 9.9 1.1 54 10.6
KT-AS 1.2 5.3 10.3 189 39.2 52.0 31.7 554 68.0
GMM 1.1 5.2 10.2 3.8 384 57.0 6.3 49.7 67.2
Panel B: n = 1600
GET 0.9 4.9 10.3 90.8 98.9 99.6 96.8  99.7 99.9
KS 0.9 4.7 9.8 1.9 7.7 145 3.1 10.4 18.6
KT-AS 0.9 5.3 10.6 60.9 82.8 90.1 87.1 959 98.2
GMM 1.1 5.0 9.9 44.0 95.5 99.0 68.2 98.8 99.7

Notes: Results based on 10,000 samples. Margins are assumed to be known. GET, KS, KT-AS and
GMM are defined in Supplemental Appendix D. Finite sample critical values are computed using the
parametric bootstrap. DGPs: The correlation parameter ¢ is set to 0.5 under both the null and alternative
hypotheses. As for H,, and H,, correspond to pure, fourth-order Hermite expansion copulas with
9 = (0.03,0,0,0,0) and ¥ = (0.02,0,0,0,0.02), respectively.

Table 4: Monte Carlo rejection rates (in %) under alternative hypotheses for white noise versus
a purely nonlinear regression test

Alternative hypotheses
H,, H,,
1% 5%  10% 1% 5%  10%
Panel A: n =400

GET 19.5 41.3 54.4 185 39.7 524
LR 21.7 41.7 56.2 20.5 40.4 54.1
GMM 15.3 34.3 47.0 14.3 334 455
OLS; 16.2 34.6 47.2 129 30.5 419
OLSo 9.6 239 37.0 7.3 20.2 324
Panel B: n = 1600
GET 65.5 83.9 90.2 61.3 80.5 87.6
LR 66.3 84.5 91.2 61.9 81.5 885
GMM 57.6 78.3 86.0 54.3 75.2 83.6
OLS, 53.2 74.1 83.3 427 646 75.1
OLS, 37.7 61.6 73.3 25.7  48.8 61.8

Notes: Results based on 10,000 samples. GET, LR, GMM, OLS; and OLS; are defined in Supplemental
Appendix E. Finite sample critical values are computed by simulation. DGPs: (y1,y2) ~ iid N(0,1s)
under both alternative hypotheses, with §; = 0.25 and 03 = 0.25 (H,1), and 6; = 0.3 and 62 = 0.1 (H,z2).
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