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Abstract
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1 Introduction

Rao�s (1948) score test and Silvey�s (1959) numerically equivalent Lagrange multiplier (LM)

version completed the triad of classical hypothesis tests (see Bera and Bilias (2001) for a survey).

Given that they only require estimation of the model parameters under the null, in the late 1970�s

and early 1980�s they became the preferred choice for many speci�cation tests that are nowadays

routinely reported by econometric software packages (see the surveys by Breusch and Pagan

(1980), Engle (1983), and Godfrey (1988)). In addition to computational considerations, which

remain very relevant for resampling procedures, two other important advantages of LM tests

are that (i) rejections provide a clear indication of the speci�c directions along which modeling

e¤orts should focus, and (ii) they are often easy to interpret as moment tests, so they remain

informative for alternatives they are not designed for. Furthermore, under standard regularity

conditions, they are asymptotically equivalent to the Likelihood ratio (LR) and Wald tests under

the null and sequences of local alternatives, thereby sharing their optimality properties.

One of the crucial regularity conditions for a common asymptotic chi-square distribution

for these three tests is a full rank information matrix of the unrestricted model parameters

evaluated under the null. Nevertheless, there are empirically relevant situations in which this

condition does not hold despite the fact that the model parameters are locally identi�ed. In

non-linear instrumental variable models, Sargan (1983) referred to those instances in which the

expected Jacobian of the in�uence functions is singular but the expected Jacobian of the linear

combinations of their derivatives that span its nullspace has full rank as second-order identi�ed

but �rst-order underidenti�ed. In a likelihood context, a singular information matrix implies

that there is a linear combination of the average scores at the true parameter values which is

identically 0, at least asymptotically. In their seminal paper, Lee and Chesher (1986) studied

some popular examples of this situation in economics: i) univariate regression models with

sample selectivity; ii) stochastic production frontier models; and iii) certain mixture models.1

Lee and Chesher (1986) proposed to replace the LM test by what they called an �extremum�

test. Their suggestion was to study the restrictions that the null imposes on higher-order op-

timality conditions. Often, the second derivative will su¢ ce (r = 2), but sometimes it might

be necessary to study the third or even higher-order ones (r � 3). They proved the asymp-

totic equivalence between their extremum tests and the corresponding LR tests under the null

and sequences of local alternatives in unrestricted contexts. Using earlier results by Cox and

Hinkley (1974), this equivalence intuitively follows from the fact that their tests can often be

re-interpreted as standard LM tests of a suitable transformation of the parameter whose �rst

derivative is 0 on average such that the new score is no longer so. In contrast, Wald tests are

extremely sensitive to reparametrization under these circumstances. Bera, Ra and Sarkar (1998)

1 In all their examples, in fact, the average score with respect to one of the parameters of the model under the
alternative evaluated at the restricted parameter estimators that impose the null is identically 0 in �nite samples.
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provided some additional insights. In turn, Rotnitzky el al (2000) studied the asymptotic dis-

tribution of the maximum likelihood (ML) estimators in those contexts. Finally, Bottai (2003)

looked at the validity of con�dence intervals obtained by inverting the classical test statistics in

this setup.

However, in all the existing literature the nullity of the information matrix, qr say, is assumed

to be 1. When the information matrix is repeatedly singular under the null, in the sense that

qr is two or more, the number of second-order derivatives exceeds the number of parameters

e¤ectively a¤ected by the singularity by an order of magnitude. The unbalance gets worse

when it becomes necessary to look at higher-order derivatives. Unfortunately, in general there

is no reparametrization that leads to a regular information matrix.2 In particular, transforming

each of the parameters individually along the lines suggested by Lee and Chesher (1986) does

not usually give rise to a test asymptotically equivalent to the LR. On the contrary, di¤erent

reparametrizations will typically give rise to di¤erent test statistics.

The purpose of our paper is precisely to propose a feasible generalization of the Lee and

Chesher (1986) approach in repeatedly singular contexts that leads to tests asymptotically equiv-

alent to the LR, but which only require estimation under the null. Speci�cally, we propose a

generalized extremum test (GET) that maximizes an easy to interpret statistic over a space

of dimension qr � 1 when all a¤ected parameters show the same degree of underidenti�cation,
and which simpli�es to the Lee and Chesher (1986) proposal when the nullity is one. More

generally, GET is an LR-type test that compares the log-likelihood function under the null to

the maximum over qr dimensions of its lowest-order expansion under the alternative capable of

identifying the restricted parameters. In contrast, LR tests require the maximization over the

entire parameter space of an unrestricted log-likelihood function that is extremely �at around its

maximum when the null hypothesis is true.3 These computational advantages are particularly

pertinent for bootstrap-type inference, which is especially necessary in our context because the

common sup-type asymptotic distribution of the GET and LR tests is normally non-standard,

and the sample sizes required for this distribution to be reliable are often unusually large.

Repeatedly singular information matrices are not a mere theoretical curiosity. In fact, we

illustrate our proposed procedure with several examples of interest that arise in economic and

�nance when testing: 1) exogenous sample selectivity in multivariate regressions; 2) normality

against the �exible semi-nonparametric (SNP) family proposed by Gallant and Nychka (1987);

3) a Gaussian copula against another �exible Hermite expansion; and 4) unpredictability in a

multiple regressor version of the purely non-linear model considered by Bottai (2003). Further,

Amengual, Bei and Sentana (2022, 2024) discuss the application of the test proposed in this paper

to two additional examples of substantial empirical interest: testing for multivariate normality

against a skew normal distribution, and testing for neglected serial correlation in univariate time

2An exception is the multiplicative seasonal Arma model considered in Amengual, Bei and Sentana (2024).
3Obviously, both procedures require the estimation of the model under the null, but the restricted maximum

likelihood estimator is typically available in closed form in many models subject to speci�cation tests.
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series models with and without unobserved components, respectively.

Our analysis is reminiscent of but di¤erent from the theoretical literature that studies GMM

inference in situations in which the expected Jacobian of the in�uence functions is singular.

There are in fact two strands in this literature. One suggests augmenting the in�uence functions

with their �rst-order derivatives to restore standard asymptotics when the model parameters are

�rst-order underidenti�ed but second-order identi�ed in the terminology of Sargan (1983) (see

Lee and Liao (2018) and Sentana (2024) when the singularity direction is known or estimated,

respectively). The other one studies the properties of the usual GMM estimators and overi-

denti�cation restrictions tests in those circumstances (see Dovonon and Renault (2013, 2020),

Dovonon and Hall (2018) and Han and McCloskey (2019) for asymptotic results, and Dovonon

and Gonçalves (2017) for the correct implementation of the non-parametric bootstrap in this

context).4 Under second-order identi�cation, the asymptotic distribution of our test statistic

resembles that of the J test statistic in a GMM model.5 However, the problems we analyze di¤er

fundamentally from both these strands in two key aspects. First, in our context some of the

(average) in�uence functions underlying the usual LM test not only have a singular Jacobian but

are actually identically 0 when evaluated at the true parameter values under the null. Second,

we allow the rank de�ciency to be higher than one and the identi�cation of the parameters to

come from higher-order derivatives, not necessarily of the same order.

The structure of the rest of the paper is as follows. In section 2 we obtain our theoretical

results �rst in the case in which all the underidenti�ed parameters have the same degree of

underidenti�cation, and then when the degree of underidenti�cation may be di¤erent for di¤er-

ent parameters. Then, in section 3 we discuss the �rst two aforementioned examples in detail,

assessing the �nite sample size and power properties of our proposed tests by means of sev-

eral extensive Monte Carlo exercises. Finally, we conclude in section 4, relegating proofs, the

remaining two examples and some additional results to the appendices.

2 Theoretical results

Consider the estimation of the d � 1 parameter vector � characterizing the distribution of
an iid random vector y. Let li(�) = ln f(yi;�) denote the log-likelihood function contribution

from observation i, so that the log-likelihood function of a sample of size n is Ln =
Pn
i=1 li(�).

6

In what follows,

s�ji(�) = @li(�)=@�j

4See also Dovonon, Hall and Kleibergen (2020) for a study of the local power properties of the alternative
inference procedures proposed by Kleibergen (2005), which restore the �2 distribution by orthogonalizing the
moment conditions with respect to the Jacobian.

5See Supplemental Appendix E of Amengual, Bei and Sentana (2020) for a formal link to the results in Dovonon
and Renault (2013).

6Although we could easily generalize our results to explicitly deal with dependent data by using standard
factorizations of the sample log-likelihood function, we maintain independence to simplify the expressions.
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will denote the contribution of observation i to the score with respect to the jth element of �

and S�jn(�) =
Pn
i=1 s�ji(�) their sum.

Let us partition � into two blocks: 1) �, which contains the p � 1 vector of parameters
estimated under the null; and 2) �, which is the q � 1 vector of parameters such that the null
hypothesis can be written in explicit form as H0 : � = 0, with d = p + q. Let ��, �̂ and ~� =

(~�
0
;00)0 denote the true value of the parameter vector, its unrestricted ML estimator (UMLE),

and the restricted one (RMLE), respectively, so that �� = (��;0) under H0. In this respect,

we use E[�; (�;0)] to denote an expectation taken when the true parameter values are (�;0) for
any possible value of � while we use E(�) for expectations taken with respect to ��. As usual,
j:j and jj:jj denote absolute value and Euclidean norm, respectively. Finally, we use emin(A) and
emax(A) for the smallest and largest eigenvalues, respectively, of a symmetric square matrix A.

Using this notation, we henceforth assume:

Assumption 1 (Regularity conditions)
(1.1) � takes its value in a compact subset P of Rd that contains an open neighborhood N of
the true value �� which generates the observations.
(1.2) Distinct values of � in P correspond to distinct probability distributions.
(1.3) E[sup�2P jli(�)j] <1.
(1.4) E[@li(�;0)=@��@li(�;0)=@�0] has full rank under the null for all (�;0) 2 P.

The compactness of P in Assumption 1.1 together with the continuity of li(�) and As-

sumptions 1.2 and 1.3 guarantee the existence, uniqueness with probability tending to 1, and

consistency of both the UMLE �̂ and the RMLE ~� (see Newey and McFadden 1994, Theorem

2.5). In turn, we only use the �open neighborhood� part of Assumption 1.1 to simplify the

expressions and their derivation. Extensions to situations in which the true parameters lie at

the boundary of the parameter space under the null are feasible, as we will show in Supplemental

Appendix D, but at the expense of complicating the notation and blurring the message of the

paper. Finally, Assumption 1.4 guarantees the convergence of the RMLE at the usual n�
1
2 rate.

2.1 Repeated singularity of the same order

We �rst consider the case in which q1 elements of � are �rst-order identi�ed, while the

remaining qr elements are rth-order identi�ed under the null, a concept that will become precisely

de�ned after we introduce Assumption 3 below. Therefore, if we further partition � = (�01;�
0
r)
0,

where q1 = dim(�1) and qr = dim(�r), so that q = q1 + qr, then the information matrix under

H0 will be such that its top (p + q1) � (p + q1) block is regular and the rest contains zeros.
Consequently, its nullity will be precisely qr. Often, one needs to reparametrize the model to

make sure it satis�es these conditions, an issue we discuss in detail in Supplemental Appendix

C.1 in general terms, as well as in each of the examples that we consider.

Let jd 2 Nd denote a vector of indices, jd! =
Qd
i=1 ji!, �d a vector of d ones,

l
[jd]
i (�) =

1

jd!

@�
0
djd li(�)

@�jd
, (1)
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@�jd = @�j11 : : : @�
jd
d and L[jd]n (�) =

Pn
i=1 l

[jd]
i (�). Throughout this subsection, we assume the

following conditions hold:

Assumption 2 (Regularity conditions on the derivatives of the log-likelihood function)
(2.1) With probability 1, the derivatives l[jd]i (�) exist for all � in N and �0djd � 2r, and they

satisfy E[sup�2N jl
[jd]
i (�)j] <1.

(2.2) For r � �0djd � 2r; Ef[l
[jd]
i (�)]2g <1 for all � in N .

(2.3) When �0djd = 2r there is some function g(yi) satisfying E[g2(yi)] < 1 such that with

probability 1, jL[jd]n (�)� L[jd]n (�y)j � jj�� �yjj
P
i g(yi) for all � and �

y in N .

We borrow Assumptions 2.1�2.3 from Rotnitzky et al. (2000) with some modi�cations.

The main di¤erence is that they require (2r + 1)th di¤erentiability for the Taylor expansions

they use to analyze the distribution of the MLE, while we only need 2rth di¤erentiability to

study the asymptotic distribution of our tests under the null and sequences of local alternatives.

Assumptions 2.1 and 2.3 guarantee the existence of derivatives and the stochastic equicontinuity

of the sample mean of l[jd]i (�) with �0djd � 2r. In turn, Assumption 2.2 allows us to apply a

central limit theorem to l[jd]i (��).

Let �
kr = �r 
 �r 
 � � � 
 �r| {z }
k times

denote the kth-order Kronecker power of the qr � 1 vector �r,

and de�ne
@kLn(�)

@�
kr
= vec

(
@

@�r

"
@k�1Ln(�)

@�

(k�1)
r

#0)
:

Moreover, let

I(�) =

24 I��(�) I��1(�) I��r(�)
I�1�(�) I�1�1(�) I�1�r(�)
I�r�(�) I�r�1(�) I�r�r(�)

35 = lim
n!1

V ar

8<: 1p
n

24 S�n(�;0)
S�1n(�;0)

@rLn(�;0)=@�

r
r

35 ; (�;0)
9=;

denote the asymptotic covariance matrix of the relevant in�uence functions, which may be

understood as a generalization of the information matrix. In addition, let

V��(�)=

�
V�1�1(�) V�1�r(�)
V�r�1(�) V�r�r(�)

�
=

�
I�1�1(�) I�1�r(�)
I�r�1(�) I�r�r(�)

�
�
�
I�1�(�)
I�r�(�)

�
I�1��(�)

�
I��1(�) I��r(�)

�
denote the asymptotic residual variance of S�1n(�;0) and @

rLn(�;0)=@�

r
r after orthogonalizing

these in�uence functions with respect to s�.

Assumption 3 (Rank conditions for qr � 1)
(3.1) For all (�;0) 2 P,

@�
0
qr jqr li(�;0)

@�
jqr
r

= 0

with probability 1 for all jqr = (j1; :::; jqr)
0 such that �0qr jqr � r � 1.

(3.2) The asymptotic covariance matrix of the (scaled by
p
n) sample averages of�

s�i(�
�;0); s�1i(�

�;0);�
r0r

@rli(�
�;0)

@�
rr

�
has full rank for all possible non-zero values of �r 2 Rqr .
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Intuitively, the rationale for looking at

�
r0r

@rli

@�
rr
=

X
�0qr jqr=r

r!

jqr !

 
qrY
k=1

�jkrk

!
@rli(�;0)

@�
jqr
r

is that it coincides with the rth-order term in the expansion of the log-likelihood function. In

that respect, note that although the higher order derivatives @rli=@�
rr will usually contain

many repeated elements thanks to the Clairaut-Schwartz-Young�s theorem, the rank de�ciency

condition in Assumption 3.2 applies to the inner product of �
rr with those in�uence functions,

so the requirement is that those linear combinations of the elements in @rli=@�
rr be linearly

independent of s�i(�;0) and s�1i(�;0).

Finally, let

Qn(�r;�) =
�
r0r Drn(�)D

0
rn(�)�


r
r

�
r0r [V�r�r(�)� V�r�1(�)V �1�1�1
(�)V�1�r(�)]�


r
r

; (2)

where

Drn(�) =
@rLn(�;0)

@�
rr
� V�r�1(�)V �1�1�1

(�)S�1n(�;0)

is the residual in the least squares projection of @rLn(�;0)=@�
rr onto the linear span of

S�1n(�;0).
7 In this context, we can proof the following result:

Theorem 1 If Assumptions 1, 2 and 3 hold, then under H0 : � = 0

LRn = 2 [Ln(�̂)� Ln(~�)] = GETn +Op(n�
1
2r );

where

GETn =
1

n
S0�1n(

~�;0)V �1�1�1
(~�)S�1n(

~�;0) +
1

n
sup
�r 6=0

�
Qn(�r; ~�) if r is odd,
Qn(�r; ~�)1[�


r0
r Drn(~�) � 0] if r is even.

An important implication of Theorem 1 is that the rate of convergence of the di¤erence

between the LR and GET tests is inversely proportional to the order of identi�cation, thereby

generalizing the standard result for regular models.

Importantly, expression (2), which can be understood as a generalized Rayleigh quotient

evaluated at the restricted qrr � 1 vector �
rr , does not e¤ectively depend on �r when the nullity
of the information matrix is 1. Consequently, Theorem 1 generalizes the results in Lee and

Chesher (1986) and Rotnitzky et al. (2000) by allowing for the presence of multiple singularities

under the null (see Supplemental Appendix F for further comparisons to the existing literature).

Nevertheless, Theorem 1 does not cover situations in which the degree of underidenti�cation

of the di¤erent elements of � is heterogeneous, which we discuss next.

7 Importantly, Assumption 3.2 guarantees that the denominator of Qn(�r;�) is positive because V�� is the
covariance matrix of the residuals from the least squares projection of s�1(�;0) and @

rl(�;0)=@�

r

r on the linear
span of s�(�;0), while V�r�r � V�r�1V �1

�1�1
V�1�r is the residual covariance matrix of the projection of the second

residual on the span of the �rst one, which by the Frisch-Waugh theorem coincides with the residual in the
projection of @rl(�;0)=@�


r

r onto the linear span of s�(�;0) and s�1(�;0):
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2.2 Repeated singularity of di¤erent orders

Let C � Nq denote a �nite set of index pairs. In what follows, we use the vector inequality
jq < j+q if and only if jk � j+k , for k = 1; :::; q and jq 6= j+q . Combining these notational

conventions with (1), we state the following assumption:

Assumption 4 1)There exists a set C = fj1q ; :::; jKq g such that 8k � K (i) l
[0p�q ;jkq ]
i (�;0) 6= 0

with positive probability but (ii) l[0p�q ;jq ]i (�;0) = 0 with probability 1 for all jq < jkq .
2) For all i � q, there exists ri 2 N such that riei 2 C, where ei is the ith element of the
canonical basis of order q.

3) The asymptotic covariance matrix of the sample averages of s�i(�;0), l
[0p�q ;j1q ]
i (�;0),... and

l
[0p�q ;jKq ]
i (�;0) scaled by

p
n has full rank.

4) For all jq 2 Nq, one of the following holds: i) jq 2 C; (ii) there exists j0q 2 C such that jq < j0q;
(iii) there exists j0q 2 C such that jq > j0q.

Let Ln = (L
[0p�q;j1q ]
n ; :::; L

[0p�q ;jKq ]
n )0, �j = (�j

1
q ; :::;�j

K
q ) with �j

k
q =

Qq
i=1 �

jkq;i
i . The following

theorem shows that the LR test admits a linear-quadratic approximation in which the linear

term coincides with the in�uence functions underlying our proposed test and the quadratic form

has the variance of the in�uence functions, V��, playing the role of the information matrix:

Theorem 2 If Assumptions 1, 2, and 4 hold with r = maxfr1; :::; rqg and C =
�
j1d; :::; j

K
d

	
,

respectively, then
LRn = 2 [Ln(�̂)� Ln(~�)] = GETn +Op(n�

1
2r );

where GETn(�) = sup
�
2n

1
2�j0n�

1
2Ln(~�;0)� n

1
2�j0V��(~�)n

1
2�j; (3)

V��(�) = I�� � I��I�1��I��

I(�) =

�
I��(�) I��(�)
I��(�) I��(�)

�
; with

I��(�) = V ar
h
l
[�p;0]
i (�;0)

i
;

I��(�) = V ar

�h
l
[0;j1q ]

i (�;0) : : : l
[0;jKq ]

i (�;0)

i0�
and

I��(�) = E
n
l
[�p;0]
i (�;0)

h
l
[0;j1q ]

i (�;0) : : : l
[0;jKq ]

i (�;0)

io
:

Importantly, we show in the proof of Theorem 2 that we can interpret Ln(~�;0) +GETn as

a Taylor approximation of order 2r to the log-likelihood function around ~�, which means that

GETn is e¤ectively an LR-type test that compares the log-likelihood function under the null

to the maximum of its lowest-order polynomial approximation under the alternative capable of

identifying the restricted parameters. Unsurprisingly, the rate of convergence of the di¤erence

between the LR and GET tests is inversely proportional to the highest order of identi�cation.

Although Theorem 2 is substantially more general than Theorem 1, unfortunately Assump-

tion 4.3 excludes some examples of interest in which the covariance matrix of the in�uence

functions is singular, such as the SNP distribution in section 3.2 below. To be able to consider

such cases, next we generalize the conditions in Assumptions 3 and 4. Speci�cally, let &�i(�)
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and &�i(�) denote two measurable functions of dimensions p�1 and m�1, respectively, so that
we can de�ne the empirical process

S 0n(�) = [ S 0�;n(�) S 0�;n(�) ] =
Pn
i=1 &

0
i(�); where &

0
i(�) = [ &

0
�i(�) &�i(�) ]:

Typically, &�i(�) coincides with the scores with respect to �, and &�i(�) with some higher-order

derivatives with respect to the elements of �, so that Sn will serve as the analog to the sample
score in regular models. In addition, let

�0 (�;�) = [ (�� ��)0 + �0�(�) �0�(�) ];

where ��(�) 2 Rp and ��(�) 2 Rm are non-random vector functions of the parameters that

adequately capture their di¤erence from the true values. Finally, let

I(�) =
�
I��(�) I��(�)
I��(�) I��(�)

�
denote a non-random positive semide�nite symmetric (p + m) � (p + m) matrix, which once
again will e¤ectively play the role of an information matrix.

Using this notation, we state the following assumptions, many of which are simpli�ed versions

of the conditions in Assumption 5 in Meitz and Saikkonen (2021):

Assumption 5 (LQ approximation) Ln has a �linear-quadratic� expansion given by

Ln(�;�)� Ln(��;0) = Sn(��)0� (�;�)�
1

2
n�0 (�;�) I(��)� (�;�) +Rn (�;�) ;

where Rn (�;�) is a remainder term. In addition:
(5.1) � (�;�) is continuous in �, and such that (i) �(��;0) = 0 and (ii) for all � > 0,

inf
k(�;�)�(��;0)k��

k� (�;�)k � �� for some �� > 0:

(5.2) n�
1
2Sn

d�! S for some zero-mean Rp+m-valued Gaussian process with covariance kernel

E
�
S(�1)S 0(�2)

�
= E

�
&i(�1)&

0
i(�2)

�
= K(�1;�2):

(5.3) I(��) = K(��;��) is Lipschitz continuous at a neighborhood of �� and satis�es

0 < emin[I(��)] < emax[I(��)] <1:

(5.4) The remainder term Rn (�;�) satis�es

sup
(�;�)2P:k(�;�)�(��;0)k�
n

jRn (�;�)j
1 + n k� (�;�)k2

= op(1)

for all sequences of (non-random) positive scalars f
n : n � 1g for which 
n ! 0 as n!1.
(5.5) It holds that

E
�
@&i(�)=@�

0� = �( I�� I�� ):
(5.6) There exists some function g(y) satisfying Ef[g(yi)]2g <1 such that


@Sn(�y)=@�0 � @Sn(��)=@�0


 � jj�y � ��jjPn

i=1 g(yi) (4)

with probability 1 for all (�;0) 2 N .
(5.7) If n

1
2� (�n;�n) = O(1), then Rn (�;�) = Op(n

�a) for some a such that 12 � a > 0.
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Assumption 5 states that the likelihood ratio can be expressed as the sum of a linear-quadratic

approximation and a residual term, Rn. The linear-quadratic part represents a higher-order

expansion of the likelihood ratio around � = 0. Assumption 5.1 captures the local identi�cation

condition at the true parameter value. In addition, K(��;��) in Assumptions 5.2 and 5.3 plays
the role of a full-rank information matrix, while 5.5 is analogous to the generalized information

matrix equality. In turn, Assumption 5.4 ensures that the residual is dominated by the leading

terms, and thus, negligible asymptotically, while Assumption 5.6 enables us to substitute the

true parameter �� with the restricted estimator ~� after an appropriate adjustment for sampling

variability. Finally, Assumption 5.7 allows us to obtain the convergence rate of the linear-

quadratic approximation, with a typically associated with the slowest rate of convergence of the

parameter estimators under the null.

We can then prove the following result, which nests our �rst and second theorems:

Theorem 3 If Assumptions 1 and 5.1�5.6 hold, then under H0 : � = 0

LR = 2[Ln(~�; �̂)� Ln(~�;0)] = GETn + op(1);

where GETn = sup
�
f2S�;n(~�)0�� (�)� n�0� (�) [I��(~�)� I��(~�)I�1��(~�)I��(~�)]�� (�)g:

In addition, if 5.7 holds, then

LR = 2[Ln(~�; �̂)� L(~�;0)] = GETn +Op(n�a):

Finally, it is worth mentioning that even though GET cannot be directly understood as a

moment test, a by-product of this theorem is a set of in�uence functions Sn(�;0) that can be
used for that purpose after taking into account the sampling uncertainty in estimating � under

the null. In fact, we can prove that this moment test, which converges in distribution to a

�2dim[��(�)] under H0, provides an upper bound to GETn, albeit a rather loose one in most cases.

2.3 Asymptotic validity of the parametric bootstrap

As we mentioned before, the asymptotic distribution of the GET statistic may not be very

reliable in �nite samples. In addition, given that it often has a non-standard form, obtaining

critical values requires simulations in any event. For this reason, we recommend using parametric

bootstrap procedures to generate samples from the distribution under the null hypothesis. This

is achieved by sampling from the fully speci�ed parametric model of interest, with the unknown

true parameter values replaced by their restricted maximum likelihood estimates. To simplify

the exposition, in this section we proceed as if there were no regressors in the model, although our

proofs explicitly allow for strictly exogenous regressors. In this context, our proposed procedure

to obtain critical values is:

1. Simulate a sample fy(s)i gni=1 from f [yi; (~�;0)]

2. Compute GET (s) using the simulated sample fy(s)i gni=1

9



3. Repeat Step 1 and 2 S times. The critical value cvn is then de�ned as the 1� � quantile
of GET (s).

To prove the asymptotic validity of the parametric bootstrap, we assume that:

Assumption 6 (Bootstrap Validity)

1. There is an open set N� around �� such that for all sequences �n 2 N� that converge to
�� we have that under DGP (�n;0):

n�1@Sn(�n)=@�0
p! �

�
I��(��) I��(��)

�0
and

n�1=2Sn(�n)
d! S(��):

2. There is some function g(y) satisfying sup�2N� E
�
g2(y); (�; 0)

�
<1 such that with prob-

ability 1, 


@Sn(�)=@�0 � @Sn(�y)=@�0


 � 


�� �y


X
i

g(yi)

for all � and �y in N�.

In addition, we assume that the ��(�) that appears in Assumption 5 is well-approximated

by a cone � at 0, which allows us to cover the statistic in our general Theorem 3. Speci�cally

Assumption 7 (Cone cover) ��(�) is Cherno¤ regular at 0. Speci�cally, infw2� k��(�)�wk =
o (k��(�)k) for all � 2 �, and inf�2� k��(�)�wk = o(kwk) for all w 2 �.

The following result con�rms the asymptotic validity of the parametric bootstrap procedure

above under the assumption that the number of simulations S is so large that the di¤erence

between the true 1� � quantile of GET (s) and its simulated estimate from S samples is op(1):

Theorem 4 (Validity of parametric bootstrap.)

1. If Assumption 1, 5, 6, and 7 hold, then under H0

GETn
d! GET; (5)

where GET = sup
�2�

n
2S 0�� �

h
I��(��)� I��(��)I�1��(�

�)I��(��)
i
�
o
;

and for almost all sequences fyigi�1

GET (s)n jfyigni=1
d! GET: (6)

2. If GET has a cumulative distribution function continuous at its 1� � quantile, then

lim
n
Pr (GETn > cvn) = �

under the following set of assumptions: (i) 1, 2, 3, and 6; (ii) 1, 2, 4, and 6; or (iii) 1, 5,
6, and 7, with the de�nition of GETn adjusted accordingly to match the ones in Theorems
1, 2 and 3, respectively.

Thus, we can automatically compute size-adjusted rejection rates without knowing the true

DGP, as recommended by Horowitz and Savin (2000).
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2.4 Distribution under local alternatives

Let us now consider the distribution of the test statistic under the following sequences of

local alternatives:

H1n : n
1=2[ �0�(�n) �0�(�n) ]! ( �0�;1 ��;1 ) = �01 2 Rdim(�1):

Let P�n and P0 denote the probability measures corresponding to H1n and H0, respectively.

Then, we can prove the following result:

Theorem 5 (Distribution under local alternatives)
(5.1) P�n is contiguous with respect to P0.
(5.2) Under H1n and Assumptions 1 and 5,

n�1=2Sn(��)
d! N [I(��)�1; I(��)]:

(5.3) Under H1n and Assumptions 1, 5, 6 and 7,

GETn
d! sup
�2�

�
2S + �0�;1[I��(��)� I��(��)I(��)I��(��)]�

��
h
I��(��)� I��(��)I�1��(�

�)I��(��)
i
�
o
; where

S � N [0; I��(��)� I��(��)I�1��(�
�)I��(��)]:

Intuitively, the distribution of the empirical process underlying our tests converges to a

Gaussian random element with a non-zero mean. Consequently, the test statistic converges

to the supremum of a non-central �2-type process despite the fact that our sequence of local

alternatives written in terms of the model parameters converges at rates that are di¤erent from

the usual ones. In fact, there may be di¤erent drifting sequences with the same limit, as we will

illustrate with the example in section 3.2.3. Still, we would like to emphasize that our proposed

test is consistent against �xed alternatives because GETn will diverge in those circumstances.

3 Examples

In this section, we discuss the application of our proposed test to the �rst two examples

of empirical interest that we mentioned in the introduction. Speci�cally, we derive a test for

irrelevant sample selectivity in multivariate regression models, for which Theorem 1 su¢ ces,

and a test for normality against SNP alternatives, which requires our more general Theorem

3. In turn, in Supplemental Appendix D we obtain a test of a multivariate normal copula

against its Hermite expansion, which is another example of Theorem 1 but with the added

di¢ culty of inequality constraints on the parameters. Finally, in Supplemental Appendix E,

we derive a test aimed at detecting non-linear predictability in a multiple regressor version of

Bottai (2003), for which Theorem 2 su¢ ces (see also Amengual, Bei and Sentana (2022, 2024)

for other empirically-relevant applications of Theorems 1 and 2).
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3.1 Example 1: Testing for selectivity in multivariate regressions

Arguably, the study of the determinants and consequences of non-random sample selection

that followed Heckman�s (1974) seminal paper is one of the most important contributions of

econometrics in the last �fty years. Nevertheless, the empirical analysis of a dataset would be

much simpler if the sample from which it comes could be treated as if it were randomly generated

even though it is not necessarily so. As is well known, this will happen when the unobserved

determinants of the sample selection are independent of the unobserved determinants of the

variables of interest conditional on the set of predetermined explanatory variables, or in simpler

terms, when the selection is exogenous rather than endogenous. In the rest of this subsection,

we shall develop a test of irrelevant sample selectivity in a multivariate regression context that

highlights the hidden di¢ culties researchers often inadvertently encounter, but which can be

easily overcome by the use of the GET procedures that we propose.

3.1.1 Model, likelihood and null hypothesis of no selectivity

Consider the following multivariate version of the regression model with selectivity consid-

ered by Lee and Chesher (1986):

y = y�d; (7)

where d is a sample selection binary variable whose value is determined by an observed vector of

exogenous regressorsw and some unobserved determinant uS according to the following equation

written in terms of the usual indicator function

d = 1(w0'S + uS � 0); (8)

while the K partially observed variables y� = (y�1; :::; y
�
K)

0 follow the multivariate regression

y�k = 'M 0
k x+ 'Dk uk; k = 1; : : : ;K; (9)�

u
uS

�
jx;w � N

�
0;

�
R
�
'L
�
#

#0 1

��
; (10)

with x being a vector of exogenous regressors that may partially overlap withw, u = (u1; :::; uK),

so that 'D = ('D1 ; : : : ; '
D
K)

0 contains the standard deviations of the regression shocks, 'L the

correlations between them, and # the correlations between those shocks and the unobserved

component of the selection equation, whose variance we normalize to 1 without loss of generality.

Therefore, the contribution of a single observation to the sample log-likelihood function will

be given (up to a constant term) by

(1� d) ln�
�
�w0'S

�
+ d ln�

24w0'S + #0u('M ;'D)q
1� #0R�1 ('L)#

35
�d
2

�
2
XK

k=1
ln'Dk + lnfdet[R

�
'L
�
]g+ u0('M ;'D)R�1 �'L�u('M ;'D)� ; (11)
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where 'M = ('M 0
1 ; : : : ; 'M 0

K )0, u('M ;'D) = [u1('M1 ; '
D
1 ); :::; uK('

D
K ; '

D
K)]

0, and

uk('
M
k ; '

D
k ) = (yk �'M 0

k x)='Dk :

Under the assumption that the unobserved selectivity determinants are uncorrelated with

the regression residuals, one can e¢ ciently estimate the multivariate regression coe¢ cients 'M

together with the covariance matrix parameters 'D and 'L without selection bias from the

non-zero values of y only using equation by equation OLS without the need to consider the

model for d. However, when this assumption does not hold, those OLS estimators will be biased

because of the sample selectivity, which justi�es testing the null hypothesis H0 : # = 0.

3.1.2 Singularities, reparametrizations and GET test statistic

To simplify the presentation, we consider the case in which w = 1 and the regression

equations contain a constant term, so that at # = 0,

s#k �M1('
S)'Dk s'Mk1

= 0 k = 1; : : : ;K (12)

where M1('
S) represents the standard inverse Mills ratio. Consequently, the nullity of the

information matrix is K. As Lee and Chesher (1986) explain in the univariate model that

they considered, analogous singularities will arise for example when the observed selectivity

determinants w are given by a set of dummy variables and x contains those dummy variables

too. In general, singularities will be present whenever Heckman�s (1976) selectivity correction

is perfectly collinear with the regressors that appear in the conditional means of the y��s even

though the log-likelihood function in (11) is able to locally identify all the model parameters.

In this set-up, the general reparametrization method in Supplemental Appendix C, which is

characterized by equations (C23)-(C25), yields:

'Mk1 = '
My
k1 �M1('

S)'Dk #
y
k; '

D = 'Dy; 'L = 'Ly; 'S = 'Sy; 'Mk(�1) = '
My
k(�1); and # = #y:

By construction, we now have s
#yk
= 0 for all k. However, there are K(K+1)=2 linear combina-

tions of the scores and the elements of the Hessian corresponding to # that are 0 too. Speci�cally,

denoting by 'Lij the correlations between ui and uj for i; j = 1; : : : ;K, we have

@2`�
@#yk

�2 �M1

�
'Sy

� h
'Sy +M1

�
'Sy

�i0@X
j 6=k

'Lyjk s'Lyjk
� 'Dyk s'Dyk

1A = 0; for k = 1; : : : ;K

@2`

@#yi@#
y
j

+M1

�
'Sy

� h
'Sy +M1

�
'Sy

�i
s
'Lyij

= 0 for i > j; i; j = 1; : : : ;K:

To circumvent this problem, we can apply (C23)-(C25) again as follows:

'Lyij = �
L
ij �M1

�
�S
� �
�S +M1

�
�S
���1

2
�Lij�

2
i +

1

2
�Lij�

2
j � �i�j

�
;

'My = �M ; 'Sy = �S ; and #y = �:
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After this second reparametrization, Assumption 3 is satis�ed with r = 3, q1 = 0 and q3 = K,

so that we can work with third derivatives. Besides, since these have a full-rank asymptotic

covariance matrix under the null, we can apply Theorem 1, which somewhat remarkably, leads

to the following result:

Proposition 1 The di¤erence between LR test of H0 : # = 0 in model (8)-(10) based on a
random sample of n observations on (y;d) and the following test statistic

GETn = sup
� 6=0

(
Pn
i=1 di)

�1
nPn

i=1 diH3[(�
0�)�1=2�0"i(~'

M ; ~'D)]
o2

(13)

is Op(n�1=6), where H3(z) = (z3 � 3z)=
p
6 is the third-order normalized Hermite polynomial of

a standardized variable z, � is a real vector of dimension K and "('M ;'D) denotes an a¢ ne
transformation of the regression residuals u('M ;'D) whose mean vector and covariance matrix
are 0 and IK , respectively, when evaluated at the restricted parameter estimators.

In simpler terms, our test statistics numerically coincides with the supremum of the moment

tests for univariate skewness based on the third Hermite polynomial over all possible linear com-

binations of the OLS residuals that have 0 mean and unit variance in the sample of observations

with d = 1. In fact, the standardization is unnecessary because the moment test for univariate

skewness is numerically invariant to a¢ ne transformations of the observations, which in turn

con�rms that the test statistic (13) is homogeneous of degree 0 in �. Thus, when K = 1 our

proposed test reduces to the test for selectivity derived by Lee and Chesher (1986) in the uni-

variate case, which simply assesses the symmetry of the regression residuals by looking at the

sample mean of their third power.

The rationale is also analogous in the multivariate case. Equations (7)-(10) imply that the

OLS residuals should be approximately multivariate normally distributed when the unobserved

component of the sample selection is independent of the shocks to the observed variables. Un-

der the alternative, in contrast, asymmetry becomes a common feature, as in the multivariate

skew normal distribution discussed in Amengual, Bei and Sentana (2022). Intuitively, if we or-

thogonalize the regression residuals with respect to the unobserved component of the selectivity

equation, then we end up with #uS as a common component, whose distribution conditional on

d = 1 is asymmetric even though the unconditional distribution of uS is symmetric.

3.1.3 Local power analysis

Although the null distribution of the test statistic (13) is non-standard, we can still say

something about the determinants of its local power. Consider the following sequence of local

alternatives:

lim
n!1

n1=6�n = �1

where the rate of convergence is 1/6 rather than 1/2 because of the need for a third-order

expansion of the log-likelihood function. Then, we can show that
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Proposition 2 The local power of the test in Proposition 1 only depends on the magnitude of
the quadratic form #01R

�1 �'L�#1.
Intuitively, once we orthogonalize the multivariate regression residuals u by premultiplying

by the inverse square root matrix R�1=2 �'L�, the �direction� of the vector R�1=2 �'L�# is
irrelevant, what matters is its magnitude. As a result, in our simulations we can chooseR

�
'L
�
=

IK and #1 proportional to the �rst vector of the canonical basis without loss of generality.

3.1.4 Simulation evidence

For simplicity, we let w = x1 = 1 and x2 � N(0; 1). Given that the restricted MLE of the
multivariate regression coe¢ cients is equation by equation OLS, and that all regressions contain

an intercept, the sample mean of the multivariate regression residuals û will be a vector of K

zeros. Similarly, any orthogonalization of the û0s based on the estimated covariance matrix will

have the identity matrix as sample covariance matrix because the MLEs of the residual standard

deviations 'D and correlations 'L match perfectly the sample variances and covariances of û

with denominator
Pn
i=1 di. Therefore, it is not surprising that the particular square root that

orthonormalizes the OLS residuals in the sample is numerically irrelevant. For example, in the

bivariate case, we could either de�ne "1 as the standardized value of u1 and "2 as the standardized

value of the residual in the OLS regression of u2 on a constant and u1, or vice versa.

On this basis, we can easily verify that the GET statistic is numerically invariant to the true

values of ('M ;'D), so for K = 2 we can choose 'Mk = (0; 1), 'D = �2 without loss of generality.

In turn, we set the selection parameter 'S to 1 and the correlation coe¢ cient 'L to 0:25.

If we exploited our knowledge of the values of these two parameters, we could compute

exact critical values under the null for any sample size to any degree of accuracy by repeatedly

simulating samples from the true distribution. In practice, though, we �x the selection parameter

and the correlation coe¢ cient to their estimated values in each sample, as explained in section

2.3. Given that we can verify that the LR test statistic is also numerically invariant to the true

values ('M ;'D), we can approximate its critical value using the same parametric bootstrap

procedure.

However, the maximization of the unrestricted likelihood function is highly sensitive to the

choice of initial values. In fact, the presence of �rst and second derivatives that are identically

0 under the null implies that most numerical algorithms will not move if we start from the

restricted parameter estimators. For that reason, we employ the Matlab function fmincon

using four di¤erent sets of initial values in which we set � to the restricted MLE ~� and the two

elements of # to the four possible combinations of �0:1. We then de�ne the LR statistic as the
maximum of the LR statistics associated to these four sets of initial values.8

We compare the results of our tests with a bootstrap-based LR test, as well with a naive

8For data simulated under the null hypothesis, we observe that approximately 35% of these four LR statistics
have a value with is less than 1/2 of the largest one irrespectively of whether n = 400 or n = 1600.
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version, denoted as LRnaive, that computes p-values as if the limiting distribution of this statistic

was a �22. Moreover, we also consider the moment test that assesses the four in�uence functions

underlying GET mentioned at the end of section 2.2, which we label as GMMasy when we use

asymptotic critical values and GMM when we rely on the parametric bootstrap. For each design,

we generate 10,000 samples of size n and compute the restricted and unrestricted parameter

estimators together with the aforementioned tests.

Panels A and B of Table 1 report the results for samples of length 400 and 1600, respectively.

In turn, the �rst three columns report rejection rates under the null at the 1%, 5% and 10%

levels, con�rming that our simulated critical values based on 10,000 bootstrap samples work

remarkably well for both sample sizes.9 The size distortions of GMM and GMMasy are also

negligible. In contrast, LRnaive is far too liberal, highlighting the practical consequences of the

singularity of the information matrix.

In turn, the last six columns present the rejection rates at the 1%, 5% and 10% levels for

the following two alternatives: #0 = (0:57; 0:57) (Ha1) and #0 = (0:80; 0) (Ha2). As can be seen,

our proposed test has similar power to the LR test for the two alternatives, and both these tests

outperform the GMM one.

We �nd a Gaussian rank correlation10 of 0.88 (0.95) between our proposed test statistic and

the LR across Monte Carlo simulations of 400 (1600) observations that satisfy the null displayed

in Figure 1, which is in line with the slow rate of convergence in Proposition 1. In addition, our

results indicate that the LR takes about 10 and 20 times as much CPU time to compute as GET

does for n = 400 and n = 1600, respectively, which makes a huge di¤erence in the calculation

of the critical values with the parametric bootstrap.

3.2 Example 2: Testing for normality against SNP alternatives

Gram-Charlier expansions provide �exible and analytically tractable generalizations of the

normal distribution. Unfortunately, their truncated versions lead to negative density values, and

the parametric restrictions that Jondeau and Rockinger (2001) propose to guarantee positivity

are not easy to implement even when the truncation order is low. In contrast, the SNP distrib-

utions introduced by Gallant and Nychka (1987) provide a Hermite expansion of the Gaussian

density that is positive by construction. Although these authors introduced those distributions

for nonparametric estimation purposes, León, Mencía and Sentana (2009) treated them as para-

metric ones, studied their statistical properties, and used them in option valuation. Still, MLE

under normality is much simpler than when the distribution of the shocks follows an SNP. For

that reason, we shall derive a test of normality that will also highlight the hidden complications

researchers face in this context.
9Given the number of replications, the 95% asymptotic con�dence intervals for the Monte Carlo rejection

probabilities under the null are (.80,1.20), (4.57,5.43) and (9.41,10.59) at the 1, 5 and 10% levels.
10The Gaussian rank correlation between x1 and x2 is the Pearson correlation coe¢ cient between ��1(u1) and

��1(u2), where u1 and u2 are the usual uniform ranks of the observations and ��1(:) the quantile function of the
standard normal (see Amengual, Sentana and Tian (2022) for details).
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3.2.1 Model, likelihood and null of normality

The model we consider is

y = � (x;�) + � (x;�)u (14)

where � and � are known functions of x and a �nite-dimensional unknown parameter �, and u

is independent of the predetermined variables in x with �nite mean and variance 'M and 'V ,

respectively. Observations are given by (xi; yi), i = 1; 2; : : : ; n, where xi could include the lagged

value of yi to allow for time-series models such as Ar and Garch. For simplicity, we assume

that ui conditional on xi is iid. As we will show in section 3.2.5 below, estimation of � does

not a¤ect the properties of the test, so we initially assume this parameter vector is known and

focus on the case without conditioning variables, in which � (�) and � (�) are 0 and 1 without

loss of generality.

The probability density function (pdf) of an SNP random variable of order K is given by

f (y;%) =
1p
'V
�

 
y � 'Mp
'V

!"
�+

(1� �)fP [
�
y � 'M

�
=
p
'V ;#]g2R1

�1 fP [u;#]g
2 �(u)du

#
; (15)

with

P [u;#] = 1 +
XK

k=1
#kHk(u); (16)

where � (�) denotes the standard normal pdf, Hk (u) is the normalized Hermite polynomial of
order k, which can be de�ned recursively for k � 2 as

p
kHk (u) = uHk�1 (u)�

p
k � 1Hk�2 (u) ; (17)

with initial conditions H0 (u) = 1 and H1 (u) = u,
R1
�1 fP [u;#]g

2 �(u)du = 1 +
PK
k=1 #

2
i is a

constant which guarantees that the density integrates to 1, and � is an in�nitesimal factor used

to bound the density below from 0, which Gallant and Nychka (1987) introduced to simplify

their proofs. Henceforth, we will set � = 0 for the purposes of developing our testing procedure,

but the same method applies with � > 0. Intuitively, a non-negative density is automatically

achieved by multiplying the Gaussian density by the square of a linear combination of Hermite

polynomials. As explained by León, Mencía and Sentana (2009), the SNP distributions can

have non-negligible positive and negative asymmetry and excess kurtosis even with K = 2.

In contrast, under the null hypothesis, the observations should be symmetric and mesokurtic.

Moreover, the restricted MLEs of 'M and 'V coincide with the sample mean and variance.

3.2.2 Singularities, reparametrizations and GET test statistic

To simplify the exposition, we focus on the case of K = 2, which is the most popular.

Normality is trivially obtained when H0 : #1 = #2 = 0. The complication arises because

s#1 � 2
p
'V s'M = 0 and s#2 � 2

p
2'V s'V = 0
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under H0, so that the nullity of the information matrix is 2. Hall (1990) highlighted this problem

when he considered tests of normality against semi-nonparametric alternatives in which the #

coe¢ cients were in turn functions of some exogenous variable. However, his proposed solution

was to ignore the parameters involved in the singularity, focusing instead only on those which

could be regularly estimated under the null. Unfortunately, his recipe would leave us with no

test in the case of the unconditional model (15)-(16).

If we apply reparametrization (C23)-(C25), we obtain

'M = 'My � 2
p
'V y#y1 and 'V = 'V y � 2

p
2'V y#y2;

with #1 = #
y
1 and #2 = #

y
2. By construction, we now have s#y1

= s
#y2
= 0. However, additional

singularities arise. Speci�cally,
@2`

(@#y1)
2
+ 4'V ys'V y = 0:

We can circumvent this problem by implementing a second reparametrization along the lines of

(C23)-(C25). In particular, we can de�ne 'V y = 'V ? + 2'V ?(#?1)
2, with 'My = 'M?, #y1 = #?1

and #y2 = #
?
2, which achieves @

2`=(@#?1)
2 = 0 but leads to

@3`

(@#?1)
3
+ 2
p
2

@2`

@#?1@#
?
2

+ 12
p
'V ?s'M = 0:

To resolve this new singularity, we apply a third and �nal reparametrization, namely

'M? = �M + 2

q
�V �31, 'V ? = �V ; #?1 = �1; #?2 = �2 +

p
2

3
�21;

after which we obtain:

@l

@�M
=

1p
�V
H1(u),

@l

@�V
=

1p
2�V

H2(u),
@l

@�1
=
@l

@�2
=

@2l

(@�1)2
=

@3l

(@�1)3
= 0;

1

2

@2l

(@�2)2
=�
p
6H4(u)�2

p
2H2(u),

@2l

@�1@�2
=�2

p
3H3(u) and

1

4!

@4l

(@�1)4
=

p
6

9
H4(u)�

13
p
2

9
H2(u):

By performing an eighth-order Taylor expansion, we can verify that Assumption 5 holds with

S� = [H1(u�)=
p
��2;H2(u

�)=
p
2��2]

0; S� = [H3(u�);H4(u�)]0;

��(�) =

"
0;�

p
2��2

 
13
p
2

9
�41 + 2

p
2�22

!#
and ��(�) =

 
�2
p
3�1�2;

p
6

9
�41 �

p
6�22

!
:

The derivations above indicate that �1 and �2 have di¤erent orders of identi�cation, and

that the second derivative with respect to �2 and the fourth derivative with respect to �1 are

proportional, which means that we need to resort to our Theorem 3. On this basis, we can

establish the following result:

Proposition 3 The di¤erence between the LR test of H0 : # = 0 in model (15)-(16) based on
a random sample of n observations on y and the following test statistic

GETn = n
n�
n�1

Pn
i=1H3(~ui)

�2
+
�
n�1

Pn
i=1H4(~ui)

�2o
(18)
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is Op(n�1=8) when the null is true, where H3(~ui) and H4(~ui) are the third- and fourth-order
normalized Hermite polynomials of the ~u0is, which are the values of the y

0
is standardized so that

their sample mean and variance are 0 and 1, respectively.

Remarkably, this means that the Jarque and Bera (1980) test, whose asymptotic distribution

is a standard �22 under the null, is asymptotically equivalent to the LR test of normality against

SNP densities, although they converge to each other at a much lower rate than in the case of

the Pearson family of alternative distributions they considered.

3.2.3 Local power analysis

Let �2k (�) denote a non-central chi-square random variable with k degrees of freedom and

non-centrality parameter �. We can show that:

Proposition 4 Consider a sequence of parameters �n satisfying

lim
n!1

n1=2
�
�2
p
3�1;n�2;n

p
6(19�

4
1;n � �22;n)

�
= �0�;1 2 R2: (19)

Under the sequence of DGPs indexed by �n, GETn
d! �22(�

0
�;1��;1).

To understand this result, it is useful to note that

p
nE
n
H3

h
(y � 'L)=

p
'V
i
;H4

h
(y � 'L)=

p
'V
io
= �0�;1 + o(1):

Unlike in the multivariate regression model with selectivity, though, we can have two di¤erent

types of local alternatives compatible with (19):

Hl1 : �1n = n
� 1
4h1; �2n = n

� 1
4h2 and Hl2 : �1n = n

� 1
8h1; �2n = n

� 3
8h2:

Interestingly,
p
n�22n dominates

p
n�41n=9 along Hl1, so that the SNP distributions under this

sequence of local alternatives are platykurtic. In contrast,
p
n�41n=9 dominates

p
n�22n along Hl2,

so that the corresponding SNP distributions are leptokurtic.

3.2.4 Simulation evidence

Despite the fact that we estimate the sample mean and variance of each simulated sample,

there are e¤ectively no nuisance parameters involved because both the GET and LR test statis-

tics are numerically invariant to a¢ ne transformations of the observations. As a result, we can

compute the exact �nite sample distribution to any desired degree of accuracy for any sample

size by simulating a large number of samples of the same size from a standard normal random

variable. For that reason, we can focus directly on studying the power of the di¤erent tests.

Once again, the maximization of the unrestricted likelihood function is highly sensitive to the

choice of initial values. As in the previous example, the presence of several �rst and higher-order

derivatives that are identically 0 under the null implies that most numerical algorithms will not

move if we start from the restricted parameter estimators. For that reason, we employ the
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Matlab function fmincon using three di¤erent initial values in which we set � to the restricted

MLE ~�. As for the the two elements of #, we consider �(:1; :1) and �ET , which we obtain
by maximizing an eighth-order Taylor expansion of the log-likelihood function (see the proof of

Proposition 3 for details). We then de�ne the LR statistic as the maximum of the LR statistics

associated to these three sets of initial values.11

As alternative hypotheses, we consider #0 = (0:25; 0:10) (Ha1) and #0 = (0:75; 0:05) (Ha2),

setting 'M = 0 and 'V = 1 without loss of generality. We then generate 10,000 samples of size

n for each design, and compute the restricted and unrestricted parameter estimators together

with the GET and LR tests. Panels A and B of Table 2 report the results for samples of size

400 and 1600, respectively. Columns �ve to seven report rejection rates under Ha1 at the 1%,

5% and 10% levels, while the last three columns present the rejection rates for Ha2 at the same

levels. As can be seen, our proposed test has similar power to the LR test for both alternatives.

We �nd a Gaussian rank correlation of 0.90 (0.91) between our proposed test statistic and

the LR across Monte Carlo simulations of 400 (1600) observations that satisfy the null displayed

in Figure 2, which is in line with the very slow rate of convergence in Proposition 4. However,

our results also indicate that the LR takes around 160 and 100 times as much CPU time to

compute as GET does for n = 400 and n = 1600, respectively, considerably slowing down the

calculation of simulation-based critical values.

3.2.5 Robustness to the estimation of mean and variance parameters

We now extend our previous results to a situation in which the conditional mean and

variance of y are parametric functions of the variable in x, as in (14). In this context, the

objective becomes to test whether the standardized innovation u follows a normal distribution

rather than an SNP one.

The conditional log-likelihood of the ith observation is given by:

li(�; #) = �
1

2
ln 2��1

2
ln�2Y (xi;�)�

1

2
u2i (�)+2 ln

�
1 +

PK
k=1 #kHk [ui(�)]

�
�ln

�
1 +

PK
k=1 #

2
k

�
:

To be able to obtain the required higher-order log-likelihood expansions, we assume that the

following regularity conditions hold:

Assumption 8 (Smoothness of the conditional �rst two moments) The conditional mean and
variance functions �Y (xi;�) and �Y (xi;�) that appear in (14) are such that:
(8.1) They are eight times continuously di¤erentiable with respect to �.
(8.2) For all k = (k1; : : : ; kd�)

0 2 Nd� and �0k = 1; : : : ; 8, it holds that

E

24 @�0k�Y (x;�)
@�k

!235 <1; E
24 @�0k�2Y (x;�)

@�k

!235 <1; where
@�

0k�Y (x;�)

@�k
=
@�

0k�Y (x;�)

@�k11 : : : @�
kd�
d�

, and
@�

0k�2Y (x;�)

@�k
=
@�

0k�2Y (x;�)

@�k11 : : : @�
kd�
d�

:

11For data simulated under the null hypothesis, we observe that approximately 20% of these three LR statistics
have a value which is less than 60% of the largest one irrespectively of whether n = 400 or n = 1600.
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Then, we can prove the following result, which is entirely analogous to Proposition 8 in

Amengual et al (2025):

Proposition 5 Under Assumption 8, replacing the true value of � by ~�, its restricted maximum
likelihood estimator under H0, does not alter the expressions of the GET test in Proposition 3
or its asymptotic distribution under the null or sequences of local alternatives.

4 Conclusions

We propose a generalization of the extremum-type tests in Lee and Chesher (1986) to

models in which the nullity of the information matrix under the null hypothesis is larger than

one. In the case of a single singularity, our results are consistent with theirs, as well as with

those in Rotnitzky et al. (2000). However, when the information matrix is repeatedly singular,

we provide a computationally convenient alternative to the LR test, which is particularly useful

for resampling-based calculations of p-values. Speci�cally, our proposed test statistic is a sup-

type test over a space whose dimension is at most the nullity of the information matrix, and

often less, while the maximization of the original log-likelihood function is over a space of the

same dimension as the vector of parameters, which is usually much larger. In addition, the fact

that several log-likelihood derivatives of various orders are 0 under the null implies that the

LR requires the estimation of all the parameters that appear under the alternative in a model

whose log-likelihood function is extremely �at around its maximum. Intuitively, the substantial

computational gains that we �nd arise because GET is an LR-type test that compares the log-

likelihood function under the null to the maximum of its lowest-order polynomial approximation

under the alternative capable of identifying the restricted parameters.

Our results suggest some additional theoretical developments. For example, Amengual et

al (2025) build up on our theorem 3 to derive score-based tests for normality against a �nite

normal mixture even though strictly speaking it does not cover that model. Similarly, the study

of GMM overidenti�cation test statistics in contexts in which not only the expected Jacobian

matrix is singular but the expected values of some higher-order Jacobian matrices are singular

too would constitute a very interesting topic for further research.

From the empirical point of view, the tests developed in this paper allowed Amengual, Bei

and Sentana (2022, 2024) to provide some new insights about the cross-section distribution of city

sizes and their growth rates and tests for neglected serial correlation in time series models with

and without unobserved components, respectively. Their use in some of the other empirically

relevant situations discussed in this paper would also provide a particularly valuable complement

to our theoretical results.
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Appendices

A Proofs

In this appendix we proceed as follows. We �rst prove Theorem 3, which is the most general

result, and then we use it to prove Theorems 1 and 2 as particular cases. The proofs of the

remaining theorems follow the order in which they appear in the main text. Finally, we state

and prove all the required lemmas in Supplemental Appendix B, which also contains the proofs

of the propositions.

Let

LR(�) = 2 [Ln(�)� Ln(��;0)] (A1)

and

LMn(�) = 2S 0n(��)� (�;�)� n�0 (�;�) I(��)� (�;�) ; (A2)

where the de�nition of � (�;�), I(��) and Sn(��) depends on the Assumptions invoked. Let

R(�;�) =
1

2
[LRn(�)� LMn(�)]

and de�ne �LM = (�LM ;�LM ) such that

LMn(�
LM ;�LM ) = sup

�2P
LMn(�):

The stochastic sequence an is �bounded in probability�, or Op(1), when 8� > 0, there exists

M such that Pr(janj < M) � 1� � for all n. In addition, we use an = op(Rn) if an = bnRn and

bn
p�! 0.

Proof of Theorem 3

De�ne LMn(�) as in (A2), with Sn and � (�;�) de�ned in Assumption 5. By virtue of

Lemma 1, we have that �LM 2 ��� with probability approaching 1 (w.p.a.1 henceforth), with

� and � satisfying �� 2 ��� � P, and � (resp �) contains an open neighborhood of �� (resp

��). It is then easy to verify that w.p.a.1

2sup
�2P

[n�
1
2Sn(��)]0[n

1
2� (�;�)]� [n

1
2� (�;�)]0I(��)[n

1
2� (�;�)]

= sup
�2�

sup
�2�

n
2n�

1
2S�;n(��)0n

1
2 [�� �� + ��(�)]� n[�� �� + ��(�)]0I��(��)[�� �� + ��(�)]

� 2n
1
2 [�� �� + ��(�)]0I��(��)[n

1
2�� (�)] + 2n

� 1
2S�;n(��)0[n

1
2�� (�)]

�[n
1
2�� (�)]

0I��(��)[n
1
2�� (�)]

o
= sup
�2�

n
2[S�;n(��)� I��(��)I�1��(�

�)S�;n(�
�)]0�� (�)

�n�0� (�) [I��(��)� I��(��)I�1��(�
�)I��(��)]�� (�)

o
+ n�1S 0�;n(��)I�1��(�

�)S�;n(��),
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where the �rst equality follows from �LM 2 ��� w.p.a.1, and the second one from

I�1��(�
�)[n�1S�;n(��)� I��(��)��

�
�LM

�
]� ��

�
�LM

�
2 f�� �� : � 2 �g w.p.a.1.

Similarly, we have that w.p.a.1,

sup
(�;0)2P

2[n�
1
2Sn(��)]0[n

1
2� (�;0)]�[n

1
2� (�;0)]0I(��)[n

1
2� (�;0)] =

1

n
S 0�;n(��)I�1��(�

�)S�;n(��):

As a result,

LR = 2[Ln(~�;�)� Ln(~�;0)]

=2[Ln(~�n;�)� Ln(��;0)]� 2[Ln(~�;0)� Ln(��;0)]

=sup
�2P

n
2[n�

1
2Sn(��)]0[n

1
2� (�;�)]� [n

1
2� (�;�)]0I(��)[n

1
2� (�;�)]

o
� sup
(�;0)2P

n
2[n�

1
2Sn(��)]0[n

1
2� (�;0)]� [n

1
2� (�;0)]0I(��)[n

1
2� (�;0)]

o
+ op(1)

=sup
�2�

n
2[S�;n(��)� I��(��)I�1��(�

�)S�;n(��)]0�� (�) (A3)

�n�� (�)0 [I��(��)� I��(��)I�1��(�
�)I��(��)]�� (�)

o
+ op(1);

where the �rst two equalities are trivial, while the third one follows from Lemmas 3 and 5.

The last step is to evaluate (A3) at ~� instead of ��. Speci�cally, we have

1p
n
S�;n(~�) =

1p
n
S�;n(��) +

1

n

@S�;n( _�)
@�0

p
n(~�� ��)

=
1p
n
S�;n(��)�

1

n

@S�;n( _�)
@�0

"
1

n

@S�;n(��)
@�0

#�1
1p
n
S�;n(��)

=
1p
n
S�;n(��)�

�
1

n

@S�;n(��)
@�0

+Op(n
� 1
2 )

� �
1

n

@S�;n(��)
@�0

+Op(n
� 1
2 )

��1 1p
n
S�;n(��)

=
1p
n
S�;n(��)� I��(��)I��(��)�1

1p
n
S�;n(��) +Op(n�

1
2 ) (A4)

The �rst two equalities follow from the Taylor expansions of 1p
n
S�;n(~�) and 1p

n
S�;n(~�) at

��, where _� and �� take values between �� and ~�. In turn, the third equation follows from

Assumption 5.6, while the last one follows from Assumption 5.5. Moreover, Assumption 5.3

means that I(�) is Lipschitz, so that

jjI(~�)� I(��)jj = Op(n�
1
2 ): (A5)

Combining (A4) and (A5), we get

sup
�2�

n
2(S�;n(��)� I��(��)I�1��(�

�)S�;n(��))0�� (�)

�n�� (�)0 [I��(��)� I��(��)I�1��(�
�)I��(��)]�� (�)

o
= sup
�2�

n
2S�;n(~�)0�� (�)� n�� (�)0 [I��(~�)� I��(~�)I�1��(~�)I��(~�)]�� (�)

o
+Op(n

� 1
2 ); (A6)
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where the second equality holds because 0 is an interior point of � and the maximizer is op(1).

Together with (A3), (A6) completes the proof of the �rst part of the theorem.

Next, under Assumption 5.7 and using the same argument, we have that

LR = sup
�2�

n
2S�;n(~�)0�� (�)� n�0� (�) [I��(~�)� I��(~�)I�1��(~�)I��(~�)]�� (�)

o
+Op(n

�a)

= sup
�

n
2S�;n(~�)0�� (�)� n�0� (�) [I��(~�)� I��(~�)I�1��(~�)I��(~�)]�� (�)

o
+Op(n

�a);

which proofs the second part of the theorem. �

Proof of Theorem 1

As explained above, we make use of Theorem 3 to prove Theorem 1. The �rst step is to

verify Assumption 5. To do so, de�ne &�r;i(��) = BHri(�
�), where

Hri(�) =
@rli(�;0)

@�
rr
�
�
I�r�(�) I�r�1(�)

� � I��(�) I��1(�)
I�1�(�) I�1�1(�)

��1 �
@li(�;0)=@�
@li(�;0)=@�1

�
;

and B is a matrix with elements equal to 0 or 1 such that &�r;i(��) contains the elements in

Hri(�
�) that are not linearly dependent. Notice that B and &�r;i(��) always exist even though

they are not necessarily unique. Then,

@rli

@�
rr
(��;0) = A1

@li
@�
(��;0) +A2

@li
@�1

(��;0) +A3&�r;i(�
�);

where A1, A2 and A3 are r2 � p, r2 � q1 and r2�dim(&�r) matrices, respectively. As a conse-

quence, we have that

1

r!
�
r0r

@rli

@�
rr
(��;0) = ��(�r)

0 @li
@�
(��;0) + ��1(�r)

0 @li
@�1

(��;0) + ��r(�r)
0&�r;i(�

�);

with ��(�r) = 1
r!�


r0
r A1, ��1(�r) =

1
r!�


r0
r A2, ��r(�r) =

1
r!�


r0
r A3. It is then easy to see that

��(�r), ��1(�r) and ��r(�r) are continuous and homogeneous of degree r in �r

Next, let Sn = (S0�n;S0�1n;S
0
�rn
)0, with

S�n(�) =
nX
i=1

s�;i(�) =
nX
i=1

@li
@�
(�;0), S�1(�) =

nX
i=1

s�1;i(�) =
nX
i=1

@li(�;0)

@�1
; and

S�rn(�) =
nX
i=1

&�r;i(�).

Further, let

I(�) =

24 I��(�) I��1(�) 0
I�1�(�) I�1�1(�) 0
0 0 I�r�r(�)

35
denote the asymptotic variance of n�

1
2Sn(�), which is block diagonal by construction. Let us

also de�ne LMn(�) as in (A2) with

�(�;�) = [�� �� + ��(�r);�1 + ��1(�r);��r(�r)]0:
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To verify Assumption 5.1 for �(�;�), the continuity of �(�;�) means that we only need

to verify that the unique solution to �(�;�) = 0 is (��;0) because it is trivial to see that

�(��;0) = 0. First, if �r = 0, then it immediately follows that we must have � = �� and

�1 = 0. Consider the case when �r 6= 0. By Assumption 3.2, for all �r 6= 0, �
r0r
@rli(�

�;0)
@�
rr

is

linearly independent of [s�;i(��); s�1;i(�
�)]0, which implies that ��r(�r) 6= 0 because

�
r0r

@rli(�
�;0)

@�
rr
= ��(�r)

0s�;i(�
�) + ��1(�r)

0s�1;i(�
�) + ��r(�r)

0s�r;i(�
�):

As for Assumptions 5.2 and 5.3, notice that the covariance kernel of S is �nite by Assumption

2.2, which implies that Assumption 5.2 holds by virtue of the uniform central limit theorem.

Thus, (n�
1
2S0�n; n

� 1
2S0�1n)

0 has a full rank asymptotic covariance matrix because of Assumption

3.2, so n�
1
2S�rn does not belong to the linear span of (n

� 1
2S0�n; n

� 1
2S0�1n)

0 by construction. If

we combine this result with Assumption 5.2, we have 0 < emin(��) < emax(��) <1, as desired.

The veri�cation of Assumption 5.4 contains two parts. In the �rst part, we show that

sup
(�;�)2P:k(�;�)�(��;0)k�
n

jRn (�;�)j
hn(�;�)

= op(1);

where

hn(�;�) = maxf1; n k�� ��k2 ; n k�1k2 ; n k�rk2rg;

while in the second part, we show that

sup
(�;�)2P:k(�;�)�(��;0)k�
n

h(�;�)

1 + n k� (�;�)k2
= O(1): (A7)

Combining the two parts, we get

sup
(�;�)2P:k(�;�)�(��;0)k�
n

jRn (�;�)j
1 + n k� (�;�)k2

� sup
�2P:k��(��;0)k�
n

jRn (�;�)j
hn(�;�)

� sup
�2P:k��(��;0)k�
n

hn(�;�)

1 + n k� (�;�)k2

= op(1)O(1) = op(1):

Let us now prove those two parts in detail. Regarding the �rst one, a 2rth-order Taylor

expansion of Ln (�;�1;�r) around (��;0) yields

Ln(�;�1;�r)� Ln(��;�) =
9X
j=1

Aj +

17X
j=1

Bj ;

where

A1 = (�� ��)0@Ln
@�

= (�� ��)0S�n;

A2 =
1

2
n (�� ��)
20E

�
@li

@�
2

�
= �1

2
n (�� ��)0 I�� (�� ��) ;
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A3 = �
0
1

@Ln
@�1

= �01S�1n, A4 =
1

2
n
�
�
21

�0
E

�
@li

@�
21

�
= �1

2
n�01I�1�1�1;

A5 =
1

r!

�
�
rr

�0 @Ln
@�
rr

= ��(�r)S�n + ��1(�r)S�1n + ��r(�r)S�rn;

A6 =
1

(2r)!
n
�
�
2rr

�0
E

�
@2rli

@�
2rr

�
= �1

2
n
�
�0�(�r);�

0
�1(�r);�

0
�r(�r)

�
I
�
�0�(�r);�

0
�1(�r);�

0
�r(�r)

�0
;

A7 = n(�� ��)0E
�
@2li
@�@�01

�
�1 = �n(�� ��)0I��1�1;

A8 =
1

r!
n(�� ��)0E

�
@1+rli

@�@�
r0r

�
�
rr = �n(�� ��)0[I����(�r) + I��1��1(�r)];

A9 =
1

r!
n�01E

�
@1+rli

@�1@�

r0
r

�
�
rr = �n�01[I�1���(�r) + I�1�1��1(�r)];

B1 =
1

2
n (�� ��)
20

�
1

n

@2Ln

@�
2
� E

�
@2li

@�
2

��
, B2 =

2rX
j=3

1

j!
n (�� ��)
j0

(
1

n

@jLn

@�
j1

)
;

B3 =
1

2
n
�
�
21

�0� 1
n

@2Ln

@�
21
� E

�
@2li

@�
21

��
, B4 =

2rX
j=3

1

j!
n
�
�
j1

�0( 1
n

@jLn

@�
j1

)
;

B5 =

2r�1X
j=r+1

1

j!

p
n
�
�
jr

�0� 1p
n

@jLn

@�
jr

�
, B6 =

1

(2r)!
n
�
�
2rr

�0� 1
n

@2rLn

@�
2rr

� E
�
@2rli

@�
2rr

��
;

B7 =
8X

j1+j2=3;j1;j2�1

1

j1!j2!
n(�� ��)
j10

(
1

n

@j1+j2Ln

@�
j1@�
j201

)
�
j21 ;

B8 = n(�� ��)0
�
1

n

@2Ln
@�@�01

� E
�
@2li
@�@�01

��
�1;

B9 =
1

r!
n(�� ��)0

�
1

n

@1+rLn

@�@�
r0r

� E
�
@1+rli

@�@�
r0r

��
�
rr ;

B10 =

2rX
j=r+1

1

j!
n(�� ��)0

�
1

n

@1+jLn

@�@�
j0r

�
�
jr +

r�1X
j=1

1

j!

p
n(�� ��)0

�
1

n

@1+jLn

@�1@�

j0
r

�
�
jr ;

B11 =
8X

j1+j2=3;j1�2;j2�1

1

j1!j2!
n(�� ��)
j10

�
1

n

@j1+j2Ln

@�
j1@�
j20r

�
�
j2r ;

B12 =

r�1X
j=1

1

j!

p
n�01

�
1p
n

@1+jLn

@�1@�

j0
r

�
�
jr , B13 =

1

r!
n�01

�
1

n

@1+rLn

@�1@�

r0
r

� E
�
@1+rl

@�1@�

r0
r

��
�
rr ;

B14 =
2rX

j=r+1

1

j!
n�01

�
1

n

@1+jLn

@�1@�

j0
r

�
�
jr ;

B15 =

8X
j1+j2=3;j1�2;j2�1

1

j1!j2!
n�
j101

(
1

n

@j1+j2Ln

@�
j11 @�
j20r

)
�
j2r ;
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B16 =

8X
�0pj1+�

0
q1
j2+�0q1 j3=3;j1;2;3>0

�
1

n
L[j1;j2;j3]n

�
n(�� ��)j1�j21 �j3r ; ; and

B17 =
X

�0pj1+�
0
q1
j2+�0q1 j3=8

�
1

n
L[j1;j2;j3]n (��)� 1

n
L[j1;j2;j3]n

�
n(�� ��)j1�j21 �j3r ;

with the omitted argument above being either �� or (��;0). The simpli�cation of A2, A4 and

A7 is based on the information matrix equality, while we have used Corollary 1 in Rotnitzky

et al (2000) to obtain A6, A8, and A9. It is also easy to see that
P9
j=1Aj =

1
2LMn(�) and

Rn(�;�) =
P
Bj . We can then verify that

sup
(�;�)2P:k(�;�)�(��;0)k�
n

jRn (�;�)j
hn (�;�)

= op(1)

by noting that the expressions in curly brackets in the Bj terms are Op(1), those inside paren-

theses are op(1), and (�� ��;�1;�r) = o(1).

Further, note that if hn (�;�) = O(1), then

jRn (�;�)j
hn (�;�)

= Op(n
� 1
2r ) (A8)

because (�� ��;�1) = O(n�
1
2 ) and �r = O(n�

1
2r ).

To verify the second part, let

�� = max
jj�jj=1

k��(�)k , ��1 = max
jj�jj=1

k��1(�)k and �r = min
jj�jj=1

k��r(�)k > 0; (A9)

where the last inequality follows from the fact that (i) ��r(�) is a continuous function, and (ii)

��r(�) 6= 0 for all � 6= 0. In this context, it su¢ ces to check that

max
(�;�)2P:k(�;�)�(��;0)k�
n

h�n (�;�)

1 + jjn 1
2� (�;�) jj2

= O(1) (A10)

to verify (A7), with

h�n (�;�) = maxf1; �1n k�� ��k
2 ; �2n k�1k2 ; n k�rk2rg;

where the coe¢ cients �1 = (2��+1)�1 and �2 = (2��1+1)
�1, which are positive, are only used

to simplify the expressions.

For n large enough, we have that

f(�;�1;�r) : k(�;�)� (��;0)k � 
ng � P:

The compactness of the set f(�;�1;�r) : k(�;�)� (��;0)k � 
ng and the continuity of h�n (�;�) =(1+

n k� (�;�)k2) then imply that there exists (�n;�n) such that

sup
(�;�)2P:k(�;�)�(��;0)k�
n

h�n (�;�)

1 + n k� (�;�)k2
=

h�n (�n;�n)

1 + n k� (�n;�n)k2
(A11)
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for large enough n. Consequently, there will exist a subsequence fwng of fng such that

lim sup
n!1

sup
(�;�)2P:k(�;�)�(�;0)k�
n

h�n (�;�)

1 + n k� (�;�)k2
= lim
n!1

sup
h�n (�n;�n)

1 + n k� (�n;�n)k2

= lim
wn!1

h�wn(�wn ;�wn)

1 + wnjj�(�wn ;�wn)jj2
;

where the �rst equality follows directly from (A11) and the second one from the properties of

lim sup. Consequently, it is easy to see that if h�wn(�wn ;�wn) = O(1), then (A7) holds trivially.

In turn, if h�wn(�wn ;�wn) 6= O(1), then we can �nd a further subsequence fung of fwng such

that at least one of the following conditions holds:

h�un(�un ;�un) = un k�r;unk
2r !1; (A12)

h�un(�un ;�un) = �
2
1unjj�un � �

�jj2 !1; or (A13)

h�un(�un ;�un) = �
2
2un k�1;unk

2 !1: (A14)

Let �r;n = �n�n with k�nk = 1 and �n a scalar. If (A12) holds, then

h�un(�un ;�un)

1 + unjj�(�un ;�un)jj2
� un k�r;nk2r

un k��r (�r;n)k2
=

un�
2r
n

un k�rn��r (�n)k
2 =

1

k��r (�n)k2
� 1

�2r
;

where the �rst inequality follows from

h�un(�un ;�un) = un k�r;nk
2r and unjj�(�un ;�un)jj

2 � un k��r (�r;n)k2 ;

the second one from the de�nition of ��r, and the last inequality from the characterization of

�r in (A9).

If (A13) holds, then

h�un(�un ;�un) = maxf1; �1unjj�un � �
�jj2; �2un k�1unk2 ; un k�runk2rg = un�21jj�un � �

�jj2;

so that

�21jj�un � �
�jj2 � k�runk2r = �2run ) �1jj�un � �

�jj � �run ; (A15)

which in turn yields

k�n � �� + �rn��(�n)k � jk�n � ��k � �rn k��(�n)kj = k�n � ��k
����1� �rn

k�n � ��k
k��(�n)k

����
� k�n � ��k j1� �1��j >

1

2
k�n � ��k ; (A16)

where the �rst line follows from the triangle inequality and the second one from �rn= k�n � ��k �

�1 in view of (A15) and k��(�n)k � �� because of (A9). Then, we have that

h�un(�un ;�un)

1 + unjj�(�un ;�un)jj2
<

�21jj�un � �
�jj2

jj�un � �
� + �run��(�un)jj2

�
�21jj�un � �

�jj2
1
4 jj�un � �

�jj2
= 4�21;

31



where the �rst inequality follows from unjj�(�un ;�un)jj2 > unjj�un � �
� + �run��(�un)jj2 and

h�un(�un ;�un) � un�21jj�un � �
�jj2, while the second one from (A16).

Similarly, if (A14) holds, then we have that

�22 k�1unk
2 � k�runk2r = �2run implies �2 k�1unk � �run ; (A17)

whence

k�1un + ��1(�run)k �
��k�1unk � �run k��1(�un)k�� (A18)

= k�1unk
����1� �run

k�1unk
k��1(�un)k

����
� k�1unk j1� �2��1 j >

1

2
k�1unk ;

where the �rst two inequalities are straightforward, and the third one follows from (A9) and

(A17). In addition, we can show that

h�un(�un ;�un)

1 + unjj�(�un ;�un)jj2
<

�22 k�1unk
2

k�1un + ��1(�run)k
2 �

�22 k�1unk
2

1
4 k�1unk

2 = 4�
2
2; (A19)

where the �rst inequality follows from (A14) and the second one from (A18).

The previous argument also implies that if hn (�n;�n) ! 1, then h�n (�n;�n) ! 1 and

n k� (�n;�n)k ! 1, which in turn implies that

n
1
2 k� (�n;�n)k = O(1)) hn (�n;�n) = O(1): (A20)

Trivially, Assumption 5.5 follows from Corollary 1 in Rotnitzki et al (2000).

Regarding Assumption 5.6, if n
1
2� (�n;�n) = O(1), then we have hn (�n;�n) = O(1) in view

of (A20), which in turn implies jRn (�;�)j = Op(n�
1
2r ) thanks to (A8).

Consequently, since Theorem 3 implies that

LR = sup
�

n
2S�;n(~�)

0�� (�)� n�� (�)0 V��(~�)�� (�)
o
+Op(n

� 1
2r );

where

V�� = I�� � I��I�1��I�� =
�
I�1�1 � I�1�I�1��I��1 0

0 I�r�r

�
=

�
V�1�1 0
0 I�r�r

�
and ��(�) = [�01 + �

0
�1(�r);�

0
�r(�r)]

0, after rearranging terms we obtain

2S�;n(~�)
0
�� (�)� n�� (�)

0 V��(~�)�� (�) =2S�1;n(
~�)0��1(�)� n��1(�)0V�1�1(~�)��1(�)

+ 2S�r;n(
~�)0�r� (�r)� n��r (�r)

0 I�r�r(~�)��r (�r) ;
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where ��1(�) = �1 + ��1 (�r). Thus, we will have

sup
�

n
2S�;n(~�)

0�� (�)� n�� (�)0 V��(~�)�� (�)
o

= sup
�r

sup
�1

n
2S�;n(~�)

0�� (�)� n�� (�)0 V��(~�)�� (�)
o
w.p.a.1

=
1

n
S�1;n(

~�)V �1�1�1
(~�)S�1;n(

~�)

+ sup
�r

n
2S�r;n(

~�)0��r(�r)� n��r(�r)0V�r�r(~�)��r(�r)
o
w.p.a.1.

To further simplify the last sup, let �r = �� with � � 0 and k�k = 1. Then,

sup
�;�

n
2S�r;n(

~�)0��r(�r)� n��r(�r)0V�r�r(~�)��r(�r)
o

= sup
jj�jj=1

sup
��0

n
2S�r;n(

~�)0��r(�)�
r � n��r(�)0V�r�r(~�)��r(�)�2r

o
w.p.a.1

=

8>><>>:
1
n sup
jj�jj6=0

[S�r;n(~�)0��r (�)]2

��r (�)
0V�r�r (

~�)��r (�)
if r is odd

1
n sup
jj�jj6=0

[S�r;n(~�)0��r (�)]21[S�r;n(~�)0��r (�)�0]
��r (�)

0V�r�r (
~�)��r (�)

if r is even

After noticing that

S�r;n(~�)0��r(�) = r!�
r0r Drn(~�)

and

��r(�)
0V�r�r(~�)��r(�) = (r!)

2 �
r0r [V�r�r(�)� V�r�1(�)V �1�1�1
(�)V�1�r(�)]�


r
r ;

we can �nally verify that Theorem 1 holds. �

Proof of Theorem 2

In this proof, we use the notation jq < C (resp. jq > C, jq � C, jq � C) to indicate

that there exists some j0q 2 C such that jq < j0q (resp. jq > j0q, jq � j0q, jq � j0q). To simplify

the notation, we only give the proof for � = (�1; �2) so that the set C is de�ned as C =

f(i1; j1); :::; (iK ; jK)g. However, we could easily generalize it to models in which dim(�) � 2 and

there additional parameters �. De�ne LMn(�) as in (A2) with I de�ned in Theorem 2, and

�0(�) = ( �i11 �
j1
2 �i21 �

j2
2 : : : �iK1 �

jK
2 ); S 0n = ( L[i1;j1]n L

[i2;j2]
n : : : L

[iK ;jK ]
n ):

We �rst verify Assumptions 5.4 and 5.7. Assumption 5.5 follows from Lemma 6, while the other

parts of Assumption 5 hold trivially.

Considering a 2rth-order Taylor expansion of Ln(�n) around 0 in terms of (�1n; �2n), omitting

0 as an argument and the subscript n from �n for simpli�cation, then we have L
[i;j]
n = 0 for

terms (i; j) such that (i; j) < C because of the de�nition of C. Further, Lemma 6 implies that
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under Assumption 5, we have l[i;j] = f [i;j]=f evaluated at the null for (i; j) 2 C, and hence

E(l[i;j]) = 0 for (i; j) 2 C. Note that in the Taylor expansion, the corresponding term is 
n�

1
2
@i+jLn

@�i1@�
j
2

!
n
1
2 �i1�

j
2;

which belongs to the �rst summand of LMn(�n).

For those pairs (i; j) such that (i; j) > C, if l[i;j] 6= 0 and E(l[i;j]) = 0, then the corresponding

term in the Taylor expansion is again 
n�

1
2
@i+jLn

@�i1@�
j
2

!
n
1
2 �i1�

j
2: (A21)

Since (i; j) > C, we can �nd (i0; j0) 2 C and (i0; j0) < (i; j) such that the associated term 
n�

1
2
@i

0+j0Ln

@�i
0
1 @�

j0

2

!
n
1
2 �i

0
1 �
j0

2

dominates the (i; j) term because �1; �2 = op(1), which means that (A21) is op(1 + njj�(�)jj2).

For those pairs (i; j) such that (i; j) > C, if E(l[i;j]) 6= 0, then Lemma 6 implies that

E[l[i;j]] = E

2664 X
1�h�i+j

(�1)h+1
X
s=1:h

ps[(i;j);h]

sY
a=1

1

ma!

 
f [ka]

f

!ma

3775

= E

2664� X
s=1:2

ps[(i;j);2]

sY
a=1

1

ma!

 
f [ka]

f

!ma

+
X

2<h�i+j
(�1)h+1

X
s=1:h

ps[(i;j);h]

sY
a=1

1

ma!

 
f [ka]

f

!ma

3775 ;
where ps[(i; j); h] is de�ned in (B19). The �rst equality is a direct consequence of Lemma 6,

while the second follows from: i) splitting f1 � h � i+ jg into f1 � h � 2g and f2 < h � i+ jg,

and ii) when h = 1,

(�1)h+1
X
s=1:h

ps[(i;j);h]

E

"
sY
a=1

1

ma!

 
f [ka]

f

!ma
#
=

X
s=1:1

ps[(i;j);1]

E

 
f [i;j]

f

!
= 0:

In this context, the law of large numbers implies that the (i; j)th term in the Taylor expansion

will be given by

(n�1L[i;j]n )n�i1�
j
2 = �

X
s=1:2

ps[(i;j);2]

E

"
sY
a=1

1

ma!

 
f [ka]

f

!ma
#
n�i1�

j
2

+
X

2<h�i+j
(�1)h+1

X
s=1:h

ps[(i;j);h]

E

"
sY
a=1

1

ma!

 
f [ka]

f

!ma
#
n�i1�

j
2

+Op(n
� 1
2 (1 + njj�(�)jj2)):
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If h = 2 and s = 1 then m1 = 2. More generally, if i or j are odd, then p1[(i; j); 2] = ;, while

if i; j are both even instead, then p1[(i; j); 2] = f[2; ( i2 ;
j
2)]g (see (B19)). Consequently, when

( i2 ;
j
2) 2 C, then the corresponding term is

�1
2
E

24 f [ i2 ; j2 ]
f

!235n�i1�j2 = �12V ar(l[ i2 ; j2 ])n�i1�j2; (A22)

which belongs to the second summand of LMn(�). In turn, if ( i2 ;
j
2) 62 C, then either (i)

( i2 ;
j
2) > C, which means that 9(i0; j0) 2 C such that (i0; j0) < ( i2 ;

j
2), in which case the LHS

of (A22) is dominated by �1
2V ar(l

[i0;j0])n�2i
0

1 �
2j0

2 ; or (ii) (
i
2 ;
j
2) < C and, therefore, the LHS of

(A22) must be equal to zero because l[
i
2
; j
2
] = 0.

Consider next the case in which h = 2, s = 2, m1 = m2 = 1, and (i; j) = k1 + k2. If

k1;k2 2 C, then the corresponding term is

�E
 
f [k1]

f

f [k2]

f

!
n�i1�

j
2 = �Cov(l[k1]; l[k2])n�i1�

j
2; (A23)

which also belongs to the second summand of LMn(�). If either k1 < C or k2 < C, then the

LHS of (A23) is equal to zero. Next, we look at the cases in which k1 � C and k2 > C or k2 � C

and k1 > C. Speci�cally, if we can �nd a pair (i0; j0) 2 C such that k1 � (i0; j0) and another

pair (i00; j00) 2 C such that k2 � (i00; j00) so that k2 > (i00; j00) if k1 = (i0; j0) and vice versa, then

the LHS of (A23) is dominated by the largest of n�2i
0

1 �
2j0

2 and n�2i
00

1 �2j
00

2 . Consequently,�����E
 
f [k1]

f

f [k2]

f

!
n�i1�

j
2

����� = op(1 + n�i0+i001 �j
0+j00

2 ) = op(1 + n(�
2i0
1 �

2j0

2 + �2i
00

1 �2j
00

2 ))

= op(1 + n k�(�)k2); (A24)

where k0 = (i0; j0) � k1 and k00 = (i00; j00) � k2.

Finally, consider h � 3. In this context, either there exists a j such that kj < C, in which

case E
hQs

j=1
1
mj !

�
f [kj ]

f

�mj
i
= 0, or kj � C for all j, in which case E

hQs
j=1

1
mj !

�
f [kj ]

f

�mj
i
n�i1�

j
2

will be dominated by the second summand of LMn(�), as in (A24).

The remainder terms, which correspond to all those indices that satisfy (i+j) = 2r, are such

that

j�[i;j]j = jn�1(L[i;j]n (��)� L[i;j]n )jjn�i1�
j
2j = op(maxf1; n�i1�

j
2g) = op(1 + njj�(�)jj2); (A25)

because jn�1(L[i;j]n (��)�L[i;j]n )j � jj��jjn�1
P
i g(yi) = op(1), since jj��jj = op(1) and jn�1

P
i g(yi)j =

Op(1) by Assumption 2.3. But given that (A25) contains the last terms in the 2rth-order Taylor

expansion of of L(�n) around 0, Assumption 5.4 holds.

Let us now turn to verifying Assumption 5.7, for which we further assume that n1=2 k�(�)k =

Op(1). We then have �1 = Op(n�1=2r1) and �2 = Op(n�1=2r2) because (r1; 0) 2 C and (0; r2) 2 C,
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which has important implications for the di¤erent terms of the expansion. First, notice that we

do not make any approximation for the leading terms with (i + j) � 2r in the �rst summand

of LMn. In addition, we can write those (i; j)-th terms that are not included in the �rst two

summands of LMn as Op(1)�
k1
1 �

k2
2 with k1 + k2 � 1, which implies that they are Op(n�1=r).

As for the rest of the leading terms, namely those whose (i; j)-th term belongs to the second

summand of LMn, we can approximate 1
nL

[i;j]
n by its expectation, where the convergence rate

is Op(n�1=2) as shown by Rotnitzky at al (2000). Finally, we can easily see that Assumption

2.6 implies that �[i;j] = Op(n�1=r) for the remainder terms. Therefore, Assumption 5.7 holds, as

desired. �

Proof of Theorem 4

Treating the strictly exogenous covariates Xi as �xed in repeated samples, we can modify

the testing procedure in Section 2.3 as follows:

1. For a �xed fXgni=1, simulate a sample fy
(s)
i gni=1 from f [yijXi; (~�; 0)]

2. Compute GET (s) using the simulated sample fXi;y(s)i gni=1
The proof contains three steps.

Step 1. Consider a sequence �n 2 N� and �n ! ��. Under the sequence of DGPs (�n; 0) a

�rst order Taylor expansion of S�;n(~�) delivers

op(1) =
1p
n
S�;n(~�) =

1p
n
S�;n(��) +
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n
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@�0

p
n(~�� ��)

)
p
n(~�� ��) = �
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1
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@�0

#�1
1p
n
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Then,

1p
n
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1p
n
S�;n(�n) +

1

n

@S�;n(��)
@�0

p
n(~�� �n)

=
1p
n
S�;n(�n)�

"
1

n

@S�;n(��)
@�0

# �
1

n

@S�;n(�)
@�0

��1 1p
n
S�;n(��n)

=
1p
n
S�;n(�n)�

�
1

n

@S�;n(�n)
@�0

+ op(1)

� �
1

n

@S�;n(�n)
@�0

+ op(1)

��1 1p
n
S�(�n)

d�! S?(��) (A26)

where S?(��) = S�(��)� I��(��)I��(��)�1S�(��);

the third line follows from Assumption 6.2 and the fact that
p
n(~���n) = Op(1), and the last

line follows from the continuous mapping theorem and Assumption 6.1.
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Step 2. Let BL1 denotes the set of Lipschitz functions that are bounded by 1 in absolute

value and have Lipschitz constant bounded by 1, and let

N�;n =
�
� 2 N� : j�� ��j �

lnnp
n

�
:

Expression (A26) implies that

lim
n

sup
�2N�;n

sup
h2BL1

����E �h� 1p
n
Sn(�; 0)

�
; (�; 0)

�
� E [h (S(��))]

���� = 0: (A27)

Then, noticing that

Pr

�
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n
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h2BL1
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n
S(s)n (~�

(s)
)
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�
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����E(s) �h� 1p
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)

�
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�
� Efh[S?(��)]g

����+ 1[~� 62 N�;n] = 0
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= Pr
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n
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�2N�;n
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h2BL1

����E �h� 1p
n
Sn(~�)

�
; (�;0)

�
� Efh[S?(��)]g

���� = 0
!
= 1;

where the �rst equality follows from the fact that fy(s)i g depends on fXi;yig only through ~�, the

middle inequality is straightforward, the second equality follows from lim supPr(~� 62 N�;n) = 0,

and the last one from (A27). Therefore, we have

1p
n
S(s)n (~�

(s)
)

���� fXi;yigni=1 d�! S?(��): (A28)

In addition, given that ~�
(s)jfXi;yigni=1

a:s:��! �� and I(�) is continuous, it follows that

I(~�(s))
��� fXi;yigni=1 p�! I(��): (A29)

Step 3. By (A28), (A29), and a proof similar to Theorem 3, we have (6).

Finally, the proof of Theorem 4.2 follows from van der Vaart (1996) Lemma 23.3, by changing

(�̂n � �)=�̂n to GETn and (�̂
�
n � �̂)=�̂�n to GET

(s)
n . �

For the sake of completeness, the following primitive assumption implies Assumption 6.

Assumption 9 (Bootstrap validity for Theorem 1)

1. There is an open set N� such that �� 2 N� and

sup
�2N�

E

"



�@2`(�;0)@�@�0
;
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@�@�01
;
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1+" ; (�;0)
#
<1

sup
�2N�

E
h
k(s�(�); s�1(�); s�r(�))k

2+" ; (�;0)
i
<1

for some " > 0.

2. When �0p+qj = 2r there is some function g(y) satisfying sup�2N� E
�
g2(y); (�; 0)

�
< 1

such that with probability 1,
���L[j]n (�)� L[j]n ��y���� � k� � �yjjPi g (yi) for all � and �

y in
N .
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Proof of Theorem 5

By Le Cam�s �rst Lemma (see Lemma 6.4 of van der Vaart (1998)), contiguity holds if

under P0, dP�;�n=dP0
d! U with E(U) = 1. Letting Ln(��;�n) denote the joint log-likelihood

of the observations, Assumption 5 allows us to write

Ln(�
�;�n)� Ln(��;0) =
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S 0n(��)
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2
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2
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�
;

where S � N [0;�01I(��)�1]: Using the expression of the moment generating function of a nor-

mal distribution, we have that E(U) = 1. The joint distribution of Sn and ln
�
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�
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under H0 to the Gaussian process:" 1p
n
Sn(��)

ln
�
dP�n
dP0

� # d! N

��
0

�1
2�

0
1I(��)�1

�
;

�
I(��) I(��)�1
�01I(��) �01I(��)�1

��
:

In addition, it follows from Le Cam�s third lemma (see van der Vaart (1998)) that
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Finally, given Assumption 7, we can then prove that under P�n ,
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�)I��
i
;

as desired. �
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Table 1: Monte Carlo rejection rates (in %) under null and alternative hypotheses for testing
for selectivity in multivariate regression

Alternative hypotheses
Null hypothesis Ha1 Ha2
1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A: n = 400
LRnaive 2.6 11.6 20.8 17.6 39.7 54.2 17.3 39.6 53.9
LR 0.9 4.9 10.4 9.1 25.2 37.1 9.1 25.2 36.9
GET 1.0 5.0 10.2 8.5 23.2 35.1 8.6 23.9 35.9
GMM 1.0 5.1 10.1 7.6 22.0 32.5 7.8 22.4 33.3
GMMasy 1.1 4.9 9.8 8.1 21.3 32.0 8.2 21.9 32.7

Panel B: n = 1600
LRnaive 2.0 9.2 17.9 77.9 91.4 95.3 78.1 91.3 95.6
LR 0.9 4.8 9.6 68.0 86.6 91.6 68.9 86.4 91.7
GET 0.8 5.1 9.7 62.2 82.7 88.8 62.7 83.1 89.5
GMM 1.0 5.2 10.0 57.9 79.3 87.5 58.5 79.2 87.6
GMMasy 1.0 5.2 10.0 57.6 79.5 87.5 58.2 79.4 87.5

Notes: Results based on 10,000 samples. GET and LR are de�ned in section 3.1. GMM refers to the
J-tests based on the in�uence functions underlying GET. Finite sample critical values are computed using
the parametric bootstrap, as described in Section 2.3. LRnaive uses the 0.99, 0.95, and 0.9 quantiles of a
�22 as critical values, while GMMasy uses the 0.99, 0.95, 0.9 quantiles of a �24. DGPs: w = x1 = 1 and
x2 � N(0; 1), 'Mk = (0; 1), 'D = �2, 'S = 1 and 'L = 0:25. As alternative hypotheses, we consider
#0 = (0:57; 0:57) (Ha1) and #

0 = (0:80; 0) (Ha2); see section 3.1 for the parametrization.

Table 2: Monte Carlo rejection rates (in %) under alternative hypotheses for testing normality
versus SNP

Alternative hypotheses
Null hypothesis Ha1 Ha2
1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A: n = 400
LR 1.0 5.0 10.0 10.6 26.8 39.4 25.0 37.5 45.2
GET 1.0 5.0 10.0 8.8 27.7 39.5 30.2 40.4 46.6

Panel B: n = 1600
LR 1.0 5.0 10.0 64.3 83.1 89.7 64.7 76.4 82.2
GET 1.0 5.0 10.0 59.5 83.5 89.7 67.8 78.2 82.3

Notes: Results based on 10,000 samples. GET and LR are de�ned in section 3.2. Finite sample critical
values are computed by simulation. DGPs: 'M = 0, 'V = 1, #0 = (0:25; 0:10) for Ha1; and #

0 =

(0:75; 0:05) for Ha2.
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Figure 1: Alignment of GET and LR tests for selectivity in multivariate regression under

the null hypothesis
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Notes: Results based on 10,000 samples. GET and LR are de�ned in section 3.1. DGPs: w = x1 = 1
and x2 � N(0; 1), 'Mk = (0; 1), 'D = I2, 'S = 1 and 'L = 0:25

Figure 2: Alignment of GET and LR tests of normality versus SNP under the null hypothesis
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Notes: Results based on 10,000 samples. GET and LR are de�ned in section 3.2. DGPs: 'M = 0,
'V = 1.
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