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B Reparametrizations

B.1 Sequential reparametrization method

In what follows, we explain how to obtain the reparametrization alluded to in section 2.1

using a sequential approach. To do so, we make the following

Assumption 7 1) The asymptotic covariance matrix of the sample averages of (s'; s#1) eval-

uated at (';0) scaled by
p
n has full rank.

2) @
�0qr j�r l

@#
j�r
r

����
(';0)

= 0, for all index vectors such that �0qr j�r < r � 1.

3) There exists a set of coe¢ cients fmj�r
k g�0qr j�r=r�1;k=1;:::;p�qr which may be functions of ' such

that

m
j�r
1 s'1 + :::+m

j�r
p�qs'p�q +m

j�r
p�q+1s#11 + :::+m

j�r
p�qrs#1q1 +

@�
0
qr j�r l

@#j�r
= 0

for all �0qr j�r = r � 1, where the default argument is (';0).

In this context, a convenient way of reparametrizing the model from (';#) to (�;�) is as

follows:

'1 = �1 +
X

�0qr j�r=r�1

m
j�r
1

j�r !
�
j�r
r ; :::; 'p�q = �p�q +

X
�0qr j�r=r�1

m
j�r
p�q
j�r !

�
j�r
r ;

#11 = �11 +
X

�0qr j�r=r�1

m
j�r
p�q+1
j�r !

�
j�r
r ; :::; #1q1 = �1q1 +

X
�0qr j�r=r�1

m
j�r
p�qr
j�r !

�
j�r
r ;

#r1 = �r1; :::; #rqr = �rqr :

Then, if we use Faà di Bruno�s (1859) formulas, which generalize the usual chain rule to

higher-order derivatives, we can show that

@r�1l

@�
j�r
r

= m
j�r
1 s'1 + :::+m

j�r
p�qs'p�q +m

j�r
p�q+1s#11 + :::+m

j�r
p�qrs#1q1 +

@�
0
qr j�r l

@#j�r
= 0

for all �0qr j�r = r � 1 as desired, and where the default argument is again (';0).
Finally, we need to check whether

P
�0qr j�r=r

�j�r
j�r !

@rl

@�j�r
evaluated at (�;0) is linearly inde-

pendent of (s�; s�1) for all �
2
1 + � � � + �2qr = 1. If so, Theorem 1 applies. Otherwise, we should

check whether either:

1) there exists a new set of coe¢ cients fmyj�r
k g�0qr j�r=r;k=1;:::;p�qr which may be functions of �

such that

m
yj�r
1 s�1 + : : :+m

yj�r
p�q s�p�q +m

yj�r
p�q+1s�11 + : : :+m

yj�r
p�r s�1q1 +

@�
0
qr j�r l

@�j�r
= 0 (B1)

when evaluated under the null, in which case we can do a further reparametrization from (�;�)

to (�y;�y) in such a way that we set all the rth partial derivatives with respect to �y to zero, or

2) we can use Theorem 2, which covers far more general cases.
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B.2 Numerical invariance to reparametrization

Let us now prove that the GET statistic that we proposed in Theorem 1 is invariant to

reparametrization, exactly like the LR test or the usual LM tests that rely on the information

matrix rather than the sample average of the Hessian. For simplicity of notation, we will do

so in a simple case in which r = 2 and � = �2, so that we can omit the subscript 2 from �

henceforth. Additionally, we drop the subscript i from the contributions of each observation to

the log-likelihood function.

De�ne % = (';#) as the original parameter vector, where ' is p � 1 and # a q � 1 vector.
In what follows, (';0) are the omitted arguments for all the relevant quantities that depend on

(';#).

We maintain that Assumption 3 holds with r = 2 for the original parameters %, so that 1)

the asymptotic variance of the sample average of s' has full rank, 2) there is a q � p matrixM
of possible functions of ' such that

Ms'i(';0) + s#i(';0) = 0 (B2)

holds, and 3) the asymptotic variance of the sample average of"
s';�

0
�
M0

Iq

�0
@2l

@%@%0

�
M0

Iq

�
�

#
has full rank under the null for all � such that jj�jj 6= 0.
If we reparametrize from % to � as

' = �+M0�; and # = �;

then, we can easily check that

@l

@�
=
@l

@'
; (B3)

@l

@�
=M

@l

@'
+
@l

@#
=Ms'i + s#i = 0; (B4)

@2l

@�@�0
= [M; Iq]

@2l

@%@%0

�
M0

Iq

�
:

In addition, (B3) and (B4) hold when evaluated under the null, with

�0
@2l

@�@�0
� = �0

�
M0

Iq

�0
@2l

@%@%0

�
M0

Iq

�
�

linearly independent of @l=@�, which implies that Assumption 3 is satis�ed with r = 2 for the

transformed parameters � = (�0; �0)0 too. Consequently, we can apply Theorem 1, which yields

GET�n = supjj�jj6=0ET
�
n (�), where

ET�n (�) =
[�0H(~')�]2 1 [�0H(~')� � 0]

V(�; ~') ;

H(') =

�
M0

Iq

�0
@2l(%)

@%@%0

����
(';0)

�
M0

Iq

�
; (B5)
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and

V�(�;') = V [�0H(')�]� Cov[�0H(')�; s�(')]V �1[s�(')]Cov[s�(');�0H(')�]

is the adjusted variance of �0H(')�.
Consider now an alternative reparametrization from % to �y characterized by

% =

�
'
#

�
=

�
g�(�y;�y)
g�(�y;�y)

�
= g(�y);

where g(�) is some second-order continuously di¤erentiable vector of functions which represent a
suitable di¤eomorphism, at least locally around the null. Such an alternative reparametrization

must also ensure that: (i) s�y has full rank, (ii) s�y is identically 0 at H0 : �
y = 0, and (iii)

�0 @2l
@�y@�y0

� is linearly independent of s�y for all jj�jj 6= 0.
Given that the �rst order derivative of �y under the null is given by

@l

@�y
=
@g�0

@�y
s' +

@g�0

@�y
s# =

�
@g�0

@�y
� @g

�0

@�y
M

�
s';

where we have used the chain rule in the �rst equality and (B2) in the second one, we need to

assume that

det

�
@g�0

@�y
� @g

�0

@�y
M

�
6= 0 (B6)

for @l=@�y to have full rank. Similarly, given that (B2) and the chain rule imply that

@l

@�y
=
@g�0

@�y
s' +

@g�0

@�y
s# =

�
@g�0

@�y
� @g

�0

@�y
M

�
s';

we must also assume that
@g�0

@�y
=
@g�0

@�y
M (B7)

to ensure that @l=@�y = 0 under the null irrespective of �y because s' has full rank.

Let us now turn to condition (iii), for which we �rst need to compute the corresponding

second-order derivatives. Applying the chain rule once again, we obtain

@2l

@�yi@�
y
j

=
@l
@'0

@2g�

@�yi@�
y
j

+
@g�0

@�yj

@2l

@'@'0
@g�

@�yi
+
@g� 0

@�yj

@2l

@#@'0
@g�

@�yi

+
@l

@#0
@2g�

@�yi@�
y
j

+
@g� 0

@�yj

@2l

@#@#0
@g�

@�yi
+
@g�0

@�yj

@2l

@'@#0
@g�

@�yi
:

In this context, (B7) and (B2) imply that

@2l

@�yi@�
y
j

= s0'
@2g�

@�yi@�
y
j

+
@g�0

@�yj
M

@2l

@'@'0
M0@g

�

@�yi
+
@g� 0

@�yj

@2l

@#@'0
M0@g

�

@�yi

� s0'M0 @
2g�

@�yi@�
y
j

+
@g� 0

@�yj

@2l

@#@#0
@g�

@�yi
+
@g�0

@�yj
M

@2l

@'@#0
@g�

@�yi

= s0'

 
@2g�

@�yi@�
y
j

�M0 @
2g�

@�yi@�
y
j

!
+
@g�0

@�yj

�
M0

Iq

�0
@2l

@%@%0

�
M0

Iq

�
@g�

@�yi
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when evaluated at the null, so

@2l

@�y@�y
=

(
s0'

 
@2g�

@�yi@�
y
j

�M0 @
2g�

@�yi@�
y
j

!)
ij

+
@g�0

@�y
H
@g�

@�y
:

Hence, (B5) implies that

�0
@2l

@�y@�y
� = s0'a+ �

y0H�y, for all � 6= 0

when evaluated at the null, where a = (a1; : : : ; aq)0 with

ai = �
0

 
@2g�i
@�y@�y

�M0 @
2g�i

@�y@�y

!
� and �y =

@g�

@�y0
�:

In this context, if we further assume that

det
�
@g�

@�y0

�
6= 0; (B8)

then it is easy to see that �0 @2l
@�y@�y

� will be linearly independent of s�y for all �
y such that

�y

 6= 0 because (a) �y0H�y is linearly independent of s' and (b) s�y is a linear combination

of s'.

In sum, once we guarantee that (B6), (B7) and (B8) hold, the parametrization from % to �y

satis�es the rank de�ciency condition in Assumption 3 with r = 2.

Finally, let us de�ne the adjusted asymptotic variance of �0 @2l
@�y@�y

� as

Vy
�y
(�; �y) = V

�
�0

@2l

@�y@�y
�

�
� Cov

�
�0

@2l

@�y@�y
�; s�y

�
V �1(s�y)Cov

�
s�y ;�

0 @2l

@�y@�y
�

�
= V (s0'a+ �

y0H�y)� Cov(s0'a+ �y
0H�y;a0s')V �1(a0s')Cov(a0s'; s0'a+ �y

0H�y)

= V (�y
0H�y)� Cov(�y0H�y; s')V �1(s')Cov(s';�y

0H�y)

= V�(�y;�):

Then, we will have that

ET�
y

n (�) =

h
�0 @2l
@�y@�y

(~�y)�
i2
1
h
�0 @2l
@�y@�y

(~�y)� � 0
i

Vy
�y
(�;�y)

=
[s0'(~')a+ �

y0H(~%)�y]21
h
s0'(~')a+ �

y0H(~%)�y � 0
i

V�(�y;�)

=
[�y

0H(~%)�y]21
h
�y
0H(~%)�y � 0

i
V�(�y;�)

= ET�n (�
y);

where the third equality follows from the fact that s'(~') = 0. Given that the mapping from �

to �y is bijective, taking the sup will �nally imply that

GET�
y
n = supjj�jj6=0ET

�y
n (�) = supjj�yjj6=0ET

�
n (�

y) = GET�n;

as desired.
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C Example 3: Testing Gaussian vs Hermite copulas

C.1 The model and its log-likelihood function

The validity of the Gaussian copula in �nance has been the subject of considerable debate.

As a result, it is not surprising that several authors have considered more �exible copulas. For

example, Amengual and Sentana (2020) look at the Generalized Hyperbolic copula, a location-

scale Gaussian mixture which nests the popular Student t copula discussed by Fan and Patton

(2014), which in turn nests the Gaussian one. In this section, we consider Hermite copulas

instead, which can potentially provide much more �exible alternatives.

As is well known, Hermite polynomial expansions of the multivariate normal pdf can be

understood as Edgeworth-like expansions of its characteristic function. They are based on

multivariate Hermite polynomials of order p, which are de�ned as di¤erentials of the multivariate

normal density:

Hj(x;') = fNK(x;R)
�1
�
�@
@x

�j
fNK(x;R); (C9)

where �0Kj = p with j 2 NK , ' = vecl(R), and R is a positive de�nite correlation matrix.

To keep the expressions manageable, we only consider explicitly pure fourth-order expansions

in the bivariate case. We could also include third-order Hermite polynomials, but at a consider-

able cost in terms of notation. Similarly, extensions to higher dimensions would be tedious but

straightforward.

We say that (x1; x2) follow a pure fourth-order Hermite expansion of the Gaussian distribu-

tion when their joint density function is given by

fH(x1; x2;';#) = fN2

��
x1
x2

�
;

�
1 '
' 1

��
P (x1; x2;';#); (C10)

where

P (x1; x2;';#) = 1 +

4X
j=0

#j+1H4�j;j(x1; x2;');

' is the correlation between x1 and x2, which we assume is di¤erent from 0, and #1; : : : ; #5

the coe¢ cients of the expansion. The leading term in (C10) is the normal pdf and the remain-

ing terms represent departures from normality. Indeed, fH(x1; x2;';#) reduces to a Gaussian

distribution when # = 0.

We can easily show that the corresponding marginal distributions are given by

fH(x1;#1) = �(x1)[1 + #1H40(x1; x2)]
fH(x2;#5) = �(x2)[1 + #5H04(x1;x2)]

�
; (C11)

where �(:) the standard normal pdf and H40(x1; x2) and H04(x1;x2) are the (non-standardized)

fourth-order univariate Hermite polynomials for x1 and x2, respectively.

Hermite expansion copulas are based on Hermite expansion distributions. Speci�cally, if

y = (y1; y2) denotes the original data, we can de�ne u = (u1; u2) = [F1(y1); F2(y2)] as the
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uniform ranks of y, and �nally x = (x1; x2) = [F�1H (u1;#1); F
�1
H (u2;#5)], where F�1H (:;#i) are

the inverse cdfs (or quantile functions) of the univariate fourth-order Hermite expansions with

parameter #i in (C11). When the copula is Gaussian, xi coincides with the Gaussian rank

��1(ui).

Consequently, the pdf of the pure fourth-order Hermite expansion copula is

fH(x1; x2;%)

fH(x1;#1)fH(x2;#5)
=

�2(x1; x2;')[1 +
P4
j=0 #j+1H4�j;j(x1; x2;')]

�1(x1)[1 + #1H40(x1; x2)]�1(x2)[1 + #5H04(x1; x2)]
:

C.2 The null hypothesis and the GET test statistic

Straightforward calculations show that in this case

s#1(';0) + 3's#2(';0) + 3'
2s#3(';0) + '

3s#4(';0) = 0;

s#5(';0) + 3's#4(';0) + 3'
2s#3(';0) + '

3s#2(';0) = 0:

Our proposed reparametrization, namely

' = �; #1 = �21; #2 = �11 + 3��21 + �
3�22;

#3 = �12 + 3�
2�21 + 3�

2�22; #4 = �13 + 3��22 + �
3�21; #5 = �22;

con�nes the singularity to the scores of �21 and �22. Therefore, we need to obtain the second

order derivatives with respect to �21 and �22. In this case, we can prove that the asymptotic

covariance matrix of

@l

@�
,
@l

@�11
,
@l

@�12
,
@l

@�13
,
@2l

@�221
,
@2l

@�222
and

@2l

@�21@�22

scaled by
p
n has full rank. Although the algebra is a bit messy, after orthogonalizing those sec-

ond derivatives with respect to the score of � to eliminate the e¤ect of the sampling uncertainty

in estimating this correlation coe¢ cient under the null, we can express the three second-order

derivatives as linear combinations of all the even-order multivariate Hermite polynomials of

(x1; x2) up to the 8th order, with coe¢ cients that depend on the correlation coe¢ cient, as we

explain the next section in detail.

Let �21 = �1� and �22 = �2� with �21 + �
2
2 = 1, and consider the simpli�ed null hypothesis

H0 : �11 = �12 = �13 = � = 0. Then it is easy to see that the GET statistic will be

1

n
S01nV

�1
11 S1n +

1

n
sup
k�k=1

D0n(V�� � V�1V �111 V1�)�1Dn1 [Dn > 0] ; (C12)

where

Dn(�; �;�) = H�n(�; �;�)� V�1(�; �;�)V �111 (�)S1n(�;0);

H�n(�; �;�) =

nX
i=1

(�1 �2)

�
h�21�21;i(�) h�21�22;i(�)
h�21�22;i(�) h�22�22;i(�)

��
�1
�2

�
;

S1n(�;0) = [S�11(�;0); S�12(�;0); S�13(�;0)]
0;
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and the omitted arguments are (~�; 0;�) for Dn, (~�;�) for V��, V�1 and V1�, (~�;0) for S1;n and
~� for V11.

In this case, the asymptotic distribution of GETn is bounded above by a �26 distribution

because of the six in�uence functions. In addition, it is bounded below by a 50:50 mixture of �23
and �24 because �11, �12 and �13 are �rst-order identi�ed parameters and an even-order derivative

of � is involved.

C.3 Computational details

C.3.1 In�uence functions

In practice, the calculation of the GET statistic requires explicit expressions for all the

di¤erent ingredients that appear in (C12). Tedious but straightforward algebra implies that

@l

@�
= (0; 1; 0) �H2(x1; x2;�);

@l

@�11
= H31(x1; x2;�);

@l

@�12
= H22(x1; x2;�);

@l

@�13
= H13(x1; x2;�);

@2l

@�221
= (0; 6�; 0) �H2(x1; x2;�)

+ (0; 18�; 36�2; 18�3; 0) �H4(x1; x2;�)

+ (0; 9�; 36�2; 54�3; 36�4; 9�5; 0) �H6(x1; x2;�)

+ (0; �; 6�2; 15�3; 20�4; 15�5; 6�6; �7; 0) �H8(x1; x2;�);

@2l

@�21@�22
= �(0; 6�3; 0) �H2(x1; x2;�)

�
�
0; 18�3; 18

�
�4 + �2

�
; 18�3; 0

�
�H4(x1; x2;�)

�
�
0; 9�3; 18

�
�4 + �2

�
; 9
�
�5 + 4�3 + �

�
; 18

�
�4 + �2

�
; 9�3; 0

�
�H6(x1; x2;�)

�
�
0; �3; 3

�
�4 + �2

�
; 3
�
�5 + 3�3 + �

�
; �6 + 9�4

+9�2 + 1; 3
�
�5 + 3�3 + �

�
; 3
�
�4 + �2

�
; �3; 0

�
�H8(x1; x2;�)

and

@l

@�222
= (0; 6�; 0) �H2(x1; x2;�)+�
0; 18�3; 36�2; 18�; 0

�
�H4(x1; x2;�)

+
�
0; 9�5; 36�4; 54�3; 36�2; 9�; 0

�
�H6(x1; x2;�)

+
�
0; �7; 6�6; 15�5; 20�4; 15�3; 6�2; �; 0

�
�H8(x1; x2;�);

where

Hp(x1; x2;�) = [Hp0(x1; x2;�);Hp�1;1(x1; x2;�); :::;H0;p(x1; x2;�)]
0 :
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C.3.2 Positivity of the Hermite expansion of the Gaussian copula

The foregoing derivations, though, ignore that the positivity of the Hermite copula density

for all values of y imposes highly nonlinear inequality constraints on the elements of � = (�01;�
0
2)
0

with �1 = (�11; �12; �13)
0 and �2 = (�21; �22)

0. Therefore, Assumption 2.1 fails because �0 lies

at the boundary of the admissible parameter space. Nevertheless, we can still derive an LR-

equivalent test. Speci�cally, given that under the null hypothesis of a Gaussian copula the

UMLE estimators of �1 and �2 converge at rates n�
1
2 and n�

1
4 , respectively, the elements of the

sequence �1n are negligible, in which case we simply need to �nd the asymptotes of the feasible

set for (�21; �22). Let �21 = ��1 = �sin(!) and �22 = ��2 = �cos(!) with ! 2 [0; 2�) to ensure
a unit norm for � = (�1; �2)

0. As we show below, these parameters lead to a positive density

when � is small enough if and only if ! 2 (!l; !u), with !l and !u de�ned in (C15). Therefore,
an asymptotically equivalent GET statistic that imposes positivity of the Hermite expansion

copula under admissible alternatives local to the null will be given by

1

n
S01nV

�1
11 S1n +

1

n
sup

!2(!l;!u)
D0n
�
V�� � V�1V�111 V1�

��1Dn1 [Dn > 0] : (C13)

This test is asymptotically equivalent to the LR test, which implicitly imposes positivity

because a zero density gives rise to an in�nitely penalized log-likelihood. Nevertheless, our test

is again far more computationally convenient than the LR test because the positivity constraints

e¤ectively become linear under local alternatives.

To justify these claims, it is convenient to remember that in the original parametrization,

P (x1; x2;';#) is equal to

1+ #1H40(x1; x2;') + #2H31(x1; x2;') + #3H22(x1; x2;') + #4H13(x1; x2;') + #5H04(x1; x2;'):

But as mentioned before, after reparametrization the marginal distributions only depend on

�21 or �22. For that reason, it is convenient to consider two groups of parameters, namely

�1 = (�11; �12; �13) and �2 = (�21; �22). In addition, the positivity constraint depends mainly on

�2 because �̂21 and �̂22 are Op(n�
1
4 ) under the null while �̂11, �̂12 and �̂13 are Op(n�

1
2 ). Therefore,

�1 is dominated, at least asymptotically. For that reason, we �rst discuss the positivity constraint

on �2 when �1 = 0, and then explain how to simplify the asymptotic positivity constraint and

the extremum test statistic.

Let x2 = tx1, �22 = k�21, k � 0 so that the polynomial that multiplies the Gaussian pdf

simpli�es to

~P (x1; �; k; t; �21) = P [x1; tx1;�; (�21; 0; 0; 0; k�21)
0]

= 1 + 3�21C0(k) +
3�21

1� �2
C2(k; t; �)x

2
1 +

�21

1� �2
C4(k; t; �)x

4
1;

where

C0(k) = k+1; C2(k; t; �) = k
�
�2 � 2

�
t2+(k + 1)�t+�2�2 and C4(k; t; �) = kt4�k�t3��t+1:
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It is easy to see that the minimum of ~P (x; �; k; t; �21) is �nite if and only if (i) C4(k; t; �) > 0

or (ii) C4(k; t; �) = 0 and C2(k; t; �) � 0. In addition, when �21 is very small under either (i) or
(ii), we have minx ~P (x; �; k; t; �21) is greater than 0. Thus, we need to �nd a set K(�) such that

for all � 6= 0, for all k 2 K(�) � [0;+1) and for all t 2 R, we have either (1) C4(k; t; �) > 0 or (2)
C4(k; t; �) = 0 and C2(k; t; �) � 0. In other words, we need C4(k; t; �) = kt4� k�t3��t+1 � 0
for all t.

To guarantee the positivity of this expression, we need k > 0. If the discriminant of C4(k; t; �)

is positive, then C4(�; t; �) = 0 has either only real or only complex roots, while if the discriminant
is negative, then C4(�; t; �) = 0 will have both two real and two complex roots. Finally, if the

discriminant is zero, then at least two roots must be equal. Therefore, we want the discriminant

of C4(k; t; �) to be non-negative. Indeed, we can �nd two functions, lb(�) and ub(�) such that

lb(�) < k < ub(�) if and only if the discriminant is positive while k 2 flb(�); ub(�)g if and only
if the discriminant is zero. Moreover, lb(�) 2 (0; 1), ub(�) 2 (1;+1), and lb(�)ub(�) = 1. The
proof of these statements is as follows.

We can easily show that

Disct[C4(k; t; �)] = �k2[27k2�4 + 2k
�
2�6 + 3�4 + 96�2 � 128

�
+ 27�4];

so that the solution to

Disct[C4(k; t; �)] = 0

is 8>>>>><>>>>>:
lb(�) = �

2�6 + 3�4 + 96�2 + 2(

q�
�2 � 4

�3 �
�2 � 1

� �
�2 + 8

�2 � 64)
27�4

ub(�) = �
2�6 + 3�4 + 96�2 � 2(

q�
�2 � 4

�3 �
�2 � 1

� �
�2 + 8

�2
+ 64)

27�4

Thus, when k 2 [lb(�); ub(�)], the discriminant is positive and we simply need to check whether
C4(k; t; �) � 0. First, consider � > 0 and C4(k; t; �) = kt3(t � �) � �t + 1. When t � �,

C4(k; t; �) is increasing in k. In this context, we can prove that mint��C4[lb(�); t; �] = 0. In

contrast, when t 2 [0; �), C4(k; t; �) is decreasing in k, and we have mint��C4[ub(�); t; �] = 0.
Finally, when t < 0, it is obvious that C4(k; t; �) > 0. In summary, k 2 [lb(�); ub(�)] is su¢ cient
for C4(k; t; �) � 0 and the same is true for � < 0.

However, when either k = lb(�) or k = ub(�), we have tl; tu de�ned by C4[lb(�); tl; �] = 0

and C4[ub(�); tu; �] = 0, respectively, so that

C2[lb(�); tl; �] < 0 and C2[ub(�); tu; �] < 0 for all �;

which in turn implies that k 2 flb(�); ub(�)g does not hold.
In sum, we have shown that when �1 = 0, the asymptotes of the feasible set near 0 are

�22 = lb(�)�21 and �22 = ub(�)�21.
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Next, we know from Theorem 1 that

LR = ET (�ET ) +Op(n
� 1
2r ); (C14)

where

ETn(�) = 2

0BBB@
n
1
2�1

n
1
2 �221

n
1
2 �21�22

n
1
2 �222

1CCCA
0BBB@

n�
1
2S�1(

~�;0)

n�
1
2H�21�21(

~�;0)

n�
1
2H�21�22(

~�;0)

n�
1
2H�22�22(

~�;0)

1CCCA�
0BBB@

n
1
2�1

n
1
2 �221

n
1
2 �21�22

n
1
2 �222

1CCCAV��(~�)
0BBB@

n
1
2�1

n
1
2 �221

n
1
2 �21�22

n
1
2 �222

1CCCA ;
�ET = argmax�2�ETn(�);

and � is the set of parameters that satis�es the positivity constraint. Unfortunately, ETn(�ET )

is not very easy to calculate because � is di¢ cult to characterize explicitly. For that reason, we

will show that

ETn(�
ET ) = GETn + op(1);

where

GETn =
1

n
S0�1(

~�;0)V �111 (
~�)S�1(

~�;0) + sup
!2(!l;!u)

1

n

D2(~�;�)1[D(~�;�) � 0]
V22(~�;�)� V21(~�;�)V �111 (

~�)V12(~�;�)
;

with �1 = sin(!) and �2 = cos(!) so that k�k = 1, and

!l = arctan[lb(~�)]; !u = arctan[ub(~�)]: (C15)

Let �21 = �1� and �22 = �2�, then

ETn(�1; �;�)= 2

�
�1
�2

��
S�1(

~�;0)

S�2(~�; 0;�)

�
� n

�
�1
�2

��
V11(~�) V12(~�;�)
V21(~�;�) V22(~�;�)

��
�1
�2

�
; (C16)

with

S�2(�; 0;�) =
�
�1
�2

�0 �
H�21�21(�;0) H�21�22(�;0)
H�21�22(�;0) H�22�22(�;0)

��
�1
�2

�
:

Similarly, let ~� = maxf�ET ; n�kg with 1
4 < k <

1
2 . Then it is easy to see that

ETn(�
ET
1 ; ~�;�ET ) = ETn(�

ET
1 ; �ET ;�ET ) + op(1): (C17)

Next, consider (��1; �
�;��)=argmaxpc^f��n�kgETn(�1; �;�), where pc=f(�1; ��1; ��2) 2 �g.

It is easy to see that w.p.a. 1,

ETn(�
ET
1 ; �ET ;�ET ) � ETn(��1; ��;��) � ETn(�ET1 ; ~�;�ET ) (C18)

because (�ET1 ; �ET ;�ET ) = argmaxpcETn(�1; �;�) is chosen from a larger feasible set, and the

event (�ET1 ; ~�;�ET ) 2 pc and
�
~� � n�k

	
happens w.p.a. 1. Combining (C17) and (C18), we

have

ETn(�
�
1; �

�;��) = ETn(�
ET
1 ; �ET ;�ET ) + op(1); (C19)
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so we only need to calculate (��1; �
�;��).

In this context, note that there exists a k0 2 (k; 12) such that

limnP (k��1k < n�k
0
< n�k � ��) = 1: (C20)

Therefore, this con�rms that ��1 is asymptotically irrelevant for the positivity constraints because

it is e¤ectively unrestricted. Consequently, (C20) implies that the only relevant restriction will

a¤ect the direction of �2.

In view of (C16), the �rst order condition for ��1 for given �
� and �� implies that

n
1
2��1(�

�;��) = V �111 (
~�)[n�

1
2S�1(

~�;0)� V12(~�;��)n
1
2 (��)2]:

Hence, if we substitute ��1(�
�;��) in the expression for ET (�1; �;�), we end up with

ETn(�
�
1; �

�;��) =
1

n
S0�1(

~�;0)V �111 (
~�)S�1(

~�;0)

� n
1
2 ��2[V22(~�;��)� V21(~�;��)V �111 (

~�)V12(~�;��)]n
1
2 ��2

+ 2n
1
2 ��2[n�

1
2S�2(~�;0;��)� V21(~�;��)V �111 (

~�)n�
1
2S�1(

~�;0)]: (C21)

Given that (C21) is quadratic in ��2, if take into account the restriction �� � n�k, we obtain

��(��)=max
�
n�

1
4

q
[V22(~�;��)�V21(~�;��)V �111 (

~�)V12(~�;��)]n�
1
2D(~�;��)1[D(~�;��)�0];n�k

�
;

where D(�;�) = S�2(�;0;��)� V21(�;�)V �111 (�)S�1(�;0).

Thus, if we replace the previous expression for ��(��) into (C21), we end up with

ETn(�
�
1; �

�;��) =
1

n
S0�1(

~�;0)V �111 (
~�)S�1(

~�;0)

+
1

n

D2(~�;��)1[D(~�;��) � 0]
V22(~�;��)� V21(~�;��)V �111 (

~�)V12(~�;��)| {z }
part 2

+op(1): (C22)

But since part 2 in (C22) is a function of ��, which by de�nition is a maximizer of ETn, we will

�nally end up with

ETn(�
�
1; �

�;��) =
1

n
S0�1(

~�;0)V �111 (
~�)S�1(

~�;0)

+ sup
!2(!l;!u)

1

n

D2(~�;�)1[D(~�;�) � 0]
V22(~�;�)� V21(~�;�)V �111 (

~�)V12(~�;�)
+ op(1);

which con�rms that

ETn(�
ET
1 ; �ET ;�ET ) =

1

n
S0�1(

~�;0)V �111 (
~�)S�1(

~�;0)

+ sup
!2(!l;!u)

1

n

D2(~�;�)1[D(~�;�) � 0]
V22(~�;�)� V21(~�;�)V �111 (

~�)V12(~�;�)
+ op(1)

in view of (C19).
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C.4 Simulation evidence

For simplicity, we assume the marginal distributions are known, so that we can directly

work with the uniform ranks, which we immediately convert into Gaussian ranks (see Amengual

and Sentana (2020) for further discussion of this topic). We estimate the correlation parame-

ter, whose true value we set to 0:5 under both the null and alternative hypotheses, using the

Gaussian rank correlation in Amengual, Sentana and Tian (2022), which e¤ectively imposes

the null. As alternative hypotheses, we consider two Hermite expansion copulas: one with

#0 = (0:03; 0; 0; 0; 0) (Ha1) and another with #
0 = (0:02; 0; 0; 0; 0:02) (Ha2). While the second

one generates a copula density which is symmetric around the 45o line, the �rst one does not.

In any event, both departures from the Gaussian copula are rather mild, as they only involve

one or two parameters di¤erent from 0.

If the correlation coe¢ cient were known, we could again compute exact critical values under

the null for any sample size to any degree of accuracy by repeatedly simulating samples of i:i:d:

bivariate normals with correlation '. In practice, though, we �x the correlation coe¢ cient to

its estimated value in each sample in what is e¤ectively a parametric bootstrap procedure (see

Appendix D.1 in Amengual and Sentana (2015) for details).

In Table 3 we compare the results of our tests with three alternative procedures: KS, which

denotes the non-parametric Kolmogorov�Smirnov test for copula models (see Rémillard (2017)),

KT-AS, which is the Kuhn-Tucker test based on the score of a symmetric Student t copula

evaluated under Gaussianity (see Amengual and Sentana (2020)), and GMM, which refers to

the moment test based on the underlying in�uence functions in GET.

Following the same structure as in Table 1, the �rst three columns of Table 3 report rejection

rates under the null at the 1%, 5% and 10% levels for n = 400 (top) and n = 1; 600 (bottom). The

results make clear that the parametric bootstrap works remarkably well for both sample sizes. In

turn, the last six columns present the rejection rates at the same levels for the two alternatives.

By and large, the behavior of the di¤erent test statistics is in accordance with expectations.

In particular, when the sample size is large our proposal is the most powerful given that it is

designed to direct power against alternatives in which the copula follows a Hermite expansion

of the Gaussian one. In contrast, its non-parametric competitor has close to trivial power in

samples of 400 observations, a situation that improves marginally when n = 1; 600. Interestingly,

the Kuhn-Tucker version of the Gaussian versus Student t copula test in Amengual and Sentana

(2020) performs quite well when n is large in spite of not being designed for the alternatives

we consider. Importantly, GET does a better job than the moment test based on the in�uence

functions Sn implied by the higher-order expansion of the log-likelihood on which it is based,

which is partly due to the fact that it takes into account the partially one-sided nature of the

12



Table 3: Monte Carlo rejection rates (in %) under null and alternative hypotheses for the
Gaussian versus Hermite expansion copula test

Null Alternative hypotheses
hypothesis Ha1 Ha2

1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A: n = 400
GET 1.1 5.1 10.2 18.4 49.7 65.1 26.9 60.9 74.2
KS 0.9 4.7 9.3 0.9 4.7 9.9 1.1 5.4 10.6
KT-AS 1.2 5.3 10.3 18.9 39.2 52.0 31.7 55.4 68.0
GMM 1.1 5.2 10.2 3.8 38.4 57.0 6.3 49.7 67.2

Panel B: n = 1; 600
GET 0.9 4.9 10.3 90.8 98.9 99.6 96.8 99.7 99.9
KS 0.9 4.7 9.8 1.9 7.7 14.5 3.1 10.4 18.6
KT-AS 0.9 5.3 10.6 60.9 82.8 90.1 87.1 95.9 98.2
GMM 1.1 5.0 9.9 44.0 95.5 99.0 68.2 98.8 99.7

Notes: Results based on 10,000 samples. Margins are assumed to be known. The correlation parameter '
is estimated under the null using the Gaussian rank correlation estimator described in Amengual, Sentana
and Tian (2019). KS denotes the Kolmogorov�Smirnov test for copula models (see Rémillard (2017) for
details) while KT�AS is the Kuhn-Tucker test based on the score of the symmetric Student t copula (see
Amengual and Sentana (2020) for details). GMM refers to the J-test based on the in�uence functions
underlying GET. Critical values are computed using the parametric bootstrap. DGPs: The correlation
parameter ' is set to 0:5 under both the null and alternative hypotheses. As for the alternative hypotheses,
Ha1 and Ha2 correspond to pure, fourth-order Hermite expansion copulas with #

0 = (0:03; 0; 0; 0; 0) and
#0 = (0:02; 0; 0; 0; 0:02), respectively.

alternatives.

Finally, it is important to mention that in this example the log-likelihood function under the

alternative is particularly di¢ cult to maximize over the �ve parameters involved. In fact, we

systematically encounter multiple local maxima in samples of up to 100,000 observations even

if we �x the correlation parameter to its true value and use global optimization methods, which

forced us to repeat the calculations over a huge grid of initial values. For that reason, we have

only computed the Gaussian rank correlation coe¢ cient between the LR test and GET across

ten such simulated samples, obtaining a high value of .96.

13



D Example 4: Purely non-linear predictive regression

D.1 The model and its log-likelihood function

Consider the following extension of the nonlinear regression model in Bottai (2003), in which

the data consist of n observations y = (y1; y2; y3) drawn from a joint distribution characterized

by

f(y;�) = f(y3jy1; y2;�)f(y1; y2);

where f(y1; y2) is �xed and known, while

f(y3jy1; y2;�) = �
�
y3 � exp (�1y1 + �2y2) + �1y1 + �2y2 +

1

2
�22y

2
2

�
; (D23)

with � = (�1; �2)
0 unknown. This model has an interesting interpretation in the context of

predictive regressions. Speci�cally, a Taylor expansion of the exponential function immediately

shows that the mean predictability of y3 does not come from the terms that also enter outside

the exponent (namely, y1, y2 and y22) but rather, from higher order powers of the two regressors

as well as their cross-products. Therefore, model (D23) provides an interesting functional form

for predictive regressions of variables such as �nancial returns when a researcher believes in

predictability but not through standard linear terms (see for example Spiegel (2008) and the

references therein for a discussion of return predictability).

D.2 The null hypothesis and the GET test statistic

In the case of a single regressor, Bottai (2003) showed that the nullity of the information

matrix is one when the regressand is unpredictable. Not surprisingly, the information matrix

has several rank de�ciencies under the null hypothesis H0 : � = 0 in the multiple regressor case.

The relevant derivatives of log-likelihood function with respect to �1 and �2 evaluated at the

null hypothesis are
@l

@�1
= 0;

@l

@�2
= 0;

@2l

@�21
= y21(y3 � 1),

@2l

@�1@�2
= y1y2(y3 � 1),

@2l

@�22
= 0

and
@3l

@�32
= y32(y3 � 1):

Therefore, we have a situation in which the degree of underidenti�cation is di¤erent for the

two regression coe¢ cients. But since Assumption 4 is satis�ed with C = f(2; 0); (1; 1); (0; 3)g; a
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straightforward application of Theorem 2 implies that

LRn = GETn +Op(n�
1
6 )

= sup
�1;�2

2(�21; �1�2; �
3
2)

0B@ L
[2;0]
n

L
[1;1]
n

L
[0;3]
n

1CA�n(�21; �1�2; �32)
0@ I11 I12 I13
I21 I22 I23
I31 I32 I33

1A0@ �21
�1�2
�32

1A+Op(n� 1
6 ); (D24)

where 0@ I11 I12 I13
I21 I22 I23
I31 I32 I33

1A = lim
n!1

V ar

24pn
0@ l[2;0]

l[1;1]

l[0;3]

1A35 :
In this case, though, we need to obtain the maximum with respect to �1 and �2 over the entire

Euclidean space of dimension 2 rather than over the unit circle.

Nevertheless, we can provide an asymptotically equivalent but much simpler statistic. Let

p1 =
p
n(�ET1 )2, p2 =

p
n�ET1 �ET2 and p3 =

p
n(�ET2 )3. It is then straightforward to show that

n
1
6 p1p

2
3
3 = p

2
2:

As a result, we must have that either p1 or p3 are negligible when n is large because p2 is Op(1)

from Lemma 1 in Appendix A. If p1 is negligible, then (D24) is asymptotically equivalent to

supET1n = sup
�1;�2

2(�1�2; �
3
2)

 
L
[1;1]
n

L
[0;3]
n

!
� n(�1�2; �32)

�
I22 I23
I32 I33

��
�1�2
�32

�

=
1

n
(L[1;1]n ; L[0;3]n )

�
I22 I23
I32 I33

��1 
L
[1;1]
n

L
[0;3]
n

!
:

If instead p3 is negligible, then (D24) becomes asymptotically equivalent to

supET2n = sup
�1;�2

2(�21; �1�2)

 
L
[2;0]
n

L
[1;1]
n

!
� n(�21; �1�2)

�
I11 I12
I21 I22

��
�21
�1�2

�

=
1

n

(
(L
[1;1]
n )2

I22
+
(L
[2;0]
n � I12I�122 L

[1;1]
n )2

I11 � I12I�122 I21
1[L[2;0]n � I12I�122 L[1;1]n > 0]

)
:

Consequently, we could obtain an asymptotically equivalent statistic up to a term of order op(1)

by simply retaining GETn = max fsupET1n; supET2ng.

In addition to computational advantages, it turns out that the asymptotic distribution of

our test is easy to obtain. Speci�cally, let

Z1n = n
� 1
2
L
[2;0]
n � I12I�122 L

[1;1]
nq

I11 � I12I�122 I21
; Z2n = n

� 1
2
L
[1;1]
np
I22

and Z3n = n
� 1
2
L
[0;3]
n � I32I�122 L

[1;1]
nq

I33 � I32I�122 I23
;

where 0@ Z1n
Z2n
Z3n

1A d�!

0@ Z1
Z2
Z3

1A � N

240@ 0
0
0

1A ;
0@ 1 0 r13

0 1 0
r13 0 1

1A35
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and

r13 =
I13 � I12I�122 I23q

I11 � I12I�122 I21
q
I33 � I32I�122 I23

:

Then, supET1n = Z22n + Z
2
3n and supET2n = Z

2
2n + Z

2
1n1 [Z1n � 0]. As a consequence,

GETn
d! maxfZ211 fZ1 � 0g ; Z23g+ Z22 :

In other words, the asymptotic distribution of GETn will be a �22 50% of the time (when Z1 < 0)

and the sum of a �21 with the largest of two other possibly dependent �
20
1 s (when Z1 � 0). If

we further assume that the regressors y1 and y2 are two independent normals with 0 means and

variances �21 and �
2
2, respectively, then Z1, Z2 and Z3 will be three independent N(0; 1) random

variables.

D.3 Simulation evidence

As alternative hypotheses, we consider �1 = 0:3, �2 = 0 (Ha1) and �1 = 0, �2 = 0:5 (Ha2)

in speci�cation (D23). And like in the normal versus SNP example, by maintaining that y1

and y2 are uncorrelated, we can compute exact critical values for any sample size to any degree

of accuracy by repeatedly drawing i:i:d: spherical normal vectors (y1; y2; y3), which e¤ectively

imposes the null hypothesis.

In Table 4 we compare the results of the two versions of our tests discussed above, with

the GMM test mentioned at the end of section 2.2 and two simple alternative procedures.

First, a standard LM test based on pseudo-Gaussian ML that checks the joint signi�cance of

y21 and y1y2 in the OLS regression of y3 on a constant and these two variables, which are the

transformations of the predictors missing from the part outside the exponent in the conditional

mean speci�cation. And second, a closely related LM test based on pseudo-Gaussian ML which

augments the previous regression with the following four cubic terms y31, y
2
1y2, y1y

2
2 and y

3
2. We

refer to these tests as OLS1 and OLS2, respectively.

The �rst three columns of Table 4 report rejection rates under the null at the 1%, 5% and 10%

levels for n = 400 (top) and n = 1; 600 (bottom) for the �rst alternative hypothesis we consider

while the last three do the same for the second one. Once again, the behavior of the di¤erent test

statistics is in accordance with expectations. In particular, our proposed statistics are the most

powerful in both cases. Part of the reason has to do with the fact that the linear regressions only

provide an approximation to the true non-linear conditional expectation. However, the fraction
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Table 4: Monte Carlo rejection rates (in %) under alternative hypotheses for white noise versus
a purely nonlinear regression test

Alternative hypotheses
Ha1 Ha2

1% 5% 10% 1% 5% 10%

Panel A: n = 400
GET 19.5 41.3 54.4 18.5 39.7 52.4
LR 21.7 41.7 56.2 20.5 40.4 54.1
LM3 17.6 39.8 52.9 18.2 38.8 50.9
GMM 15.3 34.3 47.0 14.3 33.4 45.5
OLS1 16.2 34.6 47.2 12.9 30.5 41.9
OLS2 9.6 23.9 37.0 7.3 20.2 32.4

Panel B: n = 1; 600
GET 65.5 83.9 90.2 61.3 80.5 87.6
LR 66.3 84.5 91.2 61.9 81.5 88.5
LM3 57.7 79.1 87.4 53.1 75.3 84.2
GMM 57.6 78.3 86.0 54.3 75.2 83.6
OLS1 53.2 74.1 83.3 42.7 64.6 75.1
OLS2 37.7 61.6 73.3 25.7 48.8 61.8

Notes: Results based on 10,000 samples. GET and LR are de�ned in Supplemental Appendix D. GMM
refers to the J-test based on the in�uence functions underlying GET. OLS1 denotes a standard LM test
that checks the joint signi�cance of y21 and y1y2 in the OLS regression of y3 on a constant and these
two variables while OLS2 is the LM test which augments the previous regression with the following four
cubic terms y31 , y

2
1y2, y1y

2
2 and y

3
2 . Finite sample critical values are computed by simulation. DGPs:

(y1y2) � i:i:d: N(0; I2) under both alternative hypotheses. In turn, y3jy2; y1 is i:i:d: standard normal
under the alternatives �1 = 0:25 and �2 = 0:25 (Ha1), and �1 = 0:3 and �2 = 0:1 (Ha2).

of the theoretical variance of y3 explained by y21; y1y2; y
3
1, y

2
1y2, y1y

2
2 and y

3
2 is essentially the

same as the fraction explained by the true conditional mean in Ha2. As a result, the superior

power of our tests relative to OLS2 comes from the reduction in degrees of freedom.

Given that in this case our test has a relatively standard asymptotic distribution �namely,

a 50:50 mixture of �22 and the sum of �21 with the larger of two other independent �
2
1�s�we can

also compute Davidson and MacKinnon (1998)�s p-value discrepancy plots to assess the �nite

sample reliability of this large sample approximation for every possible signi�cance level. The

results for the two sample sizes we consider, which are available on request, con�rm the high

quality of the asymptotic approximation.

Finally, our results indicate a .94-.95 Gaussian rank correlation between our proposed test
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statistic and the LR across Monte Carlo simulations generated under the null, which is in

line with our asymptotic equivalence results in Theorem 2. At the same time, they con-

�rm that the LR test typically takes about 200 times as much CPU time to compute as the

max fsupET1n; supET2ng version of our test.

E Relationship to the previous literature

Davies (1987) proposed perhaps the most cited sup-type test, so it is illustrative to provide

a link between Theorem 1 and his results. In view of the fact that k�rk remains irrelevant

regardless of qr, without loss of generality we can consider the reparametrization �r = ��, with

� 2 Rqr , k�k = 1 and � � 0, so that � and � represent the magnitude and direction of the

parameter vector �r, respectively. Given that

sup
�;�1;k�k=1;��0

Ln(�;�1; ��) = sup
�;�1;�r

Ln(�;�1;�r);

we could rewrite the null hypothesis as H0 : �1 = 0; � = 0, where � is a nuisance parameter that

only appears under the alternative. If we considered the rth derivative of li(�) along a speci�c

direction �, which would e¤ectively coincide with the rth derivative with respect to �, then we

could directly apply the Lee and Chesher (1986) approach to obtain the relationship between

the LR and ET tests along that direction. Next, we could look at the supremum of those tests

over all possible directions, as suggested by Davies (1987), which would e¤ectively yield GETn.

Nevertheless, this intuitive explanation in terms of � and � has some limitations. First, Lee

and Chesher (1986) would yield a pointwise result for a given �, while Theorem 1 relies on

uniform convergence. More importantly, Davies (1987) method is designed for models in which

the log-likelihood function is absolutely �at for some parameters under the null, so regardless

of its analytic nature, no higher order derivatives will provide moments to test. In contrast, we

consider situations in which the log-likelihood function written in terms of � only has a �nite

number of zero derivatives, so a test statistic can be based on the �rst round of non-zero ones.

In this respect, the underidenti�cation of � is an artifact of the �r = �� reparametrization that

would persist even if the information matrix had full rank, in which case the supremum over

� of the test of H0 : �1 = 0; � = 0 will yield the usual LM test. In any event, in Theorem 2

we derive a generalized extremum test in a more general context without resorting to any such

reparametrization.
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