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B Reparametrizations
B.1 Sequential reparametrization method

In what follows, we explain how to obtain the reparametrization alluded to in section 2.1

using a sequential approach. To do so, we make the following

Assumption 7 1) The asymptotic covariance matriz of the sample averages of (sy,s9,) eval-
uated at (¢, 0) scaled by \/n has full rank.
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3) There exists a set of coefficients {mj;ger}Lg,,jer=r71,k:1,...,pfqr which may be functions of @ such

that L.
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for all v, jo, = — 1, where the default argument is (¢,0).

In this context, a convenient way of reparametrizing the model from (¢, ) to (¢, 0) is as

follows:
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Then, if we use Faa di Bruno’s (1859) formulas, which generalize the usual chain rule to

higher-order derivatives, we can show that
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for all ¢}, jg, = — 1 as desired, and where the default argument is again (¢, 0).
Finally, we need to check whether >, . _ X0 01l gvaluated at (¢,0) is linearly inde-

to,d6r =" Jo,! oelor
pendent of (sg,sg,) for all )\% 4+ 4 )\gr = 1. If so, Theorem 1 applies. Otherwise, we should

check whether either:

1) there exists a new set of coefficients {mmr }LgTjeT=r,k=1,...7pfqr which may be functions of ¢
such that
tie, tie, tie, tie, 8”:1rj0rl
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when evaluated under the null, in which case we can do a further reparametrization from (¢, 6)
to (qu, HT) in such a way that we set all the 7** partial derivatives with respect to 0" to Z€ro, or

2) we can use Theorem 2, which covers far more general cases.



B.2 Numerical invariance to reparametrization

Let us now prove that the GET statistic that we proposed in Theorem 1 is invariant to
reparametrization, exactly like the LR test or the usual LM tests that rely on the information
matrix rather than the sample average of the Hessian. For simplicity of notation, we will do
so in a simple case in which r = 2 and 8 = 65, so that we can omit the subscript 2 from 6
henceforth. Additionally, we drop the subscript ¢ from the contributions of each observation to
the log-likelihood function.

Define o = (¢, ) as the original parameter vector, where ¢ is p x 1 and ¥ a ¢ x 1 vector.
In what follows, (¢, 0) are the omitted arguments for all the relevant quantities that depend on
(¢, 7).

We maintain that Assumption 3 holds with » = 2 for the original parameters g, so that 1)
the asymptotic variance of the sample average of s, has full rank, 2) there is a ¢ x p matrix M

of possible functions of ¢ such that
Msqi(¢,0) + s9i(9,0) = 0 (B2)
holds, and 3) the asymptotic variance of the sample average of
i (1)
q d00¢' I,
has full rank under the null for all v such that ||v]|| # 0.

If we reparametrize from o to p as
p=0¢p+M8, and V=20,

then, we can easily check that
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In addition, (B3) and (B4) hold when evaluated under the null, with

0000' I, ) 9000 \ 1,

linearly independent of 9l/0¢, which implies that Assumption 3 is satisfied with » = 2 for the
transformed parameters p = (¢, 8’)" too. Consequently, we can apply Theorem 1, which yields
GET? = SUD| || £0 ET¥ (v), where

[V'H()v]2 1 W'H()v > 0]

ETf(v) = Vo) 20,
wel = (1) Gaot o (00 ) @)




and

Vy(v,¢) = Vu'H(p)v] — Cov[v"H(p)v,54()]V " [s6()]|Covse (), v'H(p)v]

is the adjusted variance of v'H(p)v.
Consider now an alternative reparametrization from g to p' characterized by
T of
o= (%) -5 | o
where g(-) is some second-order continuously differentiable vector of functions which represent a
suitable diffeomorphism, at least locally around the null. Such an alternative reparametrization
must also ensure that: (i) s, has full rank, (ii) sy: is identically 0 at Ho : 6" = 0, and (iii)
r 9%

V' oi5er ¥ Is linearly independent of s+ for all [lv]| # 0.

Given that the first order derivative of ¢! under the null is given by
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where we have used the chain rule in the first equality and (B2) in the second one, we need to

assume that

(o)) o/
det <8g — g
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for 1/0¢' to have full rank. Similarly, given that (B2) and the chain rule imply that
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we must also assume that
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to ensure that 9/ 00" = 0 under the null irrespective of ¢! because s, has full rank.

(B7)

Let us now turn to condition (iii), for which we first need to compute the corresponding
second-order derivatives. Applying the chain rule once again, we obtain
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In this context, (B7) and (B2) imply that
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when evaluated at the null, so

921 g 62g¢ Y 82g0 +ag01Ha;g9
06toe | 7 \ 99lo0! oolod ) J .~ 06" 06"

Hence, (B5) implies that
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when evaluated at the null, where a = (a1, ...,aq)" with

a; = 62g? - M azgf vand vl = Qg"v
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In this context, if we further assume that

og?
det (OOT') #0, (B8)

then it is easy to see that v’ 60‘?7%1) will be linearly independent of s ot for all v such that
[vT]| # 0 because (a) v"Hut is linearly independent of s and (b) s, is a linear combination
of s,.

In sum, once we guarantee that (B6), (B7) and (B8) hold, the parametrization from o to p'

satisfies the rank deficiency condition in Assumption 3 with r = 2.
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Finally, let us define the adjusted asymptotic variance of v’ FU as

V.ol =v (v—LL o) - O -1 O
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=V, (v, ).

Then, we will have that
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where the third equality follows from the fact that s, () = 0. Given that the mapping from v
to v! is bijective, taking the sup will finally imply that

i T
GET:; = bupHUH#OETﬁ (’U) = 5upHUT||7éOET7€(UT) = GETZ,

as desired.



C Example 3: Testing Gaussian vs Hermite copulas
C.1 The model and its log-likelihood function

The validity of the Gaussian copula in finance has been the subject of considerable debate.
As a result, it is not surprising that several authors have considered more flexible copulas. For
example, Amengual and Sentana (2020) look at the Generalized Hyperbolic copula, a location-
scale Gaussian mixture which nests the popular Student ¢ copula discussed by Fan and Patton
(2014), which in turn nests the Gaussian one. In this section, we consider Hermite copulas
instead, which can potentially provide much more flexible alternatives.
As is well known, Hermite polynomial expansions of the multivariate normal pdf can be
understood as Edgeworth-like expansions of its characteristic function. They are based on
multivariate Hermite polynomials of order p, which are defined as differentials of the multivariate

normal density:

-0

J
Hj(x,¢) = fnr(x;R) ™ <8x> fyr(x;R), (C9)

where ¢/.j = p with j € N¥ ¢ = vecl(R), and R is a positive definite correlation matrix.

To keep the expressions manageable, we only consider explicitly pure fourth-order expansions
in the bivariate case. We could also include third-order Hermite polynomials, but at a consider-
able cost in terms of notation. Similarly, extensions to higher dimensions would be tedious but
straightforward.

We say that (z1,z2) follow a pure fourth-order Hermite expansion of the Gaussian distribu-

tion when their joint density function is given by

fr(z1,2;0,9) = fn2 [( i, > ; ( Lo ﬂ P(z1,22:0,9), (C10)

) (2 1
where
4
P(z1,3050,9) =1+ Y 011 Hyj (w1, 725 0),
j=0
@ is the correlation between x; and x2, which we assume is different from 0, and ¥1,...,75

the coefficients of the expansion. The leading term in (C10) is the normal pdf and the remain-
ing terms represent departures from normality. Indeed, fr(x1,x2;p, ) reduces to a Gaussian
distribution when 9 = 0.
We can easily show that the corresponding marginal distributions are given by
fu(z1;91) = ¢(z1)[1 + F1Hao(71, 22)] } ’ (C11)
fr(%2;95) = ¢(22)[1 4 U5 Hoa(21,72)]
where ¢(.) the standard normal pdf and Hyo(z1,22) and Hos(z1,22) are the (non-standardized)
fourth-order univariate Hermite polynomials for x; and x2, respectively.
Hermite expansion copulas are based on Hermite expansion distributions. Specifically, if

y = (y1,y2) denotes the original data, we can define u = (uj,u2) = [Fi(y1), F2(y2)] as the



uniform ranks of y, and finally x = (z1,22) = [Fj;* (u1;91), F* (u2; 95)], where Fi;'(.;9;) are
the inverse cdfs (or quantile functions) of the univariate fourth-order Hermite expansions with
parameter ¢; in (C11). When the copula is Gaussian, x; coincides with the Gaussian rank
D1 (uy).

Consequently, the pdf of the pure fourth-order Hermite expansion copula is

fu(zi,a0)  ba(wn,ma0)[1+ X0V Ha (w1, 725 0)]
fr(x;91) fu(x2;95)  ¢1(x1)[1 + V1 Hao(w1, 32)]d1 (22)[1 + U5 Hoa(21, 72)]

C.2 The null hypothesis and the GET test statistic

Straightforward calculations show that in this case

59, (0,0) + 3059, (10, 0) + 3959, (¢, 0) + ©*s9,(1p, 0)
$95(0,0) + 3059, (10, 0) + 3959, (¢, 0) + 9’59, (10, 0)

)

0
0.

Our proposed reparametrization, namely

©=¢, U1 =03, VU3=~011+300 + ¢,
V3 = 012 + 3¢°091 + 302002, U4 = 013 + 3oz + 3021, U5 = O,

confines the singularity to the scores of 621 and 022. Therefore, we need to obtain the second
order derivatives with respect to #2; and 692. In this case, we can prove that the asymptotic

covariance matrix of

o o o o L o O
6(15’ 89117 80127 8913’ 09%17 3952 86218(922

scaled by y/n has full rank. Although the algebra is a bit messy, after orthogonalizing those sec-
ond derivatives with respect to the score of ¢ to eliminate the effect of the sampling uncertainty
in estimating this correlation coefficient under the null, we can express the three second-order
derivatives as linear combinations of all the even-order multivariate Hermite polynomials of

8" order, with coefficients that depend on the correlation coefficient, as we

(z1,22) up to the
explain the next section in detail.
Let 021 = vin and 02y = von with U% + v% = 1, and consider the simplified null hypothesis
Hy: 011 = 012 = 013 = = 0. Then it is easy to see that the GET statistic will be
1 _ 1 _ _
—S1,Vix S1n + — sup D;,(Vyy = VipViy Vig) " Dl [Py > 0], (C12)

" lv)=1

where

Dn(¢>nvv) = Hnn(¢777>U)_Vn1(¢anav)‘/lzl(¢)sln(¢>0)7

¢ R921051,i(P)  Po31042,i(P) } ( Uy >
Hon (b1, 0) = U1 v 21021, 21022, :
K (¢ K ) z;( ' 2) [ h921922,i(p) h922922,i(p) V2

Sln((bao) = [S911(¢’70)75912(¢70)’5913(¢70)]17



and the omitted arguments are (¢, 0,v) for D, (¢,v) for Vims Vo1 and Vi, (¢,0) for Sy, and
q}ﬁ for V1.

In this case, the asymptotic distribution of GET,, is bounded above by a X% distribution
because of the six influence functions. In addition, it is bounded below by a 50:50 mixture of x3
and X421 because 011, 012 and 013 are first-order identified parameters and an even-order derivative

of n is involved.

C.3 Computational details

C.3.1 Influence functions

In practice, the calculation of the GET statistic requires explicit expressions for all the

different ingredients that appear in (C12). Tedious but straightforward algebra implies that

ol
% = (0,1,0) - Ha(z1, z2; ¢),
ol
80711 = H31($1,$2,¢)7
ol
% = H22($1,$2§¢)a
ol
= Hig(z1,22; 9),
9%l
— = (0,60,0) - Ha(z1, 72; ¢)

+ (0,186, 36¢%,18¢°,0) - Hy(z1, z2; ¢)
+ (0,96, 36¢2, 54¢°, 369, 9¢°, 0) - Hg (1, T2; @)
+(0,6,60%,15¢%, 204, 156", 66°, 67, 0) - Hg(z1, 22; 9),
9% 5
0010003 —(0,6¢°,0) - Ha(x1, z2; ¢)

— [0,18¢%,18 (¢* + ¢?) ,18¢°,0] - Hy(z1, 725 ¢)

— [0,96°,18 (¢* + ¢%) ,9 (¢° + 46° + ¢) , 18 (¢ + ¢7) ,96°,0] - Hg (w1, 79; ¢)

—[0,¢%,3 (¢* + 6%),3 (¢° + 3¢ + ) , ¢° + 9¢*

+96° + 1,3 (¢° +3¢% + ¢) , 3 (8" + ¢%) , ¢°, 0] - Hg (w1, 22; 0)

and
0l
—5 =(0,60,0) - Ha(z1, z2; $)+
0054
(0,18¢°, 3697, 18¢,0) - Ha(z1, z2; @)
+ (0,9¢°, 369, 54¢°, 36¢%, 96, 0) - He (1, v2; ¢)
+ (0,907,645, 154,209, 15¢°, 66%, ¢, 0) - Hg(x1, 22; ¢),
where

H, (21, 72; ) = [Hpo(21, 225 0), Hp—11(21,72; ¢), ..., Hop(1, 225 9)] .



C.3.2 Positivity of the Hermite expansion of the Gaussian copula

The foregoing derivations, though, ignore that the positivity of the Hermite copula density
for all values of y imposes highly nonlinear inequality constraints on the elements of @ = (0, 85)’
with 61 = (011,012,613)" and @2 = (f21,022). Therefore, Assumption 2.1 fails because p, lies
at the boundary of the admissible parameter space. Nevertheless, we can still derive an LR-
equivalent test. Specifically, given that under the null hypothesis of a Gaussian copula the
UMLE estimators of 81 and 05 converge at rates n~2 and n_i, respectively, the elements of the
sequence 01,, are negligible, in which case we simply need to find the asymptotes of the feasible
set for (021, 6022). Let 021 = nu; = nsin(w) and fae = nua = ncos(w) with w € [0,27) to ensure
a unit norm for v = (v1,v2)’. As we show below, these parameters lead to a positive density
when 7 is small enough if and only if w € (w;,wy), with w; and w,, defined in (C15). Therefore,
an asymptotically equivalent GET statistic that imposes positivity of the Hermite expansion
copula under admissible alternatives local to the null will be given by

1 1 _
= S1Vir S+~ sup D)y (Ve = Vin Vi Vi) 'D,1[D, > 0. (C13)

we (wi,wy)

This test is asymptotically equivalent to the LR test, which implicitly imposes positivity
because a zero density gives rise to an infinitely penalized log-likelihood. Nevertheless, our test
is again far more computationally convenient than the LR test because the positivity constraints
effectively become linear under local alternatives.

To justify these claims, it is convenient to remember that in the original parametrization,

P(xy1,x9;0,19) is equal to
1+ Y1 Hao(x1, 225 0) + V2 Hz1 (21, 225 ) + VsHoo(x1, 225 0) + VaHiz(x1, 225 0) + IsHoa(z1, 225 @).

But as mentioned before, after reparametrization the marginal distributions only depend on
021 or f9y. For that reason, it is convenient to consider two groups of parameters, namely
01 = (011,012,013) and O3 = (021, 022). In addition, the positivity constraint depends mainly on
05 because 051 and Oy are Op(n_%) under the null while 911, 012 and 015 are Op(n_%). Therefore,
01 is dominated, at least asymptotically. For that reason, we first discuss the positivity constraint
on 0> when 61 = 0, and then explain how to simplify the asymptotic positivity constraint and
the extremum test statistic.

Let o = txy1, 022 = kb1, £ > 0 so that the polynomial that multiplies the Gaussian pdf

simplifies to

]5(331,¢,k,t,921) = P[.’L’l,tl’l;¢, (021707070ak921)/]

30 0
= 1+ 302 Co(k) + 1_—"’;202(&@ )i+ ﬁa;(k,t, ¢)ai,

where

Co(k) = k+1, Co(k,t,¢) =k (¢* — 2) 2+ (k + 1) ¢t +¢*—2 and Cu(k,t, ) = kt* —kot> — gt +1.



It is easy to see that the minimum of P(m, ¢, k,t,021) is finite if and only if (i) Ca(k,t,¢) > 0
or (ii) Cy(k,t,¢) = 0 and Cs(k,t,¢) > 0. In addition, when 63 is very small under either (i) or
(i), we have min, P(z, ¢, k, t,091) is greater than 0. Thus, we need to find a set K (¢) such that
forall ¢ # 0, for all k € K(¢) C [0,400) and for all t € R, we have either (1) Cy(k,t,¢) > 0or (2)
Cy(k,t,¢) = 0 and Co(k,t,¢) > 0. In other words, we need Cy(k,t,¢) = kt* —kot> — gt +1 >0
for all ¢.

To guarantee the positivity of this expression, we need k > 0. If the discriminant of Cy(k, t, ¢)
is positive, then Cy(-,¢,-) = 0 has either only real or only complex roots, while if the discriminant
is negative, then Cjy(-,t,-) = 0 will have both two real and two complex roots. Finally, if the
discriminant is zero, then at least two roots must be equal. Therefore, we want the discriminant
of Cy(k,t,d) to be non-negative. Indeed, we can find two functions, [b(¢) and ub(¢) such that
Ib(¢) < k < ub(¢) if and only if the discriminant is positive while k € {Ib(¢), ub(¢)} if and only
if the discriminant is zero. Moreover, Ib(¢) € (0,1), ub(¢) € (1,400), and 1b(¢)ub(¢) = 1. The
proof of these statements is as follows.

We can easily show that
Disci[Cy(k,t,¢)] = —k*[2Tk*¢* + 2k (2¢° + 34" + 969 — 128) + 274",

so that the solution to
Disc[Cy(k,t, )] =0

is

26° + 39" + 9662 +2(1/ (¢7 — 4)° (6> — 1) (¢* +8)” — 64)

1(6) = s
265 + 39" + 9667 — 2(1/ (¢2 — 4)° (6> — 1) (¢* +8)” + 64)
Ub(¢) = - 27¢4

Thus, when & € [Ib(¢), ub(¢)], the discriminant is positive and we simply need to check whether
Cy(k,t,¢) > 0. First, consider ¢ > 0 and Cy(k,t,¢) = kt3(t — ¢) — ¢t + 1. When t > ¢,
Cy(k,t,¢) is increasing in k. In this context, we can prove that ming>4C4[lb(¢),t,¢] = 0. In
contrast, when ¢ € [0,¢), C4(k,t,¢) is decreasing in k, and we have min>4Cylub(¢),t, ] = 0.
Finally, when ¢ < 0, it is obvious that Cy(k,t, ¢) > 0. In summary, k € [Ib(¢), ub(¢)] is sufficient
for Cy(k,t,¢) > 0 and the same is true for ¢ < 0.

However, when either k = Ib(¢) or k = ub(¢), we have t;,t, defined by Cy[lb(¢),t;,¢] = 0
and Cy[ub(¢),ty, ¢] = 0, respectively, so that

Callb(¢), 11, ¢] <0 and Calub(¢),ty, ¢] <0 for all ¢,

which in turn implies that k € {Ib(¢),ub(¢)} does not hold.
In sum, we have shown that when 6; = 0, the asymptotes of the feasible set near 0 are
922 = lb(¢)921 and (922 = ub(¢)921.



Next, we know from Theorem 1 that

LR = ET(0PT) + Op(n"2), (C14)
where
1 1 ~ 1 1
nz20, n~25g,(¢,0) n20, n20;
Lo -1 ~ 12 ~ 142
ET,(0) =2 7;2921 n_iHozlezl(?, 0) | ?2921 Voo () ?2921 7
7129121922 n 2H921922 (¢a 0) n26216022 n2091099
1 _1 ~ 1 1
77,29%2 n 2H022022 (¢a 0) HZG%Q n2 9%2
0FT = argmaxgeo ET, (),

and O is the set of parameters that satisfies the positivity constraint. Unfortunately, ETn(BET)
is not very easy to calculate because © is difficult to characterize explicitly. For that reason, we
will show that

ET,(05T) = GET, + 0,(1),

where

1oy oo g~ - D2(¢,v)1[D(¢,v) > 0]
GET, = ~Sp (6,0)V7*(¢)Se, (¢,0) + S - = .
n 61 (gb ) 11 (¢) ] (gb ) we(sili)wu)n V22<¢, U) _ V21(¢, ,U)‘/l—ll((ﬁ)V12(¢’ U)

with v; = sin(w) and ve = cos(w) so that ||v|| =1, and

w; = arctan([lb(¢)], w, = arctan[ub(¢)]. (C15)

Let 621 = v1n and 023 = von, then

srnor=o( ) 2 o3[ 22815 o

with

o U1 ' H021021 (¢a 0) H021922 (¢a 0) v1
SBQ(Qb,O,U) B ( V2 > [ H921922(¢7 O) H922922(¢a O) :| < ) ‘

Similarly, let 7 = max{n®T, n=*} with i <k< % Then it is easy to see that

ET,(07",7,0"") = ET.(077, "7, v™") + 0p(1). (C17)

Next, consider (07, n*, v*):argmaXPCA{ank}ETn(Ol,77, v), where pc={(61,nv1,nv3) € O}.

It is easy to see that w.p.a. 1,

ET, (077 ,n"" v") > ET,(07,7*,v*) > ET, (61", 7, v"") (C18)

because (Y7, nET, vET)

event (0¥ 7, vFT) € pc and {77 > n_k} happens w.p.a. 1. Combining (C17) and (C18), we

= argmax,,. T, (01,7, v) is chosen from a larger feasible set, and the

have
ET, (65,1, v*) = ET, (077, 0", v"T) + 0,(1), (C19)
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so we only need to calculate (07, n*, v*).

In this context, note that there exists a &’ € (k, 1) such that

lim, P(||0%]| < n™* <n*F <p*) =1. C20
1

Therefore, this confirms that 07 is asymptotically irrelevant for the positivity constraints because
it is effectively unrestricted. Consequently, (C20) implies that the only relevant restriction will
affect the direction of 0.

In view of (C16), the first order condition for 87 for given n* and v* implies that
n205 (0", v") = Vi, (6) [ %59, (9,0) = Via(d,v")nz ()]
Hence, if we substitute 87 (n*, v*) in the expression for ET(01,7n,v), we end up with
BT,(07,1°,0") = - 8, (5,0)V;7(3)S0,(5,0)

— 32 Va4, 0%) — Var (6,0 Vi (9)Via(, 0" In 22
+ 20202 [0 28p,($,0,v%) — Var (4, U*)‘/lzl(&)n_%591($’ 0)]. (C21)

Given that (C21) is quadratic in 7*2, if take into account the restriction 7* > n=*, we obtain

n*(v*>=ma><{"“1‘%vzz<&s, v*) Va1 (6, v*) Vi1 H (@) V12(6, v*)Jn~ 3D (6, v*)1[D(, v*)zo}v”‘k}’

where D(¢, v) = Sp, (6, 0,0%) — Var (¢, v)Vi7'(8)Sa, (¢, 0).

Thus, if we replace the previous expression for n*(v*) into (C21), we end up with

ET,(61,0707) =~ 86,(5.0)V11"(9)S,(5,0)
1 D%(¢,v*)1[D(¢, v*) > 0]
1 Vs (¢, v*) — Va1 (¢, v*) Vi1 (9) Va2 (6, v¥)

part 2

top(1).  (C22)

But since part 2 in (C22) is a function of v*, which by definition is a maximizer of ET),, we will

finally end up with

ET,(63,7",v") = %Sal(&owlzl(&)sel(&,O)

1 D*(¢,v)1[D($,v) > 0] 1
TR Vn@0) Vo0V Vi)

which confirms that

ET(0F7 0" v = 155, (5, 0)Vi"(3)56,(5.0)

1 D*(9,v)1[D(¢,v) > 0] .
+we?:»lzl?cuu)n Voo (6, v) — Va1 (¢, v)Vi7H(9)Vi2(6, v) +opll)

in view of (C19).
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C.4 Simulation evidence

For simplicity, we assume the marginal distributions are known, so that we can directly
work with the uniform ranks, which we immediately convert into Gaussian ranks (see Amengual
and Sentana (2020) for further discussion of this topic). We estimate the correlation parame-
ter, whose true value we set to 0.5 under both the null and alternative hypotheses, using the
Gaussian rank correlation in Amengual, Sentana and Tian (2022), which effectively imposes
the null. As alternative hypotheses, we consider two Hermite expansion copulas: one with
9 = (0.03,0,0,0,0) (H,,) and another with ¥ = (0.02,0,0,0,0.02) (H,2). While the second
one generates a copula density which is symmetric around the 45° line, the first one does not.
In any event, both departures from the Gaussian copula are rather mild, as they only involve
one or two parameters different from 0.

If the correlation coefficient were known, we could again compute exact critical values under
the null for any sample size to any degree of accuracy by repeatedly simulating samples of i.i.d.
bivariate normals with correlation ¢. In practice, though, we fix the correlation coefficient to
its estimated value in each sample in what is effectively a parametric bootstrap procedure (see
Appendix D.1 in Amengual and Sentana (2015) for details).

In Table 3 we compare the results of our tests with three alternative procedures: KS, which
denotes the non-parametric Kolmogorov—Smirnov test for copula models (see Rémillard (2017)),
KT-AS, which is the Kuhn-Tucker test based on the score of a symmetric Student ¢ copula
evaluated under Gaussianity (see Amengual and Sentana (2020)), and GMM, which refers to

the moment test based on the underlying influence functions in GET.

Following the same structure as in Table 1, the first three columns of Table 3 report rejection
rates under the null at the 1%, 5% and 10% levels for n = 400 (top) and n = 1,600 (bottom). The
results make clear that the parametric bootstrap works remarkably well for both sample sizes. In
turn, the last six columns present the rejection rates at the same levels for the two alternatives.
By and large, the behavior of the different test statistics is in accordance with expectations.
In particular, when the sample size is large our proposal is the most powerful given that it is
designed to direct power against alternatives in which the copula follows a Hermite expansion
of the Gaussian one. In contrast, its non-parametric competitor has close to trivial power in
samples of 400 observations, a situation that improves marginally when n = 1, 600. Interestingly,
the Kuhn-Tucker version of the Gaussian versus Student ¢ copula test in Amengual and Sentana
(2020) performs quite well when n is large in spite of not being designed for the alternatives
we consider. Importantly, GET does a better job than the moment test based on the influence
functions S, implied by the higher-order expansion of the log-likelihood on which it is based,

which is partly due to the fact that it takes into account the partially one-sided nature of the
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Table 3: Monte Carlo rejection rates (in %) under null and alternative hypotheses for the
Gaussian versus Hermite expansion copula test

Null Alternative hypotheses
hypothesis H,, H,,
1% 5%  10% 1% 5%  10% 1% 5%  10%

Panel A: n =400

GET 1.1 5.1 10.2 184 49.7 65.1 269 609 T4.2
KS 0.9 4.7 9.3 0.9 4.7 9.9 1.1 5.4 10.6
KT-AS 1.2 5.3 103 18.9 39.2 52.0 31.7 554 68.0
GMM 1.1 5.2 10.2 3.8 384 570 6.3 49.7 67.2

Panel B: n = 1,600

GET 0.9 4.9 10.3 90.8 989 99.6 96.8  99.7 99.9
KS 0.9 4.7 9.8 1.9 7.7 145 3.1 104 18.6
KT-AS 0.9 5.3 10.6 60.9 828 90.1 87.1  95.9 98.2
GMM 1.1 5.0 9.9 44.0 955 99.0 68.2  98.8 99.7

Notes: Results based on 10,000 samples. Margins are assumed to be known. The correlation parameter ¢
is estimated under the null using the Gaussian rank correlation estimator described in Amengual, Sentana
and Tian (2019). KS denotes the Kolmogorov—Smirnov test for copula models (see Rémillard (2017) for
details) while KT-AS is the Kuhn-Tucker test based on the score of the symmetric Student ¢ copula (see
Amengual and Sentana (2020) for details). GMM refers to the J-test based on the influence functions
underlying GET. Critical values are computed using the parametric bootstrap. DGPs: The correlation
parameter ¢ is set to 0.5 under both the null and alternative hypotheses. As for the alternative hypotheses,
H,, and H,, correspond to pure, fourth-order Hermite expansion copulas with 9’ = (0.03,0,0,0,0) and
9" = (0.02,0,0,0,0.02), respectively.

alternatives.

Finally, it is important to mention that in this example the log-likelihood function under the
alternative is particularly difficult to maximize over the five parameters involved. In fact, we
systematically encounter multiple local maxima in samples of up to 100,000 observations even
if we fix the correlation parameter to its true value and use global optimization methods, which
forced us to repeat the calculations over a huge grid of initial values. For that reason, we have
only computed the Gaussian rank correlation coefficient between the LR test and GET across

ten such simulated samples, obtaining a high value of .96.
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D Example 4: Purely non-linear predictive regression

D.1 The model and its log-likelihood function

Consider the following extension of the nonlinear regression model in Bottai (2003), in which
the data consist of n observations y = (y1,¥2,y3) drawn from a joint distribution characterized
by

f(y:0) = f(ysly1, y2; 0) f (Y1, y2),

where f(y1,y2) is fixed and known, while

1
F(sly1,y2;0) = ¢ |ys — exp (01y1 + O2y2) + O1y1 + O2y2 + §9§y§ ; (D23)

with @ = (61,603) unknown. This model has an interesting interpretation in the context of
predictive regressions. Specifically, a Taylor expansion of the exponential function immediately
shows that the mean predictability of y3 does not come from the terms that also enter outside
the exponent (namely, y1, y2 and y3) but rather, from higher order powers of the two regressors
as well as their cross-products. Therefore, model (D23) provides an interesting functional form
for predictive regressions of variables such as financial returns when a researcher believes in
predictability but not through standard linear terms (see for example Spiegel (2008) and the

references therein for a discussion of return predictability).
D.2 The null hypothesis and the GET test statistic

In the case of a single regressor, Bottai (2003) showed that the nullity of the information
matrix is one when the regressand is unpredictable. Not surprisingly, the information matrix
has several rank deficiencies under the null hypothesis Hy : @ = 0 in the multiple regressor case.

The relevant derivatives of log-likelihood function with respect to #; and 09 evaluated at the

null hypothesis are

ol ol
06, 0 06y 0
02l 9 0?1 0%l
=R 1) e =yl — 1), 5y =0
89% n (y3 ) 891892 Y1y2 (y3 ) 80%
and
Pl
— = —1).
263 y>(ys — 1)

Therefore, we have a situation in which the degree of underidentification is different for the

two regression coefficients. But since Assumption 4 is satisfied with C' = {(2,0),(1,1),(0,3)}, a
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straightforward application of Theorem 2 implies that

LR, = GET,, + O,(n"5)

2,0
Ly hn Ly s G )
= sup 2(62,0105,603) | LIV | —n(02,0102,03) | Iy I Ios 0102 | +0p(n"5), (D24)
61,92 LI03] I3y I3p I33 03
where
Iv Lis It 1120
121 122 123 = lim Var \/ﬁ l[l’l]
I3 Isp 133 e 03]

In this case, though, we need to obtain the maximum with respect to 61 and 02 over the entire
Euclidean space of dimension 2 rather than over the unit circle.

Nevertheless, we can provide an asymptotically equivalent but much simpler statistic. Let

p1 = Vn(OFT)2, po = nbFTOLT and ps = /n(6FT)3. Tt is then straightforward to show that
13 2
nepips = pa-
As a result, we must have that either p; or ps are negligible when n is large because py is O,(1)
from Lemma 1 in Appendix A. If p; is negligible, then (D24) is asymptotically equivalent to

L] Iy I 010
ETi, = sup 2(0102,03) | o5 | = n(0162,03) ( 2 23><12>
supETh eslu(g (0102, 03) < 7jos) (0102, 03) ( Iso Is3 03

A 03] Iy Ips \ ' LI
notoTn Isp I3 2GS

If instead p3 is negligible, then (D24) becomes asymptotically equivalent to

supET, = sup 2(62,0105) n(6?,6,05) Ly L oy
PEtom 91752 1,0102) LUI2IN Iy Ipo 0102
Lty — LIy, T2
= — ( + ( 12792 ) ]_[LE’O} —112[52ng’1] > 0] .
n I L1 — Daly' In

Consequently, we could obtain an asymptotically equivalent statistic up to a term of order o,(1)
by simply retaining GET,, = max {supETh,,, supETs,}.
In addition to computational advantages, it turns out that the asymptotic distribution of

our test is easy to obtain. Specifically, let

Zin=mn"2 LZO] — 11212721117[1171] , Lo = n"2 Lr}l] and Zs, = n"z ng] — 13212721[’%’1] ;
\/IU — oI5y Iy Vi \/133 — Isalyy' Ing
where
Zln Z1 0 1 0 13
Z2n . Zy | ~N 0 ]; 0 1 0
Zsn 73 0 riz3 0 1
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and
Lz — 21,5 s

13 = '
\/111 — Nalyy' In \/133 — Isol5y g

Then, supETy, = Z3, + Z3, and supETs, = Z3, + Z2,1[Z1, > 0]. As a consequence,

r

GET, % max{Z21 {2, > 0}, 72} + Z2.

In other words, the asymptotic distribution of GET,, will be a x3 50% of the time (when Z; < 0)
and the sum of a x? with the largest of two other possibly dependent x?'s (when Z; > 0). If
we further assume that the regressors y; and ys are two independent normals with 0 means and
variances o7 and o3, respectively, then Z;, Zo and Z3 will be three independent N (0, 1) random

variables.
D.3 Simulation evidence

As alternative hypotheses, we consider 61 = 0.3, 02 = 0 (H,1) and 61 = 0, 03 = 0.5 (Hg2)
in specification (D23). And like in the normal versus SNP example, by maintaining that y;
and yo are uncorrelated, we can compute exact critical values for any sample size to any degree
of accuracy by repeatedly drawing i.i.d. spherical normal vectors (yi,y2,ys3), which effectively
imposes the null hypothesis.

In Table 4 we compare the results of the two versions of our tests discussed above, with
the GMM test mentioned at the end of section 2.2 and two simple alternative procedures.
First, a standard LM test based on pseudo-Gaussian ML that checks the joint significance of
y3 and y1y2 in the OLS regression of y3 on a constant and these two variables, which are the
transformations of the predictors missing from the part outside the exponent in the conditional
mean specification. And second, a closely related LM test based on pseudo-Gaussian ML which
augments the previous regression with the following four cubic terms y3, ¥2y2, y1y3 and y3. We
refer to these tests as OLS; and OLSs, respectively.

The first three columns of Table 4 report rejection rates under the null at the 1%, 5% and 10%
levels for n = 400 (top) and n = 1,600 (bottom) for the first alternative hypothesis we consider
while the last three do the same for the second one. Once again, the behavior of the different test
statistics is in accordance with expectations. In particular, our proposed statistics are the most
powerful in both cases. Part of the reason has to do with the fact that the linear regressions only

provide an approximation to the true non-linear conditional expectation. However, the fraction
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Table 4: Monte Carlo rejection rates (in %) under alternative hypotheses for white noise versus
a purely nonlinear regression test

Alternative hypotheses
Hg, Hag,
1% 5%  10% 1% 5%  10%

Panel A: n =400

GET 19.5 41.3 544 18.56 39.7 524
LR 21.7  41.7 56.2 205 404 541
LMs3; 17.6  39.8 529 18.2 388 50.9
GMM 156.3 343 47.0 143 334 45.5
OLS; 16.2 34.6 47.2 129 305 41.9
OLS» 9.6 239 37.0 73 202 324

Panel B: n = 1,600

GET 65.5 83.9 90.2 61.3 80.5 87.6
LR 66.3 84.5 91.2 61.9 815 885
LM3 7.7 79.1 874 53.1 753 84.2
GMM 57.6 78.3 86.0 54.3 752 83.6
OLS; 53.2 741 833 427 646 75.1
OLS, 37.7 616 733 25.7 48.8 61.8

Notes: Results based on 10,000 samples. GET and LR are defined in Supplemental Appendix D. GMM
refers to the J-test based on the influence functions underlying GET. OLS; denotes a standard LM test
that checks the joint significance of y7 and y;y2 in the OLS regression of y3 on a constant and these
two variables while OLSs is the LM test which augments the previous regression with the following four
cubic terms y3, y?y2, y1y3 and y3. Finite sample critical values are computed by simulation. DGPs:
(y1y2) ~ i.4.d. N(0,I3) under both alternative hypotheses. In turn, ys|ys,y:1 is ¢.i.d. standard normal
under the alternatives 7 = 0.25 and 03 = 0.25 (H,1), and 6, = 0.3 and 62 = 0.1 (H,z2).

of the theoretical variance of y3 explained by v2, v192, ¥3, ¥3ya, y1y5 and y3 is essentially the
same as the fraction explained by the true conditional mean in H,s. As a result, the superior
power of our tests relative to OLSy comes from the reduction in degrees of freedom.

Given that in this case our test has a relatively standard asymptotic distribution —namely,
a 50:50 mixture of x3 and the sum of x3 with the larger of two other independent x3’s— we can
also compute Davidson and MacKinnon (1998)’s p-value discrepancy plots to assess the finite
sample reliability of this large sample approximation for every possible significance level. The
results for the two sample sizes we consider, which are available on request, confirm the high
quality of the asymptotic approximation.

Finally, our results indicate a .94-.95 Gaussian rank correlation between our proposed test
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statistic and the LR across Monte Carlo simulations generated under the null, which is in
line with our asymptotic equivalence results in Theorem 2. At the same time, they con-
firm that the LR test typically takes about 200 times as much CPU time to compute as the

max {supETy,, supETs,} version of our test.
E Relationship to the previous literature

Davies (1987) proposed perhaps the most cited sup-type test, so it is illustrative to provide
a link between Theorem 1 and his results. In view of the fact that ||@,| remains irrelevant
regardless of g, without loss of generality we can consider the reparametrization 8, = nu, with
v € R? |lv|]| =1 and n > 0, so that n and v represent the magnitude and direction of the
parameter vector 6,., respectively. Given that
$010lo1720 Fnl @ Orw) = =, Lnl:01,60)
we could rewrite the null hypothesis as Hg : 81 = 0,7 = 0, where v is a nuisance parameter that
only appears under the alternative. If we considered the 7" derivative of I;(p) along a specific
direction v, which would effectively coincide with the r*" derivative with respect to 7, then we
could directly apply the Lee and Chesher (1986) approach to obtain the relationship between
the LR and ET tests along that direction. Next, we could look at the supremum of those tests
over all possible directions, as suggested by Davies (1987), which would effectively yield GET,.
Nevertheless, this intuitive explanation in terms of 7 and v has some limitations. First, Lee
and Chesher (1986) would yield a pointwise result for a given v, while Theorem 1 relies on
uniform convergence. More importantly, Davies (1987) method is designed for models in which
the log-likelihood function is absolutely flat for some parameters under the null, so regardless
of its analytic nature, no higher order derivatives will provide moments to test. In contrast, we
consider situations in which the log-likelihood function written in terms of @ only has a finite
number of zero derivatives, so a test statistic can be based on the first round of non-zero ones.
In this respect, the underidentification of v is an artifact of the 8, = nv reparametrization that
would persist even if the information matrix had full rank, in which case the supremum over
v of the test of Hy : 81 = 0,7 = 0 will yield the usual LM test. In any event, in Theorem 2
we derive a generalized extremum test in a more general context without resorting to any such

reparametrization.
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