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Abstract
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gressions among others. Our proposal, which involves higher-order derivatives, is asymptot-
ically equivalent to the likelihood ratio test but only requires estimation under the null, a
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1 Introduction

Rao’s (1948) score test and Silvey’s (1959) numerically equivalent Lagrange multiplier (LM)
version completed the triad of classical hypothesis tests (see Bera and Bilias (2001) for a survey).
Given that they only require estimation of the model parameters under the null, in the late
1970’s and early 1980’s they became the preferred choice for many specification tests which are
nowadays routinely reported by econometric software packages (see the surveys by Breusch and
Pagan (1980), Engle (1983), and Godfrey (1988)). In addition to computational considerations,
which continue to be very relevant for resampling procedures, two other important advantages
of LM tests are that (i) rejections provide a clear indication of the specific directions along which
modelling efforts should focus, and (ii) they are often easy to interpret as moment tests, so they
remain informative for alternatives they are not designed for. Furthermore, under standard
regularity conditions, they are asymptotically equivalent to the Likelihood ratio (LR) and Wald
tests under the null and sequences of local alternatives, and thus they share their optimality
properties.

One of the crucial regularity conditions for a common asymptotic chi-square distribution
for these three tests is a full rank information matrix of the unrestricted model parameters
evaluated under the null. Nevertheless, there are empirically relevant situations in which this
condition does not hold despite the fact that the model parameters are locally identified. In
non-linear instrumental variable models, Sargan (1983) referred to those instances in which the
expected Jacobian of the influence functions is singular but the expected Jacobian of the linear
combinations of their derivatives that span its nullspace has full rank as second-order identified
but first-order underidentified. In a likelihood context, a singular information matrix implies that
there is a linear combination of the average scores which is identically 0, at least asymptotically.
In their seminal paper, Lee and Chesher (1986) studied some popular examples of this situation
in economics: i) univariate regression models with sample selectivity; ii) stochastic production
frontier models; and iii) certain mixture models.!

Lee and Chesher (1986) proposed to replace the LM test by what they called an “extremum”
test. Their suggestion was to study the restrictions that the null imposes on higher-order opti-
mality conditions. Often, the second derivative will suffice, but sometimes it might be necessary
to study the third or even higher-order ones. They proved the asymptotic equivalence between
their extremum tests and the corresponding LR tests under the null and sequences of local alter-

natives in unrestricted contexts. Using earlier results by Cox and Hinkley (1974), this equivalence

'In all their examples, in fact, the average score with respect to one of the parameters of the alternative
evaluated at the restricted parameter estimators that impose the null is identically 0 in finite samples.



intuitively follows from the fact that their tests can often be re-interpreted as standard LM tests
of a suitable transformation of the parameter whose first derivative is 0 on average such that
the new score is no longer so. In contrast, Wald tests are extremely sensitive to reparametriza-
tion under these circumstances. Bera et al (1998) provide some additional insights. In turn,
Rotnitzky el al (2000) rigorously study the asymptotic distribution of the maximum likelihood
(ML) estimators in those contexts. Finally, Bottai (2003) looks at the validity of confidence
intervals obtained by inverting the three classical test statistics in this setup.

However, in all the existing literature the nullity of the information matrix, ¢, say, is assumed
to be 1. When the information matrix is repeatedly singular under the null, in the sense that
gr is two or more, the number of second-order derivatives exceeds the number of parameters
effectively affected by the singularity by an order of magnitude. The unbalance gets worse
when it becomes necessary to look at higher-order derivatives. Unfortunately, in general there
is no reparametrization that leads to a regular information matrix.?> In particular, transforming
each of the parameters individually along the lines suggested by Lee and Chesher (1986) does
not usually give rise to a test asymptotically equivalent to the LR. On the contrary, different
reparametrizations will typically give rise to different test statistics.

The purpose of our paper is precisely to propose a feasible generalization of the Lee and
Chesher (1986) approach in repeatedly singular contexts that leads to tests asymptotically equiv-
alent to the LR, but which only require estimation under the null. Specifically, we propose a
generalized extremum test (GET) which typically maximizes an easy to interpret statistic over
a space of dimension ¢, — 1 when all parameters show the same degree of underidentification,
thereby simplifying to the Lee and Chesher (1986) proposal when the nullity is one. More gen-
erally, GET is an LR-type test that compares the log-likelihood function under the null to the
maximum over g, dimensions of its lowest-order expansion under the alternative capable of iden-
tifying the restricted parameters. In contrast, LR tests require the maximization over the entire
parameter space of an unrestricted log-likelihood function which is extremely flat around its
maximum when the null hypothesis is true.> These computational advantages are particularly
pertinent for bootstrap-type inference, which is especially necessary in our context because the
common sup-type asymptotic distribution of the GET and LR tests is often non-standard, and
the sample sizes required for this distribution to be reliable unusually large.

Repeatedly singular information matrices are not a mere theoretical curiosity. In fact, we

illustrate our proposed testing procedure in detail with several examples of interest that arise in

? An exception is the multiplicative seasonal ARMA model considered in Amengual, Bei and Sentana (2023).
3Obviously, both procedures require the estimation of the model under the null, but the restricted maximum
likelihood estimator is typically available in closed form in many models subject to specification tests.



economic and finance applications when testing: 1) exogeneous sample selectivity in multivariate
regressions; 2) normality against the flexible semi-nonparametric (SNP) family proposed by
Gallant and Nychka (1987); 3) a Gaussian copula against another flexible Hermite expansion;
and 4) unpredictability in a multiple regressor version of the purely non-linear model considered
by Bottai (2003). Further, in Amengual, Bei and Sentana (2022, 2023) we discuss the application
of the test proposed in this paper to two additional examples of substantial empirical interest:
testing for multivariate normality against a skew normal distribution, and testing for neglected
serial correlation in univariate time series models, respectively.

The structure of the rest of the paper is as follows. In section 2 we obtain our theoretical
results first in the case in which all the underidentified parameters have the same degree of
underidentification, and then when the degree of underidentification may be different for differ-
ent parameters. Then, in section 3 we discuss the first two aforementioned examples in detail,
assessing the finite sample size and power properties of our proposed tests by means of sev-
eral extensive Monte Carlo exercises. Finally, we conclude in section 4, relegating proofs, the

remaining two examples, and some additional results to the appendices.

2 Theoretical results

Consider the estimation of the parameter vector p characterizing the distribution of an i.i.d.
random vector y. Let [;(p) = In f(y;; p) denote the log-likelihood function contribution from
observation 4, so that the log-likelihood function of a sample of size n is £,, = Y1, li(p).* In

what follows,
ali(p)

Spji(p) =

will denote the contribution of observation i to the score with respect to the j** element of p
and S, n(p) = > i, Sp,i(p) their sum.

Let us partition p into two blocks: 1) ¢, which contains the p x 1 vector of parameters
estimated under the null; and 2) 6, which is the ¢ x 1 vector of parameters such that the null
hypothesis can be written in explicit form as Hy : @ = 0. Let p*, p and p = (q‘zy, 0’)" denote the
true value of the parameter vector, its unrestricted ML estimator (UMLE), and the restricted
one (RMLE), respectively, so that p* = (¢*,0) under Hy. As usual, |.| and ||.|| denote absolute
value and Euclidean norm, respectively. Finally, we use emin(A) and epax(A) for the smallest
and largest eigenvalues, respectively, of a symmetric square matrix A.

Using this notation, we henceforth assume:

*Although we could easily generalize our results to explicitly deal with dependent data by using standard
factorizations of the sample log-likelihood function, we maintain independence to simplify the expressions.



Assumption 1 (Regularity conditions)

(1.1) p takes its value in a compact subset P of RPT4 that contains an open neighborhood N of
the true value p* which generates the observations.

(1.2) Distinct values of p in P correspond to distinct probability distributions.

(1.3) Elsup,ep [li(p)|] < oo,
(1.4) E[0l;i(¢,0)/0¢-0l;(¢,0)/0¢'] has full rank under the null for all (¢,0) € P.

The compactness of P in Assumption 1.1 together with the continuity of [;(p) and As-
sumptions 1.2 and 1.3 guarantee the existence, uniqueness with probability tending to 1, and
consistency of both the UMLE p and the RMLE p (see Newey and McFadden 1994, Theorem
2.5). The “open neighborhood” part of Assumption 1.1 is just used to simplify the expressions
and their derivation. Extensions to situations in which the true parameters lie at the boundary
of the parameter space under the null are feasible, as we will show in Supplemental Appendix C,
but at the expense of complicating the notation and blurring the message of the paper. Finally,

Assumption 1.4 guarantees the convergence of the RMLE at the usual n=? rate.
2.1 Repeated singularity of the same order

We first consider the case in which ¢; elements of 8 are first-order identified, while the
remaining ¢, elements are r*-order identified under the null, a concept that will become precisely
defined after we introduce Assumption 3 below. Therefore, if we further partition 8 = (6}, 6..)’,
where ¢; = dim(0;) and ¢, = dim(8,), so that ¢ = ¢1 + ¢, then the information matrix under
Hy will be such that its top (p + q1) X (p + ¢1) block is regular and the rest contains zeros.
Consequently, its nullity will be precisely g.. Often, one needs to reparametrize the model to
make sure it satisfies these conditions, an issue we discuss in detail in Supplemental Appendix
B.1 in general terms, as well as in each of the examples that we consider.

Let j € NP4 denote a (p + q) x 1 vector of indices, j! = Hf;rf 7l
1 8*r+all;(p)
gt ap

where ¢, is a vector of m ones, and LE](p) =>", ll[-‘i (p). Throughout this subsection, we

1 (p)

assume the following conditions hold:

Assumption 2 (Regularity conditions on the derivatives of the log-likelihood function)

(2.1) With probability 1, the derivatives lz[-j] (p) exist for all p in N and v, ,j < 2r, and they
satisfy E[suppen ]lz[j](p)ﬂ < 0.

(2.2) Forr <, ,j <2r, E{[ll[j](p)]z} < oo for all p in N.

(2.3) When v, ,j = 2r there is some function g(y) satisfying El¢*(y)] < oo such that with

probability 1, |LY (p) — LY (p1)| < |lp — p1[| S 9(yi) for all p and p! in N

We borrow Assumptions 2.1-2.3 from Rotnitzky et al. (2000) with some modifications. The

main difference is that they require (2r 4 1) differentiability for the Taylor expansions they



use to analyze the distribution of the MLE, while we only need 2rt" differentiability to study
the asymptotic distribution of our tests. Assumptions 2.1 and 2.3 guarantee the existence of
derivatives and the stochastic equicontinuity of the sample mean of lz[ﬂ(p) with ¢, j < 2r. In
turn, Assumption 2.2 allows us to apply a central limit theorem to lgﬂ(p*).

Let 0;‘?’“ =60,®0,® - ® 0, denote the kth-order Kronecker power of the g, x 1 vector 6,,

and define k times /
" Lu(p) o [0 1L.(p)
80?’“ = vec 20, 89§(k_1) .
Moreover, let
Ipp(P)  Igpo, (@) Igpe, (@) 1 S¢n(,0)
16) = | 10,6(9) I0,0,(6) Io0.(8) | = lim Vard o | So.(0.0) /.0
Io, (@) Ig.0,(P) Is,0,(®) 9" Ly (¢, 0)/00%"

denote the asymptotic covariance matrix of the relevant influence functions, which may be
understood as a generalization of the information matrix.
In addition, let

_ | Voi0.(®) Vei6,(0)
Voo (¢)= Vo,0,(®) VeTer(Cb)}

_ Io,0, (¢) 1619r(¢) _ Igl¢(¢) B
a |:Ier01 (¢) Ig, 0, (d’) :| |:Igr¢,(d)) :|I¢(115(¢) [I¢91(¢) I¢9T (¢)]

denote the asymptotic residual variance of Sg,,, (¢, 0) and 9" L,, (¢, 0)/00%" after orthogonalizing
these influence functions with respect to sg.
Assumption 3 (Rank conditions for ¢, > 1)
(3.1) For all (¢,0) € P,

9“ardor 1;(, 0)

6%

with probability 1 for all jo, = (j1, .-, Jq.)" such that v jo, <7 — 1.
(3.2) The asymptotic covariance matriz of the (scaled by \/n) sample averages of

J"li(¢*,0)
967"

=0

{S¢i(¢*7 0)7 Sgﬂ(d)*a 0)7 0'?”

has full rank for all possible non-zero values of 8, € R underlying the vector of coefficients 62"
in the linear combination above.

Intuitively, the rationale for looking at

gr

P Il _ Z o (H 0j2> d"li(¢,0)

T Kr | r j »
96, 1,36, =T Jor- \ 5 00,

is that it coincides with the r*"-order term in the expansion of the log-likelihood function. In

that respect, note that although the higher order derivatives 9"1;/00%" will usually contain

many repeated elements thanks to the Clairaut-Schwartz-Young’s theorem, the rank deficiency



condition in Assumption 3.2 applies to the inner product of 82" with those influence functions,
so the requirement is that those linear combinations of the elements in 9";/00%" be linearly
independent of sg;(¢,0) and sg,;(¢,0).

Finally, let
07" Dyn(¢) Dy, (8)67"

ngm - — L ) 1
Ol ®) = Gy o () — Voron @)V b (#)Voro, (@10 M
where
Don() = S22 Vi 0,(6)Vih, (6)50,0(,0)

is the residual in the least squares projection of 9"L,(¢,0)/00%" onto the linear span of
Se,, (¢,0).° In this context, we can proof the following result:
Theorem 1 If Assumptions 1, 2 and 8 hold, then under Hy: 0 =0

LRy =2[L(p) — La(p)] = GET, + Op(n" %),

where

_ l ! o -1 (3 = l Qn(0T7¢) Zf’l“ is 0dd7
GET, = n591n(¢7 O)V9191 (¢))S91n (¢7 0) + N GS:;pO{ Qn(0r7 é)l[O?T/Drn((‘i)) > O] if r is even.

An important implication of Theorem 1 is that the rate of convergence of the difference
between the LR and GET tests is inversely proportional to the order of identification, thereby
generalizing the standard result for regular models.

Importantly, expression (1), which can be understood as a generalized Rayleigh quotient
evaluated at the restricted ¢/ x 1 vector 8", does not effectively depend on 8, when the nullity
of the information matrix is 1, so Theorem 1 generalizes the results in Lee and Chesher (1986)
and Rotnitzky et al. (2000) by allowing for the presence of multiple singularities under the null

(see Supplemental Appendix E for further comparisons to the existing literature).

2.2 Repeated singularity of different orders

There are situations in which the degree of identification of the different elements of 8 under
the null hypothesis is more heterogeneous than just either one or r 4+ 1. To characterise them in
full, we need to generalize the conditions in Assumptions 2 and 3. Let ¢4;(¢) and ¢g;(¢) denote
two measurable functions of dimensions p x 1 and m X 1, respectively, so that we can define the

empirical process

Soi(®)

)

*Importantly, Assumption 3.2 guarantees that the denominator of Q, (8, ) is positive because Vpg is the

8" 1(¢,0)
and 5070,

s¢(¢,0), while Vg, o, — V97,91V971‘191V9197, is the residual covariance matrix of the projection of the second residual
on the span of the first one, which by the Frisch-Waugh theorem coincides with the residual in the projection of

aggipé(:) onto the linear span of s¢(¢,0) and s, (¢, 0).

covariance matrix of the residuals from the least squares projection of sg, (¢, 0) on the linear span of




Typically, ¢¢i(¢) coincides with the scores with respect to ¢, and ¢g;(¢p) with some higher-order
derivatives with respect to the elements 8, so that S,, will serve as the analog to the sample

score in regular models. In addition, let

A(9,0) = |: (¢ — ¢0)('g))‘¢( ) :|

where Ay (6) € RP and Ag(@) € R™ are non-random vector functions of the parameters that

)

adequately capture their difference from the true values. Finally, let

| Zpgp(p) Zpe(o)
I(¢)_[Ie¢(¢) Igew)]

denote a non-random positive semidefinite symmetric (p + m) x (p + m) matrix, which once
again will effectively play the role of an information matrix.
Using this notation, we state the following assumptions, many of which are simplified versions

of the conditions in Assumption 5 in Meitz and Saikkonen (2021):

Assumption 4 (LQ approzimation) L, has a “linear-quadratic” expansion given by

Lo(,0) ~ L($7,0) = Su(§"VA(6,0) — 5nX (6,0)T(97)A (,6) + Ru (6,6).

where Ry, (¢, 0) is a remainder term. In addition:
(4.1) X (¢, 0) is continuous in p, and such that (i) A (¢*,0) =0 and (ii) for all e > 0,

Ao, > §c for some 5. > 0.
||(¢>9)( o) A (0, 0)] f

(4.2) n_%Sn 4.8 for some zero-mean RPT™ -valued Gaussian process with covariance kernel
E [3(¢1)Sl(¢2)] =FE [Ci(¢1)§;(¢2)] = K(¢1, ¢s).
(4.3) Z(¢*) = K(¢*, ¢*) is Lipschitz continuous at a neighborhood of ¢* and satisfies

0 < emin[Z(¢%)] < €max[Z(9")] < oc.

(4.4) The remainder term Ry, (¢, 0) satisfies
| R (¢, 0)]

sup = 0,(1)
(6.0)cP:(6.0) (6" 0)<r, L + 1[I (¢, 0)> 7

for all sequences of (non-random) positive scalars {7, : n > 1} for which ~y,, — 0 as n — oo.
(4.5) There exists some function g(y) satisfying E [(g(yi))?] < oo such that

1S(") = S(¢")l| < 1o - ¢*(1 Y &(yi) (2)
i=1

with probability 1 for all (¢,0) € N.
(4.6) If nzA (@, 0n) = O(1), then Ry, (¢,0) = Op(n™?) for some a such that 5 > a > 0.



Assumption 4 states that the likelihood ratio can be expressed as the sum of a linear-
quadratic approximation and a residual term, R,,. The linear-quadratic part, though, represents
a higher-order expansion of the likelihood ratio around € = 0. Assumption 4.1 captures the
local identification condition at the true parameter value. Assumption 4.2 is analogous to the
information matrix equality, while Assumption 4.3 to the standard non-singular information
matrix assumption. In turn, Assumption 4.4 ensures that the residual is dominated by the
leading terms, and thus, negligible asymptotically, while Assumption 4.5 enables us to substitute
the true parameter ¢* with the restricted estimator (?) after an appropriate adjustment for
sampling variability. Finally, Assumption 4.6 allows us to obtain the convergence rate of the
linear-quadratic approximation, with a typically associated to the slowest rate of convergence
of the parameter estimators under the null.

We can then prove the following result:
Theorem 2 If Assumptions 1 and 4.1- 4.5 hold, then under Hy: 0 =0
LR =2[L,($,0) — L,(¢,0)] = GET, + 0p(1),

where

GET, = sup{2(So.(¢) — T (P)T s () Spn (D)) Xe ()
—nXy (0) [Zoo(§) — Tog(9)Z 54 (d)Zg0($) Ao (0)}.
If, in addition, Assumption 4.6 holds, then

LR =2[L,($,8) — L(¢,0)] = GET,, + Op(n~%).

As expected, we can easily show that our first theorem is a special case of this second
theorem when the higher-order identification is of the same order for all the parameters involved
regardless of the parity of r. More importantly, the proof of this theorem shows that we can
interpret Ln((;b, 0) + GET,, as a Taylor approximation of order 2r to the log-likelihood function
around p, which means that GET, is effectively an LR-type test that compares the log-likelihood
function under the null to the maximum of its lowest-order approximation under the alternative
capable of identifying the restricted parameters.

Although GET cannot be directly understood as a moment test, a by-product of our most
general theorem is a set of influence functions S, (¢, 0) that can be used for that purpose after
taking into account the sampling uncertainty in estimating ¢ under the null. In fact, we can
prove that this moment test, which converges in distribution to a x2, under the null, where

m = dim[Ag(0)], provides an upper bound to GET,, albeit a rather loose one in many cases.



2.3 Distribution under local alternatives

Let us now consider the distribution of the test statistic under the following sequences of
local alternatives:
Hy, - \/ﬁ )\d)(an) _ >\¢7oo = A € Rdim(}\g).
(7] A0,00

To do so, we need to assume that

Assumption 5 (Cone cover) The sequence of sets
An = {VnXg(0,):0 € ©}

covers a closed cone A C R¥ ™) (with A,, — A) so that there is a sequence of closed balls By,
of radius ky, — oo centered at the origin such that A, N By, = AN By, .

Let Py, and Py denote the probability measures corresponding to Hy,, and Hy, respectively.
Then, we can prove the following result:
Theorem 3 (Distribution under local alternatives)

(3.1) Pe, is contiguous with respect to Pp.

(3.2) Under Hi,
\/155”@,*) % NZ(9")Aoo, T(¢")]:

(8.3) Under Hy,, and Assumption 5,

GET, S sup { 2[5+ (T (67) ~ Tao () 7,3 () Zaa (67) M) A

X [To0 (6") — Tou (6°) T4 (6") g0 (¢7)| A}

where

S ~ N0, Zgo (¢%) — Tos (¢7) T, (%) Tgo (67))-

Therefore, the distribution of the empirical process underlying our tests converges to a
Gaussian random element with a non-zero mean, and consequently, our test statistic to the
supremum of a non-central y2-type process, despite the fact that our sequence of local alterna-
tives written in terms of the model parameters converges at rates which are different from the
usual ones. In fact, there may be different drifting sequences with the same limit, as we will see
in section 3.2.3. In any event, we would like to emphasize that our proposed test is consistent

against fixed alternatives because GET,, will diverge in those circumstances.



3 Examples

In this section, we discuss the application of our proposed tests to the first two examples
of empirical interest that we mentioned in the introduction. Specifically, we derive a test for
irrelevant sample selectivity in multivariate regression models, for which Theorem 1 suffices, and
a test for normality against SNP alternatives, which requires our more general Theorem 2. In
turn, in Supplemental Appendix C we obtain a test of a multivariate normal copula against
its Hermite expansion, which is another example of Theorem 1 but with the added difficulty
of inequality constraints on the parameters. Finally, in Supplemental Appendix D, we derive a
test aimed at detecting non-linear predictability in a multiple regressor version of Bottai (2003),
which again requires the use of Theorem 2 (see also Amengual, Bei and Sentana (2022, 2023)

for another two empirically-relevant applications of Theorems 1 and 2, respectively).

3.1 Example 1: Testing for selectivity in multivariate regressions

Arguably, the study of the determinants and consequences of non-random sample selection
that followed Heckman’s (1974) seminal paper is one of the most important contributions of
econometrics in the last fifty years. Nevertheless, the empirical analysis of a dataset would be
much simpler if the sample from which it comes could be treated as if it were randomly generated
even though it is not necessarily so. As is well known, this will happen when the unobserved
determinants of the sample selection are independent of the unobserved determinants of the
variables of interest conditional on the set of predetermined explanatory variables, or in simpler
terms, when the selection is exogenous rather than endogenous. In the rest of this subsection,
we shall develop a test of irrelevant sample selectivity in a multivariate regression context that
highlights the hidden difficulties researchers often inadvertently encounter, but which can be

easily overcome by the use of the GET procedures that we propose.

3.1.1 The model and its log-likelihood function

Consider the following multivariate version of the regression model with selectivity consid-

ered by Lee and Chesher (1986):
y =y"d, (3)

where d is a sample selection binary variable whose value is determined by an observed vector of
exogenous regressors w and some unobserved determinant ug according to the following equation

written in terms of the usual indicator function

d=1(w'¢® +us > 0), (4)

10



while the K partially observed variables y* = (y3, ..., y}) follow the multivariate regression

*

Yp = QO{CMIX_{_@]@DU/C’ kzla"'aKa (5)

(2 ) = 5o 21}

with x being a vector of exogenous regressors that may partially overlap with w, so that ¢ =

" contains the standard deviations of the regression shocks, ¢’ the correlations

(ol #R)
between them, and 9 the correlations between those shocks and the unobserved component of
the selection equation, whose variance we normalize to 1 without loss of generality.

Therefore, the contribution of a single observation to the sample log-likelihood function will

be given (up to a constant term) by

W% +9'u ( ")

J1-9R (o9
d

=5[22 mf + Infdet(R (" )1}+u’<<,o PPIRT (o) ule, o))

(1-d)ln® (—w' —l—dl ®

where oM = (@, ..., @), u(eM, pP) = [u1 (e}, @), ..., uk (¥R, pR)]', and

M1
M D Y — P X
Uk(soka()ok):igppk .
k

3.1.2 The null hypothesis of lack of selectivity and the GET test statistic

Under the null that the unobserved selectivity determinants are uncorrelated with the re-
gression residuals, one can efficiently estimate the multivariate regression coefficients ¢ to-
gether with the covariance matrix parameters ¢ and ! without selection bias from the non-
zero values of y only using equation by equation OLS without the need to consider the model for
d. However, under the alternative, those OLS estimators will be biased because of the sample
selectivity, which justifies testing the null hypothesis Hy : ¥ = 0.

For simplicity, consider the case in which w = 1 and the regression equations contain a

constant term. Straightforward algebra shows that if we evaluate the scores at ¥ = 0, then

— Mi(%)¢i s =0 (8)
for k=1,..., K, where @% contains the intercept in the conditional mean of y;, and
My (¢7) =271 (9%) ¢ (¢°) ()

is the usual inverse Mills ratio. As Lee and Chesher (1986) explain in their univariate exam-

ple, analogous singularities will arise for example when the observed selectivity determinants

11



w are given by a set of dummy variables and x contains those dummy variables too. In gen-
eral, singularities will be present whenever Heckman’s (1976) selectivity correction is perfectly
collinear with the regressors that appear in the conditional means of the y*’s even though the
log-likelihood function in (7) is able to locally identify all the model parameters.

In addition to the K singularities in (8), there are K (K + 1)/2 linear combinations of the
scores and the elements of the Hessian corresponding to 9 that are 0 too, which effectively means
that we need to look at third-order derivatives. To do so, it is convenient to reparametrize from
@ and ¥ to ¢ and 0 as we explain in the proof of Proposition 1 below, so that all the elements
of the score and the Hessian matrix corresponding to € become identically 0 under the null.
Fortunately, we can then show that the third-order derivatives with respect to 8, which are only
zero on average under the null, will have a full-rank asymptotic covariance matrix, so that we

can apply Theorem 1 in this context. Somewhat remarkably, we can show the following result:

Proposition 1 The difference between LR test of Hy : ¥ = 0 in model (4)-(6) based on a
random sample of n observations on (y,d) and the following test statistic

~D
GETn—sup [Zng <vvl I,SD )>
v

v;ﬁO v

(10)

is Op(n=1/9), where H3(z) = (23 — 32)/\/6 is the third-order normalized Hermite polynomial of
a standardized variable z, v is a real vector of dimension K and v(p™,pP) denotes an affine
transformation of the regression residuals u(e™, ) whose mean vector and covariance matriz
are 0 and Ig, respectively, when evaluated at the restricted parameter estimators.

In simpler terms, our test statistics numerically coincides with the supremum of the moment
tests for univariate skewness based on the third Hermite polynomial over all possible linear com-
binations of the OLS residuals that have 0 mean and unit variance in the sample of observations
with d = 1. In fact, the standardization is unnecessary because the moment test for univariate
skewness is numerically invariant to affine transformations of the observations, which in turn
confirms that the test statistic (10) is homogeneous of degree 0 in v. Thus, when K = 1 our
proposed test reduces to the test for selectivity derived by Lee and Chesher (1986) in the uni-
variate case, which simply assesses the symmetry of the regression residuals by looking at the
sample mean of their third powers.

The rationale is also analogous in the multivariate case. Equations (3)-(6) imply that the
OLS residuals should be approximately multivariate normally distributed when the unobserved
component of the sample selection is independent of the shocks to the observed variables. Under
the alternative, in contrast, asymmetry becomes a common feature, as in the multivariate skew
normal distribution we discussed in Amengual, Bei and Sentana (2022). Intuitively, if we or-

thogonalize the regression residuals with respect to the unobserved component of the selectivity
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equation, we end up with Yug as a common component, whose distribution conditional on d = 1

is asymmetric even though the unconditional distribution of ug is symmetric.

3.1.3 Local power analysis

Although the null distribution of the test statistic (10) is non-standard, we can still say
something about the determinants of its local power. Consider the following sequence of local

alternatives:

lim n'/%9, = 6.,

n—oo
where the rate of convergence is 1/6 rather than 1/2 because of the need for a third-order

expansion of the log-likelihood function. Then, we can show that

Proposition 2 The local power of the test in Proposition 1 only depends on the magnitude of
the quadratic form

VR (") O
Intuitively, once we orthogonalize the multivariate regression residuals u by premultiplying
by the inverse square root matrix R1/? (ch), the “direction” of the vector R™1/2 (ch) 9 is
irrelevant, what matters is its magnitude. As a result, in our simulations we can choose R (ch ) =

Ix and ¥, proportional to the first vector of the canonical basis without loss of generality.

3.1.4 Simulation evidence

For simplicity, we let w = 21 = 1 and x93 ~ N(0,1). Given that the MLE of the
multivariate regression coefficients is equation by equation OLS, and that we are studying the
case in which all regressions contain an intercept, the sample mean of the multivariate regression
residuals @t will be a vector of K zeros. Similarly, any orthogonalization of the i’s based on the
estimated covariance matrix will have the identity matrix as sample covariance matrix because
the MLEs of the residual standard deviations ¢ and correlations ¢ match perfectly the sample
variances and covariances of @t with denominator > ; d;. Therefore, it is not surprising that
the particular square root that orthonormalizes the OLS residuals in the sample is numerically
irrelevant. For example, in the bivariate case, we could define v; as the standardized value of uy
and v as the standardized value of the residual in the OLS regression of us on a constant and
u1. But we could also define them the other way round.

We can easily verify that the GET statistic is numerically invariant to the true values of
(M, "), so if we set K = 2, we can choose cp% = (0,1), " = 15 without loss of generality.
In turn, we set the selection parameter ¢ to 1 and the correlation coefficient o’ to 0.25.

If we exploited our knowledge of the values of these two parameters, we could compute

exact critical values under the null for any sample size to any degree of accuracy by repeatedly
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simulating samples from the true distribution. In practice, though, we fix the selection parameter
and the correlation coefficient to their estimated values in each sample in what is effectively a
parametric bootstrap procedure (see Appendix D.1 in Amengual and Sentana (2015) for details),
so that we can automatically compute size-adjusted rejection rates, as forcefully argued by
Horowitz and Savin (2000).

As alternative hypotheses, we consider 9’ = (0.57,0.57) (H,1) and 9" = (0.80,0) (Hy,2). For
each design, we generate 10,000 samples of size n and compute the parameter estimators and
tests.

In Table 1 we compare the results of our tests with a bootstrap-based LR test. Panels A
and B of Table 1 report the results for samples of length 400 and 1,600, respectively. We can
verify that the LR test statistic is also numerically invariant to the true values (@™, o), which
allows us to approximate its critical value using an analogous parametric bootstrap procedure.
For comparison purposes, we also consider a J-test based on the influence functions underlying
GET, which we label as GMM. The first three columns of Table 1 report rejection rates under the
null at the 1%, 5% and 10% levels, confirming that our simulated critical values work remarkably
well for both sample sizes.% In turn, the last six columns present the rejection rates at the 1%,
5% and 10% levels for the alternatives we consider. Our proposed test has similar power to the
LR test for the two alternatives, and both these tests outperform the GMM one.

Finally, our results also indicate a Gaussian rank correlation” of 0.88 (0.95) between our
proposed test statistic and the LR across Monte Carlo simulations of 400 (1,600) observations
that satisfy the null, which is in line with the asymptotic equivalence result in Theorem 1. In
addition, they indicate that the LR takes about 10 and 20 times as much CPU time to compute
as GET does for n = 400 and n = 1,600, respectively, which makes a huge difference in the

calculation of the bootstrap critical values.

3.2 Example 2: Testing for normality against SNP alternatives

Gram-Charlier expansions provide flexible and analytically tractable generalizations of the
normal distribution. Unfortunately, their truncated versions lead to negative density values, and
the parametric restrictions that Jondeau and Rockinger (2001) propose to guarantee positivity
are not easy to implement even when the truncation order is low. In contrast, the SNP distrib-

utions introduced by Gallant and Nychka (1987) provide a Hermite expansion of the Gaussian

®Given the number of replications, the 95% asymptotic confidence intervals for the Monte Carlo rejection
probabilities under the null are (.80,1.20), (4.57,5.43) and (9.41,10.59) at the 1, 5 and 10% levels.

"The Gaussian rank correlation between z; and z» is the Pearson correlation coefficient between ®~'(uy) and
&~ (u2), where u1 and uz are the usual uniform ranks of the observations and ®~'(.) the quantile function of the
standard normal (see Amengual, Sentana and Tian (2022) for details).
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density that is positive by construction. Although these authors introduced those distributions
for nonparametric estimation purposes, Leén, Mencia and Sentana (2009) treated them as para-
metric ones, studied their statistical properties, and used them in option valuation. Still, MLE
under normality is much simpler than when the distribution of the shocks follows an SNP. For
that reason, we shall derive a test of normality that will also highlight the hidden complications

that researchers face in this context.

3.2.1 The model and its log-likelihood function

The model we consider is
y=pxa)+o(xa)u (11)

where p and o are known functions of x and a finite-dimensional unknown parameter o, and u
is independent of the predetermined variables in x with finite mean and variance ¢ and ¢V,
respectively. We want to test u is normal against the alternative that it follows an SNP density.
Observations are given by (x;,¥;), ¢ = 1,2,...,n, where x; could include the lagged value of
y; to allow for time-series models such as AR and GARCH. For simplicity, we assume that wu;
conditional on x; is iid. As we will show in section 3.2.5 below, estimation of a does not affect
the properties of the test, so we initially assume this parameter vector is known and focus on
the case without conditioning variables, in which p(a) and o (o) are 0 and 1 without loss of
generality. As a result, researchers only need to estimate ¢ and " under the null.

The probability density function (pdf) of an SNP random variable of order K is given by

: (12)

2
fyi0) = i¢ <y_90M> €+ -9 {P |:(y\/:7> ;?9:|}
e VY 2o AP (w91} d(u)du
with
Pluid] =143 dii(u), (13)

where ¢ () denotes the standard normal pdf, H; (u) is the normalized Hermite polynomial of

order ¢, which can be defined recursively for ¢ > 2 as

qu;l (u) — \/’i — 1H1;2 (U)
\ﬁ )

with initial conditions Ho (u) = 1 and Hy (u) = u, [* {P [u; 9]} Po(uwdu =1+ 35 9?2 is a

H; (u) = (14)

constant which guarantees that the density integrates to 1, and € is an infinitesimal factor used
to bound the density below from 0, which Gallant and Nychka (1987) introduced to simplify

their proofs. Henceforth, we will set € = 0 for the purposes of developing our testing procedure,
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but the same method applies with € > 0. Intuitively, a non-negative density is automatically
achieved by multiplying the Gaussian density by the square of a linear combination of Hermite
polynomials. As explained by Leén, Mencia and Sentana (2009), the SNP distributions can have

non-negligible positive and negative asymmetry and excess kurtosis even with K = 2.
3.2.2 The null hypothesis of normality and the GET test statistic

To simplify the notation, we focus on the case of K = 2. Normality is trivially obtained

when Hy : ¥1 = 992 = 0. The complication arises because

59, — 2V pVs,m =0,

Sy — 2\/§<pvs<pv =0,

under Hy, so that the nullity of the information matrix is 2. Hall (1990) highlighted this problem
when he considered tests of normality against semi-nonparametric alternatives in which the ¢
coefficients were in turn functions of some exogenous variable. However, his proposed solution
was to ignore the parameters involved in the singularity, focusing instead only on those which
could be regularly estimated under the null. Unfortunately, his recipe would leave us with no
test in the case of the unconditional model (12)-(13).

In fact, it is easy to prove that 91 and 9 have different orders of identification, which means
that we need to resort to our Theorem 2. In this context, we can establish the following result
after reparametrizing from (', 9') = (o™, ", 91,19;) to (¢',8') = (oM, ¢V, 61, 603) as explained

in its proof:

Proposition 3 The difference between the LR test of Hy : ¥ = 0 in model (12)-(13) based on
a random sample of n observations on'y and the following test statistic

;Zm(ai)] (15)

is Op(n=/%) when the null is true, where H3(t;) and Hy(i;) are the third- and fourth-order
normalized Hermite polynomials of the ;’s, which are the values of the y;’s standardized so that
their sample mean and variance are 0 and 1, respectively.

n 2
1
GET, = — Hs(u;
n [n ; 3<U) +

Remarkably, this means that the Jarque and Bera (1980) test is asymptotically equivalent to
the LR test of normality against SNP densities, although they converge to each other at a much

lower rate than in the case of the Pearson family of alternative distributions they considered.
3.2.3 Local power analysis

Let x? (v) denote a non-central chi-square random variable with k degrees of freedom and

non-centrality parameter v. We can show that
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Proposition 4 Consider a sequence of parameters 0., satisfying

_2\/§01,n92,n
\/6(60‘11,n - eg,n)

Under the sequence of DGPs indexed by 6,

lim /n

n—oo

> = Xg.0o € R% (16)

d
GET, — X%( IB,oo)‘B,OO)~
To understand this result, it is useful to note that

ELH y—E(y)
vn 3 Var(y)

ELH y—E(y)
vn YV Varly)

= )\e’oo + 0(1).

Unlike in the multivariate regression model with selectivity, though, we can have two different

types of local alternatives compatible with (16):

_1 _1
Hjy 1 01, =n"1hy, o = n" 1ho,

_1 _3
ng : an =N 8h1, 02n =N 8h2.

Interestingly, /n63, dominates \/nf3,/9 along Hjy, so that the SNP distributions under this
sequence of local alternatives are platykurtic. In contrast, \/nf7, /9 dominates \/nf3, along Hjs,

so that the corresponding SNP distributions are leptokurtic.

3.2.4 Simulation evidence

Despite the fact that we estimate the sample mean and variance of each simulated sample,
in this case there are effectively no nuisance parameters involved because both the GET and
LR test statistics are numerically invariant to affine transformations of the observations. As a
result, we can compute the exact finite sample distribution to any desired degree of accuracy
for any sample size by simulating a large number of samples of the same size from a standard
normal random variable. For that reason, we can focus directly on studying the power of the
different tests.

As alternative hypotheses, we consider 9’ = (0.25,0.10) (H,1) and 9" = (0.75,0.05) (H,2),
setting o™ = 0 and ¢" = 1 without loss of generality. As in the previous example, for each
design we generate 10,000 samples of size n. In Table 2 we compare the results of our tests
with the LR test. Panels A and B of Table 2 report the results for samples of length 400 and
1,600, respectively. Given that the LR test statistic is also numerically invariant to the true
values (oM, "), we once again obtain its exact critical values using an analogous parametric

bootstrap procedure. The first three columns of Table 2 report rejection rates under H,; at the
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same levels, while the last three columns present the rejection rates at the 1%, 5% and 10%
levels for H,s. As can be seen, our proposed test has similar power to the LR test for both
alternatives.

Finally, our results also indicate that the LR takes around 160 and 100 times as much CPU
time to compute as GET does for n = 400 and n = 1, 600, respectively, which considerably slows

down the calculation of the bootstrap critical values.

3.2.5 Robustness to the estimation of mean and variance parameters

We now extend our previous results to a situation in which the conditional mean and
variance of y are parametric functions of the variable in x, as in (11). In this context, the
objective becomes to test whether the innovation u follows a normal distribution versus an SNP.

The conditional log-likelihood of the i*" observation is given by:

K K
1 1 2 L 9 2

li(a,9) = ~3 In 27w — 3 Inoy (x;, o) — Ui () +2In (1 + ;%HZ [ul(a)]> —In (1 + ;19@> .

To be able to obtain the required higher-order log-likelihood expansions, we assume that the

following regularity conditions hold:

Assumption 6 (Smoothness of the conditional first two moments) The conditional mean and
variance functions py (x;, @) and oy (X;, @) that appear in (11) are such that

(6.1) They are eight times continuously differentiable with respect to cx.

(6.2) For all k € N% and /k =1,...,8, it holds that

* 1y (x, @) ? ko (x, ) ?
ol s i ¥ <o, B || —22X222 < 00,

Oak Oak

where k = (ki,...,kd,),

0 Fuy (x, o) _ o Fuy (x, o) and
Ok k. 9ake
ka2 (x, ) _ ka2 (x, )
dak daht .. aagi"

Then, we can prove the following result, which is entirely analogous to Proposition 8 in
Amengual, Bei, Carrasco and Sentana (2022):
Proposition 5 Under Assumptions (6.1) and (6.2), replacing the true value of o by &, its

restricted maximum likelihood estimator under Hy, does not alter the expressions of the GET test
in Proposition 3 or its asymptotic distribution under the null or sequences of local alternatives.
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4 Conclusions

We propose a generalization of the extremum-type tests in Lee and Chesher (1986) to
models in which the nullity of the information matrix under the null hypothesis is larger than
one. In the case of a single singularity, our results are consistent with theirs, as well as with
those in Rotnitzky et al. (2000). However, when the information matrix is repeatedly singular,
we provide a computationally convenient alternative to the LR test, which is particularly useful
for resampling-based calculations of p-values. Specifically, our proposed test statistic is a sup-
type test over a space whose dimension is at most the nullity of the information matrix, and
often less, while the maximization of the original log-likelihood function is over a space of the
same dimension as the vector of parameters, which is usually much larger. In addition, the fact
that several log-likelihood derivatives of various orders are 0 under the null implies that the
LR requires the estimation of all the parameters that appear under the alternative in a model
whose log-likelihood function is extremely flat around its maximum. Intuitively, the substantial
computational gains that we find arise because GET is a LR-type test that compares the log-
likelihood function under the null to the maximum of its lowest-order approximation under the
alternative capable of identifying the restricted parameters.

Despite having many features in common, our results cannot be directly applied to testing
normality against finite Gaussian mixtures. Nevertheless, we used them as a powerful lever to
derive such tests in Amengual, Bei, Carrasco and Sentana (2022).

Interestingly, the asymptotic distribution of our test statistic is similar to the asymptotic
distribution of the usual overidentification test statistic in a GMM model in which the expected
Jacobian of the moment conditions is of reduced rank but the parameters are second-order
identified (see Supplemental Appendix E of Amengual, Bei and Sentana (2020) for a formal
link to the results in Dovonon and Renault (2013)). An application of our approach to GMM
contexts in which not only the expected Jacobian matrix is singular but some higher order
Jacobian matrices are singular too would constitute a very interesting extension.

Finally, the tests developed in this paper allowed us to provide some new insights about
the cross-section distribution of city sizes and their growth rates in Amengual, Bei and Sentana
(2022). Their use in some of the other empirically relevant situations discussed in this paper

would also provide a particularly valuable complement to our theoretical results.

19



References

Amengual, D., Bei, X., Carrasco, M. and Sentana, E. (2022): “Score-type tests for normal
mixture models”, CEMFI Working Paper 2213.

Amengual, D., Bei, X. and Sentana, E. (2020): “Hypothesis tests with a repeatedly singular
information matrix”, CEMFI Working Paper 2002.

Amengual, D., Bei, X. and Sentana, E. (2022): “Normal but skewed?”, Journal of Applied
Econometrics 37, 1295-1313.

Amengual, D., Bei, X. and Sentana, E. (2023): “Highly irregular serial correlation tests”,
CEMFI Working Paper 2302.

Amengual, D. and Sentana, E. (2015): “Is a normal copula the right copula?”, CEMFI Working
Paper 1504.

Amengual, D., Sentana, E. and Tian, Z. (2022): “Gaussian rank correlation and regression”,
in A. Chudik, C. Hsiao and A. Timmermann (eds.) Essays in honor of M. Hashem Pesaran:

panel modeling, micro applications and econometric methodology, Advances in FEconometrics

43B, 269-306, Emerald.

Bera, A.K. and Bilias, Y. (2001): “Rao’s Score, Neyman’s C(«) and Silvey’s LM tests: an
essay on historical developments and some new results”, Journal of Statistical Planning and

Inference 97, 9-44.

Bera, A., Ra, S. and Sarkar, N. (1998): “Hypothesis testing for some nonregular cases in econo-
metrics”, Econometrics: theory and practice, Chakravarty, Coondoo and Mukherjee (eds.),

319-351, Allied Publishers.

Bottai, M. (2003): “Confidence regions when the Fisher information is zero”, Biometrika 90,

73-84.

Breusch, T.S. and Pagan, A.R. (1980): “The Lagrange multiplier test and its applications to

model specification in econometrics”, Review of Economic Studies 47, 239-253.
Cox, D. and Hinkley, D. (1974): Theoretical statistics, Chapman and Hall.

Constantine, G.M. and Savits, T.H. (1996): “A multivariate Faa di Bruno formula with appli-
cations”, Transactions of the American Mathematical Society 348, 503-520.

20



Davidson, J. (1994): Stochastic limit theory: an introduction for econometricians, Oxford

University Press.

Dovonon, P. and Renault, E. (2013): “Testing for common conditionally heteroskedastic fac-

tors”, Fconometrica 81, 2561-2586.

Engle, R.F. (1983): “Wald, likelihood ratio, and Lagrange multiplier tests in econometrics”, in
Intriligator, M. D.; Griliches, Z., eds., Handbook of Econometrics, 796-801, Elsevier.

Faa di Bruno, F. (1859): Théorie générale de l’élimination, De Leiber & Faraquet.

Gallant, A.R. and Nychka, D.W. (1987): “Semi-nonparametric maximum likelihood estima-
tion”, Econometrica 55, 363-390.

Godfrey, L.G. (1988): Misspecification tests in econometrics. Cambridge University Press.

Hall, A. (1990): “Lagrange Multiplier tests for normality against seminonparametric alterna-

tives”, Journal of Business and Economic Statistics 8, 417-426.

Heckman, J. (1974): “Shadow prices, market wages, and labor supply”, Econometrica 42,

679-694.

Heckman, J. (1976): “The common structure of statistical models of truncation, sample se-
lection and limited dependent variables and a simple estimator for such models”, Annals of

Economic and Social Measurement 5, 475492,

Horowitz, J. and Savin, N.E. (2000): “Empirically relevant critical values for hypothesis tests:

a bootstrap approach”, Journal of Econometrics 95, 375-389.

Jarque, C.M. and Bera, A.K. (1980): “Efficient tests for normality, homoscedasticity and serial

independence of regression residuals”, Economics Letters 6, 255-259.

Jondeau, E. and M. Rockinger (2001): “Gram-Charlier densities”, Journal of Economic Dy-
namics and Control 25, 1457-1483.

Lee, L. F. and A. Chesher (1986): “Specification testing when score test statistics are identically

zero” , Journal of Econometrics 31, 121-149.

Leén, A., Mencifa, J. and Sentana, E. (2009): “Parametric properties of semi-nonparametric
distributions, with applications to option valuation”, Journal of Business and Economic Sta-

tistics 27, 176-192.

21



Meitz M. and Saikkonen, P. (2021): “Testing for observation-dependent regime switching in

mixture autoregressive models”, Journal of Econometrics 222, 601-624.

Newey, W. and McFadden, D. (1994): “Large sample estimation and hypothesis testing”, in
Engle, R. and McFadden, D., eds., Handbook of Econometrics, 2111-2245, Elsevier.

O’Hagan, A. and Leonard, T. (1976): “Bayes estimation subject to uncertainty about parame-

ter constraints”, Biometrika 63, 201-203.

Rao, C.R. (1948): “Large sample tests of statistical hypotheses concerning several parame-
ters with applications to problems of estimation”, Mathematical Proceedings of the Cambridge

Philosophical Society 44, 50-57.

Rotnitzky, A., Cox, D.R., Bottai, M. and Robins, J. (2000): “Likelihood-based inference with

singular information matrix”, Bernoulli 6, 243-284.
Sargan, J.D. (1983): “Identification and lack of identification”, Econometrica 51, 1605-1633.

Silvey, S. D. (1959): “The Lagrangian multiplier test”, Annals of Mathematical Statistics 30,
389-407.

van der Vaart, A.W. (1998): Asymptotic statistics, Cambridge.

22



Appendices
A Proofs

We first state and prove several lemmas that we will use in the proofs of our main theorems.

But before doing so, let us introduce some definitions. Let

LM, (p) = 2S,(¢")A (¢,0) —nX' (¢,0)I(¢")A (0,0)
and define p"M = (™M, 01M) such that

LM, (¢™M oMMy = sggLMn(p).
p

Lemmata

Lemma 1 If Assumptions 1 and 4.1, 4.2, 4.3 hold, then (i) p"M 2,0 and (i1) n%)\(pLM) =
O,(1).

Proof. Let us start by Lemma 1.(i7). Fix ¢ > 0. By Assumption 4.2, we have that nféSn(qb*) =
Op(1), which means that there exists an M; such that for all n > N,

Pr(|ln~28n(¢")| > My) <. (A1)

Next, let M = (2M; + 1)/emin[Z(¢*)], which is a positive real number because of Assumption
4.3. We can then prove that

Pr({|[n2 X (p"™) || > M} N {|[n~28.(¢7)]| < Mi}) = 0. (A2)
In addition, noticing that if [|n2 A (p) || > M and ||n"28,(¢*)|| < My, we will have that
2(n"28,(0%)) [0 A (p"M)] — n2 X (PP T(¢") Iz A (p"M)]
<2|[n"28u(¢%)[] - [|n2 A (p"M) || — emin[Z(6*)]|[n2 A(p"M)|?

<[> X (PPM) [] - [2M; — ein[Z(")]lIn3 A (05 1]

< — M = LM, (6*,0) — M,

where the first two inequalities are straightforward, the third one follows from Hn_%Sn(d)*)H <
M; and Hn%)\ (pMM) || > M = (2M1+1)/emin[Z(¢*)], while the last one follows from LM,, (6*,0) =
0, which contradicts p”“M being the minimizer. Thus (A2) holds.
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Therefore,

Pr(|lnz X (pEM) || > M) =Pr({[[nz A (") || > M} 0 {[|n"2S,(¢")]| < Mi})
+Pr({|[n2 X (pPM) || > M} {|ln~2S.(¢*)]| > Mi})
<Pr({|[nz X (p"M) | > M} {|ln"28u(@")|| < M1})  (A3)
+ Pr(|ln"28,(¢")|| > M)

<e, (A4)

where to go from (A3) to (A4) we have used (Al) and (A2). As a consequence, (A4) trivially
implies that Lemma 1.(i7) holds.

As for Lemma 1.(7), for all € > 0 there exists d. > 0 such that
« 1 1
Pr (|05 = (6",0)] = ) < Pr(lln3A (p5M) || = n¥6.) -0,

where the inequality follows from Assumption 4.1, while the convergence follows from Lemma

1.(4i), as desired. O

Lemma 2 If Assumptions 1 and 4.1—4 hold, then n%)\(ﬁ) = 0p(1).

Proof. Fix € > 0. Assumption 1 implies the consistency of p, while Assumption 4.4 implies

that
R, (p
o),
L+n (A (@)l
Thus, there exists an N such that for all n > N,
Pr(4,) 21~ _, (A5)
with
R, (p 1 *
= {| D] < Lennizto
L+n A (@)
In turn, given that n_%Sn(¢*) is Op(1), there exists an M such that for all n,
1 . €
Pr(|ln”2S8a(¢7)]| = M1) < 5. (A6)
Letting M = max{(6M1 + 3)/emin[Z(¢*)],1}, we can then show that
10 /4 1 «
Pr({[[n2A(p) [| = M} 0 {||n"25,(¢")[| < M1} N An) = 0. (A7)
Further, if we notice that
1.4 _1 R, (p) 1
ln2X (D) || = M, [[n"25,(¢")|| < My and ’A < ~emin[Z(¢7)]; (A8)
L+n|A(@)*] 6
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we can show that
LR(p)

= 2[n"28u(¢")] (12X (p)) — (02X (P)'Z($")[n2 A (P)] + 2R» ()
<2 A ()|~ eainlZ(6lIA B 2+ 2P (1 a o) )

:Hné)‘(ﬁH{QMl_@mm[ (¢ )]Hn2)\( )|_|_€min[-§(¢*)] (Hn;}\l( —l—\|n2)\( )H)}

< kA @)1 {200 - ennlZ(@ A ) 1+ 22 a1

= b p | {zan - 22Oy

< -M = LR(¢",0) — M,

where the first equality follows from Assumption 4, the first inequality from (A8), the next three
lines are straightforward, the subsequent inequality follows from an)\( )| > M > (6M; +
3)/emin[Z(®")], and the last equality from LR(¢*,0) = 0. Therefore,

Pr(|[n2 A (p) || > M) <Pr({|[n2A () [| = M} N {|[n"2Sa(¢")]| < Mi} N A4,)
+Pr(AS) + Pr(|ln"28,(¢")|| > M)

<e

for all n > N, where the inequalities follow from (A5), (A6) and (AT). O

Lemma 3 If Assumptions 1 and 4.1-4 hold, then LR,(p) = LM,(p**) + o,(1).
Proof. We will show that for all € > 0, there exists an N such that for all n > N,
Pr (|LR,(p) — LM, (p"M)| <€) > 1 —e.

To do so, we know that max{n%)\ (p) ,nEA (p¥™)} = O,(1), so that for all € > 0, there exists
an M such that for all n,

Pr(max{nzX (p),n2 A (p"M)} < M) > 1— % (A9)

Next, letting P, = {p € P : nz IA(,0)|| < M}, we can use Assumption 4.1 to choose a

sequence of v,, — 0 satisfying

M
inf A, 0)|| > =
P e B G 7
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which implies that P, C {p € P : ||p — (¢*,0)| <+, }. But then,

sup ‘LRn(p) - LMn(p)‘ =2 sup ’Rn<p)’
pEP, pEP,

SQ (1 + M)Q sup ‘RTL <d)7 0)‘ 5
peP:|A(p) <L 1+ 1A (¢, 0)]

pEP:|p—(6",0)|<v, 1 +1[[A (0, 0)]

=op(1),

where the first line follows from Assumption 4, the second one from the definition of P,, the
third one from A, = {p €P: nz NP, O)|| <M} C{peP:|p—(¢*0)] <~,}, and the last
equality from ~, — 0 and Assumption 4.4. Thus, there exists an N such that for all n > N,

Pr | sup |LRn(p) — LMy (p)| < €| >1— <. (A10)
pePly, 2

As a consequence, we will have that for n > N,

Pr (|LR,(p) — LM, (p™)] < €)
>Pr ({|LRn(p) — LM, (p"")| < e} n{p e P} n{p"" € P,}) (A11)
({ sup |LR,(p) — LM, (p)| < e} N{peP}n{p™e Pn}> (A12)
pPEP
(sup |LR,(p) — LM, (p)| < e> +P({peprin{pMepr,}) -1 (A13)
pePy
z1—§+1—§—1:1—e, (A14)

where to go from (A11) to (A12) we have used

sup |LRn(p) - LMn(p)| 2
pEP,

sup LR, (p) — sup LM,(p)|,
pEP, pEP,

from (A12) to (A13) the fact that Pr(E; N Ey) > Pr(E;) + Pr(E2) — 1, while from (A13) to
(A14) we relied on (A9) and (A10). O

Lemma 4 If Assumptions 1, 4.1-4 and 4.6 hold, then LR,(p) = LM, (p*™) + O,(n=9).
Proof. We want to show that for all ¢ > 0 there exists a constant K. such that for all n,
Pr (|LR,(p) — LM, (p"M)| < Kn™®) > 1—e.

The proof is almost the same as the one of Lemma 3. Let M and P, be as the ones in that

lemma. Then, by Assumption 4.6,

sup |LRy,(p) — LM, (p)| = 2 sup |Ru(p)| = Op(n_a)7
pEPn pePn
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which is equivalent to saying that there exists an K. such that for all n,

Pr | sup [LRn(p) — LMy(p)| < Ken™® | >1— <. (A15)
pEP, 2
Thus,
Pr (|LR,(p) — LM, (p"")| < Ken™)
>Pr ({|LRu(p) — LM (p™)| < Kcn™*} n{p e P} n {p"™ € P,})
<{ sup |LR,(p) — LM,(p)| < Ken_a} N{pePr,}nN {pLM € Pn}> (A16)
pEP,
<5up |LR,(p) — LM, (p)| < KJF“) +Pr({pePin{p™ep,}) -1 (A17)
pePy,
€

>l -4 l—-—1=1-

21541 2 1=1—¢ (A18)
where the last inequality follows from (A9) and (A15). O
Lemma 5 If Assumptions 1 and 4.1—4 hold, then LRn((—j;,O) = sup LMy(¢,0)+o,(1). More-

(¢,0)cP
over, if in addition Assumption 4.6 holds, then LRn(gb, 0) = sup LM,(¢,0)+ Op(n™*).
(¢,0)eP

Proof. The proof is omitted because it is entirely analogous to the proofs of Lemmas 3 and 4,

after fixing @ = 0 and changing P to {¢ : (¢,0) €P}. O
Proof of Theorem 2

By virtue of Lemma 1, we have that p“M € & x © with probability approaching 1 (w.p.a.
1 henceforth), with © and ® defined as ® x © = P, that is, if p € P, then ¢ € ® and 8 € O. It
is then easy to verify that

sup2[n~ 28, (¢ [12 X (¢,0)] — [n2 X (¢, 0)'T(¢")[n2 A (¢,6)]

peP

= sup sup {207 385,,(6")n3[§ — ¢+ Xp(6)] —nld — &" + Ao (0)] Ty (®") — &" + Xo(6)
0cO pcd

— 203 (¢ — " + Ay (8)]'Tpo(¢")[112 A (8)] + 212 Sgu(¢") [17 Mg ()]
~[# X0 (8)]'Tao(¢")[n* X0 (0)]} wopia. 1
= sup {2[S0,1(6") — T (6")T3(6")S6.0(6")] X0 (6)

6co

—nXp (0) [Zoo(d") — Tog(¢") Ly (") Zg0(6") Mg (9)} + 17 S0 ()54 (07)Spn(9)

w.p.a. 1, where the first equality follows from p/™ € ® x © w.p.a. 1, and the second one from

I;qls(¢*)[n718¢,n(¢*) — Zgpa(@") e (GLM)] — Ao (BLM) c{p—¢*:¢pcd} wpa. 1.
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Similarly, we have that

sup_ 2n58,(6°)] (15X (9,0)] - (23X (6, O Z(#)n3 A (6,0)] = S}, (6T (8)S.0(6°)

(¢,0)eP

w.p.a. 1. As a result,

LR = 2[Ly($,0) — Ly(¢,0)]

= 2[L0(,,0) — Ln(¢",0)] = 2(L0($,0) — Lu(6",0)]
= sup {2[n"28,(¢") (12 A (6,6)] — (12 A (¢, 0)/ Z(¢")n? A (¢, 0)]}
peP
- S {2073 80(6)) 02 A (6,0)] — (12X (6, )/ T(¢7) [nE A (6, 0]} + 0,(1)
= oup {2560,1(9") = Tos (917,367 S0 (") 20 (0) (A19)

—nXa (0)' [Too (") — Top($") (") s0(&")Ae (0) | + 0p(1),

where the first two equalities are trivial, while the third one follows from Lemmas 3 and 5.

The last step is to evaluate (A19) at @ instead of ¢*. Specifically, we have

= ||| Tos(#)Top(@) 1 |n73(Su(8) - Sule)

= | ~Zostor)7,500) 1 Hl 13— 67l = Op(n~b), (A20)

\/lﬁ Zg(Yi)
i=1

where the first equality is straightforward, the second one follows from (2), and the last equality
from ﬁ Yo, 8(yi) = Op(1) and | — o*|| = Op(n_%), with g(.) defined in Assumption (4.5).
Moreover, Assumption 4.3 means that Z(¢) is Lipschitz, so that

1

1Z(8) — Z(¢")I| = Op(n™2). (A21)

Combining (A20) and (A21), we get

sup { 2(S0.1(67) ~ T (") T55(6")S5.0(67)) A0 (0)

0cO
—nXo (8) [To0(9") — Too(¢") T (6" Tg0(6") 20 (6) }
= sup {2150,1(9) ~ Too($)Z,4($)S5.0(B) Ao (6)

—nXo (6)' [Too(®) — Tog (@) T3 (B)Ts0(@)]A0 (8) } + Oy(n3), (A22)

which, together with (A19) and (A22), complete the proof of the first part of the theorem.
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Using the same argument, we will have that

LR = sup {2Son(®) — Tog(@)T54(@)Ss.0(B) A0 (6)

6co
—nXg (6) [Zoo(®) — Tos (D) 15 ($)Tp0(B)1 Ao (6) } + Op(n™")
= sup {2(80,1() ~ Tog(@)Z55(®)Spn(B)] Ao (0)

6

~nXg (0) [Zoo(®) — Tos (B L5 (B)Tp0($)1Aa (0) | + Op(n™"),

when Assumption 4.5 also holds, where the second equality holds because 0 is an interior point

of © and the maximizer is o,(1), which proves the second part of the theorem. O
Proof of Theorem 1

We will use Theorem 2 to prove Theorem 1. The first step is to verify Assumption 4. To
do so, define ¢g,(¢*) = BH,,(¢*), where

T 1 o,
10- THE0 1o ot || 1) )7 [ 00

and B is a matrix with elements equal to 0 or 1 such that ¢g,.(¢*) contains the elements in
H,,(¢*) that are not linearly dependent. Notice that B and ¢g,(¢p*) always exist even though

they are not necessarily unique. But then,

a"l oly, aly,

80§T(¢’) A10¢(¢ 0) + A2801(

x (p — q), r* x ¢ and r?xdim(sg,) matrices, respectively. As a

¢*7 O) + A3<9T(¢*)7

where Ai, Ay and Az are r?

consequence, we will have that

O S (67.0) = Xg(8,)55(67.0)+ X0, (0,) 35
with Ay (0;) = Z0E7Aq, X, (0,) = 5057 Az, Ng, (0,) = 102 As. It is then easy to see that
Ap(0:), Xe, (6r) and Ag, (6;) are continuous and Ag(nv) = nyA(v) for all n € R and v € R,
and the same applies to /\‘91 (BT) and )\gr (6,).

(0",0) + Ao, (6:)s6:(¢7),

S¢n(¢) :ZS¢’i(¢) :Zai’)((b’o)’ SB1(¢) :ZSBL Z 1601 ’
i—1 i=1 i=1 '
So,n(P) = sori(¢)
=1

Further, let
Ipp(®) 1o, (D) 0
Z(d) = | loyp(®) lo,0,(P) 0
0 0 Zo,0, ()
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denote the asymptotic variance of n_%Sn(qb), which is block diagonal by construction. Let us

also define
LMy (p) = 2n728,(¢") [n2 X (¢,0)] — [n2 A (¢, 0)Z(¢")[n2 A (¢, 6)],
where
A,0) = [p— " +Ap(0,),01 4 Xo,(0:), Xe,(0,)], (A23)
LR(p) = 2[Ln(p) — Ln(¢",0)],
and

R(6.0) = 5 [LRa(p) ~ LMq (o))

We next verify Assumption 4.1 for A(¢, 8), whose definition is given in (A23). The continuity
of A(¢,0) means that we only need to verify that the unique solution to A(¢,8) = 0 is (¢*,0)
because it is trivial to see that A(¢*,0) = 0. First, if 6, = 0, then it immediately follows that
we must have ¢ = ¢* and 81 = 0. Consider the case when 6, # 0. By Assumption 3.2, for all
0, # 0, 057 U0 g inearly independent of [sy(¢"), s, (¢*)]', which implies that g, (8,) # 0
because T

(ma(gz@;m = Xp(0,)86(0*) + X, (0,)30, (%) + Ng,.(0,)s0, (0*).

To verify Assumptions 4.2 and 4.3, notice that the covariance kernel of S is finite by As-

0?7‘/

sumption 2.2, which implies that Assumption 4.2 will hold by the uniform central limit theorem.

Next, n=28 ,n_%S' " has a full rank asymptotic variance because of Assumption 3.2, so
on Oin Y

ﬁSgrn does not belong to the linear span of (n_%Sibn, n_%S'gm)’ by construction. If we combine

this result with 4.2, we will have 0 < epin(@*) < emax(¢*) < 00, as desired.

The verification of Assumption 4.4 contains two parts. In the first part, we show that

Sup M =0 (1)
= 0,(1),
(6.0)P:[($,0)—(¢*,0)| <, Pn(®,0)

where
ha(#,0) = max{1,n|¢ — ¢*[|>,n[0:]° ,n 6. }.

Then, in the second part, we show that

sup h¢.6) =0(1). (A24)

(6.0)€P:[[(6.0)— (60| <y L + 10| X (6, 0)]?

Combining the two parts, we will get

<1 [Rn(:0)] _ |Ry, (¢, 0)]

P 2 = oy h, (b, 0

(6.0)P:[[($.8)—(¢*0)l|<7, L + 1 [ X (¢, ) ~ pePiflp—(¢".0)<r, Pn(®,6)
y sup ho(,0)

pePillp—(6*.0)|<v, L+ 1 || A (0, 0)]|
— 0,(1)0(1) = 0,(1).
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Let us now prove those two parts in detail. Regarding the first one, a 2rt"-order Taylor

expansion of Ly, (¢, 01,0,) around the (¢*,0) yields

9 17
Ln($,61,0,) — La(¢*,0) = > A;j + > By,
j=1 j=1

where

— * . *\/
1 *\ @2 ol 1 * *
4 = i 90D {%@2} = 6 ) Tup (6 8,
oL, , 1 ol 1
Az = 0/1 28, =01S¢,n, As= 5n (9?2)/E [30?2} = _gna/lzglglel,
L om: OLn
As = 5 (677) Spar = A6(07)Sen + X0,(8:)S01n + Aa, (6,)S0,n,
1 ®2r\/ ol 1 / / / / / / /
Ag = (QT)!n (01” ) E 9027 = _§n[)‘¢(07“)7>‘01(0T)7Aer(ar)]lp‘cb(gr):)‘01 (HT),)\OT(OT)] )
82
A =l ~ 0'VE | 5| 61 = 06— 670,01
1 " ol o .
As = (¢ =)' E | 5 agem | 00 = (@ = ¢7) [LagAg(0r) + Lgo, e, (6r)],

o]

Lo
Ag = ﬁn01E [W

] ng = _”9/1 [Iel¢>)‘¢(97"> +Z6,0,20,(0,)],

1 0L, ol 2 (1oL,
_ _aw\®2/ _ 1 e
n(g—¢") < e E[& D =3 (6= {n%@}
= In(op) (2 2 ol Ry o%i 10°L,
B3—§n(01 ) (n@g@z—E[agm]) _Z3u ( ) gae?j )
2r—1 1 o 1627“L o
By = — 0 J B oo 1 n_E o
5 jalj!ﬁ( {\Fae@v =y @ )<nae?2T [ae;@f])’
8
1 1 8]1+32L ]
B = . —n — ®]1, et L 0@]2,
7 j1+jz=§3;1,j221‘71!*72! =) {"&b@ﬂae?ﬁl} :

82Ln 9%l

1 1 oYL, o1 .
Bg - 7' (¢ ¢) (nad)lag@rl _E|:a¢189®r/:|)0§7

2r

1 o [1 0L, :
Bo = 3 o= {(igagde ) %

j=r+17°
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8

1 i 1 ogntizf, ,
B = Z n(¢— ¢ )®]1/{}0§32,

179! n ®jJ1 Rjga!
1tia=3 122, j>1 I12 0p®7 007

r—1 ;
1 1 oYL, , 1 1 0Y"L, ol
B12: E \/ﬁell{ }0?3, 313:Mn0'1< —E|: ]>0§T,

= ! Ny n 0" 2$00°"
2 1 9L .
Bu = ) -mb {839@5}} 657,
j=r1 7 1 0¢00,
8 L
1 . 1 Qntizg, .
Bis = > o .“e?ﬂl{w}a’m’
=31 22,421 1% (elodyeleh
Big = Z {M{mzda]} n¢l 67267 and
Jit+i2+j3=3,j1,2,3>1 "
Byr = Z <nLq[{1’J2’J3](I_)) _ nLT[thz,Js’]) n(p — ¢*)1 67267,

Jitje+j3=3.J1,2,3>1
with the omitted argument above being either ¢* or (¢*,0). The simplification of As, A4 and
A7 is based on the information matrix equality, while we have used Corollary 1 in Rotnitzky et
al (2000) to obtain Ag, Ag, and Ag. It is also easy to see that Z?:l Aj = $LM,(8) because of
the definition R,(¢,0) = B;. We can then verify that

| Bn (¢, 0)]

sup ———= =0,(1)
($.0)€P:[(6.0)—(¢*.0)|<~, Im (&, 0)

by noting that the expressions in curly brackets in the B; terms are O,(1), those inside paren-
theses are op(1), and (¢ — ¢*,01,0,) = o(1).
Further, note that if h, (¢,0) = O(1), then

B (,0)] _ ) (1

because (¢ — ¢*,61) = O(n"2) and 6, = O(n" =),
To verify the second part, let

mp = max [Ap()]. o, = max [Ag,(v)] and m = min X, (v)] >0, (A2)

where the last inequality follows from (i) Ag, (v) is a continuous function, and (ii) Ag,.(v) # 0

for all v # 0. In this context, to verify (A24) it suffices to check that

hy (¢, 0)
max T
($0)€P:[(6:6) (6" 0)|<7 1 + ||n2 A (¢b, ) ||2

= 0(1), (A27)

with
B ($,6) = max {1,710 |6 — &*|* , man 6] n 6,7},
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where the coefficients

1
P E———
2mg, +1

T >0 and w9 = 0

T omg 1

are only used to simplify the expressions. Thus, for n large enough, we will have that

{(#,61,6,) : [[(#,0) — (¢",0)|| <, } CP.

The compactness of {(¢,601,60,): |[(¢,0) — (¢*,0)| <7, } and the continuity of %

implies that there exists (¢, @) such that

sup hi(#,0)  _  hy(éy,6n) (A28)

(6.0)€P:[[(6.0)— (6" 0)|<v, 1 + 12 [ A (6,0)|* 1+ n[A(y,0,)]

for all large enough n. Consequently, there will exist a subsequence {wy} of {n} such that

hy (¢,0) h, (P, )

lim sup sup 5 = lim sup 5
n—00 (¢,0)ePil|(6,0)—(4,0)<v, L +n[|A (@, 0)[7  n=ee T 14 n([A (¢, 0]

1' hgn ((pwn’ ewn)
11m )
wp—oo 1 + wnHA((bwna 0., )2

where the first equality follows directly from (A28) and the second one by the properties of
lim sup. Consequently, it is easy to see that if A, (¢, ,6w,) = O(1), then (A24) holds trivially.
In turn, if A, (¢, ,0w,) # O(1), then we can find a further subsequence {u,} of {wy,} such

that at least one of the following conditions holds:

hy (D Ou) = i (|6, || — 00, (A29)
hgn((:bun? elm) = W%un’|¢un - (ZS*H2 — 00, Or (ASO)
hy (B s Oun) = Tt (101, | — 00 (A31)

Let 0,, = n,v, with ||v,|| =1 and 7,, a scalar. If (A29) holds, then

hi,, (¢un79un) < Un Har,nHZT _ unn?f _ 1 i
L+ un [N (@, Ou) P ™ wn [ Xar 0rn)* wn 05 Aer (0a)* (| Xer (V)]

where the first inequality follows from

hgn((bun? 0y,) = un HBT,HH% and “n||)‘(¢unv aun)||2 > Un [ Aer (ar‘,n)H2 )

the second equality follows from the definition of Ag,, and the last inequality follows from the
characterization of 7, in (A26).

If (A30) holds, then

Wy, (D Ou) = max{ L, miunl| by, — ¢*| moun 1010, |° wn 1074, I*} = unn? |, — ¢
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will imply that

* 2 *
T3l bu, = O > 1050, I = 1 = w1l by, — &7 > 1), (A32)

which in turn yields

r

s
ll$n — &Il

1
2 [|¢n = @71 = mimg| > 5 |6n — @7 (A33)

1, = &* + M Ag(vn)ll = | by, — @7 =1 [Ag (Vn) I = lDr, — &7 |1 = el [Ag (vn)]|

where the first line follows from triangle inequality and the second one from ﬁ < mp in

view of (A32) and ||Ag(vy)|| < mg because of (A26). Then, we will have that

hgn(gburmeun) 7T1H¢un - d)*H2 7T1H¢un - ¢*H2 o
7 < * o7 7S 1 w2 4Th
L+ up|| My, Ou)l? by, — & + 05, A6 (Vu)I> ~ 3oy, — &l

where the first inequality follows from up||A(@y, , 0u,)|[* > un||@,, — &* + 1l Ap(vy, )| and
hE (b, 0u,) < 71|, — @*||?, while the second one from (A33).

Similarly, if (A31) holds, then we will have that
2 2 2r _ 2r . . r
T2 1010, 17 = 1|0, |7 = 13, implies w2 |01, [| > 3, (A34)

whence

161, + Aoy (Oru )| > |11, ] = 711, 1 A0y (V)] (A35)
N,
= HglunH 1- ||01 H HAel(Uun)H

> 01, [|[1 = m2me, | > 5 H91unH
where the first two inequalities are straightforward, and the third one follows from (A26) and
(A34). In addition, we can show that

211010, |12 014,
un(¢un ) S < o H 1 nH . < 7T12 H 1 nH 27%’ (A36)

where the first inequality follows from (A31) and the second one from (A35).
The previous argument also implies that if hy, (¢,,,0,) — oo, then AT (¢,,,6,) — oo and

n||A (¢, 0n)|| — oco. Consequently,

2 A (¢, 02)|| = O(1) = ho (6,,,6,) = O(1). (A37)

Regarding Assumption 4.5, if nzA (¢,,,6n) = O(1), then we have h, (¢,,,0,) = O(1) in view
of (A37), which in turn implies |R,, (¢,0)| = Op(nfi) thanks to (A25).
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But then, Theorem 2 implies that

LR =2[L,(¢,,0,) — Lu(¢,,0)]
= sup {2(80,(®) ~ TosT5S6.1($)] Ao (6) ~ Ao (8) Voo(B)Xo (6) } + Opln ™).

where

Ig,0, — Igl(ﬁf(;;f(ﬁgl 0 :| _ |: Vo, 0, 0 :|

Voo = Zoo — LowL 1 Tse =
00 006 0Lyl o 0 To.0. 0 To.0.

and Ag(0) = [0] + A, (0:), Ap, (0,)]'. Hence, it is not difficult to see that S ,(¢) = 0.
Next, rearranging terms we get
250.0(@)p A (8) — 1 (8) Voo ()Xo (8) =2S0,,,(¢)' Ao, (8) — nXa, (8)'Va,6, ()X, (6)
+ zseryn((})lerA (07') - nAer (07'),1.67‘97"((‘2)>A07‘ (07‘) ’

where Ag, (0) = 01 + Ag, (0,). Thus, we will have

sup { 280,1(@)'Xa (6) —nr (6) Voo ($)ra (6) }
0

=sup sup {QSe,n(é)l)\a (6) — nXg (8) Voo ()Xo (0)} w.p.a. 1
0r o, (0)

z%sel,n(&;)vgjél (¢)S8,.n(9)

+sup {QSer,n(a))/AeT(gr) —nX0,(0:)Vo,0,(P)Na, (or)} w.p.a. 1.

To further simplify the last sup, let 8, = nv with n > 0 and ||v|| = 1. Then,

up {2801 (8) X0, (01) — X0, (6:) Vo,0,(3)20,(0:)

— sup sup {2397,,n(<7))'xer(v)nr — nxg,ﬂ(v)’ve,_er(@,\gr(v)n%} w.p.a. 1

[[v]|=1 n=0
1 g [SBT,n(ti)’)\aT(v)]Q ' .
™ ol 21 20 (2) Voro, (§) e, (¢) if 7 is odd
- & 2
So,.n(®) N, o
w Sup 5o, @ )] if r is even

™ lofl=1er () Ve,o, ()Xo, (v)

Finally, noticing that
S0,.n(9) Xg, (v) = 1107 D,y (})
and

2o, (V) Va,0,(D)Xg, (V) = (1)> 02" [Vg,0,(d) — Vo,0,(#) Vg, 5, (D) Var0, ()]0,

we can finally see that Theorem 1 holds. O
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Proof of Theorem 3

By Le Cam’s first Lemma (see Lemma 6.4 of van der Vaart (1998)), contiguity holds if
under Py, dPg g, /dFy L U with E(U)=1. Let L,(¢*,8,) denote the log of the joint likelihood

of the observations. Given Assumption 4, we can write

_ L

\/ﬁ
1 o, Ly, *
B %Sn(¢ ) Ao — §>\OOI(¢ )Aos + 0p(1).

Ln(¢",6n) — Ln(¢",0) Sp(@")VnA(¢",0r) — %x/ﬁx(df‘, 60,)Z(¢")VnA(9",6r) + 0p(1)

Therefore, under Hy,

dP, 1 1 1
N {\/ﬁs,g(qs*)xoo - 2>\’OOI(¢*)AOO} +op(1) LU = exp {S - ZXOOI((j)*))\OO} :
where S ~ N[0, A, Z(¢*)As]. Using the expression of the moment generating function of a nor-

dPy,
aPo converges

mal distribution, we have that E(U) = 1. The joint distribution of S,, and In (

under Hy to the Gaussian process:

[E )l om0 28250}

In addition, it follows from Le Cam’s third lemma (see van der Vaart (1998)) that

\/1%5”(4,*) % N [Z(6") Ao, Z(¢7)]

under Py, .

Finally, given Assumption 5, we can then prove that under Py, ,

GET, =sup {2 -\}ﬁsﬂ,n (¢~)n> - \}ﬁfeqs (5%) % (CfN’n) Spn @’n)} / Ve (0)

) [Iee (&)n) — Tog (&n) Typ (é%) Zeo (%)} )\9(0)}
4, sup {2 :S + (Iee (¢") = Tos (¢°) Ty (9%) Lo (¢*)> )\0,00} A

X [To0 (6°) = Tos (&) T (") oo (¢°)| A}

D

—nXg(

where
S ~ N[0, Zo0 (&) — Top (¢7) T, (6") g .

as desired. (]
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Proof of Proposition 1

We first reparametrize the model as follows:

ol = ¢! — o M1 (4°)0ren,

(0r)? = ()2 {1 + M1 (¢°)[M1(6°) + 6°]07 },
b = ok — %Ml(gés) (620, + 0402 — 20,0;) [My(6°) + 6°], and

9 =0,

where e; = (1,0')’ is the first vector of the canonical basis of RI™(®k), ok the correlation

coefficient between uy and wuy, and M;(¢°) the Mills ratio defined in (9).
Next, letting

er = ur — Ty (d")u),

where ug (M, oP) = (yr, — M%) /P and r(k)(qﬁL) denotes the coefficients in the theoretical

least squares projection of u; on to (the linear span of) ugy = (u1,..., up—1,Upy1,. .., uK),
straightforward calculations allow us to show that
ol d 1—d
5 = won(¢%'w) [ - ]
9% On(¢Tw)  Bn(—¢7w)
ol det [R(k)(gbL)]
M~ D Ty d2ek
ol 9 I
=5 = d | apk (uk — 1) + Z QAkh (Ukuh - ‘th)
0y, h#k
ol 9 I
—5 =d Z bij.n (uh — 1) + Z brj in (Uiuh - %'h)
‘%kj | h h#i
ol
a0, "
0?1 B
00,,00;
83l N\13 3 6[
g A
o Cddet [Ryy(o™)] €} + £99
83l N2 L 2 al
il = Cddet [Rgy(")] det [Ryjy ()] det [R (" A 2L
90,00,00, et [R) ()] det [Ry;)(¢")] det [Ryp(¢7)] exjen + kih g

where R(k)(qu) the (K —1) x (K — 1) matrix obtained from R(¢*) after eliminating its k*" row
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and column,

_ 1 2
 det[R(¢p")]3 d LI)N(x)

and

akhs brjinAks Agj, Agjn for k,j,h=1,.. K

are some terms whose detailed expressions, which are available on request, are irrelevant for the
proof.

Thus, we have that the test depends on the influence function

1 138 l 1 T2 t 231
Z 6" g07 Z Jae%e + h;k“k“hvﬂ 061.00,00,

3
{Z ddet [R) (1)) wkuL} + ATS(;

v'v v ol

Finally, by suitably choosing v in the last expression so that

Z ddet [R gbL)] wkvk x dv'v,
we can show that the test has form in (10). O

Proof of Proposition 2

For those observations with d = 1, we can write
[R (¢L) - ,.919/] -1/2 (@D)_l (y . QOMX) — [R (¢L) . 1919/]—1/2 ﬁuS n ZT

where z' ~ N (0,1x) by construction.
Given that the test is based on the standardized residuals, the statistics which use either y

or
R (0") —99] 7" (") (y — ")
as inputs are numerically the same. Therefore, for any v, we will have that
R (¢F) —99'] 7 (P) ' (y — oMx) = ol [R (¢F) — 99'] 7 Yug + vT'a!

x ug + ! 7 vl'zt.
o [R(¢") —99'] "9

This implies that the distribution of the test statistic conditional on x and w is determined by

the unconditional distribution of

’UTI ZT
ol [R(¢") —09] 0 [,

,US ¢ - (A38)
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Letting

—-1/2

[R(¢") —00] "0
VO [R (o) — 00 "0

we will show that the joint distribution depends only on v. To do so, first note that ££ = 1,

,e:

and v =9[R (¢) — 99 ',

which means that I — £¢' has rank K — 1. Therefore, the singular value decomposition implies

the existence of a (K — 1) x K matrix A with full row rank such that
A'A=1-7%.

Letting v’ = v[ £ A ]7!, we then have that

/ _1
1 ’UT, |: ¢ :| £/ ’U/
~1/2 vl'al = -1 [ A } 2l = -2,
v [R (¢%) —99'] "9 ot [ 4 ] ¢ } ‘o v'erv
A A

which in turn implies that

P
z
ol [R (¢F) — 99w

i v’
yus o~ U’e1VZ yUS ¢
vt £0 v#0

U
z = [ ¢ ]ZT,ZX,WNN(O,IK),

where

A
which confirms that the power will depend on v exclusively.

Finally, the Woodbury formula implies that we can rewrite v as

9 [R (") — 99'] o —9R? (M) 9+ IR (@X) 9 [1 - IR (") 9] YR (pF) 9
_ ORI (¢H)9
C1-9R (o)W’

which confirms the exclusive role played by ¥R~ (¢L ) . O

Proof of Proposition 3

If we reparametrize from (¢, ) to (¢, 0) as follows:

p1 = b1 — 2¢/ o071 + 263,
2
(102 = (1 — 2\/502 ‘|’ 30%> ¢2,

191 = 91, and
2
0y = 0y + {0%,
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then we can show that

ol 1 ol 1
— = —H(u), —— = ——Hs(u),
8(;51 VP2 1( ) 5¢2 \/5802 2( )
ol ol 9% B3l
_—— = 72 = 73 = 0’
961 96y 90?963
1 0% ol
— = = —V6H(u) — 2v2——,
2 962 VoH(u) f(%
L _ —2v/3H3(u), and
00,005 sV
1 04 6 2 0l
L Sy - Y2
Lot 9 9 Oy

hold at (¢,0), where u = (y — ¢1)/\/ds. Next, letting @; = (y; — ¢1)/\/¢y and H; =
Sy Hj(w;), it is easy to see that

Then, it holds that
LR, = sup {255, X9 (8) — nXy (0) TggAe (0) } + 0,(1) (A39)
6co
by virtue of Theorem 2, with Sg = (ﬁ3,ﬂ4)',

!
6
Ao (6) = <—2x/§9102,—¢69% + {%‘) :

and Zgg = I> . Finally, after some tedious calculations available on request, we can verify that
the conditions for Theorem 2 are satisfied in this example.
Moreover, in this special case we can further simplify the right-hand side of (A39) as follows.
First, it is easy to see that an upper bound will be given by
, , 1., l-2 1-2
sup {25p ,Ae (8) — nXy (0) ZoaAe (0)} < —Sp ., Zgg So.n = —Hz + —H,
6co n n n

Second, we can construct #; and 65 such that

—2v/3y/nb102 = n~V/?H;z 4 0,(1)
2, 16 4 —-1/2 (A40)

which implies that a lower bound will be

1-2 1.2

SHg + —Hy+0p(1).
Therefore, we end up with

1 1~
LR, = M.+ HHZ +0,(1),

as desired. O
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Proof of Proposition 4

In this example,
—2/30102 ) 2
Ag(0) = , A=R=
o© = oot

and

T06(®) — Tog(B)T (9T (@) = L.

Therefore, under the sequence

lim \/ﬁ)\g(eoo> = Agy00

we will have

GET, 4, sup {2 (S + Aoo,g)/Ag — )\fg)\g}
AgEA

= (S 4+ Aoop) (S + )

as claimed. 0

Proof of Proposition 5

The proof is entirely analogous to the proof of Proposition 8 in Amengual, Bei, Carrasco

and Sentana (2022), so we omit it for the sake of brevity. O
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Table 1: Monte Carlo rejection rates (in %) under null and alternative hypotheses for testing
for selectivity in multivariate regression

Null Alternative hypotheses
hypothesis H,, H,,
1% 5% 10% 1% 5%  10% 1% 5%  10%

Panel A: n =400

GET 1.0 5.0 10.2 8.5 232 351 8.6 239 359
LR 0.9 4.9 104 9.1 252 371 9.1 252 369
GMM 1.0 5.1 10.1 7.6 220 325 7.8 224 333

Panel B: n = 1,600

GET 0.8 5.1 9.7 62.2 827 888 62.7 83.1 89.5
LR 0.9 4.8 9.6 68.0 86.6 91.6 68.9 864 91.7
GMM 1.0 5.2 10.0 57.9 793 87.5 58.5 79.2 87.6

Notes: Results based on 10,000 samples. GET and LR are defined in section 3.1. GMM refers to the
J-test based on the influence functions underlying GET. Finite sample critical values are computed by
simulation. DGPs: w = 21 = 1 and 22 ~ N(0,1), oM = (0,1), p? = 12, ¢ =1 and ¢ = 0.25. As
alternative hypotheses, we consider 9’ = (0.57,0.57) (H,1) and ¥ = (0.80,0) (H,2); see section 3.1 for
the parametrization.

Table 2: Monte Carlo rejection rates (in %) under alternative hypotheses for testing normality
versus SNP

Alternative hypotheses
Ha1 Ha2
1% 5%  10% 1% 5%  10%

Panel A: n = 400
GET 8.8 27.7 395 30.2 404 46.6
LR 10.6 26.8 39.4 25.0 37.5 45.2

Panel B: n = 1,600
GET 59.5 83.5 89.7 67.8 78.2 82.3
LR 64.3 83.1 89.7 64.7 76.4 82.2

Notes: Results based on 10,000 samples. GET and LR are defined in section 3.2. Finite sample critical
values are computed by simulation. DGPs: ¢ = 0, ¢V = 1, ¥ = (0.25,0.10) for H,;, and 9" =
(0.75,0.05) for H,s.
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Figure 1: Alignment of GET and LR under the null hypothesis when testing for selectivity

in multivariate regression

GET

Notes: Results based on 10,000 samples. GET and LR are defined in section 3.1. DGPs: w =127 =1
and z9 ~ N(0,1), oM = (0,1), pP =1, ¢° =1 and ¢* = 0.25

Figure 2: Alignment of GET and LR under the null hypothesis for normality versus SNP
test

GET

Notes: Results based on 10,000 samples. GET and LR are defined in section 3.2. DGPs: ¢ = 0,
\%4
" =1.
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B Reparametrizations
B.1 Sequential reparametrization method

In what follows, we explain how to obtain the reparametrization alluded to in section 2.1

using a sequential approach. To do so, we make the following

Assumption 7 1) The asymptotic covariance matriz of the sample averages of (sy,s9,) eval-
uated at (¢, 0) scaled by \/n has full rank.
8L:17':i9'r]
99" | (4,0

=0, for all index vectors such that thjgr <r—1.

3) There exists a set of coefficients {mj;ger}Lg,,jer=r71,k:1,...,pfqr which may be functions of @ such

that L.
O*ardor]

— =0
ogler

o,
my" Sy, + ...+m "a5ep_q +m 18917 T - —l—mp 5914, T

PQ+

for all v, jo, = — 1, where the default argument is (¢,0).

In this context, a convenient way of reparametrizing the model from (¢, ) to (¢, 0) is as

follows:
Jer JGT
— 0 _ p (1 9
o1 =01+ § 9”7 o Pp—q = Pp—q Tt Z K
. . Jo,!
L;TJgr:r—l T Ly, Jo,=r—1 r
JB’I‘ .]67
2 : Mp—q+1 pie } : Mp—q, nie
Y1 = 011 + ' 0‘%’“ .,191q1 :01q1+ THJ ",
;s Jo, , .]0T-
Ly Jor=r—1 Ly do,.=r—1

U1 = 97‘17 ) 197'(]7" = erqr-

Then, if we use Faa di Bruno’s (1859) formulas, which generalize the usual chain rule to

higher-order derivatives, we can show that

oM Jo, Otarder]
89‘3»& =M Sy F e mp qS‘Pp q + m q+181911 Tt mp grS01q, T HYler =0
for all ¢}, jg, = — 1 as desired, and where the default argument is again (¢, 0).
Finally, we need to check whether >, . _ X0 01l gvaluated at (¢,0) is linearly inde-

to,d6r =" Jo,! oelor
pendent of (sg,sg,) for all )\% 4+ 4 )\gr = 1. If so, Theorem 1 applies. Otherwise, we should

check whether either:

1) there exists a new set of coefficients {mmr }LgTjeT=r,k=1,...7pfqr which may be functions of ¢
such that
tie, tie, tie, tie, 8”:1rj0rl
my? sp, + ..+ mpqu¢p_q +m, q+13911 +...+ mprSQIql + e 0 (B1)

when evaluated under the null, in which case we can do a further reparametrization from (¢, 6)
to (qu, HT) in such a way that we set all the 7** partial derivatives with respect to 0" to Z€ro, or

2) we can use Theorem 2, which covers far more general cases.



B.2 Numerical invariance to reparametrization

Let us now prove that the GET statistic that we proposed in Theorem 1 is invariant to
reparametrization, exactly like the LR test or the usual LM tests that rely on the information
matrix rather than the sample average of the Hessian. For simplicity of notation, we will do
so in a simple case in which r = 2 and 8 = 65, so that we can omit the subscript 2 from 6
henceforth. Additionally, we drop the subscript ¢ from the contributions of each observation to
the log-likelihood function.

Define o = (¢, ) as the original parameter vector, where ¢ is p x 1 and ¥ a ¢ x 1 vector.
In what follows, (¢, 0) are the omitted arguments for all the relevant quantities that depend on
(¢, 7).

We maintain that Assumption 3 holds with » = 2 for the original parameters g, so that 1)
the asymptotic variance of the sample average of s, has full rank, 2) there is a ¢ x p matrix M

of possible functions of ¢ such that
Msqi(¢,0) + s9i(9,0) = 0 (B2)
holds, and 3) the asymptotic variance of the sample average of
i (1)
q d00¢' I,
has full rank under the null for all v such that ||v]|| # 0.

If we reparametrize from o to p as
p=0¢p+M8, and V=20,

then, we can easily check that

ol ol
= = B
oL _pp oL O Ms,; + sg; = 0, (B4)

90~ Voo o9

9%l o1 (M
— =M, I,| —— .
0006’ (M, 1] 8989’( I, )

In addition, (B3) and (B4) hold when evaluated under the null, with

0000' I, ) 9000 \ 1,

linearly independent of 9l/0¢, which implies that Assumption 3 is satisfied with » = 2 for the
transformed parameters p = (¢, 8’)" too. Consequently, we can apply Theorem 1, which yields
GET? = SUD| || £0 ET¥ (v), where

[V'H()v]2 1 W'H()v > 0]

ETf(v) = Vo) 20,
wel = (1) Gaot o (00 ) @)




and

Vy(v,¢) = Vu'H(p)v] — Cov[v"H(p)v,54()]V " [s6()]|Covse (), v'H(p)v]

is the adjusted variance of v'H(p)v.
Consider now an alternative reparametrization from g to p' characterized by
T of
o= (%) -5 | o
where g(-) is some second-order continuously differentiable vector of functions which represent a
suitable diffeomorphism, at least locally around the null. Such an alternative reparametrization
must also ensure that: (i) s, has full rank, (ii) sy: is identically 0 at Ho : 6" = 0, and (iii)
r 9%

V' oi5er ¥ Is linearly independent of s+ for all [lv]| # 0.

Given that the first order derivative of ¢! under the null is given by
oL og¥  og? og?  og”
71_ = 75@ —|— 7TS,0 = — 'I' S(P?
o' 0o o o' 0¢

where we have used the chain rule in the first equality and (B2) in the second one, we need to

assume that

(o)) o/
det <8g — g
o' O
for 1/0¢' to have full rank. Similarly, given that (B2) and the chain rule imply that

ol B ag¢>/ agel B agdy agel
20" o0 ¢ a7 T B S

M> £0 (B6)

00t 067

we must also assume that
8g¢’ 8g9/
oot o6
to ensure that 9/ 00" = 0 under the null irrespective of ¢! because s, has full rank.

(B7)

Let us now turn to condition (iii), for which we first need to compute the corresponding
second-order derivatives. Applying the chain rule once again, we obtain
?l ol 0%g® n og? 921 og? N ag? 9% og?
oolo0t 09’ a0loet ool dpde’ op! oyl 090¢" oyl
ol 9%g?  og? 92 0g? og? 0% 0gb

09" 991 00! i a9t 9909" op! i 0% 0pdV" o]

In this context, (B7) and (B2) imply that
2 2,0 o/ 21 o e 21 0
GT [ T :Sip 8Tg -t 8gT M 0 /M,GgT 4 GgT 0 : ,8gT
0601001 To0l00l 001 Opde  opl  0g) 909" 96
Y 82g9 N agal 521 agﬂ N 8g9’ 921 3g9
? o0lot o0t 0009 gp! a0l 0pdd oo!

o 82g¢ Y 82g9 N 8g9/ ( M )’ 921 ( M/ ) 8;g0
“\ooloot — oofoel ) o0t \ 1o ) 000e' \ L ) 00}




when evaluated at the null, so

921 g 62g¢ Y 82g0 +ag01Ha;g9
06toe | 7 \ 99lo0! oolod ) J .~ 06" 06"

Hence, (B5) implies that

0?1 /
v'———v=s a+ v Hof, forallv+#0
001007 © #
when evaluated at the null, where a = (a1, ...,aq)" with

a; = 62g? - M azgf vand vl = Qg"v
001961 201961 )

In this context, if we further assume that

og?
det (OOT') #0, (B8)

then it is easy to see that v’ 60‘?7%1) will be linearly independent of s ot for all v such that
[vT]| # 0 because (a) v"Hut is linearly independent of s and (b) s, is a linear combination
of s,.

In sum, once we guarantee that (B6), (B7) and (B8) hold, the parametrization from o to p'

satisfies the rank deficiency condition in Assumption 3 with r = 2.

821
80706

Finally, let us define the adjusted asymptotic variance of v’ FU as

V.ol =v (v—LL o) - O -1 O

ot v, )=V (’U amamv) Cov (U 8mag]nj,s(ﬁf) 174 (S¢T)CO'U <S¢f,'U 89T80TU>
= V(s,a+ UT,HUT) — Cov(s,a + vl Hof, a's,)V 1 (a's,)Cov(a’s,, Spa + 'UT/H’UT)
= V(’UT/H’UT) - CO'U(’UTIH’UT, $4)V " (sp)Cov(sy, ’UT/H’UT)
=V, (v, ).

Then, we will have that

ETP (v) =

Vy(vl, @)
Yol]?1 [’UT/H(@)’UT > O]
VW(UT, ¢)

<,
E\
[

= ETP(v'),

where the third equality follows from the fact that s, () = 0. Given that the mapping from v
to v! is bijective, taking the sup will finally imply that

i T
GET:; = bupHUH#OETﬁ (’U) = 5upHUT||7éOET7€(UT) = GETZ,

as desired.



C Example 3: Testing Gaussian vs Hermite copulas
C.1 The model and its log-likelihood function

The validity of the Gaussian copula in finance has been the subject of considerable debate.
As a result, it is not surprising that several authors have considered more flexible copulas. For
example, Amengual and Sentana (2020) look at the Generalized Hyperbolic copula, a location-
scale Gaussian mixture which nests the popular Student ¢ copula discussed by Fan and Patton
(2014), which in turn nests the Gaussian one. In this section, we consider Hermite copulas
instead, which can potentially provide much more flexible alternatives.
As is well known, Hermite polynomial expansions of the multivariate normal pdf can be
understood as Edgeworth-like expansions of its characteristic function. They are based on
multivariate Hermite polynomials of order p, which are defined as differentials of the multivariate

normal density:

-0

J
Hj(x,¢) = fnr(x;R) ™ <8x> fyr(x;R), (C9)

where ¢/.j = p with j € N¥ ¢ = vecl(R), and R is a positive definite correlation matrix.

To keep the expressions manageable, we only consider explicitly pure fourth-order expansions
in the bivariate case. We could also include third-order Hermite polynomials, but at a consider-
able cost in terms of notation. Similarly, extensions to higher dimensions would be tedious but
straightforward.

We say that (z1,z2) follow a pure fourth-order Hermite expansion of the Gaussian distribu-

tion when their joint density function is given by

fr(z1,2;0,9) = fn2 [( i, > ; ( Lo ﬂ P(z1,22:0,9), (C10)

) (2 1
where
4
P(z1,3050,9) =1+ Y 011 Hyj (w1, 725 0),
j=0
@ is the correlation between x; and x2, which we assume is different from 0, and ¥1,...,75

the coefficients of the expansion. The leading term in (C10) is the normal pdf and the remain-
ing terms represent departures from normality. Indeed, fr(x1,x2;p, ) reduces to a Gaussian
distribution when 9 = 0.
We can easily show that the corresponding marginal distributions are given by
fu(z1;91) = ¢(z1)[1 + F1Hao(71, 22)] } ’ (C11)
fr(%2;95) = ¢(22)[1 4 U5 Hoa(21,72)]
where ¢(.) the standard normal pdf and Hyo(z1,22) and Hos(z1,22) are the (non-standardized)
fourth-order univariate Hermite polynomials for x; and x2, respectively.
Hermite expansion copulas are based on Hermite expansion distributions. Specifically, if

y = (y1,y2) denotes the original data, we can define u = (uj,u2) = [Fi(y1), F2(y2)] as the



uniform ranks of y, and finally x = (z1,22) = [Fj;* (u1;91), F* (u2; 95)], where Fi;'(.;9;) are
the inverse cdfs (or quantile functions) of the univariate fourth-order Hermite expansions with
parameter ¢; in (C11). When the copula is Gaussian, x; coincides with the Gaussian rank
D1 (uy).

Consequently, the pdf of the pure fourth-order Hermite expansion copula is

fu(zi,a0)  ba(wn,ma0)[1+ X0V Ha (w1, 725 0)]
fr(x;91) fu(x2;95)  ¢1(x1)[1 + V1 Hao(w1, 32)]d1 (22)[1 + U5 Hoa(21, 72)]

C.2 The null hypothesis and the GET test statistic

Straightforward calculations show that in this case

59, (0,0) + 3059, (10, 0) + 3959, (¢, 0) + ©*s9,(1p, 0)
$95(0,0) + 3059, (10, 0) + 3959, (¢, 0) + 9’59, (10, 0)

)

0
0.

Our proposed reparametrization, namely

©=¢, U1 =03, VU3=~011+300 + ¢,
V3 = 012 + 3¢°091 + 302002, U4 = 013 + 3oz + 3021, U5 = O,

confines the singularity to the scores of 621 and 022. Therefore, we need to obtain the second
order derivatives with respect to #2; and 692. In this case, we can prove that the asymptotic

covariance matrix of

o o o o L o O
6(15’ 89117 80127 8913’ 09%17 3952 86218(922

scaled by y/n has full rank. Although the algebra is a bit messy, after orthogonalizing those sec-
ond derivatives with respect to the score of ¢ to eliminate the effect of the sampling uncertainty
in estimating this correlation coefficient under the null, we can express the three second-order
derivatives as linear combinations of all the even-order multivariate Hermite polynomials of

8" order, with coefficients that depend on the correlation coefficient, as we

(z1,22) up to the
explain the next section in detail.
Let 021 = vin and 02y = von with U% + v% = 1, and consider the simplified null hypothesis
Hy: 011 = 012 = 013 = = 0. Then it is easy to see that the GET statistic will be
1 _ 1 _ _
—S1,Vix S1n + — sup D;,(Vyy = VipViy Vig) " Dl [Py > 0], (C12)

" lv)=1

where

Dn(¢>nvv) = Hnn(¢777>U)_Vn1(¢anav)‘/lzl(¢)sln(¢>0)7

¢ R921051,i(P)  Po31042,i(P) } ( Uy >
Hon (b1, 0) = U1 v 21021, 21022, :
K (¢ K ) z;( ' 2) [ h921922,i(p) h922922,i(p) V2

Sln((bao) = [S911(¢’70)75912(¢70)’5913(¢70)]17



and the omitted arguments are (¢, 0,v) for D, (¢,v) for Vims Vo1 and Vi, (¢,0) for Sy, and
q}ﬁ for V1.

In this case, the asymptotic distribution of GET,, is bounded above by a X% distribution
because of the six influence functions. In addition, it is bounded below by a 50:50 mixture of x3
and X421 because 011, 012 and 013 are first-order identified parameters and an even-order derivative

of n is involved.

C.3 Computational details

C.3.1 Influence functions

In practice, the calculation of the GET statistic requires explicit expressions for all the

different ingredients that appear in (C12). Tedious but straightforward algebra implies that

ol
% = (0,1,0) - Ha(z1, z2; ¢),
ol
80711 = H31($1,$2,¢)7
ol
% = H22($1,$2§¢)a
ol
= Hig(z1,22; 9),
9%l
— = (0,60,0) - Ha(z1, 72; ¢)

+ (0,186, 36¢%,18¢°,0) - Hy(z1, z2; ¢)
+ (0,96, 36¢2, 54¢°, 369, 9¢°, 0) - Hg (1, T2; @)
+(0,6,60%,15¢%, 204, 156", 66°, 67, 0) - Hg(z1, 22; 9),
9% 5
0010003 —(0,6¢°,0) - Ha(x1, z2; ¢)

— [0,18¢%,18 (¢* + ¢?) ,18¢°,0] - Hy(z1, 725 ¢)

— [0,96°,18 (¢* + ¢%) ,9 (¢° + 46° + ¢) , 18 (¢ + ¢7) ,96°,0] - Hg (w1, 79; ¢)

—[0,¢%,3 (¢* + 6%),3 (¢° + 3¢ + ) , ¢° + 9¢*

+96° + 1,3 (¢° +3¢% + ¢) , 3 (8" + ¢%) , ¢°, 0] - Hg (w1, 22; 0)

and
0l
—5 =(0,60,0) - Ha(z1, z2; $)+
0054
(0,18¢°, 3697, 18¢,0) - Ha(z1, z2; @)
+ (0,9¢°, 369, 54¢°, 36¢%, 96, 0) - He (1, v2; ¢)
+ (0,907,645, 154,209, 15¢°, 66%, ¢, 0) - Hg(x1, 22; ¢),
where

H, (21, 72; ) = [Hpo(21, 225 0), Hp—11(21,72; ¢), ..., Hop(1, 225 9)] .



C.3.2 Positivity of the Hermite expansion of the Gaussian copula

The foregoing derivations, though, ignore that the positivity of the Hermite copula density
for all values of y imposes highly nonlinear inequality constraints on the elements of @ = (0, 85)’
with 61 = (011,012,613)" and @2 = (f21,022). Therefore, Assumption 2.1 fails because p, lies
at the boundary of the admissible parameter space. Nevertheless, we can still derive an LR-
equivalent test. Specifically, given that under the null hypothesis of a Gaussian copula the
UMLE estimators of 81 and 05 converge at rates n~2 and n_i, respectively, the elements of the
sequence 01,, are negligible, in which case we simply need to find the asymptotes of the feasible
set for (021, 6022). Let 021 = nu; = nsin(w) and fae = nua = ncos(w) with w € [0,27) to ensure
a unit norm for v = (v1,v2)’. As we show below, these parameters lead to a positive density
when 7 is small enough if and only if w € (w;,wy), with w; and w,, defined in (C15). Therefore,
an asymptotically equivalent GET statistic that imposes positivity of the Hermite expansion
copula under admissible alternatives local to the null will be given by

1 1 _
= S1Vir S+~ sup D)y (Ve = Vin Vi Vi) 'D,1[D, > 0. (C13)

we (wi,wy)

This test is asymptotically equivalent to the LR test, which implicitly imposes positivity
because a zero density gives rise to an infinitely penalized log-likelihood. Nevertheless, our test
is again far more computationally convenient than the LR test because the positivity constraints
effectively become linear under local alternatives.

To justify these claims, it is convenient to remember that in the original parametrization,

P(xy1,x9;0,19) is equal to
1+ Y1 Hao(x1, 225 0) + V2 Hz1 (21, 225 ) + VsHoo(x1, 225 0) + VaHiz(x1, 225 0) + IsHoa(z1, 225 @).

But as mentioned before, after reparametrization the marginal distributions only depend on
021 or f9y. For that reason, it is convenient to consider two groups of parameters, namely
01 = (011,012,013) and O3 = (021, 022). In addition, the positivity constraint depends mainly on
05 because 051 and Oy are Op(n_%) under the null while 911, 012 and 015 are Op(n_%). Therefore,
01 is dominated, at least asymptotically. For that reason, we first discuss the positivity constraint
on 0> when 61 = 0, and then explain how to simplify the asymptotic positivity constraint and
the extremum test statistic.

Let o = txy1, 022 = kb1, £ > 0 so that the polynomial that multiplies the Gaussian pdf

simplifies to

]5(331,¢,k,t,921) = P[.’L’l,tl’l;¢, (021707070ak921)/]

30 0
= 1+ 302 Co(k) + 1_—"’;202(&@ )i+ ﬁa;(k,t, ¢)ai,

where

Co(k) = k+1, Co(k,t,¢) =k (¢* — 2) 2+ (k + 1) ¢t +¢*—2 and Cu(k,t, ) = kt* —kot> — gt +1.



It is easy to see that the minimum of P(m, ¢, k,t,021) is finite if and only if (i) Ca(k,t,¢) > 0
or (ii) Cy(k,t,¢) = 0 and Cs(k,t,¢) > 0. In addition, when 63 is very small under either (i) or
(i), we have min, P(z, ¢, k, t,091) is greater than 0. Thus, we need to find a set K (¢) such that
forall ¢ # 0, for all k € K(¢) C [0,400) and for all t € R, we have either (1) Cy(k,t,¢) > 0or (2)
Cy(k,t,¢) = 0 and Co(k,t,¢) > 0. In other words, we need Cy(k,t,¢) = kt* —kot> — gt +1 >0
for all ¢.

To guarantee the positivity of this expression, we need k > 0. If the discriminant of Cy(k, t, ¢)
is positive, then Cy(-,¢,-) = 0 has either only real or only complex roots, while if the discriminant
is negative, then Cjy(-,t,-) = 0 will have both two real and two complex roots. Finally, if the
discriminant is zero, then at least two roots must be equal. Therefore, we want the discriminant
of Cy(k,t,d) to be non-negative. Indeed, we can find two functions, [b(¢) and ub(¢) such that
Ib(¢) < k < ub(¢) if and only if the discriminant is positive while k € {Ib(¢), ub(¢)} if and only
if the discriminant is zero. Moreover, Ib(¢) € (0,1), ub(¢) € (1,400), and 1b(¢)ub(¢) = 1. The
proof of these statements is as follows.

We can easily show that
Disci[Cy(k,t,¢)] = —k*[2Tk*¢* + 2k (2¢° + 34" + 969 — 128) + 274",

so that the solution to
Disc[Cy(k,t, )] =0

is

26° + 39" + 9662 +2(1/ (¢7 — 4)° (6> — 1) (¢* +8)” — 64)

1(6) = s
265 + 39" + 9667 — 2(1/ (¢2 — 4)° (6> — 1) (¢* +8)” + 64)
Ub(¢) = - 27¢4

Thus, when & € [Ib(¢), ub(¢)], the discriminant is positive and we simply need to check whether
Cy(k,t,¢) > 0. First, consider ¢ > 0 and Cy(k,t,¢) = kt3(t — ¢) — ¢t + 1. When t > ¢,
Cy(k,t,¢) is increasing in k. In this context, we can prove that ming>4C4[lb(¢),t,¢] = 0. In
contrast, when ¢ € [0,¢), C4(k,t,¢) is decreasing in k, and we have min>4Cylub(¢),t, ] = 0.
Finally, when ¢ < 0, it is obvious that Cy(k,t, ¢) > 0. In summary, k € [Ib(¢), ub(¢)] is sufficient
for Cy(k,t,¢) > 0 and the same is true for ¢ < 0.

However, when either k = Ib(¢) or k = ub(¢), we have t;,t, defined by Cy[lb(¢),t;,¢] = 0
and Cy[ub(¢),ty, ¢] = 0, respectively, so that

Callb(¢), 11, ¢] <0 and Calub(¢),ty, ¢] <0 for all ¢,

which in turn implies that k € {Ib(¢),ub(¢)} does not hold.
In sum, we have shown that when 6; = 0, the asymptotes of the feasible set near 0 are
922 = lb(¢)921 and (922 = ub(¢)921.



Next, we know from Theorem 1 that

LR = ET(0PT) + Op(n"2), (C14)
where
1 1 ~ 1 1
nz20, n~25g,(¢,0) n20, n20;
Lo -1 ~ 12 ~ 142
ET,(0) =2 7;2921 n_iHozlezl(?, 0) | ?2921 Voo () ?2921 7
7129121922 n 2H921922 (¢a 0) n26216022 n2091099
1 _1 ~ 1 1
77,29%2 n 2H022022 (¢a 0) HZG%Q n2 9%2
0FT = argmaxgeo ET, (),

and O is the set of parameters that satisfies the positivity constraint. Unfortunately, ETn(BET)
is not very easy to calculate because © is difficult to characterize explicitly. For that reason, we
will show that

ET,(05T) = GET, + 0,(1),

where

1oy oo g~ - D2(¢,v)1[D(¢,v) > 0]
GET, = ~Sp (6,0)V7*(¢)Se, (¢,0) + S - = .
n 61 (gb ) 11 (¢) ] (gb ) we(sili)wu)n V22<¢, U) _ V21(¢, ,U)‘/l—ll((ﬁ)V12(¢’ U)

with v; = sin(w) and ve = cos(w) so that ||v|| =1, and

w; = arctan([lb(¢)], w, = arctan[ub(¢)]. (C15)

Let 621 = v1n and 023 = von, then

srnor=o( ) 2 o3[ 22815 o

with

o U1 ' H021021 (¢a 0) H021922 (¢a 0) v1
SBQ(Qb,O,U) B ( V2 > [ H921922(¢7 O) H922922(¢a O) :| < ) ‘

Similarly, let 7 = max{n®T, n=*} with i <k< % Then it is easy to see that

ET,(07",7,0"") = ET.(077, "7, v™") + 0p(1). (C17)

Next, consider (07, n*, v*):argmaXPCA{ank}ETn(Ol,77, v), where pc={(61,nv1,nv3) € O}.

It is easy to see that w.p.a. 1,

ET, (077 ,n"" v") > ET,(07,7*,v*) > ET, (61", 7, v"") (C18)

because (Y7, nET, vET)

event (0¥ 7, vFT) € pc and {77 > n_k} happens w.p.a. 1. Combining (C17) and (C18), we

= argmax,,. T, (01,7, v) is chosen from a larger feasible set, and the

have
ET, (65,1, v*) = ET, (077, 0", v"T) + 0,(1), (C19)
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so we only need to calculate (07, n*, v*).

In this context, note that there exists a &’ € (k, 1) such that

lim, P(||0%]| < n™* <n*F <p*) =1. C20
1

Therefore, this confirms that 07 is asymptotically irrelevant for the positivity constraints because
it is effectively unrestricted. Consequently, (C20) implies that the only relevant restriction will
affect the direction of 0.

In view of (C16), the first order condition for 87 for given n* and v* implies that
n205 (0", v") = Vi, (6) [ %59, (9,0) = Via(d,v")nz ()]
Hence, if we substitute 87 (n*, v*) in the expression for ET(01,7n,v), we end up with
BT,(07,1°,0") = - 8, (5,0)V;7(3)S0,(5,0)

— 32 Va4, 0%) — Var (6,0 Vi (9)Via(, 0" In 22
+ 20202 [0 28p,($,0,v%) — Var (4, U*)‘/lzl(&)n_%591($’ 0)]. (C21)

Given that (C21) is quadratic in 7*2, if take into account the restriction 7* > n=*, we obtain

n*(v*>=ma><{"“1‘%vzz<&s, v*) Va1 (6, v*) Vi1 H (@) V12(6, v*)Jn~ 3D (6, v*)1[D(, v*)zo}v”‘k}’

where D(¢, v) = Sp, (6, 0,0%) — Var (¢, v)Vi7'(8)Sa, (¢, 0).

Thus, if we replace the previous expression for n*(v*) into (C21), we end up with

ET,(61,0707) =~ 86,(5.0)V11"(9)S,(5,0)
1 D%(¢,v*)1[D(¢, v*) > 0]
1 Vs (¢, v*) — Va1 (¢, v*) Vi1 (9) Va2 (6, v¥)

part 2

top(1).  (C22)

But since part 2 in (C22) is a function of v*, which by definition is a maximizer of ET),, we will

finally end up with

ET,(63,7",v") = %Sal(&owlzl(&)sel(&,O)

1 D*(¢,v)1[D($,v) > 0] 1
TR Vn@0) Vo0V Vi)

which confirms that

ET(0F7 0" v = 155, (5, 0)Vi"(3)56,(5.0)

1 D*(9,v)1[D(¢,v) > 0] .
+we?:»lzl?cuu)n Voo (6, v) — Va1 (¢, v)Vi7H(9)Vi2(6, v) +opll)

in view of (C19).
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C.4 Simulation evidence

For simplicity, we assume the marginal distributions are known, so that we can directly
work with the uniform ranks, which we immediately convert into Gaussian ranks (see Amengual
and Sentana (2020) for further discussion of this topic). We estimate the correlation parame-
ter, whose true value we set to 0.5 under both the null and alternative hypotheses, using the
Gaussian rank correlation in Amengual, Sentana and Tian (2022), which effectively imposes
the null. As alternative hypotheses, we consider two Hermite expansion copulas: one with
9 = (0.03,0,0,0,0) (H,,) and another with ¥ = (0.02,0,0,0,0.02) (H,2). While the second
one generates a copula density which is symmetric around the 45° line, the first one does not.
In any event, both departures from the Gaussian copula are rather mild, as they only involve
one or two parameters different from 0.

If the correlation coefficient were known, we could again compute exact critical values under
the null for any sample size to any degree of accuracy by repeatedly simulating samples of i.i.d.
bivariate normals with correlation ¢. In practice, though, we fix the correlation coefficient to
its estimated value in each sample in what is effectively a parametric bootstrap procedure (see
Appendix D.1 in Amengual and Sentana (2015) for details).

In Table 3 we compare the results of our tests with three alternative procedures: KS, which
denotes the non-parametric Kolmogorov—Smirnov test for copula models (see Rémillard (2017)),
KT-AS, which is the Kuhn-Tucker test based on the score of a symmetric Student ¢ copula
evaluated under Gaussianity (see Amengual and Sentana (2020)), and GMM, which refers to

the moment test based on the underlying influence functions in GET.

Following the same structure as in Table 1, the first three columns of Table 3 report rejection
rates under the null at the 1%, 5% and 10% levels for n = 400 (top) and n = 1,600 (bottom). The
results make clear that the parametric bootstrap works remarkably well for both sample sizes. In
turn, the last six columns present the rejection rates at the same levels for the two alternatives.
By and large, the behavior of the different test statistics is in accordance with expectations.
In particular, when the sample size is large our proposal is the most powerful given that it is
designed to direct power against alternatives in which the copula follows a Hermite expansion
of the Gaussian one. In contrast, its non-parametric competitor has close to trivial power in
samples of 400 observations, a situation that improves marginally when n = 1, 600. Interestingly,
the Kuhn-Tucker version of the Gaussian versus Student ¢ copula test in Amengual and Sentana
(2020) performs quite well when n is large in spite of not being designed for the alternatives
we consider. Importantly, GET does a better job than the moment test based on the influence
functions S, implied by the higher-order expansion of the log-likelihood on which it is based,

which is partly due to the fact that it takes into account the partially one-sided nature of the
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Table 3: Monte Carlo rejection rates (in %) under null and alternative hypotheses for the
Gaussian versus Hermite expansion copula test

Null Alternative hypotheses
hypothesis H,, H,,
1% 5%  10% 1% 5%  10% 1% 5%  10%

Panel A: n =400

GET 1.1 5.1 10.2 184 49.7 65.1 269 609 T4.2
KS 0.9 4.7 9.3 0.9 4.7 9.9 1.1 5.4 10.6
KT-AS 1.2 5.3 103 18.9 39.2 52.0 31.7 554 68.0
GMM 1.1 5.2 10.2 3.8 384 570 6.3 49.7 67.2

Panel B: n = 1,600

GET 0.9 4.9 10.3 90.8 989 99.6 96.8  99.7 99.9
KS 0.9 4.7 9.8 1.9 7.7 145 3.1 104 18.6
KT-AS 0.9 5.3 10.6 60.9 828 90.1 87.1  95.9 98.2
GMM 1.1 5.0 9.9 44.0 955 99.0 68.2  98.8 99.7

Notes: Results based on 10,000 samples. Margins are assumed to be known. The correlation parameter ¢
is estimated under the null using the Gaussian rank correlation estimator described in Amengual, Sentana
and Tian (2019). KS denotes the Kolmogorov—Smirnov test for copula models (see Rémillard (2017) for
details) while KT-AS is the Kuhn-Tucker test based on the score of the symmetric Student ¢ copula (see
Amengual and Sentana (2020) for details). GMM refers to the J-test based on the influence functions
underlying GET. Critical values are computed using the parametric bootstrap. DGPs: The correlation
parameter ¢ is set to 0.5 under both the null and alternative hypotheses. As for the alternative hypotheses,
H,, and H,, correspond to pure, fourth-order Hermite expansion copulas with 9’ = (0.03,0,0,0,0) and
9" = (0.02,0,0,0,0.02), respectively.

alternatives.

Finally, it is important to mention that in this example the log-likelihood function under the
alternative is particularly difficult to maximize over the five parameters involved. In fact, we
systematically encounter multiple local maxima in samples of up to 100,000 observations even
if we fix the correlation parameter to its true value and use global optimization methods, which
forced us to repeat the calculations over a huge grid of initial values. For that reason, we have
only computed the Gaussian rank correlation coefficient between the LR test and GET across

ten such simulated samples, obtaining a high value of .96.
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D Example 4: Purely non-linear predictive regression

D.1 The model and its log-likelihood function

Consider the following extension of the nonlinear regression model in Bottai (2003), in which
the data consist of n observations y = (y1,¥2,y3) drawn from a joint distribution characterized
by

f(y:0) = f(ysly1, y2; 0) f (Y1, y2),

where f(y1,y2) is fixed and known, while

1
F(sly1,y2;0) = ¢ |ys — exp (01y1 + O2y2) + O1y1 + O2y2 + §9§y§ ; (D23)

with @ = (61,603) unknown. This model has an interesting interpretation in the context of
predictive regressions. Specifically, a Taylor expansion of the exponential function immediately
shows that the mean predictability of y3 does not come from the terms that also enter outside
the exponent (namely, y1, y2 and y3) but rather, from higher order powers of the two regressors
as well as their cross-products. Therefore, model (D23) provides an interesting functional form
for predictive regressions of variables such as financial returns when a researcher believes in
predictability but not through standard linear terms (see for example Spiegel (2008) and the

references therein for a discussion of return predictability).
D.2 The null hypothesis and the GET test statistic

In the case of a single regressor, Bottai (2003) showed that the nullity of the information
matrix is one when the regressand is unpredictable. Not surprisingly, the information matrix
has several rank deficiencies under the null hypothesis Hy : @ = 0 in the multiple regressor case.

The relevant derivatives of log-likelihood function with respect to #; and 09 evaluated at the

null hypothesis are

ol ol
06, 0 06y 0
02l 9 0?1 0%l
=R 1) e =yl — 1), 5y =0
89% n (y3 ) 891892 Y1y2 (y3 ) 80%
and
Pl
— = —1).
263 y>(ys — 1)

Therefore, we have a situation in which the degree of underidentification is different for the

two regression coefficients. But since Assumption 4 is satisfied with C' = {(2,0),(1,1),(0,3)}, a
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straightforward application of Theorem 2 implies that

LR, = GET,, + O,(n"5)

2,0
Ly hn Ly s G )
= sup 2(62,0105,603) | LIV | —n(02,0102,03) | Iy I Ios 0102 | +0p(n"5), (D24)
61,92 LI03] I3y I3p I33 03
where
Iv Lis It 1120
121 122 123 = lim Var \/ﬁ l[l’l]
I3 Isp 133 e 03]

In this case, though, we need to obtain the maximum with respect to 61 and 02 over the entire
Euclidean space of dimension 2 rather than over the unit circle.

Nevertheless, we can provide an asymptotically equivalent but much simpler statistic. Let

p1 = Vn(OFT)2, po = nbFTOLT and ps = /n(6FT)3. Tt is then straightforward to show that
13 2
nepips = pa-
As a result, we must have that either p; or ps are negligible when n is large because py is O,(1)
from Lemma 1 in Appendix A. If p; is negligible, then (D24) is asymptotically equivalent to

L] Iy I 010
ETi, = sup 2(0102,03) | o5 | = n(0162,03) ( 2 23><12>
supETh eslu(g (0102, 03) < 7jos) (0102, 03) ( Iso Is3 03

A 03] Iy Ips \ ' LI
notoTn Isp I3 2GS

If instead p3 is negligible, then (D24) becomes asymptotically equivalent to

supET, = sup 2(62,0105) n(6?,6,05) Ly L oy
PEtom 91752 1,0102) LUI2IN Iy Ipo 0102
Lty — LIy, T2
= — ( + ( 12792 ) ]_[LE’O} —112[52ng’1] > 0] .
n I L1 — Daly' In

Consequently, we could obtain an asymptotically equivalent statistic up to a term of order o,(1)
by simply retaining GET,, = max {supETh,,, supETs,}.
In addition to computational advantages, it turns out that the asymptotic distribution of

our test is easy to obtain. Specifically, let

Zin=mn"2 LZO] — 11212721117[1171] , Lo = n"2 Lr}l] and Zs, = n"z ng] — 13212721[’%’1] ;
\/IU — oI5y Iy Vi \/133 — Isalyy' Ing
where
Zln Z1 0 1 0 13
Z2n . Zy | ~N 0 ]; 0 1 0
Zsn 73 0 riz3 0 1
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and
Lz — 21,5 s

13 = '
\/111 — Nalyy' In \/133 — Isol5y g

Then, supETy, = Z3, + Z3, and supETs, = Z3, + Z2,1[Z1, > 0]. As a consequence,

r

GET, % max{Z21 {2, > 0}, 72} + Z2.

In other words, the asymptotic distribution of GET,, will be a x3 50% of the time (when Z; < 0)
and the sum of a x? with the largest of two other possibly dependent x?'s (when Z; > 0). If
we further assume that the regressors y; and ys are two independent normals with 0 means and
variances o7 and o3, respectively, then Z;, Zo and Z3 will be three independent N (0, 1) random

variables.
D.3 Simulation evidence

As alternative hypotheses, we consider 61 = 0.3, 02 = 0 (H,1) and 61 = 0, 03 = 0.5 (Hg2)
in specification (D23). And like in the normal versus SNP example, by maintaining that y;
and yo are uncorrelated, we can compute exact critical values for any sample size to any degree
of accuracy by repeatedly drawing i.i.d. spherical normal vectors (yi,y2,ys3), which effectively
imposes the null hypothesis.

In Table 4 we compare the results of the two versions of our tests discussed above, with
the GMM test mentioned at the end of section 2.2 and two simple alternative procedures.
First, a standard LM test based on pseudo-Gaussian ML that checks the joint significance of
y3 and y1y2 in the OLS regression of y3 on a constant and these two variables, which are the
transformations of the predictors missing from the part outside the exponent in the conditional
mean specification. And second, a closely related LM test based on pseudo-Gaussian ML which
augments the previous regression with the following four cubic terms y3, ¥2y2, y1y3 and y3. We
refer to these tests as OLS; and OLSs, respectively.

The first three columns of Table 4 report rejection rates under the null at the 1%, 5% and 10%
levels for n = 400 (top) and n = 1,600 (bottom) for the first alternative hypothesis we consider
while the last three do the same for the second one. Once again, the behavior of the different test
statistics is in accordance with expectations. In particular, our proposed statistics are the most
powerful in both cases. Part of the reason has to do with the fact that the linear regressions only

provide an approximation to the true non-linear conditional expectation. However, the fraction
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Table 4: Monte Carlo rejection rates (in %) under alternative hypotheses for white noise versus
a purely nonlinear regression test

Alternative hypotheses
Hg, Hag,
1% 5%  10% 1% 5%  10%

Panel A: n =400

GET 19.5 41.3 544 18.56 39.7 524
LR 21.7  41.7 56.2 205 404 541
LMs3; 17.6  39.8 529 18.2 388 50.9
GMM 156.3 343 47.0 143 334 45.5
OLS; 16.2 34.6 47.2 129 305 41.9
OLS» 9.6 239 37.0 73 202 324

Panel B: n = 1,600

GET 65.5 83.9 90.2 61.3 80.5 87.6
LR 66.3 84.5 91.2 61.9 815 885
LM3 7.7 79.1 874 53.1 753 84.2
GMM 57.6 78.3 86.0 54.3 752 83.6
OLS; 53.2 741 833 427 646 75.1
OLS, 37.7 616 733 25.7 48.8 61.8

Notes: Results based on 10,000 samples. GET and LR are defined in Supplemental Appendix D. GMM
refers to the J-test based on the influence functions underlying GET. OLS; denotes a standard LM test
that checks the joint significance of y7 and y;y2 in the OLS regression of y3 on a constant and these
two variables while OLSs is the LM test which augments the previous regression with the following four
cubic terms y3, y?y2, y1y3 and y3. Finite sample critical values are computed by simulation. DGPs:
(y1y2) ~ i.4.d. N(0,I3) under both alternative hypotheses. In turn, ys|ys,y:1 is ¢.i.d. standard normal
under the alternatives 7 = 0.25 and 03 = 0.25 (H,1), and 6, = 0.3 and 62 = 0.1 (H,z2).

of the theoretical variance of y3 explained by v2, v192, ¥3, ¥3ya, y1y5 and y3 is essentially the
same as the fraction explained by the true conditional mean in H,s. As a result, the superior
power of our tests relative to OLSy comes from the reduction in degrees of freedom.

Given that in this case our test has a relatively standard asymptotic distribution —namely,
a 50:50 mixture of x3 and the sum of x3 with the larger of two other independent x3’s— we can
also compute Davidson and MacKinnon (1998)’s p-value discrepancy plots to assess the finite
sample reliability of this large sample approximation for every possible significance level. The
results for the two sample sizes we consider, which are available on request, confirm the high
quality of the asymptotic approximation.

Finally, our results indicate a .94-.95 Gaussian rank correlation between our proposed test
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statistic and the LR across Monte Carlo simulations generated under the null, which is in
line with our asymptotic equivalence results in Theorem 2. At the same time, they con-
firm that the LR test typically takes about 200 times as much CPU time to compute as the

max {supETy,, supETs,} version of our test.
E Relationship to the previous literature

Davies (1987) proposed perhaps the most cited sup-type test, so it is illustrative to provide
a link between Theorem 1 and his results. In view of the fact that ||@,| remains irrelevant
regardless of g, without loss of generality we can consider the reparametrization 8, = nu, with
v € R? |lv|]| =1 and n > 0, so that n and v represent the magnitude and direction of the
parameter vector 6,., respectively. Given that
$010lo1720 Fnl @ Orw) = =, Lnl:01,60)
we could rewrite the null hypothesis as Hg : 81 = 0,7 = 0, where v is a nuisance parameter that
only appears under the alternative. If we considered the 7" derivative of I;(p) along a specific
direction v, which would effectively coincide with the r*" derivative with respect to 7, then we
could directly apply the Lee and Chesher (1986) approach to obtain the relationship between
the LR and ET tests along that direction. Next, we could look at the supremum of those tests
over all possible directions, as suggested by Davies (1987), which would effectively yield GET,.
Nevertheless, this intuitive explanation in terms of 7 and v has some limitations. First, Lee
and Chesher (1986) would yield a pointwise result for a given v, while Theorem 1 relies on
uniform convergence. More importantly, Davies (1987) method is designed for models in which
the log-likelihood function is absolutely flat for some parameters under the null, so regardless
of its analytic nature, no higher order derivatives will provide moments to test. In contrast, we
consider situations in which the log-likelihood function written in terms of @ only has a finite
number of zero derivatives, so a test statistic can be based on the first round of non-zero ones.
In this respect, the underidentification of v is an artifact of the 8, = nv reparametrization that
would persist even if the information matrix had full rank, in which case the supremum over
v of the test of Hy : 81 = 0,7 = 0 will yield the usual LM test. In any event, in Theorem 2
we derive a generalized extremum test in a more general context without resorting to any such

reparametrization.
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