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Abstract
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1 Introduction

Rao�s (1948) score test and Silvey�s (1959) numerically equivalent Lagrange multiplier (LM)

version completed the triad of classical hypothesis tests (see Bera and Bilias (2001) for a survey).

Given that they only require estimation of the model parameters under the null, in the late

1970�s and early 1980�s they became the preferred choice for many speci�cation tests which are

nowadays routinely reported by econometric software packages (see the surveys by Breusch and

Pagan (1980), Engle (1983), and Godfrey (1988)). In addition to computational considerations,

which continue to be very relevant for resampling procedures, two other important advantages

of LM tests are that (i) rejections provide a clear indication of the speci�c directions along which

modelling e¤orts should focus, and (ii) they are often easy to interpret as moment tests, so they

remain informative for alternatives they are not designed for. Furthermore, under standard

regularity conditions, they are asymptotically equivalent to the Likelihood ratio (LR) and Wald

tests under the null and sequences of local alternatives, and thus they share their optimality

properties.

One of the crucial regularity conditions for a common asymptotic chi-square distribution

for these three tests is a full rank information matrix of the unrestricted model parameters

evaluated under the null. Nevertheless, there are empirically relevant situations in which this

condition does not hold despite the fact that the model parameters are locally identi�ed. In

non-linear instrumental variable models, Sargan (1983) referred to those instances in which the

expected Jacobian of the in�uence functions is singular but the expected Jacobian of the linear

combinations of their derivatives that span its nullspace has full rank as second-order identi�ed

but �rst-order underidenti�ed. In a likelihood context, a singular information matrix implies that

there is a linear combination of the average scores which is identically 0, at least asymptotically.

In their seminal paper, Lee and Chesher (1986) studied some popular examples of this situation

in economics: i) univariate regression models with sample selectivity; ii) stochastic production

frontier models; and iii) certain mixture models.1

Lee and Chesher (1986) proposed to replace the LM test by what they called an �extremum�

test. Their suggestion was to study the restrictions that the null imposes on higher-order opti-

mality conditions. Often, the second derivative will su¢ ce, but sometimes it might be necessary

to study the third or even higher-order ones. They proved the asymptotic equivalence between

their extremum tests and the corresponding LR tests under the null and sequences of local alter-

natives in unrestricted contexts. Using earlier results by Cox and Hinkley (1974), this equivalence

1 In all their examples, in fact, the average score with respect to one of the parameters of the alternative
evaluated at the restricted parameter estimators that impose the null is identically 0 in �nite samples.
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intuitively follows from the fact that their tests can often be re-interpreted as standard LM tests

of a suitable transformation of the parameter whose �rst derivative is 0 on average such that

the new score is no longer so. In contrast, Wald tests are extremely sensitive to reparametriza-

tion under these circumstances. Bera et al (1998) provide some additional insights. In turn,

Rotnitzky el al (2000) rigorously study the asymptotic distribution of the maximum likelihood

(ML) estimators in those contexts. Finally, Bottai (2003) looks at the validity of con�dence

intervals obtained by inverting the three classical test statistics in this setup.

However, in all the existing literature the nullity of the information matrix, qr say, is assumed

to be 1. When the information matrix is repeatedly singular under the null, in the sense that

qr is two or more, the number of second-order derivatives exceeds the number of parameters

e¤ectively a¤ected by the singularity by an order of magnitude. The unbalance gets worse

when it becomes necessary to look at higher-order derivatives. Unfortunately, in general there

is no reparametrization that leads to a regular information matrix.2 In particular, transforming

each of the parameters individually along the lines suggested by Lee and Chesher (1986) does

not usually give rise to a test asymptotically equivalent to the LR. On the contrary, di¤erent

reparametrizations will typically give rise to di¤erent test statistics.

The purpose of our paper is precisely to propose a feasible generalization of the Lee and

Chesher (1986) approach in repeatedly singular contexts that leads to tests asymptotically equiv-

alent to the LR, but which only require estimation under the null. Speci�cally, we propose a

generalized extremum test (GET) which typically maximizes an easy to interpret statistic over

a space of dimension qr � 1 when all parameters show the same degree of underidenti�cation,

thereby simplifying to the Lee and Chesher (1986) proposal when the nullity is one. More gen-

erally, GET is an LR-type test that compares the log-likelihood function under the null to the

maximum over qr dimensions of its lowest-order expansion under the alternative capable of iden-

tifying the restricted parameters. In contrast, LR tests require the maximization over the entire

parameter space of an unrestricted log-likelihood function which is extremely �at around its

maximum when the null hypothesis is true.3 These computational advantages are particularly

pertinent for bootstrap-type inference, which is especially necessary in our context because the

common sup-type asymptotic distribution of the GET and LR tests is often non-standard, and

the sample sizes required for this distribution to be reliable unusually large.

Repeatedly singular information matrices are not a mere theoretical curiosity. In fact, we

illustrate our proposed testing procedure in detail with several examples of interest that arise in

2An exception is the multiplicative seasonal Arma model considered in Amengual, Bei and Sentana (2023).
3Obviously, both procedures require the estimation of the model under the null, but the restricted maximum

likelihood estimator is typically available in closed form in many models subject to speci�cation tests.
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economic and �nance applications when testing: 1) exogeneous sample selectivity in multivariate

regressions; 2) normality against the �exible semi-nonparametric (SNP) family proposed by

Gallant and Nychka (1987); 3) a Gaussian copula against another �exible Hermite expansion;

and 4) unpredictability in a multiple regressor version of the purely non-linear model considered

by Bottai (2003). Further, in Amengual, Bei and Sentana (2022, 2023) we discuss the application

of the test proposed in this paper to two additional examples of substantial empirical interest:

testing for multivariate normality against a skew normal distribution, and testing for neglected

serial correlation in univariate time series models, respectively.

The structure of the rest of the paper is as follows. In section 2 we obtain our theoretical

results �rst in the case in which all the underidenti�ed parameters have the same degree of

underidenti�cation, and then when the degree of underidenti�cation may be di¤erent for di¤er-

ent parameters. Then, in section 3 we discuss the �rst two aforementioned examples in detail,

assessing the �nite sample size and power properties of our proposed tests by means of sev-

eral extensive Monte Carlo exercises. Finally, we conclude in section 4, relegating proofs, the

remaining two examples, and some additional results to the appendices.

2 Theoretical results

Consider the estimation of the parameter vector � characterizing the distribution of an i:i:d:

random vector y. Let li(�) = ln f(yi;�) denote the log-likelihood function contribution from

observation i, so that the log-likelihood function of a sample of size n is Ln =
Pn
i=1 li(�).

4 In

what follows,

s�ji(�) =
@li(�)

@�j

will denote the contribution of observation i to the score with respect to the jth element of �

and S�jn(�) =
Pn
i=1 s�ji(�) their sum.

Let us partition � into two blocks: 1) �, which contains the p � 1 vector of parameters

estimated under the null; and 2) �, which is the q � 1 vector of parameters such that the null

hypothesis can be written in explicit form as H0 : � = 0. Let ��, �̂ and ~� = (~�
0
;00)0 denote the

true value of the parameter vector, its unrestricted ML estimator (UMLE), and the restricted

one (RMLE), respectively, so that �� = (��;0) under H0. As usual, j:j and jj:jj denote absolute

value and Euclidean norm, respectively. Finally, we use emin(A) and emax(A) for the smallest

and largest eigenvalues, respectively, of a symmetric square matrix A.

Using this notation, we henceforth assume:

4Although we could easily generalize our results to explicitly deal with dependent data by using standard
factorizations of the sample log-likelihood function, we maintain independence to simplify the expressions.
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Assumption 1 (Regularity conditions)
(1.1) � takes its value in a compact subset P of Rp+q that contains an open neighborhood N of
the true value �� which generates the observations.
(1.2) Distinct values of � in P correspond to distinct probability distributions.
(1.3) E[sup�2P jli(�)j] <1.
(1.4) E[@li(�;0)=@��@li(�;0)=@�0] has full rank under the null for all (�;0) 2 P.

The compactness of P in Assumption 1.1 together with the continuity of li(�) and As-

sumptions 1.2 and 1.3 guarantee the existence, uniqueness with probability tending to 1, and

consistency of both the UMLE �̂ and the RMLE ~� (see Newey and McFadden 1994, Theorem

2.5). The �open neighborhood�part of Assumption 1.1 is just used to simplify the expressions

and their derivation. Extensions to situations in which the true parameters lie at the boundary

of the parameter space under the null are feasible, as we will show in Supplemental Appendix C,

but at the expense of complicating the notation and blurring the message of the paper. Finally,

Assumption 1.4 guarantees the convergence of the RMLE at the usual n�
1
2 rate.

2.1 Repeated singularity of the same order

We �rst consider the case in which q1 elements of � are �rst-order identi�ed, while the

remaining qr elements are rth-order identi�ed under the null, a concept that will become precisely

de�ned after we introduce Assumption 3 below. Therefore, if we further partition � = (�01;�
0
r)
0,

where q1 = dim(�1) and qr = dim(�r), so that q = q1 + qr, then the information matrix under

H0 will be such that its top (p + q1) � (p + q1) block is regular and the rest contains zeros.

Consequently, its nullity will be precisely qr. Often, one needs to reparametrize the model to

make sure it satis�es these conditions, an issue we discuss in detail in Supplemental Appendix

B.1 in general terms, as well as in each of the examples that we consider.

Let j 2 Np+q denote a (p+ q)� 1 vector of indices, j! =
Qp+q
i=1 ji!,

l
[j]
i (�) =

1

j!

@�
0
p+qjli(�)

@�j
,

where �m is a vector of m ones, and L[j]n (�) =
Pn
i=1 l

[j]
i (�). Throughout this subsection, we

assume the following conditions hold:

Assumption 2 (Regularity conditions on the derivatives of the log-likelihood function)
(2.1) With probability 1, the derivatives l[j]i (�) exist for all � in N and �0p+qj � 2r, and they

satisfy E[sup�2N jl
[j]
i (�)j] <1.

(2.2) For r � �0p+qj � 2r; Ef[l
[j]
i (�)]

2g <1 for all � in N .
(2.3) When �0p+qj = 2r there is some function g(y) satisfying E[g2(y)] < 1 such that with

probability 1, jL[j]n (�)� L[j]n (�y)j � jj�� �yjj
P
i g(yi) for all � and �

y in N .

We borrow Assumptions 2.1�2.3 from Rotnitzky et al. (2000) with some modi�cations. The

main di¤erence is that they require (2r + 1)th di¤erentiability for the Taylor expansions they
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use to analyze the distribution of the MLE, while we only need 2rth di¤erentiability to study

the asymptotic distribution of our tests. Assumptions 2.1 and 2.3 guarantee the existence of

derivatives and the stochastic equicontinuity of the sample mean of l[j]i (�) with �
0
p+qj � 2r. In

turn, Assumption 2.2 allows us to apply a central limit theorem to l[j]i (�
�).

Let �
kr = �r 
 �r 
 � � � 
 �r| {z }
k times

denote the kth-order Kronecker power of the qr � 1 vector �r,

and de�ne
@kLn(�)

@�
kr
= vec

(
@

@�r

"
@k�1Ln(�)

@�

(k�1)
r

#0)
:

Moreover, let

I(�) =

24 I��(�) I��1(�) I��r(�)
I�1�(�) I�1�1(�) I�1�r(�)
I�r�(�) I�r�1(�) I�r�r(�)

35 = lim
n!1

V ar

8<: 1p
n

24 S�n(�;0)
S�1n(�;0)

@rLn(�;0)=@�

r
r

35�������;0
9=;

denote the asymptotic covariance matrix of the relevant in�uence functions, which may be

understood as a generalization of the information matrix.

In addition, let

V��(�)=

�
V�1�1(�) V�1�r(�)
V�r�1(�) V�r�r(�)

�
=

�
I�1�1(�) I�1�r(�)
I�r�1(�) I�r�r(�)

�
�
�
I�1�(�)
I�r�(�)

�
I�1��(�)

�
I��1(�) I��r(�)

�
denote the asymptotic residual variance of S�1n(�;0) and @

rLn(�;0)=@�

r
r after orthogonalizing

these in�uence functions with respect to s�.

Assumption 3 (Rank conditions for qr � 1)
(3.1) For all (�;0) 2 P,

@�
0
qr j�r li(�;0)

@�
j�r
r

= 0

with probability 1 for all j�r = (j1; :::; jqr)
0 such that �0qr j�r � r � 1.

(3.2) The asymptotic covariance matrix of the (scaled by
p
n) sample averages of�

s�i(�
�;0); s�1i(�

�;0);�
r0r

@rli(�
�;0)

@�
rr

�
has full rank for all possible non-zero values of �r 2 Rqr underlying the vector of coe¢ cients �
rr
in the linear combination above.

Intuitively, the rationale for looking at

�
r0r

@rli

@�
rr
=

X
{0qr j�r=r

r!

j�r !

 
qrY
k=1

�jkrk

!
@rli(�;0)

@�
j�r
r

is that it coincides with the rth-order term in the expansion of the log-likelihood function. In

that respect, note that although the higher order derivatives @rli=@�
rr will usually contain

many repeated elements thanks to the Clairaut-Schwartz-Young�s theorem, the rank de�ciency
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condition in Assumption 3.2 applies to the inner product of �
rr with those in�uence functions,

so the requirement is that those linear combinations of the elements in @rli=@�
rr be linearly

independent of s�i(�;0) and s�1i(�;0).

Finally, let

Qn(�r;�) =
�
r0r Drn(�)D

0
rn(�)�


r
r

�
r0r [V�r�r(�)� V�r�1(�)V �1�1�1
(�)V�1�r(�)]�


r
r

; (1)

where

Drn(�) =
@rLn(�;0)

@�
rr
� V�r�1(�)V �1�1�1

(�)S�1n(�;0)

is the residual in the least squares projection of @rLn(�;0)=@�
rr onto the linear span of

S�1n(�;0).
5 In this context, we can proof the following result:

Theorem 1 If Assumptions 1, 2 and 3 hold, then under H0 : � = 0

LRn = 2 [Ln(�̂)� Ln(~�)] = GETn +Op(n�
1
2r );

where

GETn =
1

n
S0�1n(

~�;0)V �1�1�1
(~�)S�1n(

~�;0) +
1

n
sup
�r 6=0

�
Qn(�r; ~�) if r is odd,
Qn(�r; ~�)1[�


r0
r Drn(~�) � 0] if r is even.

An important implication of Theorem 1 is that the rate of convergence of the di¤erence

between the LR and GET tests is inversely proportional to the order of identi�cation, thereby

generalizing the standard result for regular models.

Importantly, expression (1), which can be understood as a generalized Rayleigh quotient

evaluated at the restricted qrr � 1 vector �
rr , does not e¤ectively depend on �r when the nullity

of the information matrix is 1, so Theorem 1 generalizes the results in Lee and Chesher (1986)

and Rotnitzky et al. (2000) by allowing for the presence of multiple singularities under the null

(see Supplemental Appendix E for further comparisons to the existing literature).

2.2 Repeated singularity of di¤erent orders

There are situations in which the degree of identi�cation of the di¤erent elements of � under

the null hypothesis is more heterogeneous than just either one or r+1. To characterise them in

full, we need to generalize the conditions in Assumptions 2 and 3. Let &�i(�) and &�i(�) denote

two measurable functions of dimensions p� 1 and m� 1, respectively, so that we can de�ne the

empirical process

Sn(�) =
�
S�;n(�)
S�;n(�)

�
=

nX
i=1

&i(�); where &i(�) =
�
&�i(�)
&�i(�)

�
:

5 Importantly, Assumption 3.2 guarantees that the denominator of Qn(�r;�) is positive because V�� is the
covariance matrix of the residuals from the least squares projection of s�1(�;0) and

@rl(�;0)
@
r�r on the linear span of

s�(�;0), while V�r�r �V�r�1V �1
�1�1

V�1�r is the residual covariance matrix of the projection of the second residual
on the span of the �rst one, which by the Frisch-Waugh theorem coincides with the residual in the projection of
@rl(�;0)
@
r�r onto the linear span of s�(�;0) and s�1(�;0):
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Typically, &�i(�) coincides with the scores with respect to �, and &�i(�) with some higher-order

derivatives with respect to the elements �, so that Sn will serve as the analog to the sample

score in regular models. In addition, let

� (�;�) =

�
(�� ��) + ��(�)

��(�)

�
;

where ��(�) 2 Rp and ��(�) 2 Rm are non-random vector functions of the parameters that

adequately capture their di¤erence from the true values. Finally, let

I(�) =
�
I��(�) I��(�)
I��(�) I��(�)

�
denote a non-random positive semide�nite symmetric (p + m) � (p + m) matrix, which once

again will e¤ectively play the role of an information matrix.

Using this notation, we state the following assumptions, many of which are simpli�ed versions

of the conditions in Assumption 5 in Meitz and Saikkonen (2021):

Assumption 4 (LQ approximation) Ln has a �linear-quadratic� expansion given by

Ln(�;�)� L(��;0) = Sn(��)0� (�;�)�
1

2
n�0 (�;�) I(��)� (�;�) +Rn (�;�) ;

where Rn (�;�) is a remainder term. In addition:
(4.1) � (�;�) is continuous in �, and such that (i) � (��;0) = 0 and (ii) for all � > 0,

inf
k(�;�)�(��;0)k��

k� (�;�)k � �� for some �� > 0:

(4.2) n�
1
2Sn

d�! S for some zero-mean Rp+m-valued Gaussian process with covariance kernel

E
�
S(�1)S 0(�2)

�
= E

�
&i(�1)&

0
i(�2)

�
= K(�1;�2):

(4.3) I(��) = K(��;��) is Lipschitz continuous at a neighborhood of �� and satis�es

0 < emin[I(��)] < emax[I(��)] <1:

(4.4) The remainder term Rn (�;�) satis�es

sup
(�;�)2P:k(�;�)�(��;0)k�n

jRn (�;�)j
1 + n k� (�;�)k2

= op(1)

for all sequences of (non-random) positive scalars fn : n � 1g for which n ! 0 as n!1.
(4.5) There exists some function g(y) satisfying E

�
(g(yi))

2
�
<1 such that

jjS(�y)� S(��)jj � jj�y � ��jj
nX
i=1

g(yi) (2)

with probability 1 for all (�;0) 2 N .
(4.6) If n

1
2� (�n;�n) = O(1), then Rn (�;�) = Op(n

�a) for some a such that 12 � a > 0.
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Assumption 4 states that the likelihood ratio can be expressed as the sum of a linear-

quadratic approximation and a residual term, Rn. The linear-quadratic part, though, represents

a higher-order expansion of the likelihood ratio around � = 0. Assumption 4.1 captures the

local identi�cation condition at the true parameter value. Assumption 4.2 is analogous to the

information matrix equality, while Assumption 4.3 to the standard non-singular information

matrix assumption. In turn, Assumption 4.4 ensures that the residual is dominated by the

leading terms, and thus, negligible asymptotically, while Assumption 4.5 enables us to substitute

the true parameter �� with the restricted estimator ~� after an appropriate adjustment for

sampling variability. Finally, Assumption 4.6 allows us to obtain the convergence rate of the

linear-quadratic approximation, with a typically associated to the slowest rate of convergence

of the parameter estimators under the null.

We can then prove the following result:

Theorem 2 If Assumptions 1 and 4.1�4.5 hold, then under H0 : � = 0

LR = 2[Ln(�̂; �̂)� Ln(~�;0)] = GETn + op(1);

where

GETn = sup
�
f2[S�;n(~�)� I��(~�)I�1��(~�)S�;n(~�)]

0�� (�)

�n�0� (�) [I��(~�)� I��(~�)I�1��(~�)I��(~�)]�� (�)g:

If, in addition, Assumption 4.6 holds, then

LR = 2[Ln(�̂; �̂)� L(~�;0)] = GETn +Op(n�a):

As expected, we can easily show that our �rst theorem is a special case of this second

theorem when the higher-order identi�cation is of the same order for all the parameters involved

regardless of the parity of r. More importantly, the proof of this theorem shows that we can

interpret Ln(~�;0) +GETn as a Taylor approximation of order 2r to the log-likelihood function

around ~�, which means that GETn is e¤ectively an LR-type test that compares the log-likelihood

function under the null to the maximum of its lowest-order approximation under the alternative

capable of identifying the restricted parameters.

Although GET cannot be directly understood as a moment test, a by-product of our most

general theorem is a set of in�uence functions Sn(�;0) that can be used for that purpose after

taking into account the sampling uncertainty in estimating � under the null. In fact, we can

prove that this moment test, which converges in distribution to a �2m under the null, where

m = dim[��(�)], provides an upper bound to GETn, albeit a rather loose one in many cases.
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2.3 Distribution under local alternatives

Let us now consider the distribution of the test statistic under the following sequences of

local alternatives:

H1n :
p
n

�
��(�n)
��(�n)

�
=

�
��;1
��;1

�
= �1 2 Rdim(��):

To do so, we need to assume that

Assumption 5 (Cone cover) The sequence of sets

�n =
�p
n��(�n) : � 2 �

	
covers a closed cone � � Rdim(��) (with �n ! �) so that there is a sequence of closed balls Bkn
of radius kn !1 centered at the origin such that �n \Bkn = � \Bkn.

Let P�n and P0 denote the probability measures corresponding to H1n and H0, respectively.

Then, we can prove the following result:

Theorem 3 (Distribution under local alternatives)
(3.1) P�n is contiguous with respect to P0.
(3.2) Under H1n,

1p
n
Sn(��)

d! N [I(��)�1; I(��)]:

(3.3) Under H1n and Assumption 5,

GETn
d�! sup
�2�

�
2
h
S +

�
I�� (��)� I�� (��) I�1�� (�

�) I�� (��)
�
��;1

i0
�

��
h
I�� (��)� I�� (��) I�1�� (�

�) I�� (��)
i
�
o

where
S � N [0; I�� (��)� I�� (��) I�1�� (�

�) I�� (��)]:

Therefore, the distribution of the empirical process underlying our tests converges to a

Gaussian random element with a non-zero mean, and consequently, our test statistic to the

supremum of a non-central �2-type process, despite the fact that our sequence of local alterna-

tives written in terms of the model parameters converges at rates which are di¤erent from the

usual ones. In fact, there may be di¤erent drifting sequences with the same limit, as we will see

in section 3.2.3. In any event, we would like to emphasize that our proposed test is consistent

against �xed alternatives because GETn will diverge in those circumstances.
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3 Examples

In this section, we discuss the application of our proposed tests to the �rst two examples

of empirical interest that we mentioned in the introduction. Speci�cally, we derive a test for

irrelevant sample selectivity in multivariate regression models, for which Theorem 1 su¢ ces, and

a test for normality against SNP alternatives, which requires our more general Theorem 2. In

turn, in Supplemental Appendix C we obtain a test of a multivariate normal copula against

its Hermite expansion, which is another example of Theorem 1 but with the added di¢ culty

of inequality constraints on the parameters. Finally, in Supplemental Appendix D, we derive a

test aimed at detecting non-linear predictability in a multiple regressor version of Bottai (2003),

which again requires the use of Theorem 2 (see also Amengual, Bei and Sentana (2022, 2023)

for another two empirically-relevant applications of Theorems 1 and 2, respectively).

3.1 Example 1: Testing for selectivity in multivariate regressions

Arguably, the study of the determinants and consequences of non-random sample selection

that followed Heckman�s (1974) seminal paper is one of the most important contributions of

econometrics in the last �fty years. Nevertheless, the empirical analysis of a dataset would be

much simpler if the sample from which it comes could be treated as if it were randomly generated

even though it is not necessarily so. As is well known, this will happen when the unobserved

determinants of the sample selection are independent of the unobserved determinants of the

variables of interest conditional on the set of predetermined explanatory variables, or in simpler

terms, when the selection is exogenous rather than endogenous. In the rest of this subsection,

we shall develop a test of irrelevant sample selectivity in a multivariate regression context that

highlights the hidden di¢ culties researchers often inadvertently encounter, but which can be

easily overcome by the use of the GET procedures that we propose.

3.1.1 The model and its log-likelihood function

Consider the following multivariate version of the regression model with selectivity consid-

ered by Lee and Chesher (1986):

y = y�d; (3)

where d is a sample selection binary variable whose value is determined by an observed vector of

exogenous regressorsw and some unobserved determinant uS according to the following equation

written in terms of the usual indicator function

d = 1(w0'S + uS � 0); (4)
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while the K partially observed variables y� = (y�1; :::; y
�
K)

0 follow the multivariate regression

y�k = 'M 0
k x+ 'Dk uk; k = 1; : : : ;K; (5)�

u
uS

�
jx;w � N

�
0;

�
R
�
'L
�
#

#0 1

��
; (6)

with x being a vector of exogenous regressors that may partially overlap with w, so that 'D =

('D1 ; : : : ; '
D
K)

0 contains the standard deviations of the regression shocks, 'L the correlations

between them, and # the correlations between those shocks and the unobserved component of

the selection equation, whose variance we normalize to 1 without loss of generality.

Therefore, the contribution of a single observation to the sample log-likelihood function will

be given (up to a constant term) by

(1� d) ln�
�
�w0'S

�
+ d ln�

24w0'S + #0u('M ;'D)q
1� #0R�1 ('L)#

35 (7)

�d
2

h
2
PK
k=1 ln'

D
k + lnfdet[R

�
'L
�
]g+ u0('M ;'D)R�1 �'L�u('M ;'D)i ;

where 'M = ('M 0
1 ; : : : ; 'M 0

K )0, u('M ;'D) = [u1('M1 ; '
D
1 ); :::; uK('

D
K ; '

D
K)]

0, and

uk('
M
k ; '

D
k ) =

yk �'M 0
k x

'Dk
:

3.1.2 The null hypothesis of lack of selectivity and the GET test statistic

Under the null that the unobserved selectivity determinants are uncorrelated with the re-

gression residuals, one can e¢ ciently estimate the multivariate regression coe¢ cients 'M to-

gether with the covariance matrix parameters 'D and 'L without selection bias from the non-

zero values of y only using equation by equation OLS without the need to consider the model for

d. However, under the alternative, those OLS estimators will be biased because of the sample

selectivity, which justi�es testing the null hypothesis H0 : # = 0.

For simplicity, consider the case in which w = 1 and the regression equations contain a

constant term. Straightforward algebra shows that if we evaluate the scores at # = 0, then

s#k �M1('
S)'Dk s'Mk1

= 0 (8)

for k = 1; : : : ;K, where 'Mk1 contains the intercept in the conditional mean of y
�
k, and

M1

�
'S
�
= ��1

�
'S
�
�
�
'S
�

(9)

is the usual inverse Mills ratio. As Lee and Chesher (1986) explain in their univariate exam-

ple, analogous singularities will arise for example when the observed selectivity determinants
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w are given by a set of dummy variables and x contains those dummy variables too. In gen-

eral, singularities will be present whenever Heckman�s (1976) selectivity correction is perfectly

collinear with the regressors that appear in the conditional means of the y��s even though the

log-likelihood function in (7) is able to locally identify all the model parameters.

In addition to the K singularities in (8), there are K(K + 1)=2 linear combinations of the

scores and the elements of the Hessian corresponding to # that are 0 too, which e¤ectively means

that we need to look at third-order derivatives. To do so, it is convenient to reparametrize from

' and # to � and � as we explain in the proof of Proposition 1 below, so that all the elements

of the score and the Hessian matrix corresponding to � become identically 0 under the null.

Fortunately, we can then show that the third-order derivatives with respect to �, which are only

zero on average under the null, will have a full-rank asymptotic covariance matrix, so that we

can apply Theorem 1 in this context. Somewhat remarkably, we can show the following result:

Proposition 1 The di¤erence between LR test of H0 : # = 0 in model (4)-(6) based on a
random sample of n observations on (y;d) and the following test statistic

GETn = sup
� 6=0

1Pn
i=1 di

"
nX
i=1

diH3

�
�0vi(~'

M ; ~'D)p
�0�

�#2
(10)

is Op(n�1=6), where H3(z) = (z3 � 3z)=
p
6 is the third-order normalized Hermite polynomial of

a standardized variable z, � is a real vector of dimension K and v('M ;'D) denotes an a¢ ne
transformation of the regression residuals u('M ;'D) whose mean vector and covariance matrix
are 0 and IK , respectively, when evaluated at the restricted parameter estimators.

In simpler terms, our test statistics numerically coincides with the supremum of the moment

tests for univariate skewness based on the third Hermite polynomial over all possible linear com-

binations of the OLS residuals that have 0 mean and unit variance in the sample of observations

with d = 1. In fact, the standardization is unnecessary because the moment test for univariate

skewness is numerically invariant to a¢ ne transformations of the observations, which in turn

con�rms that the test statistic (10) is homogeneous of degree 0 in �. Thus, when K = 1 our

proposed test reduces to the test for selectivity derived by Lee and Chesher (1986) in the uni-

variate case, which simply assesses the symmetry of the regression residuals by looking at the

sample mean of their third powers.

The rationale is also analogous in the multivariate case. Equations (3)-(6) imply that the

OLS residuals should be approximately multivariate normally distributed when the unobserved

component of the sample selection is independent of the shocks to the observed variables. Under

the alternative, in contrast, asymmetry becomes a common feature, as in the multivariate skew

normal distribution we discussed in Amengual, Bei and Sentana (2022). Intuitively, if we or-

thogonalize the regression residuals with respect to the unobserved component of the selectivity
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equation, we end up with #uS as a common component, whose distribution conditional on d = 1

is asymmetric even though the unconditional distribution of uS is symmetric.

3.1.3 Local power analysis

Although the null distribution of the test statistic (10) is non-standard, we can still say

something about the determinants of its local power. Consider the following sequence of local

alternatives:

lim
n!1

n1=6�n = �1

where the rate of convergence is 1/6 rather than 1/2 because of the need for a third-order

expansion of the log-likelihood function. Then, we can show that

Proposition 2 The local power of the test in Proposition 1 only depends on the magnitude of
the quadratic form

#01R
�1 �'L�#1:

Intuitively, once we orthogonalize the multivariate regression residuals u by premultiplying

by the inverse square root matrix R�1=2 �'L�, the �direction� of the vector R�1=2 �'L�# is
irrelevant, what matters is its magnitude. As a result, in our simulations we can chooseR

�
'L
�
=

IK and #1 proportional to the �rst vector of the canonical basis without loss of generality.

3.1.4 Simulation evidence

For simplicity, we let w = x1 = 1 and x2 � N(0; 1). Given that the MLE of the

multivariate regression coe¢ cients is equation by equation OLS, and that we are studying the

case in which all regressions contain an intercept, the sample mean of the multivariate regression

residuals û will be a vector of K zeros. Similarly, any orthogonalization of the û0s based on the

estimated covariance matrix will have the identity matrix as sample covariance matrix because

the MLEs of the residual standard deviations 'D and correlations 'L match perfectly the sample

variances and covariances of û with denominator
Pn
i=1 di. Therefore, it is not surprising that

the particular square root that orthonormalizes the OLS residuals in the sample is numerically

irrelevant. For example, in the bivariate case, we could de�ne v1 as the standardized value of u1

and v2 as the standardized value of the residual in the OLS regression of u2 on a constant and

u1. But we could also de�ne them the other way round.

We can easily verify that the GET statistic is numerically invariant to the true values of

('M ;'D), so if we set K = 2, we can choose 'Mk = (0; 1), 'D = �2 without loss of generality.

In turn, we set the selection parameter 'S to 1 and the correlation coe¢ cient 'L to 0:25.

If we exploited our knowledge of the values of these two parameters, we could compute

exact critical values under the null for any sample size to any degree of accuracy by repeatedly
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simulating samples from the true distribution. In practice, though, we �x the selection parameter

and the correlation coe¢ cient to their estimated values in each sample in what is e¤ectively a

parametric bootstrap procedure (see Appendix D.1 in Amengual and Sentana (2015) for details),

so that we can automatically compute size-adjusted rejection rates, as forcefully argued by

Horowitz and Savin (2000).

As alternative hypotheses, we consider #0 = (0:57; 0:57) (Ha1) and #0 = (0:80; 0) (Ha2). For

each design, we generate 10,000 samples of size n and compute the parameter estimators and

tests.

In Table 1 we compare the results of our tests with a bootstrap-based LR test. Panels A

and B of Table 1 report the results for samples of length 400 and 1; 600, respectively. We can

verify that the LR test statistic is also numerically invariant to the true values ('M ;'D), which

allows us to approximate its critical value using an analogous parametric bootstrap procedure.

For comparison purposes, we also consider a J-test based on the in�uence functions underlying

GET, which we label as GMM. The �rst three columns of Table 1 report rejection rates under the

null at the 1%, 5% and 10% levels, con�rming that our simulated critical values work remarkably

well for both sample sizes.6 In turn, the last six columns present the rejection rates at the 1%,

5% and 10% levels for the alternatives we consider. Our proposed test has similar power to the

LR test for the two alternatives, and both these tests outperform the GMM one.

Finally, our results also indicate a Gaussian rank correlation7 of 0.88 (0.95) between our

proposed test statistic and the LR across Monte Carlo simulations of 400 (1,600) observations

that satisfy the null, which is in line with the asymptotic equivalence result in Theorem 1. In

addition, they indicate that the LR takes about 10 and 20 times as much CPU time to compute

as GET does for n = 400 and n = 1; 600, respectively, which makes a huge di¤erence in the

calculation of the bootstrap critical values.

3.2 Example 2: Testing for normality against SNP alternatives

Gram-Charlier expansions provide �exible and analytically tractable generalizations of the

normal distribution. Unfortunately, their truncated versions lead to negative density values, and

the parametric restrictions that Jondeau and Rockinger (2001) propose to guarantee positivity

are not easy to implement even when the truncation order is low. In contrast, the SNP distrib-

utions introduced by Gallant and Nychka (1987) provide a Hermite expansion of the Gaussian

6Given the number of replications, the 95% asymptotic con�dence intervals for the Monte Carlo rejection
probabilities under the null are (.80,1.20), (4.57,5.43) and (9.41,10.59) at the 1, 5 and 10% levels.

7The Gaussian rank correlation between x1 and x2 is the Pearson correlation coe¢ cient between ��1(u1) and
��1(u2), where u1 and u2 are the usual uniform ranks of the observations and ��1(:) the quantile function of the
standard normal (see Amengual, Sentana and Tian (2022) for details).
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density that is positive by construction. Although these authors introduced those distributions

for nonparametric estimation purposes, León, Mencía and Sentana (2009) treated them as para-

metric ones, studied their statistical properties, and used them in option valuation. Still, MLE

under normality is much simpler than when the distribution of the shocks follows an SNP. For

that reason, we shall derive a test of normality that will also highlight the hidden complications

that researchers face in this context.

3.2.1 The model and its log-likelihood function

The model we consider is

y = � (x;�) + � (x;�)u (11)

where � and � are known functions of x and a �nite-dimensional unknown parameter �, and u

is independent of the predetermined variables in x with �nite mean and variance 'M and 'V ,

respectively. We want to test u is normal against the alternative that it follows an SNP density.

Observations are given by (xi; yi), i = 1; 2; : : : ; n, where xi could include the lagged value of

yi to allow for time-series models such as Ar and Garch. For simplicity, we assume that ui

conditional on xi is iid: As we will show in section 3.2.5 below, estimation of � does not a¤ect

the properties of the test, so we initially assume this parameter vector is known and focus on

the case without conditioning variables, in which � (�) and � (�) are 0 and 1 without loss of

generality. As a result, researchers only need to estimate 'M and 'V under the null.

The probability density function (pdf) of an SNP random variable of order K is given by

f (y;%) =
1

'2
�

 
y � 'Mp
'V

!26664�+
(1� �)

�
P

��
y�'Mp
'V

�
;#

��2
R1
�1 fP [u;#]g

2 �(u)du

37775 ; (12)

with

P [u;#] = 1 +
XK

i=1
#iHi(u); (13)

where � (�) denotes the standard normal pdf, Hi (u) is the normalized Hermite polynomial of

order i, which can be de�ned recursively for i � 2 as

Hi (u) =
uHi�1 (u)�

p
i� 1Hi�2 (u)p
i

; (14)

with initial conditions H0 (u) = 1 and H1 (u) = u,
R1
�1 fP [u;#]g

2 �(u)du = 1 +
PK
i=1 #

2
i is a

constant which guarantees that the density integrates to 1, and � is an in�nitesimal factor used

to bound the density below from 0, which Gallant and Nychka (1987) introduced to simplify

their proofs. Henceforth, we will set � = 0 for the purposes of developing our testing procedure,

15



but the same method applies with � > 0. Intuitively, a non-negative density is automatically

achieved by multiplying the Gaussian density by the square of a linear combination of Hermite

polynomials. As explained by León, Mencía and Sentana (2009), the SNP distributions can have

non-negligible positive and negative asymmetry and excess kurtosis even with K = 2.

3.2.2 The null hypothesis of normality and the GET test statistic

To simplify the notation, we focus on the case of K = 2. Normality is trivially obtained

when H0 : #1 = #2 = 0. The complication arises because

s#1 � 2
p
'V s'M = 0;

s#2 � 2
p
2'V s'V = 0;

under H0, so that the nullity of the information matrix is 2. Hall (1990) highlighted this problem

when he considered tests of normality against semi-nonparametric alternatives in which the #

coe¢ cients were in turn functions of some exogenous variable. However, his proposed solution

was to ignore the parameters involved in the singularity, focusing instead only on those which

could be regularly estimated under the null. Unfortunately, his recipe would leave us with no

test in the case of the unconditional model (12)-(13).

In fact, it is easy to prove that #1 and #2 have di¤erent orders of identi�cation, which means

that we need to resort to our Theorem 2. In this context, we can establish the following result

after reparametrizing from ('0;#0) = ('M ; 'V ; #1; #2) to (�0;�0) = (�M ; �V ; �1; �2) as explained

in its proof:

Proposition 3 The di¤erence between the LR test of H0 : # = 0 in model (12)-(13) based on
a random sample of n observations on y and the following test statistic

GETn = n

8<:
"
1

n

nX
i=1

H3(~ui)

#2
+

"
1

n

nX
i=1

H4(~ui)

#29=; (15)

is Op(n�1=6) when the null is true, where H3(~ui) and H4(~ui) are the third- and fourth-order
normalized Hermite polynomials of the ~ui�s, which are the values of the yi�s standardized so that
their sample mean and variance are 0 and 1, respectively.

Remarkably, this means that the Jarque and Bera (1980) test is asymptotically equivalent to

the LR test of normality against SNP densities, although they converge to each other at a much

lower rate than in the case of the Pearson family of alternative distributions they considered.

3.2.3 Local power analysis

Let �2k (�) denote a non-central chi-square random variable with k degrees of freedom and

non-centrality parameter �. We can show that
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Proposition 4 Consider a sequence of parameters �n satisfying

lim
n!1

p
n

�
�2
p
3�1;n�2;np

6(19�
4
1;n � �22;n)

�
= ��;1 2 R2: (16)

Under the sequence of DGPs indexed by �n,

GETn
d! �22(�

0
�;1��;1):

To understand this result, it is useful to note that2664
p
nE

�
H3

�
y�E(y)p
V ar(y)

��
p
nE

�
H4

�
y�E(y)p
V ar(y)

��
3775 = ��;1 + o(1):

Unlike in the multivariate regression model with selectivity, though, we can have two di¤erent

types of local alternatives compatible with (16):

Hl1 : �1n = n
� 1
4h1; �2n = n

� 1
4h2;

Hl2 : �1n = n
� 1
8h1; �2n = n

� 3
8h2:

Interestingly,
p
n�22n dominates

p
n�41n=9 along Hl1, so that the SNP distributions under this

sequence of local alternatives are platykurtic. In contrast,
p
n�41n=9 dominates

p
n�22n along Hl2,

so that the corresponding SNP distributions are leptokurtic.

3.2.4 Simulation evidence

Despite the fact that we estimate the sample mean and variance of each simulated sample,

in this case there are e¤ectively no nuisance parameters involved because both the GET and

LR test statistics are numerically invariant to a¢ ne transformations of the observations. As a

result, we can compute the exact �nite sample distribution to any desired degree of accuracy

for any sample size by simulating a large number of samples of the same size from a standard

normal random variable. For that reason, we can focus directly on studying the power of the

di¤erent tests.

As alternative hypotheses, we consider #0 = (0:25; 0:10) (Ha1) and #0 = (0:75; 0:05) (Ha2),

setting 'M = 0 and 'V = 1 without loss of generality. As in the previous example, for each

design we generate 10,000 samples of size n. In Table 2 we compare the results of our tests

with the LR test. Panels A and B of Table 2 report the results for samples of length 400 and

1; 600, respectively. Given that the LR test statistic is also numerically invariant to the true

values ('M ; 'V ), we once again obtain its exact critical values using an analogous parametric

bootstrap procedure. The �rst three columns of Table 2 report rejection rates under Ha1 at the
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same levels, while the last three columns present the rejection rates at the 1%, 5% and 10%

levels for Ha2. As can be seen, our proposed test has similar power to the LR test for both

alternatives.

Finally, our results also indicate that the LR takes around 160 and 100 times as much CPU

time to compute as GET does for n = 400 and n = 1; 600, respectively, which considerably slows

down the calculation of the bootstrap critical values.

3.2.5 Robustness to the estimation of mean and variance parameters

We now extend our previous results to a situation in which the conditional mean and

variance of y are parametric functions of the variable in x, as in (11). In this context, the

objective becomes to test whether the innovation u follows a normal distribution versus an SNP.

The conditional log-likelihood of the ith observation is given by:

li(�; #) = �
1

2
ln 2� � 1

2
ln�2Y (xi;�)�

1

2
u2i (�) + 2 ln

 
1 +

KX
i=1

#iHi [ui(�)]

!
� ln

 
1 +

KX
i=1

#2i

!
:

To be able to obtain the required higher-order log-likelihood expansions, we assume that the

following regularity conditions hold:

Assumption 6 (Smoothness of the conditional �rst two moments) The conditional mean and
variance functions �Y (xi;�) and �Y (xi;�) that appear in (11) are such that
(6.1) They are eight times continuously di¤erentiable with respect to �.
(6.2) For all k 2 Nd� and �0k = 1; : : : ; 8, it holds that

E

24 @�0k�Y (x;�)
@�k

!235 <1; E
24 @�0k�2Y (x;�)

@�k

!235 <1;
where k = (k1; : : : ; kd�),

@�
0k�Y (x;�)

@�k
=

@�
0k�Y (x;�)

@�k11 : : : @�
kd�
d�

, and

@�
0k�2Y (x;�)

@�k
=

@�
0k�2Y (x;�)

@�k11 : : : @�
kd�
d�

:

Then, we can prove the following result, which is entirely analogous to Proposition 8 in

Amengual, Bei, Carrasco and Sentana (2022):

Proposition 5 Under Assumptions (6.1) and (6.2), replacing the true value of � by ~�, its
restricted maximum likelihood estimator under H0, does not alter the expressions of the GET test
in Proposition 3 or its asymptotic distribution under the null or sequences of local alternatives.
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4 Conclusions

We propose a generalization of the extremum-type tests in Lee and Chesher (1986) to

models in which the nullity of the information matrix under the null hypothesis is larger than

one. In the case of a single singularity, our results are consistent with theirs, as well as with

those in Rotnitzky et al. (2000). However, when the information matrix is repeatedly singular,

we provide a computationally convenient alternative to the LR test, which is particularly useful

for resampling-based calculations of p-values. Speci�cally, our proposed test statistic is a sup-

type test over a space whose dimension is at most the nullity of the information matrix, and

often less, while the maximization of the original log-likelihood function is over a space of the

same dimension as the vector of parameters, which is usually much larger. In addition, the fact

that several log-likelihood derivatives of various orders are 0 under the null implies that the

LR requires the estimation of all the parameters that appear under the alternative in a model

whose log-likelihood function is extremely �at around its maximum. Intuitively, the substantial

computational gains that we �nd arise because GET is a LR-type test that compares the log-

likelihood function under the null to the maximum of its lowest-order approximation under the

alternative capable of identifying the restricted parameters.

Despite having many features in common, our results cannot be directly applied to testing

normality against �nite Gaussian mixtures. Nevertheless, we used them as a powerful lever to

derive such tests in Amengual, Bei, Carrasco and Sentana (2022).

Interestingly, the asymptotic distribution of our test statistic is similar to the asymptotic

distribution of the usual overidenti�cation test statistic in a GMM model in which the expected

Jacobian of the moment conditions is of reduced rank but the parameters are second-order

identi�ed (see Supplemental Appendix E of Amengual, Bei and Sentana (2020) for a formal

link to the results in Dovonon and Renault (2013)). An application of our approach to GMM

contexts in which not only the expected Jacobian matrix is singular but some higher order

Jacobian matrices are singular too would constitute a very interesting extension.

Finally, the tests developed in this paper allowed us to provide some new insights about

the cross-section distribution of city sizes and their growth rates in Amengual, Bei and Sentana

(2022). Their use in some of the other empirically relevant situations discussed in this paper

would also provide a particularly valuable complement to our theoretical results.
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Appendices

A Proofs

We �rst state and prove several lemmas that we will use in the proofs of our main theorems.

But before doing so, let us introduce some de�nitions. Let

LMn(�) = 2S 0n(��)� (�;�)� n�0 (�;�) I(��)� (�;�)

and de�ne �LM = (�LM ;�LM ) such that

LMn(�
LM ;�LM ) = sup

�2P
LMn(�):

Lemmata

Lemma 1 If Assumptions 1 and 4.1, 4.2, 4.3 hold, then (i) �LM
p�! 0 and (ii) n

1
2�(�LM ) =

Op(1).

Proof. Let us start by Lemma 1.(ii). Fix � > 0: By Assumption 4.2, we have that n�
1
2Sn(��) =

Op(1), which means that there exists an M1 such that for all n � N ,

Pr(jjn�
1
2Sn(��)jj > M1) � �: (A1)

Next, let M = (2M1 + 1)=emin[I(��)], which is a positive real number because of Assumption

4.3. We can then prove that

Pr(fjjn
1
2�
�
�LM

�
jj > Mg \ fjjn�

1
2Sn(��)jj �M1g) = 0: (A2)

In addition, noticing that if jjn 1
2�
�
�LM

�
jj > M and jjn� 1

2Sn(��)jj �M1, we will have that

2(n�
1
2Sn(��))0[n

1
2�
�
�LM

�
]� [n

1
2�
�
�LM

�
]0I(��)[n

1
2�
�
�LM

�
]

�2jjn�
1
2Sn(��)jj � jjn

1
2�
�
�LM

�
jj � emin[I(��)]jjn

1
2�(�LM )jj2

�jjn
1
2�
�
�LM

�
jj � [2M1 � emin[I(��)]jjn

1
2�
�
�LM

�
jj]

<�M = LMn (�
�;0)�M;

where the �rst two inequalities are straightforward, the third one follows from jjn� 1
2Sn(��)jj �

M1 and jjn
1
2�
�
�LM

�
jj > M = (2M1+1)=emin[I(��)]; while the last one follows from LMn (�

�;0) =

0, which contradicts �LM being the minimizer. Thus (A2) holds.
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Therefore,

Pr(jjn
1
2�
�
�LM

�
jj > M) =Pr(fjjn

1
2�
�
�LM

�
jj > Mg \ fjjn�

1
2Sn(��)jj �M1g)

+ Pr(fjjn
1
2�
�
�LM

�
jj > Mg \ fjjn�

1
2Sn(��)jj > M1g)

�Pr(fjjn
1
2�
�
�LM

�
jj > Mg \ fjjn�

1
2Sn(��)jj �M1g) (A3)

+ Pr(jjn�
1
2Sn(��)jj > M1)

��; (A4)

where to go from (A3) to (A4) we have used (A1) and (A2). As a consequence, (A4) trivially

implies that Lemma 1.(ii) holds.

As for Lemma 1.(i), for all � > 0 there exists �� > 0 such that

Pr
��LM � (��;0)

 � �� � Pr(jjn 1
2�
�
�LM

�
jj � n

1
2 ��)! 0;

where the inequality follows from Assumption 4.1, while the convergence follows from Lemma

1.(ii), as desired. �

Lemma 2 If Assumptions 1 and 4.1�4 hold, then n
1
2�(�̂) = Op(1).

Proof. Fix � > 0. Assumption 1 implies the consistency of �̂, while Assumption 4.4 implies

that
Rn(�̂)

1 + n k� (�̂)k2
= op(1):

Thus, there exists an N such that for all n > N ,

Pr (An) � 1�
�

2
; (A5)

with

An =

����� Rn(�̂)

1 + n k� (�̂)k2

���� � 1

6
emin[I(��)]

�
:

In turn, given that n�
1
2Sn(��) is Op(1), there exists an M1 such that for all n,

Pr(jjn�
1
2Sn(��)jj �M1) <

�

2
: (A6)

Letting M = maxf(6M1 + 3)=emin[I(��)]; 1g, we can then show that

Pr(fjjn
1
2� (�̂) jj �Mg \ fjjn�

1
2Sn(��)jj �M1g \An) = 0: (A7)

Further, if we notice that

jjn
1
2� (�̂) jj �M , jjn�

1
2Sn(��)jj �M1 and

���� Rn(�̂)

1 + n k� (�̂)k2

���� � 1

6
emin[I(��)]; (A8)
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we can show that

LR(�̂)

= 2[n�
1
2Sn(��)]0[n

1
2� (�̂)]� [n

1
2� (�̂)]0I(��)[n

1
2� (�̂)] + 2Rn (�̂)

� 2M1jjn
1
2� (�̂) jj � emin[I(��)]njj� (�̂) jj2 +

emin[I(��)]
3

(1 + njj� (�̂) jj2)

= jjn
1
2� (�̂) jj

(
2M1 � emin[I(��)]jjn

1
2� (�̂) jj+ emin[I(�

�)]

3

 
1

jjn 1
2� (�̂) jj

+ jjn
1
2� (�̂) jj

!)

� jjn
1
2� (�̂) jj

�
2M1 � emin[I(��)]jjn

1
2� (�̂) jj+ 2emin[I(�

�)]

3
jjn

1
2� (�̂) jj

�
= jjn

1
2� (�̂) jj

�
2M1 �

emin[I(��)]
3

jjn
1
2� (�̂) jj

�
� �M = LR(��;0)�M;

where the �rst equality follows from Assumption 4, the �rst inequality from (A8), the next three

lines are straightforward, the subsequent inequality follows from jjn 1
2� (�̂) jj � M � (6M1 +

3)=emin[I(��)], and the last equality from LR(��;0) = 0. Therefore,

Pr(jjn
1
2� (�̂) jj �M) �Pr(fjjn

1
2� (�̂) jj �Mg \ fjjn�

1
2Sn(��)jj �M1g \An)

+ Pr (Acn) + Pr(jjn�
1
2Sn(��)jj > M1)

��

for all n > N , where the inequalities follow from (A5), (A6) and (A7). �

Lemma 3 If Assumptions 1 and 4.1�4 hold, then LRn(�̂) = LMn(�
LM ) + op(1):

Proof. We will show that for all � > 0, there exists an N such that for all n > N;

Pr
���LRn(�̂)� LMn(�

LM )
�� < �� > 1� �:

To do so, we know that maxfn 1
2� (�̂) ; n

1
2�
�
�LM

�
g = Op(1), so that for all � > 0, there exists

an M such that for all n,

Pr(maxfn
1
2� (�̂) ; n

1
2�
�
�LM

�
g �M) > 1� �

2
: (A9)

Next, letting Pn = f� 2 P : n
1
2 k� (�;�)k � Mg, we can use Assumption 4.1 to choose a

sequence of n ! 0 satisfying

inf
k(�;�)�(��;0)k�n

k� (�;�)k > Mp
n
;
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which implies that Pn � f� 2 P : k�� (��;0)k � ng. But then,

sup
�2Pn

jLRn(�)� LMn(�)j = 2 sup
�2Pn

jRn(�)j

�2 (1 +M)2 sup
�2P:k�(�)k� Mp

n

jRn (�;�)j
1 + n k� (�;�)k2

�2 (1 +M)2 sup
�2P:k��(��;0)k�n

jRn (�;�)j
1 + n k� (�;�)k2

=op(1);

where the �rst line follows from Assumption 4, the second one from the de�nition of Pn, the

third one from An = f� 2P: n
1
2 k� (�;�)k � Mg � f� 2 P : k�� (��;0)k � ng, and the last

equality from n ! 0 and Assumption 4.4. Thus, there exists an N such that for all n > N ,

Pr

 
sup
�2Pn

jLRn(�)� LMn(�)j < �
!
> 1� �

2
: (A10)

As a consequence, we will have that for n > N ,

Pr
���LRn(�̂)� LMn(�

LM )
�� < ��

�Pr
����LRn(�̂)� LMn(�

LM )
�� < �	 \ f�̂ 2 Png \ ��LM 2 Pn

	�
(A11)

�Pr
 (

sup
�2Pn

jLRn(�)� LMn(�)j < �
)
\ f�̂ 2 Png \

�
�LM 2 Pn

	!
(A12)

�Pr
 
sup
�2Pn

jLRn(�)� LMn(�)j < �
!
+ P

�
f�̂ 2 Png \

�
�LM 2 Pn

	�
� 1 (A13)

�1� �

2
+ 1� �

2
� 1 = 1� �; (A14)

where to go from (A11) to (A12) we have used

sup
�2Pn

jLRn(�)� LMn(�)j �
����� sup�2Pn

LRn(�)� sup
�2Pn

LMn(�)

����� ;
from (A12) to (A13) the fact that Pr(E1 \ E2) � Pr(E1) + Pr(E2) � 1, while from (A13) to

(A14) we relied on (A9) and (A10). �

Lemma 4 If Assumptions 1, 4.1�4 and 4.6 hold, then LRn(�̂) = LMn(�
LM ) +Op(n

�a).

Proof. We want to show that for all � > 0 there exists a constant K� such that for all n,

Pr
���LRn(�̂)� LMn(�

LM )
�� � K�n�a� � 1� �:

The proof is almost the same as the one of Lemma 3. Let M and Pn be as the ones in that

lemma. Then, by Assumption 4.6,

sup
�2Pn

jLRn(�)� LMn(�)j = 2 sup
�2Pn

jRn(�)j = Op(n�a);
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which is equivalent to saying that there exists an K� such that for all n,

Pr

 
sup
�2Pn

jLRn(�)� LMn(�)j < K�n�a
!
> 1� �

2
: (A15)

Thus,

Pr
���LRn(�̂)� LMn(�

LM )
�� < K�n�a�

�Pr
����LRn(�̂)� LMn(�

LM )
�� < K�n�a	 \ f�̂ 2 Png \ ��LM 2 Pn

	�
�Pr

 (
sup
�2Pn

jLRn(�)� LMn(�)j < K�n�a
)
\ f�̂ 2 Png \

�
�LM 2 Pn

	!
(A16)

�Pr
 
sup
�2Pn

jLRn(�)� LMn(�)j < K�n�a
!
+ Pr

�
f�̂ 2 Png \

�
�LM 2 Pn

	�
� 1 (A17)

�1� �

2
+ 1� �

2
� 1 = 1� �; (A18)

where the last inequality follows from (A9) and (A15). �

Lemma 5 If Assumptions 1 and 4.1�4 hold, then LRn(~�;0) = sup
(�;0)2P

LMn(�;0)+op(1). More-

over, if in addition Assumption 4.6 holds, then LRn(~�;0) = sup
(�;0)2P

LMn(�;0) +Op(n
�a).

Proof. The proof is omitted because it is entirely analogous to the proofs of Lemmas 3 and 4,

after �xing � = 0 and changing P to f� : (�;0) 2Pg. �

Proof of Theorem 2

By virtue of Lemma 1, we have that �LM 2 ��� with probability approaching 1 (w.p.a.

1 henceforth), with � and � de�ned as ��� = P, that is, if � 2 P, then � 2 � and � 2 �. It

is then easy to verify that

sup
�2P

2[n�
1
2Sn(��)]0[n

1
2� (�;�)]� [n

1
2� (�;�)]0I(��)[n

1
2� (�;�)]

= sup
�2�

sup
�2�

n
2n�

1
2S�;n(��)0n

1
2 [�� �� + ��(�)]� n[�� �� + ��(�)]0I��(��)[�� �� + ��(�)]

� 2n
1
2 [�� �� + ��(�)]0I��(��)[n

1
2�� (�)] + 2n

� 1
2S�;n(��)0[n

1
2�� (�)]

�[n
1
2�� (�)]

0I��(��)[n
1
2�� (�)]

o
w.p.a. 1

= sup
�2�

n
2[S�;n(��)� I��(��)I�1��(�

�)S�;n(�
�)]0�� (�)

�n�0� (�) [I��(��)� I��(��)I�1��(�
�)I��(��)]�� (�)

o
+ n�1S 0�;n(��)I�1��(�

�)S�;n(��)

w.p.a. 1, where the �rst equality follows from �LM 2 ��� w.p.a. 1, and the second one from

I�1��(�
�)[n�1S�;n(��)� I��(��)��

�
�LM

�
]� ��

�
�LM

�
2 f�� �� : � 2 �g w.p.a. 1.
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Similarly, we have that

sup
(�;0)2P

2[n�
1
2Sn(��)]0[n

1
2� (�;0)]� [n

1
2� (�;0)]0I(��)[n

1
2� (�;0)] =

1

n
S 0�;n(��)I�1��(�

�)S�;n(��)

w.p.a. 1. As a result,

LR = 2[Ln(�̂;�)� Ln(~�;0)]

= 2[Ln(�̂n;�)� Ln(��;0)]� 2[Ln(~�;0)� Ln(��;0)]

= sup
�2P

n
2[n�

1
2Sn(��)]0[n

1
2� (�;�)]� [n

1
2� (�;�)]0I(��)[n

1
2� (�;�)]

o
� sup
(�;0)2P

n
2[n�

1
2Sn(��)]0[n

1
2� (�;0)]� [n

1
2� (�;0)]0I(��)[n

1
2� (�;0)]

o
+ op(1)

= sup
�2�

n
2[S�;n(��)� I��(��)I�1��(�

�)S�;n(��)]0�� (�) (A19)

�n�� (�)0 [I��(��)� I��(��)I�1��(�
�)I��(��)]�� (�)

o
+ op(1);

where the �rst two equalities are trivial, while the third one follows from Lemmas 3 and 5.

The last step is to evaluate (A19) at ~� instead of ��. Speci�cally, we have

1p
n
jjS�;n(~�)� I��(��)I�1��(�

�)S�;n(~�)� S�;n(��) + I��(��)I�1��(�
�)S�;n(��)jj

=
h �I��(��)I�1��(��) I

i
n�

1
2 [Sn(~�)� Sn(��)]


=
 �I��(��)I�1��(��) I

 1pn
nX
i=1

g(yi)

 jj~�� ��jj = Op(n� 1
2 ); (A20)

where the �rst equality is straightforward, the second one follows from (2), and the last equality

from 1p
n

Pn
i=1 g(yi) = Op(1) and jj~�� ��jj = Op(n�

1
2 ), with g(:) de�ned in Assumption (4.5).

Moreover, Assumption 4.3 means that I(�) is Lipschitz, so that

jjI(~�)� I(��)jj = Op(n�
1
2 ): (A21)

Combining (A20) and (A21), we get

sup
�2�

n
2(S�;n(��)� I��(��)I�1��(�

�)S�;n(��))0�� (�)

�n�� (�)0 [I��(��)� I��(��)I�1��(�
�)I��(��)]�� (�)

o
= sup
�2�

n
2[S�;n(~�)� I��(~�)I�1��(~�)S�;n(~�)]

0�� (�)

�n�� (�)0 [I��(~�)� I��(~�)I�1��(~�)I��(~�)]�� (�)
o
+Op(n

� 1
2 ); (A22)

which, together with (A19) and (A22), complete the proof of the �rst part of the theorem.
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Using the same argument, we will have that

LR = sup
�2�

n
2[S�;n(~�)� I��(~�)I�1��(~�)S�;n(~�)]

0�� (�)

�n�0� (�) [I��(~�)� I��(~�)I�1��(~�)I��(~�)]�� (�)
o
+Op(n

�a)

= sup
�

n
2[S�;n(~�)� I��(~�)I�1��(~�)S�;n(~�)]

0�� (�)

�n�0� (�) [I��(~�)� I��(~�)I�1��(~�)I��(~�)]�� (�)
o
+Op(n

�a);

when Assumption 4.5 also holds, where the second equality holds because 0 is an interior point

of � and the maximizer is op(1), which proves the second part of the theorem. �

Proof of Theorem 1

We will use Theorem 2 to prove Theorem 1. The �rst step is to verify Assumption 4. To

do so, de�ne &�r(��) = BHrn(�
�), where

Hrn(�) =
@rln(�;0)

@�
rr
�
�
I�r�(�) I�r�1(�)

� � I��(�) I��1(�)
I�1�(�) I�1�1(�)

��1 " @ln
@� (�;0)
@ln
@�1
(�;0)

#
;

and B is a matrix with elements equal to 0 or 1 such that &�r(��) contains the elements in

Hrn(�
�) that are not linearly dependent. Notice that B and &�r(��) always exist even though

they are not necessarily unique. But then,

@rl

@�
rr
(��;0) = A1

@ln
@�
(��;0) +A2

@ln
@�1

(��;0) +A3&�r(�
�);

where A1, A2 and A3 are r2 � (p � q), r2 � q and r2�dim(&�r) matrices, respectively. As a

consequence, we will have that

1

r!
�
r0r

@rl

@�
rr
(��;0) = ��(�r)

@l

@�
(��;0) + ��1(�r)

@l

@�1
(��;0) + ��r(�r)&�r(�

�);

with ��(�r) = 1
r!v


r0
r A1, ��1(�r) =

1
r!�


r0
r A2, ��r(�r) =

1
r!�


r0
r A3. It is then easy to see that

��(�r), ��1(�r) and ��r(�r) are continuous and ��(��) = �
r
��(�) for all � 2 R and � 2 Rqr ,

and the same applies to ��1(�r) and ��r(�r).

Next, let Sn = (S0�n;S0�1n;S
0
�rn
)0, with

S�n(�) =

nX
i=1

s�;i(�) =

nX
i=1

@li
@�
(�;0), S�1(�) =

nX
i=1

s�1;i(�) =

nX
i=1

@li(�;0)

@�1
;

S�rn(�) =
nX
i=1

&�r;i(�).

Further, let

I(�) =

24 I��(�) I��1(�) 0
I�1�(�) I�1�1(�) 0
0 0 I�r�r(�)
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denote the asymptotic variance of n�
1
2Sn(�), which is block diagonal by construction. Let us

also de�ne

LMn(�) = 2n
� 1
2Sn(��)0[n

1
2� (�;�)]� [n

1
2� (�;�)]0I(��)[n

1
2� (�;�)];

where

�(�;�) = [�� �� + ��(�r);�1 + ��1(�r);��r(�r)]0; (A23)

LR(�) = 2 [Ln(�)� Ln(��;0)] ;

and

R(�;�) =
1

2
[LRn(�)� LMn(�)]:

We next verify Assumption 4.1 for �(�;�), whose de�nition is given in (A23). The continuity

of �(�;�) means that we only need to verify that the unique solution to �(�;�) = 0 is (��;0)

because it is trivial to see that �(��;0) = 0. First, if �r = 0, then it immediately follows that

we must have � = �� and �1 = 0. Consider the case when �r 6= 0. By Assumption 3.2, for all

�r 6= 0, �
r0r
@rl(��;0)
@�
rr

is linearly independent of [s�(��); s�1(�
�)]0, which implies that ��r(�r) 6= 0

because

�
r0r

@rl(��;0)

@�
rr
= ��(�r)s�(�

�) + ��1(�r)s�1(�
�) + ��r(�r)s�r(�

�):

To verify Assumptions 4.2 and 4.3, notice that the covariance kernel of S is �nite by As-

sumption 2.2, which implies that Assumption 4.2 will hold by the uniform central limit theorem.

Next, (n�
1
2S0�n; n

� 1
2S0�1n)

0 has a full rank asymptotic variance because of Assumption 3.2, so

1p
n
S�rn does not belong to the linear span of (n

� 1
2S0�n; n

� 1
2S0�1n)

0 by construction. If we combine

this result with 4.2, we will have 0 < emin(��) < emax(��) <1, as desired.

The veri�cation of Assumption 4.4 contains two parts. In the �rst part, we show that

sup
(�;�)2P:k(�;�)�(��;0)k�n

jRn (�;�)j
hn(�;�)

= op(1);

where

hn(�;�) = maxf1; n k�� ��k2 ; n k�1k2 ; n k�rk2rg:

Then, in the second part, we show that

sup
(�;�)2P:k(�;�)�(��;0)k�n

h(�;�)

1 + n k� (�;�)k2
= O(1): (A24)

Combining the two parts, we will get

sup
(�;�)2P:k(�;�)�(��;0)k�n

jRn (�;�)j
1 + n k� (�;�)k2

� sup
�2P:k��(��;0)k�n

jRn (�;�)j
hn(�;�)

� sup
�2P:k��(��;0)k�n

hn(�;�)

1 + n k� (�;�)k2

= op(1)O(1) = op(1):
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Let us now prove those two parts in detail. Regarding the �rst one, a 2rth-order Taylor

expansion of Ln (�;�1;�r) around the (��;0) yields

Ln(�;�1;�r)� Ln(��;�) =
9X
j=1

Aj +
17X
j=1

Bj ;

where

A1 = (�� ��)0@Ln
@�

= (�� ��)0S�n;

A2 =
1

2
n (�� ��)
20E

�
@l

@�
2

�
= �1

2
n (�� ��)0 I�� (�� ��) ;

A3 = �
0
1

@Ln
@�1

= �01S�1n, A4 =
1

2
n
�
�
21

�0
E

�
@l

@�
21

�
= �1

2
n�01I�1�1�1;

A5 =
1

r!

�
�
rr

�0 @Ln
@�
rr

= ��(�r)S�n + ��1(�r)S�1n + ��r(�r)S�rn;

A6 =
1

(2r)!
n
�
�
2rr

�0
E

�
@l

@�
jr

�
= �1

2
n[�0�(�r);�

0
�1(�r);�

0
�r(�r)]I[�

0
�(�r);�

0
�1(�r);�

0
�r(�r)]

0;

A7 = n(�� ��)0E
�
@2l

@�@�01

�
�1 = �n(�� ��)0I��1�1;

A8 =
1

r!
n(�� ��)0E

�
@1+rl

@�@�
r0r

�
�
rr = �n(�� ��)0[I����(�r) + I��1��1(�r)];

A9 =
1

r!
n�01E

�
@1+rl

@�@�
r0r

�
�
rr = �n�01[I�1���(�r) + I�1�1��1(�r)];

B1 =
1

2
n (�� ��)
20

�
1

n

@Ln

@�
2
� E

�
@l

@�
2

��
, B2 =

2rX
j=3

1

j!
n (�� ��)
j0

(
1

n

@jLn

@�
j1

)
;

B3 =
1

2
n
�
�
21

�0� 1
n

@Ln

@�
21
� E

�
@l

@�
21

��
, B4 =

2rX
j=3

1

j!
n
�
�
j1

�0( 1
n

@jLn

@�
j1

)
;

B5 =
2r�1X
j=r+1

1

j!

p
n
�
�
jr

�0� 1p
n

@Ln

@�
jr

�
, B6 =

1

(2r)!
n
�
�
2rr

�0� 1
n

@2rLn

@�
2rr

� E
�
@l

@�
jr

��
;

B7 =
8X

j1+j2=3;j1;j2�1

1

j1!j2!
n(�� ��)
j10

(
1

n

@j1+j2Ln

@�
j1@�
j201

)
�
j21 ;

B8 = n(�� ��)0
�
1

n

@2Ln
@�@�01

� E
�
@2l

@�@�01

��
�1;

B9 =
1

r!
n(�� ��)0

�
1

n

@1+rLn

@�1@�
r0r

� E
�

@1+rl

@�1@�
r0r

��
�
rr ;

B10 =
2rX

j=r+1

1

j!
n(�� ��)0

�
1

n

@1+jLn

@�@�
j0r

�
�
jr ;
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B11 =

8X
j1+j2=3;j1�2;j2�1

1

j1!j2!
n(�� ��)
j10

(
1

n

@j1+j2Ln

@�
j1@�
j201

)
�
j2r ;

B12 =
r�1X
j=1

1

j!

p
n�01

�
1p
n

@1+jLn

@�@�
j0r

�
�
jr , B13 =

1

r!
n�01

�
1

n

@1+rLn

@�@�
r0r

� E
�
@1+rl

@�@�
r0r

��
�
rr ;

B14 =
2rX

j=r+1

1

j!
n�01

�
1

n

@1+jLn

@�@�
j0r

�
�
jr ;

B15 =

8X
j1+j2=3;j1�2;j2�1

1

j1!j2!
n�
j101

(
1

n

@j1+j2Ln

@�
j1@�
j201

)
�
j2r ;

B16 =

8X
j1+j2+j3=3;j1;2;3�1

�
1

n
L[j1;j2;j3]n

�
n�j11 �

j2�j3r ; and

B17 =
8X

j1+j2+j3=3;j1;2;3�1

�
1

n
L[j1;j2;j3]n (��)� 1

n
L[j1;j2;j3]n

�
n(�� ��)j1�j21 �j3r ;

with the omitted argument above being either �� or (��;0). The simpli�cation of A2, A4 and

A7 is based on the information matrix equality, while we have used Corollary 1 in Rotnitzky et

al (2000) to obtain A6, A8, and A9. It is also easy to see that
P9
j=1Aj =

1
2LMn(�) because of

the de�nition Rn(�;�) =
P
Bj . We can then verify that

sup
(�;�)2P:k(�;�)�(��;0)k�n

jRn (�;�)j
hn (�;�)

= op(1)

by noting that the expressions in curly brackets in the Bj terms are Op(1), those inside paren-

theses are op(1), and (�� ��;�1;�r) = o(1).

Further, note that if hn (�;�) = O(1), then

jRn (�;�)j
hn (�;�)

= Op(n
� 1
2r ) (A25)

because (�� ��;�1) = O(n�
1
2 ) and �r = O(n�

1
2r ).

To verify the second part, let

�� = max
jj�jj=1

k��(�)k , ��1 = max
jj�jj=1

k��1(�)k and �r = min
jj�jj=1

k��r(�)k > 0; (A26)

where the last inequality follows from (i) ��r(�) is a continuous function, and (ii) ��r(�) 6= 0

for all � 6= 0. In this context, to verify (A24) it su¢ ces to check that

max
(�;�)2P:k(�;�)�(��;0)k�n

h�n (�;�)

1 + jjn 1
2� (�;�) jj2

= O(1); (A27)

with

h�n (�;�) = max
n
1; �1n k�� ��k2 ; �2n k�1k2 ; n k�rk2r

o
;
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where the coe¢ cients

�1 =
1

2�� + 1
> 0 and �2 =

1

2��1 + 1
> 0

are only used to simplify the expressions. Thus, for n large enough, we will have that

f(�;�1;�r) : k(�;�)� (��;0)k � ng � P:

The compactness of f(�;�1;�r) : k(�;�)� (��;0)k � ng and the continuity of
h�n(�;�)

1+nk�(�;�)k2

implies that there exists (�;�) such that

sup
(�;�)2P:k(�;�)�(��;0)k�n

h�n (�;�)

1 + n k� (�;�)k2
=

h�n (�n;�n)

1 + n k� (�n;�n)k2
(A28)

for all large enough n. Consequently, there will exist a subsequence fwng of fng such that

lim sup
n!1

sup
(�;�)2P:k(�;�)�(�;0)k�n

h�n (�;�)

1 + n k� (�;�)k2
= lim
n!1

sup
h�n (�n;�n)

1 + n k� (�n;�n)k2

= lim
wn!1

h�wn(�wn ;�wn)

1 + wnjj�(�wn ;�wn)jj2
;

where the �rst equality follows directly from (A28) and the second one by the properties of

lim sup. Consequently, it is easy to see that if h�wn(�wn ;�wn) = O(1), then (A24) holds trivially.

In turn, if h�wn(�wn ;�wn) 6= O(1), then we can �nd a further subsequence fung of fwng such

that at least one of the following conditions holds:

h�un(�un ;�un) = un k�r;unk
2r !1; (A29)

h�un(�un ;�un) = �
2
1unjj�un � �

�jj2 !1; or (A30)

h�un(�un ;�un) = �
2
2un k�1;unk

2 !1: (A31)

Let �r;n = �n�n with k�nk = 1 and �n a scalar. If (A29) holds, then

h�un(�un ;�un)

1 + unjj�(�un ;�un)jj2
� un k�r;nk2r

un k��r (�r;n)k2
=

un�
2r
n

un k�rn��r (�n)k
2 =

1

k��r (�n)k2
� 1

�2r
;

where the �rst inequality follows from

h�un(�un ;�un) = un k�r;nk
2r and unjj�(�un ;�un)jj

2 � un k��r (�r;n)k2 ;

the second equality follows from the de�nition of ��r, and the last inequality follows from the

characterization of �r in (A26).

If (A30) holds, then

h�un(�un ;�un) = maxf1; �1unjj�un � �
�jj2; �2un k�1unk2 ; un k�runk2rg = un�21jj�un � �

�jj2
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will imply that

�21jj�un � �
�jj2 � k�runk2r = �2run ) �1jj�un � �

�jj � �run ; (A32)

which in turn yields

k�n � �� + �rn��(�n)k � jk�n � ��k � �rn k��(�n)kj = k�n � ��k
����1� �rn

k�n � ��k
k��(�n)k

����
� k�n � ��k j1� �1��j >

1

2
k�n � ��k ; (A33)

where the �rst line follows from triangle inequality and the second one from �rn
k�n���k

� �1 in

view of (A32) and k��(�n)k � �� because of (A26). Then, we will have that

h�un(�un ;�un)

1 + unjj�(�un ;�un)jj2
<

�1jj�un � �
�jj2

jj�un � �
� + �run��(�un)jj2

�
�1jj�un � �

�jj2
1
2 jj�un � �

�jj2
= 2�1;

where the �rst inequality follows from unjj�(�un ;�un)jj2 > unjj�un � �
� + �run��(�un)jj2 and

h�un(�un ;�un) � �1jj�un � �
�jj2, while the second one from (A33).

Similarly, if (A31) holds, then we will have that

�22 k�1unk
2 � k�runk2r = �2run implies �2 k�1unk � �run ; (A34)

whence

k�1un + ��1(�run)k �
��k�1unk � �run k��1(�un)k�� (A35)

= k�1unk
����1� �run

k�1unk
k��1(�un)k

����
� k�1unk j1� �2��1 j >

1

2
k�1unk ;

where the �rst two inequalities are straightforward, and the third one follows from (A26) and

(A34). In addition, we can show that

h�un(�un ;�un)

1 + unjj�(�un ;�un)jj2
<

�22 k�1unk
2

k�1un + ��1(�run)k
2 �

�22 k�1unk
2

1
2 k�1unk

2 = 2�
2
2; (A36)

where the �rst inequality follows from (A31) and the second one from (A35).

The previous argument also implies that if hn (�n;�n) ! 1, then h�n (�n;�n) ! 1 and

n k� (�n;�n)k ! 1. Consequently,

n
1
2 k� (�n;�n)k = O(1)) hn (�n;�n) = O(1): (A37)

Regarding Assumption 4.5, if n
1
2� (�n;�n) = O(1), then we have hn (�n;�n) = O(1) in view

of (A37), which in turn implies jRn (�;�)j = Op(n�
1
2r ) thanks to (A25).
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But then, Theorem 2 implies that

LR = 2 [Ln(�n;�n)� Ln(�n;0)]

= sup
�

n
2[S�;n(~�)� I��I�1��S�;n(~�)]

0�� (�)� n�� (�)0 V��(~�)�� (�)
o
+Op(n

� 1
2r );

where

V�� = I�� � I��I�1��I�� =
�
I�1�1 � I�1�I�1��I��1 0

0 I�r�r

�
=

�
V�1�1 0
0 I�r�r

�
and ��(�) = [�01 + �

0
�1(�r);�

0
�r(�r)]

0. Hence, it is not di¢ cult to see that S�;n(~�) = 0.

Next, rearranging terms we get

2S�;n(~�)
0
�� (�)� n�� (�)

0 V��(~�)�� (�) =2S�1;n(~�)0��1(�)� n��1(�)0V�1�1(~�)��1(�)

+ 2S�r;n(
~�)0�r� (�r)� n��r (�r)

0 I�r�r(~�)��r (�r) ;

where ��1(�) = �1 + ��1 (�r). Thus, we will have

sup
�

n
2S�;n(~�)

0�� (�)� n�� (�)0 V��(~�)�� (�)
o

=sup
�r

sup
��1 (�)

n
2S�;n(~�)

0�� (�)� n�� (�)0 V��(~�)�� (�)
o
w.p.a. 1

=
1

n
S�1;n(

~�)V �1�1�1
(~�)S�1;n(

~�)

+ sup
�r

n
2S�r;n(

~�)0��r(�r)� n��r(�r)0V�r�r(~�)��r(�r)
o
w.p.a. 1.

To further simplify the last sup, let �r = �� with � � 0 and k�k = 1. Then,

sup
�;�

n
2S�r;n(

~�)0��r(�r)� n��r(�r)0V�r�r(~�)��r(�r)
o

= sup
jj�jj=1

sup
��0

n
2S�r;n(

~�)0��r(�)�
r � n��r(�)0V�r�r(~�)��r(�)�2r

o
w.p.a. 1

=

8>><>>:
1
n sup
jj�jj=1

[S�r;n(~�)0��r (�)]2

��r (�)
0V�r�r (~�)��r (�)

if r is odd

1
n sup
jj�jj=1

bS�r;n(~�)0��r (�)c2+
��r (�)

0V�r�r (~�)��r (�)
if r is even

Finally, noticing that

S�r;n(~�)0��r(�) = r!�
r0r Drn(~�)

and

��r(�)
0V�r�r(~�)��r(�) = (r!)

2 �
r0r [V�r�r(�)� V�r�1(�)V �1�1�1
(�)V�1�r(�)]�


r
r ;

we can �nally see that Theorem 1 holds. �
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Proof of Theorem 3

By Le Cam�s �rst Lemma (see Lemma 6.4 of van der Vaart (1998)), contiguity holds if

under P0, dP�;�n=dP0
d! U with E(U) = 1. Let Ln(��;�n) denote the log of the joint likelihood

of the observations. Given Assumption 4, we can write

Ln(�
�;�n)� Ln(��;0) =

1p
n
S 0n(��)

p
n�(��;�n)�

1

2

p
n�0(��;�n)I(��)

p
n�(��;�n) + op(1)

=
1p
n
S 0n(��)�1 �

1

2
�01I(��)�1 + op(1):

Therefore, under H0,

dP�n
dP0

= exp

�
1p
n
S 0n(��)�1 �

1

2
�01I(��)�1

�
+ op(1)

d! U = exp

�
S � 1

2
�01I(��)�1

�
;

where S � N [0;�01I(��)�1]: Using the expression of the moment generating function of a nor-

mal distribution, we have that E(U) = 1. The joint distribution of Sn and ln
�
dP�n
dP0

�
converges

under H0 to the Gaussian process:" 1p
n
Sn(��)

ln
�
dP�n
dP0

� # d! N

��
0

�1
2�

0
1I(��)�1

�
;

�
I(��) I(��)�1
�01I(��) �01I(��)�1

��
:

In addition, it follows from Le Cam�s third lemma (see van der Vaart (1998)) that

1p
n
Sn(��)

d! N [I(��)�1; I(��)]

under P�n .

Finally, given Assumption 5, we can then prove that under P�n ,

GETn =sup
�

�
2

�
1p
n
S�;n

�
~�n

�
� 1p

n
I��

�
~�n

�
I�1��

�
~�n

�
S�;n

�
~�n

��0p
n��(�)

�n�0�(�)
h
I��

�
~�n

�
� I��

�
~�n

�
I�1��

�
~�n

�
I��

�
~�n

�i
��(�)

o
d�! sup
�2�

�
2
h
S +

�
I�� (��)� I�� (��) I�1�� (�

�) I�� (��)
�
��;1

i0
�

��
h
I�� (��)� I�� (��) I�1�� (�

�) I�� (��)
i
�
o

where

S � N
h
0; I�� (��)� I�� (��) I�1�� (�

�) I��
i
;

as desired. �
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Proof of Proposition 1

We �rst reparametrize the model as follows:

'S = �S ;

'Mk = �Mk � �Dk M1(�
S)�ke1;

('Dk )
2 = (�Dk )

2f1 +M1(�
S)[M1(�

S) + �S ]�2kg;

'Lkj = �
L
kj �

1

2
M1(�

S)
�
�2k�j + �k�

2
j � 2�k�j

�
[M1(�

S) + �S ]; and

# = �;

where e1 = (1;00)0 is the �rst vector of the canonical basis of Rdim('k), 'Lkh the correlation

coe¢ cient between uk and uh and M1(�
S) the Mills ratio de�ned in (9).

Next, letting

"k = uk � r(k)(�L)u(k);

where uk('Mk ; '
D
k ) = (yk � 'M 0

k x)='Dk and r(k)(�
L) denotes the coe¢ cients in the theoretical

least squares projection of uk on to (the linear span of) u(k) = (u1; : : : ; uk�1; uk+1; : : : ; uK)
0,

straightforward calculations allow us to show that

@l

@�S
= w�N (�

S0w)

�
d

�N (�
S0w)

� 1� d
�N (��S0w)

�
@l

@�Mk
=
det
�
R(k)(�

L)
�

�Dk det
�
R(�L)

�dx"k
@l

@�Dk
= d

24akk �u2k � 1�+X
h 6=k

akh
�
ukuh � 'Lkh

�35
@l

@�Lkj
= d

24X
h

bkj;h
�
u2h � 1

�
+
X
h 6=i

bkj;ih
�
uiuh � 'Lih

�35
@l

@�k
= 0

@2l

@�k@�j
= 0

@3l

@�3k
= Cd det

�
R(k)(�

L)
�3
"3k +Ak

@l

@�

@3l

@�2k@�j
= Cd det

�
R(k)(�

L)
�2
det
�
R(j)(�

L)
�
"2k"j +Akj

@l

@�

@3l

@�k@�j@�h
= Cd det

�
R(k)(�

L)
�
det
�
R(j)(�

L)
�
det
�
R(h)(�

L)
�
"k"j"h +Akjh

@l

@�
;

where R(k)(�
L) the (K�1)� (K�1) matrix obtained from R(�L) after eliminating its kth row
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and column,

C =
1

det[R(�L)]3
d2
�
�N (x)

�N (x)

�����
x=�S"

;

and

akh, bkj;ihAk, Akj , Akjh for k; j; h = 1; :::;K

are some terms whose detailed expressions, which are available on request, are irrelevant for the

proof.

Thus, we have that the test depends on the in�uence functionX
k

1

6
�y3k

@3l

@�3k
+
X
j 6=k

1

2
�y2k �

y
j

@3l

@�2k@�j
+
X
h 6=j 6=k

�yk�
y
h�
y
j

@3l

@�k@�j@�h

/
(X

k

d det
�
R(k)(�

L)
�
wk�

y
k

)3
+Ay

@l

@�

/dH3
�
�0vp
��

�
+A

@l

@�

Finally, by suitably choosing � in the last expression so thatX
k

d det
�
R(k)(�

L)
�
wk�

y
k / d�

0v;

we can show that the test has form in (10). �

Proof of Proposition 2

For those observations with d = 1, we can write�
R
�
�L
�
� ##0

��1=2 �
'D
��1 �

y �'Mx
�
=
�
R
�
�L
�
� ##0

��1=2
#uS + z

y

where zy � N (0; IK) by construction.

Given that the test is based on the standardized residuals, the statistics which use either y

or �
R
�
�L
�
� ##0

��1=2 �
'D
��1 �

y �'Mx
�

as inputs are numerically the same. Therefore, for any �, we will have that

�y0
�
R
�
�L
�
� ##0

��1=2 �
'D
��1 �

y �'Mx
�
= �y0

�
R
�
�L
�
� ##0

��1=2
#uS + �

y0zy

/ uS +
1

�y0
�
R
�
�L
�
� ##0

��1=2
#
�y0zy:

This implies that the distribution of the test statistic conditional on x and w is determined by

the unconditional distribution of8<:
"

�y0

�y0
�
R
�
�L
�
� ##0

��1=2
#
zy

#
�y 6=0

; uS

9=; : (A38)
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Letting

` =

�
R
�
�L
�
� ##0

��1=2
#q

#0
�
R
�
�L
�
� ##0

��1
#

and � =

q
#0
�
R
�
�L
�
� ##0

��1
#;

we will show that the joint distribution depends only on �. To do so, �rst note that `0` = 1,

which means that I � ``0 has rank K � 1. Therefore, the singular value decomposition implies

the existence of a (K � 1)�K matrix A with full row rank such that

A0A = I� `0`:

Letting �0 = �y0[ ` A ]�1, we then have that

1

�y0
�
R
�
�L
�
� ##0

��1=2
#
�y0zy =

�y0
�
`0

A

��1
�y0
�
`0

A

��1 �
`0

A

�
`�

�
`0

A

�
zy =

�0

�0e1�
z;

which in turn implies that8<:
"

�y0

�y0
�
R
�
�L
�
� ##0

��1=2
#
zy

#
�y 6=0

; uS

9=; �
(�

�0

�0e1�
z

�
� 6=0

; uS

)
;

where

z =

�
`0

A

�
zy; zjx;w � N(0; IK);

which con�rms that the power will depend on � exclusively.

Finally, the Woodbury formula implies that we can rewrite � as

#0
�
R
�
�L
�
� ##0

��1
# = #0R�1

�
�L
�
#+ #0R�1

�
�L
�
#
�
1� #0R�1

�
�L
�
#
�
#0R�1

�
�L
�
#

=
#0R�1

�
�L
�
#

1� #0R�1
�
�L
�
#
;

which con�rms the exclusive role played by #0R�1
�
�L
�
#. �

Proof of Proposition 3

If we reparametrize from (';#) to (�;�) as follows:

'1 = �1 � 2
p
�2�1 + 2�

3
1;

'2 =

�
1� 2

p
2�2 +

2

3
�21

�
�2;

#1 = �1; and

#2 = �2 +

p
2

3
�21;
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then we can show that

@l

@�1
=

1
p
'2
H1(u);

@l

@�2
=

1p
2'2

H2(u);

@l

@�1
=
@l

@�2
=
@2l

@�21
=
@3l

@�31
= 0;

1

2

@2l

@�22
= �

p
6H4(u)� 2

p
2
@l

@�2
;

@2l

@�1@�2
= �2

p
3H3(u); and

1

4!

@4l

@�41
=

p
6

9
H4(u)�

p
2

9

@l

@�2

hold at (�;0), where u = (y � �1)=
p
�2. Next, letting ~ui = (yi � ~�L)=

q
~�V and �Hj =Pn

i=1Hj(~ui), it is easy to see that

�H1 = �H2 = 0:

Then, it holds that

LRn = sup
�2�

�
2S0�;n�� (�)� n�0� (�) I���� (�)

	
+ op(1) (A39)

by virtue of Theorem 2, with S� = (�H3;�H4)0,

��(�) =

 
�2
p
3�1�2;�

p
6�22 +

p
6

9
�41

!0
;

and I�� = I2 . Finally, after some tedious calculations available on request, we can verify that

the conditions for Theorem 2 are satis�ed in this example.

Moreover, in this special case we can further simplify the right-hand side of (A39) as follows.

First, it is easy to see that an upper bound will be given by

sup
�2�

�
2S0�;n�� (�)� n�0� (�) I���� (�)

	
� 1

n
S0�;nI�1�� S�;n =

1

n
�H
2
3 +

1

n
�H
2
4

Second, we can construct �1 and �2 such that(
�2
p
3
p
n�1�2 = n

�1=2H3 + op(1)

�
p
6
p
n�22 +

p
6
9

p
n�41 = n

�1=2H4 + op(1)
(A40)

which implies that a lower bound will be

1

n
�H
2
3 +

1

n
�H
2
4 + op(1):

Therefore, we end up with

LRn =
1

n
�H
2
3 +

1

n
�H
2
4 + op(1);

as desired. �
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Proof of Proposition 4

In this example,

��(�) =

�
�2
p
3�1�2p

6(19�
4
1 � �22)

�
, � = R2;

and

I��(~�)� I��(~�)I�1��(~�)I
0
��(

~�) = I2:

Therefore, under the sequence

lim
n!1

p
n��(�1) = ��;1 ;

we will have
GETn

d�! sup
��2�

�
2 (S + �1;�)

0 �� � �0���
	

= (S + �1;�)
0 (S + �1;�)

as claimed. �

Proof of Proposition 5

The proof is entirely analogous to the proof of Proposition 8 in Amengual, Bei, Carrasco

and Sentana (2022), so we omit it for the sake of brevity. �

41



Table 1: Monte Carlo rejection rates (in %) under null and alternative hypotheses for testing
for selectivity in multivariate regression

Null Alternative hypotheses
hypothesis Ha1 Ha2

1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A: n = 400
GET 1.0 5.0 10.2 8.5 23.2 35.1 8.6 23.9 35.9
LR 0.9 4.9 10.4 9.1 25.2 37.1 9.1 25.2 36.9
GMM 1.0 5.1 10.1 7.6 22.0 32.5 7.8 22.4 33.3

Panel B: n = 1; 600
GET 0.8 5.1 9.7 62.2 82.7 88.8 62.7 83.1 89.5
LR 0.9 4.8 9.6 68.0 86.6 91.6 68.9 86.4 91.7
GMM 1.0 5.2 10.0 57.9 79.3 87.5 58.5 79.2 87.6

Notes: Results based on 10,000 samples. GET and LR are de�ned in section 3.1. GMM refers to the
J-test based on the in�uence functions underlying GET. Finite sample critical values are computed by
simulation. DGPs: w = x1 = 1 and x2 � N(0; 1), 'Mk = (0; 1), 'D = �2, 'S = 1 and 'L = 0:25. As
alternative hypotheses, we consider #0 = (0:57; 0:57) (Ha1) and #

0 = (0:80; 0) (Ha2); see section 3.1 for
the parametrization.

Table 2: Monte Carlo rejection rates (in %) under alternative hypotheses for testing normality
versus SNP

Alternative hypotheses
Ha1 Ha2

1% 5% 10% 1% 5% 10%

Panel A: n = 400
GET 8.8 27.7 39.5 30.2 40.4 46.6
LR 10.6 26.8 39.4 25.0 37.5 45.2

Panel B: n = 1; 600
GET 59.5 83.5 89.7 67.8 78.2 82.3
LR 64.3 83.1 89.7 64.7 76.4 82.2

Notes: Results based on 10,000 samples. GET and LR are de�ned in section 3.2. Finite sample critical
values are computed by simulation. DGPs: 'M = 0, 'V = 1, #0 = (0:25; 0:10) for Ha1; and #

0 =

(0:75; 0:05) for Ha2.
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Figure 1: Alignment of GET and LR under the null hypothesis when testing for selectivity

in multivariate regression
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Notes: Results based on 10,000 samples. GET and LR are de�ned in section 3.1. DGPs: w = x1 = 1
and x2 � N(0; 1), 'Mk = (0; 1), 'D = I2, 'S = 1 and 'L = 0:25

Figure 2: Alignment of GET and LR under the null hypothesis for normality versus SNP
test
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Notes: Results based on 10,000 samples. GET and LR are de�ned in section 3.2. DGPs: 'M = 0,
'V = 1.
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B Reparametrizations

B.1 Sequential reparametrization method

In what follows, we explain how to obtain the reparametrization alluded to in section 2.1

using a sequential approach. To do so, we make the following

Assumption 7 1) The asymptotic covariance matrix of the sample averages of (s'; s#1) eval-

uated at (';0) scaled by
p
n has full rank.

2) @
�0qr j�r l

@#
j�r
r

����
(';0)

= 0, for all index vectors such that �0qr j�r < r � 1.

3) There exists a set of coe¢ cients fmj�r
k g�0qr j�r=r�1;k=1;:::;p�qr which may be functions of ' such

that

m
j�r
1 s'1 + :::+m

j�r
p�qs'p�q +m

j�r
p�q+1s#11 + :::+m

j�r
p�qrs#1q1 +

@�
0
qr j�r l

@#j�r
= 0

for all �0qr j�r = r � 1, where the default argument is (';0).

In this context, a convenient way of reparametrizing the model from (';#) to (�;�) is as

follows:

'1 = �1 +
X

�0qr j�r=r�1

m
j�r
1

j�r !
�
j�r
r ; :::; 'p�q = �p�q +

X
�0qr j�r=r�1

m
j�r
p�q
j�r !

�
j�r
r ;

#11 = �11 +
X

�0qr j�r=r�1

m
j�r
p�q+1
j�r !

�
j�r
r ; :::; #1q1 = �1q1 +

X
�0qr j�r=r�1

m
j�r
p�qr
j�r !

�
j�r
r ;

#r1 = �r1; :::; #rqr = �rqr :

Then, if we use Faà di Bruno�s (1859) formulas, which generalize the usual chain rule to

higher-order derivatives, we can show that

@r�1l

@�
j�r
r

= m
j�r
1 s'1 + :::+m

j�r
p�qs'p�q +m

j�r
p�q+1s#11 + :::+m

j�r
p�qrs#1q1 +

@�
0
qr j�r l

@#j�r
= 0

for all �0qr j�r = r � 1 as desired, and where the default argument is again (';0).
Finally, we need to check whether

P
�0qr j�r=r

�j�r
j�r !

@rl

@�j�r
evaluated at (�;0) is linearly inde-

pendent of (s�; s�1) for all �
2
1 + � � � + �2qr = 1. If so, Theorem 1 applies. Otherwise, we should

check whether either:

1) there exists a new set of coe¢ cients fmyj�r
k g�0qr j�r=r;k=1;:::;p�qr which may be functions of �

such that

m
yj�r
1 s�1 + : : :+m

yj�r
p�q s�p�q +m

yj�r
p�q+1s�11 + : : :+m

yj�r
p�r s�1q1 +

@�
0
qr j�r l

@�j�r
= 0 (B1)

when evaluated under the null, in which case we can do a further reparametrization from (�;�)

to (�y;�y) in such a way that we set all the rth partial derivatives with respect to �y to zero, or

2) we can use Theorem 2, which covers far more general cases.

1



B.2 Numerical invariance to reparametrization

Let us now prove that the GET statistic that we proposed in Theorem 1 is invariant to

reparametrization, exactly like the LR test or the usual LM tests that rely on the information

matrix rather than the sample average of the Hessian. For simplicity of notation, we will do

so in a simple case in which r = 2 and � = �2, so that we can omit the subscript 2 from �

henceforth. Additionally, we drop the subscript i from the contributions of each observation to

the log-likelihood function.

De�ne % = (';#) as the original parameter vector, where ' is p � 1 and # a q � 1 vector.
In what follows, (';0) are the omitted arguments for all the relevant quantities that depend on

(';#).

We maintain that Assumption 3 holds with r = 2 for the original parameters %, so that 1)

the asymptotic variance of the sample average of s' has full rank, 2) there is a q � p matrixM
of possible functions of ' such that

Ms'i(';0) + s#i(';0) = 0 (B2)

holds, and 3) the asymptotic variance of the sample average of"
s';�

0
�
M0

Iq

�0
@2l

@%@%0

�
M0

Iq

�
�

#
has full rank under the null for all � such that jj�jj 6= 0.
If we reparametrize from % to � as

' = �+M0�; and # = �;

then, we can easily check that

@l

@�
=
@l

@'
; (B3)

@l

@�
=M

@l

@'
+
@l

@#
=Ms'i + s#i = 0; (B4)

@2l

@�@�0
= [M; Iq]

@2l

@%@%0

�
M0

Iq

�
:

In addition, (B3) and (B4) hold when evaluated under the null, with

�0
@2l

@�@�0
� = �0

�
M0

Iq

�0
@2l

@%@%0

�
M0

Iq

�
�

linearly independent of @l=@�, which implies that Assumption 3 is satis�ed with r = 2 for the

transformed parameters � = (�0; �0)0 too. Consequently, we can apply Theorem 1, which yields

GET�n = supjj�jj6=0ET
�
n (�), where

ET�n (�) =
[�0H(~')�]2 1 [�0H(~')� � 0]

V(�; ~') ;

H(') =

�
M0

Iq

�0
@2l(%)

@%@%0

����
(';0)

�
M0

Iq

�
; (B5)
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and

V�(�;') = V [�0H(')�]� Cov[�0H(')�; s�(')]V �1[s�(')]Cov[s�(');�0H(')�]

is the adjusted variance of �0H(')�.
Consider now an alternative reparametrization from % to �y characterized by

% =

�
'
#

�
=

�
g�(�y;�y)
g�(�y;�y)

�
= g(�y);

where g(�) is some second-order continuously di¤erentiable vector of functions which represent a
suitable di¤eomorphism, at least locally around the null. Such an alternative reparametrization

must also ensure that: (i) s�y has full rank, (ii) s�y is identically 0 at H0 : �
y = 0, and (iii)

�0 @2l
@�y@�y0

� is linearly independent of s�y for all jj�jj 6= 0.
Given that the �rst order derivative of �y under the null is given by

@l

@�y
=
@g�0

@�y
s' +

@g�0

@�y
s# =

�
@g�0

@�y
� @g

�0

@�y
M

�
s';

where we have used the chain rule in the �rst equality and (B2) in the second one, we need to

assume that

det

�
@g�0

@�y
� @g

�0

@�y
M

�
6= 0 (B6)

for @l=@�y to have full rank. Similarly, given that (B2) and the chain rule imply that

@l

@�y
=
@g�0

@�y
s' +

@g�0

@�y
s# =

�
@g�0

@�y
� @g

�0

@�y
M

�
s';

we must also assume that
@g�0

@�y
=
@g�0

@�y
M (B7)

to ensure that @l=@�y = 0 under the null irrespective of �y because s' has full rank.

Let us now turn to condition (iii), for which we �rst need to compute the corresponding

second-order derivatives. Applying the chain rule once again, we obtain

@2l

@�yi@�
y
j

=
@l
@'0

@2g�

@�yi@�
y
j

+
@g�0

@�yj

@2l

@'@'0
@g�

@�yi
+
@g� 0

@�yj

@2l

@#@'0
@g�

@�yi

+
@l

@#0
@2g�

@�yi@�
y
j

+
@g� 0

@�yj

@2l

@#@#0
@g�

@�yi
+
@g�0

@�yj

@2l

@'@#0
@g�

@�yi
:

In this context, (B7) and (B2) imply that

@2l

@�yi@�
y
j

= s0'
@2g�

@�yi@�
y
j

+
@g�0

@�yj
M

@2l

@'@'0
M0@g

�

@�yi
+
@g� 0

@�yj

@2l

@#@'0
M0@g

�

@�yi

� s0'M0 @
2g�

@�yi@�
y
j

+
@g� 0

@�yj

@2l

@#@#0
@g�

@�yi
+
@g�0

@�yj
M

@2l

@'@#0
@g�

@�yi

= s0'

 
@2g�

@�yi@�
y
j

�M0 @
2g�

@�yi@�
y
j

!
+
@g�0

@�yj

�
M0

Iq

�0
@2l

@%@%0

�
M0

Iq

�
@g�

@�yi
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when evaluated at the null, so

@2l

@�y@�y
=

(
s0'

 
@2g�

@�yi@�
y
j

�M0 @
2g�

@�yi@�
y
j

!)
ij

+
@g�0

@�y
H
@g�

@�y
:

Hence, (B5) implies that

�0
@2l

@�y@�y
� = s0'a+ �

y0H�y, for all � 6= 0

when evaluated at the null, where a = (a1; : : : ; aq)0 with

ai = �
0

 
@2g�i
@�y@�y

�M0 @
2g�i

@�y@�y

!
� and �y =

@g�

@�y0
�:

In this context, if we further assume that

det
�
@g�

@�y0

�
6= 0; (B8)

then it is easy to see that �0 @2l
@�y@�y

� will be linearly independent of s�y for all �
y such that�y 6= 0 because (a) �y0H�y is linearly independent of s' and (b) s�y is a linear combination

of s'.

In sum, once we guarantee that (B6), (B7) and (B8) hold, the parametrization from % to �y

satis�es the rank de�ciency condition in Assumption 3 with r = 2.

Finally, let us de�ne the adjusted asymptotic variance of �0 @2l
@�y@�y

� as

Vy
�y
(�; �y) = V

�
�0

@2l

@�y@�y
�

�
� Cov

�
�0

@2l

@�y@�y
�; s�y

�
V �1(s�y)Cov

�
s�y ;�

0 @2l

@�y@�y
�

�
= V (s0'a+ �

y0H�y)� Cov(s0'a+ �y
0H�y;a0s')V �1(a0s')Cov(a0s'; s0'a+ �y

0H�y)

= V (�y
0H�y)� Cov(�y0H�y; s')V �1(s')Cov(s';�y

0H�y)

= V�(�y;�):

Then, we will have that

ET�
y

n (�) =

h
�0 @2l
@�y@�y

(~�y)�
i2
1
h
�0 @2l
@�y@�y

(~�y)� � 0
i

Vy
�y
(�;�y)

=
[s0'(~')a+ �

y0H(~%)�y]21
h
s0'(~')a+ �

y0H(~%)�y � 0
i

V�(�y;�)

=
[�y

0H(~%)�y]21
h
�y
0H(~%)�y � 0

i
V�(�y;�)

= ET�n (�
y);

where the third equality follows from the fact that s'(~') = 0. Given that the mapping from �

to �y is bijective, taking the sup will �nally imply that

GET�
y
n = supjj�jj6=0ET

�y
n (�) = supjj�yjj6=0ET

�
n (�

y) = GET�n;

as desired.
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C Example 3: Testing Gaussian vs Hermite copulas

C.1 The model and its log-likelihood function

The validity of the Gaussian copula in �nance has been the subject of considerable debate.

As a result, it is not surprising that several authors have considered more �exible copulas. For

example, Amengual and Sentana (2020) look at the Generalized Hyperbolic copula, a location-

scale Gaussian mixture which nests the popular Student t copula discussed by Fan and Patton

(2014), which in turn nests the Gaussian one. In this section, we consider Hermite copulas

instead, which can potentially provide much more �exible alternatives.

As is well known, Hermite polynomial expansions of the multivariate normal pdf can be

understood as Edgeworth-like expansions of its characteristic function. They are based on

multivariate Hermite polynomials of order p, which are de�ned as di¤erentials of the multivariate

normal density:

Hj(x;') = fNK(x;R)
�1
�
�@
@x

�j
fNK(x;R); (C9)

where �0Kj = p with j 2 NK , ' = vecl(R), and R is a positive de�nite correlation matrix.

To keep the expressions manageable, we only consider explicitly pure fourth-order expansions

in the bivariate case. We could also include third-order Hermite polynomials, but at a consider-

able cost in terms of notation. Similarly, extensions to higher dimensions would be tedious but

straightforward.

We say that (x1; x2) follow a pure fourth-order Hermite expansion of the Gaussian distribu-

tion when their joint density function is given by

fH(x1; x2;';#) = fN2

��
x1
x2

�
;

�
1 '
' 1

��
P (x1; x2;';#); (C10)

where

P (x1; x2;';#) = 1 +

4X
j=0

#j+1H4�j;j(x1; x2;');

' is the correlation between x1 and x2, which we assume is di¤erent from 0, and #1; : : : ; #5

the coe¢ cients of the expansion. The leading term in (C10) is the normal pdf and the remain-

ing terms represent departures from normality. Indeed, fH(x1; x2;';#) reduces to a Gaussian

distribution when # = 0.

We can easily show that the corresponding marginal distributions are given by

fH(x1;#1) = �(x1)[1 + #1H40(x1; x2)]
fH(x2;#5) = �(x2)[1 + #5H04(x1;x2)]

�
; (C11)

where �(:) the standard normal pdf and H40(x1; x2) and H04(x1;x2) are the (non-standardized)

fourth-order univariate Hermite polynomials for x1 and x2, respectively.

Hermite expansion copulas are based on Hermite expansion distributions. Speci�cally, if

y = (y1; y2) denotes the original data, we can de�ne u = (u1; u2) = [F1(y1); F2(y2)] as the

5



uniform ranks of y, and �nally x = (x1; x2) = [F�1H (u1;#1); F
�1
H (u2;#5)], where F�1H (:;#i) are

the inverse cdfs (or quantile functions) of the univariate fourth-order Hermite expansions with

parameter #i in (C11). When the copula is Gaussian, xi coincides with the Gaussian rank

��1(ui).

Consequently, the pdf of the pure fourth-order Hermite expansion copula is

fH(x1; x2;%)

fH(x1;#1)fH(x2;#5)
=

�2(x1; x2;')[1 +
P4
j=0 #j+1H4�j;j(x1; x2;')]

�1(x1)[1 + #1H40(x1; x2)]�1(x2)[1 + #5H04(x1; x2)]
:

C.2 The null hypothesis and the GET test statistic

Straightforward calculations show that in this case

s#1(';0) + 3's#2(';0) + 3'
2s#3(';0) + '

3s#4(';0) = 0;

s#5(';0) + 3's#4(';0) + 3'
2s#3(';0) + '

3s#2(';0) = 0:

Our proposed reparametrization, namely

' = �; #1 = �21; #2 = �11 + 3��21 + �
3�22;

#3 = �12 + 3�
2�21 + 3�

2�22; #4 = �13 + 3��22 + �
3�21; #5 = �22;

con�nes the singularity to the scores of �21 and �22. Therefore, we need to obtain the second

order derivatives with respect to �21 and �22. In this case, we can prove that the asymptotic

covariance matrix of

@l

@�
,
@l

@�11
,
@l

@�12
,
@l

@�13
,
@2l

@�221
,
@2l

@�222
and

@2l

@�21@�22

scaled by
p
n has full rank. Although the algebra is a bit messy, after orthogonalizing those sec-

ond derivatives with respect to the score of � to eliminate the e¤ect of the sampling uncertainty

in estimating this correlation coe¢ cient under the null, we can express the three second-order

derivatives as linear combinations of all the even-order multivariate Hermite polynomials of

(x1; x2) up to the 8th order, with coe¢ cients that depend on the correlation coe¢ cient, as we

explain the next section in detail.

Let �21 = �1� and �22 = �2� with �21 + �
2
2 = 1, and consider the simpli�ed null hypothesis

H0 : �11 = �12 = �13 = � = 0. Then it is easy to see that the GET statistic will be

1

n
S01nV

�1
11 S1n +

1

n
sup
k�k=1

D0n(V�� � V�1V �111 V1�)�1Dn1 [Dn > 0] ; (C12)

where

Dn(�; �;�) = H�n(�; �;�)� V�1(�; �;�)V �111 (�)S1n(�;0);

H�n(�; �;�) =

nX
i=1

(�1 �2)

�
h�21�21;i(�) h�21�22;i(�)
h�21�22;i(�) h�22�22;i(�)

��
�1
�2

�
;

S1n(�;0) = [S�11(�;0); S�12(�;0); S�13(�;0)]
0;

6



and the omitted arguments are (~�; 0;�) for Dn, (~�;�) for V��, V�1 and V1�, (~�;0) for S1;n and
~� for V11.

In this case, the asymptotic distribution of GETn is bounded above by a �26 distribution

because of the six in�uence functions. In addition, it is bounded below by a 50:50 mixture of �23
and �24 because �11, �12 and �13 are �rst-order identi�ed parameters and an even-order derivative

of � is involved.

C.3 Computational details

C.3.1 In�uence functions

In practice, the calculation of the GET statistic requires explicit expressions for all the

di¤erent ingredients that appear in (C12). Tedious but straightforward algebra implies that

@l

@�
= (0; 1; 0) �H2(x1; x2;�);

@l

@�11
= H31(x1; x2;�);

@l

@�12
= H22(x1; x2;�);

@l

@�13
= H13(x1; x2;�);

@2l

@�221
= (0; 6�; 0) �H2(x1; x2;�)

+ (0; 18�; 36�2; 18�3; 0) �H4(x1; x2;�)

+ (0; 9�; 36�2; 54�3; 36�4; 9�5; 0) �H6(x1; x2;�)

+ (0; �; 6�2; 15�3; 20�4; 15�5; 6�6; �7; 0) �H8(x1; x2;�);

@2l

@�21@�22
= �(0; 6�3; 0) �H2(x1; x2;�)

�
�
0; 18�3; 18

�
�4 + �2

�
; 18�3; 0

�
�H4(x1; x2;�)

�
�
0; 9�3; 18

�
�4 + �2

�
; 9
�
�5 + 4�3 + �

�
; 18

�
�4 + �2

�
; 9�3; 0

�
�H6(x1; x2;�)

�
�
0; �3; 3

�
�4 + �2

�
; 3
�
�5 + 3�3 + �

�
; �6 + 9�4

+9�2 + 1; 3
�
�5 + 3�3 + �

�
; 3
�
�4 + �2

�
; �3; 0

�
�H8(x1; x2;�)

and

@l

@�222
= (0; 6�; 0) �H2(x1; x2;�)+�
0; 18�3; 36�2; 18�; 0

�
�H4(x1; x2;�)

+
�
0; 9�5; 36�4; 54�3; 36�2; 9�; 0

�
�H6(x1; x2;�)

+
�
0; �7; 6�6; 15�5; 20�4; 15�3; 6�2; �; 0

�
�H8(x1; x2;�);

where

Hp(x1; x2;�) = [Hp0(x1; x2;�);Hp�1;1(x1; x2;�); :::;H0;p(x1; x2;�)]
0 :

7



C.3.2 Positivity of the Hermite expansion of the Gaussian copula

The foregoing derivations, though, ignore that the positivity of the Hermite copula density

for all values of y imposes highly nonlinear inequality constraints on the elements of � = (�01;�
0
2)
0

with �1 = (�11; �12; �13)
0 and �2 = (�21; �22)

0. Therefore, Assumption 2.1 fails because �0 lies

at the boundary of the admissible parameter space. Nevertheless, we can still derive an LR-

equivalent test. Speci�cally, given that under the null hypothesis of a Gaussian copula the

UMLE estimators of �1 and �2 converge at rates n�
1
2 and n�

1
4 , respectively, the elements of the

sequence �1n are negligible, in which case we simply need to �nd the asymptotes of the feasible

set for (�21; �22). Let �21 = ��1 = �sin(!) and �22 = ��2 = �cos(!) with ! 2 [0; 2�) to ensure
a unit norm for � = (�1; �2)

0. As we show below, these parameters lead to a positive density

when � is small enough if and only if ! 2 (!l; !u), with !l and !u de�ned in (C15). Therefore,
an asymptotically equivalent GET statistic that imposes positivity of the Hermite expansion

copula under admissible alternatives local to the null will be given by

1

n
S01nV

�1
11 S1n +

1

n
sup

!2(!l;!u)
D0n
�
V�� � V�1V�111 V1�

��1Dn1 [Dn > 0] : (C13)

This test is asymptotically equivalent to the LR test, which implicitly imposes positivity

because a zero density gives rise to an in�nitely penalized log-likelihood. Nevertheless, our test

is again far more computationally convenient than the LR test because the positivity constraints

e¤ectively become linear under local alternatives.

To justify these claims, it is convenient to remember that in the original parametrization,

P (x1; x2;';#) is equal to

1+ #1H40(x1; x2;') + #2H31(x1; x2;') + #3H22(x1; x2;') + #4H13(x1; x2;') + #5H04(x1; x2;'):

But as mentioned before, after reparametrization the marginal distributions only depend on

�21 or �22. For that reason, it is convenient to consider two groups of parameters, namely

�1 = (�11; �12; �13) and �2 = (�21; �22). In addition, the positivity constraint depends mainly on

�2 because �̂21 and �̂22 are Op(n�
1
4 ) under the null while �̂11, �̂12 and �̂13 are Op(n�

1
2 ). Therefore,

�1 is dominated, at least asymptotically. For that reason, we �rst discuss the positivity constraint

on �2 when �1 = 0, and then explain how to simplify the asymptotic positivity constraint and

the extremum test statistic.

Let x2 = tx1, �22 = k�21, k � 0 so that the polynomial that multiplies the Gaussian pdf

simpli�es to

~P (x1; �; k; t; �21) = P [x1; tx1;�; (�21; 0; 0; 0; k�21)
0]

= 1 + 3�21C0(k) +
3�21

1� �2
C2(k; t; �)x

2
1 +

�21

1� �2
C4(k; t; �)x

4
1;

where

C0(k) = k+1; C2(k; t; �) = k
�
�2 � 2

�
t2+(k + 1)�t+�2�2 and C4(k; t; �) = kt4�k�t3��t+1:

8



It is easy to see that the minimum of ~P (x; �; k; t; �21) is �nite if and only if (i) C4(k; t; �) > 0

or (ii) C4(k; t; �) = 0 and C2(k; t; �) � 0. In addition, when �21 is very small under either (i) or
(ii), we have minx ~P (x; �; k; t; �21) is greater than 0. Thus, we need to �nd a set K(�) such that

for all � 6= 0, for all k 2 K(�) � [0;+1) and for all t 2 R, we have either (1) C4(k; t; �) > 0 or (2)
C4(k; t; �) = 0 and C2(k; t; �) � 0. In other words, we need C4(k; t; �) = kt4� k�t3��t+1 � 0
for all t.

To guarantee the positivity of this expression, we need k > 0. If the discriminant of C4(k; t; �)

is positive, then C4(�; t; �) = 0 has either only real or only complex roots, while if the discriminant
is negative, then C4(�; t; �) = 0 will have both two real and two complex roots. Finally, if the

discriminant is zero, then at least two roots must be equal. Therefore, we want the discriminant

of C4(k; t; �) to be non-negative. Indeed, we can �nd two functions, lb(�) and ub(�) such that

lb(�) < k < ub(�) if and only if the discriminant is positive while k 2 flb(�); ub(�)g if and only
if the discriminant is zero. Moreover, lb(�) 2 (0; 1), ub(�) 2 (1;+1), and lb(�)ub(�) = 1. The
proof of these statements is as follows.

We can easily show that

Disct[C4(k; t; �)] = �k2[27k2�4 + 2k
�
2�6 + 3�4 + 96�2 � 128

�
+ 27�4];

so that the solution to

Disct[C4(k; t; �)] = 0

is 8>>>>><>>>>>:
lb(�) = �

2�6 + 3�4 + 96�2 + 2(

q�
�2 � 4

�3 �
�2 � 1

� �
�2 + 8

�2 � 64)
27�4

ub(�) = �
2�6 + 3�4 + 96�2 � 2(

q�
�2 � 4

�3 �
�2 � 1

� �
�2 + 8

�2
+ 64)

27�4

Thus, when k 2 [lb(�); ub(�)], the discriminant is positive and we simply need to check whether
C4(k; t; �) � 0. First, consider � > 0 and C4(k; t; �) = kt3(t � �) � �t + 1. When t � �,

C4(k; t; �) is increasing in k. In this context, we can prove that mint��C4[lb(�); t; �] = 0. In

contrast, when t 2 [0; �), C4(k; t; �) is decreasing in k, and we have mint��C4[ub(�); t; �] = 0.
Finally, when t < 0, it is obvious that C4(k; t; �) > 0. In summary, k 2 [lb(�); ub(�)] is su¢ cient
for C4(k; t; �) � 0 and the same is true for � < 0.

However, when either k = lb(�) or k = ub(�), we have tl; tu de�ned by C4[lb(�); tl; �] = 0

and C4[ub(�); tu; �] = 0, respectively, so that

C2[lb(�); tl; �] < 0 and C2[ub(�); tu; �] < 0 for all �;

which in turn implies that k 2 flb(�); ub(�)g does not hold.
In sum, we have shown that when �1 = 0, the asymptotes of the feasible set near 0 are

�22 = lb(�)�21 and �22 = ub(�)�21.
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Next, we know from Theorem 1 that

LR = ET (�ET ) +Op(n
� 1
2r ); (C14)

where

ETn(�) = 2

0BBB@
n
1
2�1

n
1
2 �221

n
1
2 �21�22

n
1
2 �222

1CCCA
0BBB@

n�
1
2S�1(

~�;0)

n�
1
2H�21�21(

~�;0)

n�
1
2H�21�22(

~�;0)

n�
1
2H�22�22(

~�;0)

1CCCA�
0BBB@

n
1
2�1

n
1
2 �221

n
1
2 �21�22

n
1
2 �222

1CCCAV��(~�)
0BBB@

n
1
2�1

n
1
2 �221

n
1
2 �21�22

n
1
2 �222

1CCCA ;
�ET = argmax�2�ETn(�);

and � is the set of parameters that satis�es the positivity constraint. Unfortunately, ETn(�ET )

is not very easy to calculate because � is di¢ cult to characterize explicitly. For that reason, we

will show that

ETn(�
ET ) = GETn + op(1);

where

GETn =
1

n
S0�1(

~�;0)V �111 (
~�)S�1(

~�;0) + sup
!2(!l;!u)

1

n

D2(~�;�)1[D(~�;�) � 0]
V22(~�;�)� V21(~�;�)V �111 (

~�)V12(~�;�)
;

with �1 = sin(!) and �2 = cos(!) so that k�k = 1, and

!l = arctan[lb(~�)]; !u = arctan[ub(~�)]: (C15)

Let �21 = �1� and �22 = �2�, then

ETn(�1; �;�)= 2

�
�1
�2

��
S�1(

~�;0)

S�2(~�; 0;�)

�
� n

�
�1
�2

��
V11(~�) V12(~�;�)
V21(~�;�) V22(~�;�)

��
�1
�2

�
; (C16)

with

S�2(�; 0;�) =
�
�1
�2

�0 �
H�21�21(�;0) H�21�22(�;0)
H�21�22(�;0) H�22�22(�;0)

��
�1
�2

�
:

Similarly, let ~� = maxf�ET ; n�kg with 1
4 < k <

1
2 . Then it is easy to see that

ETn(�
ET
1 ; ~�;�ET ) = ETn(�

ET
1 ; �ET ;�ET ) + op(1): (C17)

Next, consider (��1; �
�;��)=argmaxpc^f��n�kgETn(�1; �;�), where pc=f(�1; ��1; ��2) 2 �g.

It is easy to see that w.p.a. 1,

ETn(�
ET
1 ; �ET ;�ET ) � ETn(��1; ��;��) � ETn(�ET1 ; ~�;�ET ) (C18)

because (�ET1 ; �ET ;�ET ) = argmaxpcETn(�1; �;�) is chosen from a larger feasible set, and the

event (�ET1 ; ~�;�ET ) 2 pc and
�
~� � n�k

	
happens w.p.a. 1. Combining (C17) and (C18), we

have

ETn(�
�
1; �

�;��) = ETn(�
ET
1 ; �ET ;�ET ) + op(1); (C19)
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so we only need to calculate (��1; �
�;��).

In this context, note that there exists a k0 2 (k; 12) such that

limnP (k��1k < n�k
0
< n�k � ��) = 1: (C20)

Therefore, this con�rms that ��1 is asymptotically irrelevant for the positivity constraints because

it is e¤ectively unrestricted. Consequently, (C20) implies that the only relevant restriction will

a¤ect the direction of �2.

In view of (C16), the �rst order condition for ��1 for given �
� and �� implies that

n
1
2��1(�

�;��) = V �111 (
~�)[n�

1
2S�1(

~�;0)� V12(~�;��)n
1
2 (��)2]:

Hence, if we substitute ��1(�
�;��) in the expression for ET (�1; �;�), we end up with

ETn(�
�
1; �

�;��) =
1

n
S0�1(

~�;0)V �111 (
~�)S�1(

~�;0)

� n
1
2 ��2[V22(~�;��)� V21(~�;��)V �111 (

~�)V12(~�;��)]n
1
2 ��2

+ 2n
1
2 ��2[n�

1
2S�2(~�;0;��)� V21(~�;��)V �111 (

~�)n�
1
2S�1(

~�;0)]: (C21)

Given that (C21) is quadratic in ��2, if take into account the restriction �� � n�k, we obtain

��(��)=max
�
n�

1
4

q
[V22(~�;��)�V21(~�;��)V �111 (

~�)V12(~�;��)]n�
1
2D(~�;��)1[D(~�;��)�0];n�k

�
;

where D(�;�) = S�2(�;0;��)� V21(�;�)V �111 (�)S�1(�;0).

Thus, if we replace the previous expression for ��(��) into (C21), we end up with

ETn(�
�
1; �

�;��) =
1

n
S0�1(

~�;0)V �111 (
~�)S�1(

~�;0)

+
1

n

D2(~�;��)1[D(~�;��) � 0]
V22(~�;��)� V21(~�;��)V �111 (

~�)V12(~�;��)| {z }
part 2

+op(1): (C22)

But since part 2 in (C22) is a function of ��, which by de�nition is a maximizer of ETn, we will

�nally end up with

ETn(�
�
1; �

�;��) =
1

n
S0�1(

~�;0)V �111 (
~�)S�1(

~�;0)

+ sup
!2(!l;!u)

1

n

D2(~�;�)1[D(~�;�) � 0]
V22(~�;�)� V21(~�;�)V �111 (

~�)V12(~�;�)
+ op(1);

which con�rms that

ETn(�
ET
1 ; �ET ;�ET ) =

1

n
S0�1(

~�;0)V �111 (
~�)S�1(

~�;0)

+ sup
!2(!l;!u)

1

n

D2(~�;�)1[D(~�;�) � 0]
V22(~�;�)� V21(~�;�)V �111 (

~�)V12(~�;�)
+ op(1)

in view of (C19).
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C.4 Simulation evidence

For simplicity, we assume the marginal distributions are known, so that we can directly

work with the uniform ranks, which we immediately convert into Gaussian ranks (see Amengual

and Sentana (2020) for further discussion of this topic). We estimate the correlation parame-

ter, whose true value we set to 0:5 under both the null and alternative hypotheses, using the

Gaussian rank correlation in Amengual, Sentana and Tian (2022), which e¤ectively imposes

the null. As alternative hypotheses, we consider two Hermite expansion copulas: one with

#0 = (0:03; 0; 0; 0; 0) (Ha1) and another with #
0 = (0:02; 0; 0; 0; 0:02) (Ha2). While the second

one generates a copula density which is symmetric around the 45o line, the �rst one does not.

In any event, both departures from the Gaussian copula are rather mild, as they only involve

one or two parameters di¤erent from 0.

If the correlation coe¢ cient were known, we could again compute exact critical values under

the null for any sample size to any degree of accuracy by repeatedly simulating samples of i:i:d:

bivariate normals with correlation '. In practice, though, we �x the correlation coe¢ cient to

its estimated value in each sample in what is e¤ectively a parametric bootstrap procedure (see

Appendix D.1 in Amengual and Sentana (2015) for details).

In Table 3 we compare the results of our tests with three alternative procedures: KS, which

denotes the non-parametric Kolmogorov�Smirnov test for copula models (see Rémillard (2017)),

KT-AS, which is the Kuhn-Tucker test based on the score of a symmetric Student t copula

evaluated under Gaussianity (see Amengual and Sentana (2020)), and GMM, which refers to

the moment test based on the underlying in�uence functions in GET.

Following the same structure as in Table 1, the �rst three columns of Table 3 report rejection

rates under the null at the 1%, 5% and 10% levels for n = 400 (top) and n = 1; 600 (bottom). The

results make clear that the parametric bootstrap works remarkably well for both sample sizes. In

turn, the last six columns present the rejection rates at the same levels for the two alternatives.

By and large, the behavior of the di¤erent test statistics is in accordance with expectations.

In particular, when the sample size is large our proposal is the most powerful given that it is

designed to direct power against alternatives in which the copula follows a Hermite expansion

of the Gaussian one. In contrast, its non-parametric competitor has close to trivial power in

samples of 400 observations, a situation that improves marginally when n = 1; 600. Interestingly,

the Kuhn-Tucker version of the Gaussian versus Student t copula test in Amengual and Sentana

(2020) performs quite well when n is large in spite of not being designed for the alternatives

we consider. Importantly, GET does a better job than the moment test based on the in�uence

functions Sn implied by the higher-order expansion of the log-likelihood on which it is based,

which is partly due to the fact that it takes into account the partially one-sided nature of the

12



Table 3: Monte Carlo rejection rates (in %) under null and alternative hypotheses for the
Gaussian versus Hermite expansion copula test

Null Alternative hypotheses
hypothesis Ha1 Ha2

1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A: n = 400
GET 1.1 5.1 10.2 18.4 49.7 65.1 26.9 60.9 74.2
KS 0.9 4.7 9.3 0.9 4.7 9.9 1.1 5.4 10.6
KT-AS 1.2 5.3 10.3 18.9 39.2 52.0 31.7 55.4 68.0
GMM 1.1 5.2 10.2 3.8 38.4 57.0 6.3 49.7 67.2

Panel B: n = 1; 600
GET 0.9 4.9 10.3 90.8 98.9 99.6 96.8 99.7 99.9
KS 0.9 4.7 9.8 1.9 7.7 14.5 3.1 10.4 18.6
KT-AS 0.9 5.3 10.6 60.9 82.8 90.1 87.1 95.9 98.2
GMM 1.1 5.0 9.9 44.0 95.5 99.0 68.2 98.8 99.7

Notes: Results based on 10,000 samples. Margins are assumed to be known. The correlation parameter '
is estimated under the null using the Gaussian rank correlation estimator described in Amengual, Sentana
and Tian (2019). KS denotes the Kolmogorov�Smirnov test for copula models (see Rémillard (2017) for
details) while KT�AS is the Kuhn-Tucker test based on the score of the symmetric Student t copula (see
Amengual and Sentana (2020) for details). GMM refers to the J-test based on the in�uence functions
underlying GET. Critical values are computed using the parametric bootstrap. DGPs: The correlation
parameter ' is set to 0:5 under both the null and alternative hypotheses. As for the alternative hypotheses,
Ha1 and Ha2 correspond to pure, fourth-order Hermite expansion copulas with #

0 = (0:03; 0; 0; 0; 0) and
#0 = (0:02; 0; 0; 0; 0:02), respectively.

alternatives.

Finally, it is important to mention that in this example the log-likelihood function under the

alternative is particularly di¢ cult to maximize over the �ve parameters involved. In fact, we

systematically encounter multiple local maxima in samples of up to 100,000 observations even

if we �x the correlation parameter to its true value and use global optimization methods, which

forced us to repeat the calculations over a huge grid of initial values. For that reason, we have

only computed the Gaussian rank correlation coe¢ cient between the LR test and GET across

ten such simulated samples, obtaining a high value of .96.
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D Example 4: Purely non-linear predictive regression

D.1 The model and its log-likelihood function

Consider the following extension of the nonlinear regression model in Bottai (2003), in which

the data consist of n observations y = (y1; y2; y3) drawn from a joint distribution characterized

by

f(y;�) = f(y3jy1; y2;�)f(y1; y2);

where f(y1; y2) is �xed and known, while

f(y3jy1; y2;�) = �
�
y3 � exp (�1y1 + �2y2) + �1y1 + �2y2 +

1

2
�22y

2
2

�
; (D23)

with � = (�1; �2)
0 unknown. This model has an interesting interpretation in the context of

predictive regressions. Speci�cally, a Taylor expansion of the exponential function immediately

shows that the mean predictability of y3 does not come from the terms that also enter outside

the exponent (namely, y1, y2 and y22) but rather, from higher order powers of the two regressors

as well as their cross-products. Therefore, model (D23) provides an interesting functional form

for predictive regressions of variables such as �nancial returns when a researcher believes in

predictability but not through standard linear terms (see for example Spiegel (2008) and the

references therein for a discussion of return predictability).

D.2 The null hypothesis and the GET test statistic

In the case of a single regressor, Bottai (2003) showed that the nullity of the information

matrix is one when the regressand is unpredictable. Not surprisingly, the information matrix

has several rank de�ciencies under the null hypothesis H0 : � = 0 in the multiple regressor case.

The relevant derivatives of log-likelihood function with respect to �1 and �2 evaluated at the

null hypothesis are
@l

@�1
= 0;

@l

@�2
= 0;

@2l

@�21
= y21(y3 � 1),

@2l

@�1@�2
= y1y2(y3 � 1),

@2l

@�22
= 0

and
@3l

@�32
= y32(y3 � 1):

Therefore, we have a situation in which the degree of underidenti�cation is di¤erent for the

two regression coe¢ cients. But since Assumption 4 is satis�ed with C = f(2; 0); (1; 1); (0; 3)g; a
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straightforward application of Theorem 2 implies that

LRn = GETn +Op(n�
1
6 )

= sup
�1;�2

2(�21; �1�2; �
3
2)

0B@ L
[2;0]
n

L
[1;1]
n

L
[0;3]
n

1CA�n(�21; �1�2; �32)
0@ I11 I12 I13
I21 I22 I23
I31 I32 I33

1A0@ �21
�1�2
�32

1A+Op(n� 1
6 ); (D24)

where 0@ I11 I12 I13
I21 I22 I23
I31 I32 I33

1A = lim
n!1

V ar

24pn
0@ l[2;0]

l[1;1]

l[0;3]

1A35 :
In this case, though, we need to obtain the maximum with respect to �1 and �2 over the entire

Euclidean space of dimension 2 rather than over the unit circle.

Nevertheless, we can provide an asymptotically equivalent but much simpler statistic. Let

p1 =
p
n(�ET1 )2, p2 =

p
n�ET1 �ET2 and p3 =

p
n(�ET2 )3. It is then straightforward to show that

n
1
6 p1p

2
3
3 = p

2
2:

As a result, we must have that either p1 or p3 are negligible when n is large because p2 is Op(1)

from Lemma 1 in Appendix A. If p1 is negligible, then (D24) is asymptotically equivalent to

supET1n = sup
�1;�2

2(�1�2; �
3
2)

 
L
[1;1]
n

L
[0;3]
n

!
� n(�1�2; �32)

�
I22 I23
I32 I33

��
�1�2
�32

�

=
1

n
(L[1;1]n ; L[0;3]n )

�
I22 I23
I32 I33

��1 
L
[1;1]
n

L
[0;3]
n

!
:

If instead p3 is negligible, then (D24) becomes asymptotically equivalent to

supET2n = sup
�1;�2

2(�21; �1�2)

 
L
[2;0]
n

L
[1;1]
n

!
� n(�21; �1�2)

�
I11 I12
I21 I22

��
�21
�1�2

�

=
1

n

(
(L
[1;1]
n )2

I22
+
(L
[2;0]
n � I12I�122 L

[1;1]
n )2

I11 � I12I�122 I21
1[L[2;0]n � I12I�122 L[1;1]n > 0]

)
:

Consequently, we could obtain an asymptotically equivalent statistic up to a term of order op(1)

by simply retaining GETn = max fsupET1n; supET2ng.

In addition to computational advantages, it turns out that the asymptotic distribution of

our test is easy to obtain. Speci�cally, let

Z1n = n
� 1
2
L
[2;0]
n � I12I�122 L

[1;1]
nq

I11 � I12I�122 I21
; Z2n = n

� 1
2
L
[1;1]
np
I22

and Z3n = n
� 1
2
L
[0;3]
n � I32I�122 L

[1;1]
nq

I33 � I32I�122 I23
;

where 0@ Z1n
Z2n
Z3n

1A d�!

0@ Z1
Z2
Z3

1A � N

240@ 0
0
0

1A ;
0@ 1 0 r13

0 1 0
r13 0 1

1A35
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and

r13 =
I13 � I12I�122 I23q

I11 � I12I�122 I21
q
I33 � I32I�122 I23

:

Then, supET1n = Z22n + Z
2
3n and supET2n = Z

2
2n + Z

2
1n1 [Z1n � 0]. As a consequence,

GETn
d! maxfZ211 fZ1 � 0g ; Z23g+ Z22 :

In other words, the asymptotic distribution of GETn will be a �22 50% of the time (when Z1 < 0)

and the sum of a �21 with the largest of two other possibly dependent �
20
1 s (when Z1 � 0). If

we further assume that the regressors y1 and y2 are two independent normals with 0 means and

variances �21 and �
2
2, respectively, then Z1, Z2 and Z3 will be three independent N(0; 1) random

variables.

D.3 Simulation evidence

As alternative hypotheses, we consider �1 = 0:3, �2 = 0 (Ha1) and �1 = 0, �2 = 0:5 (Ha2)

in speci�cation (D23). And like in the normal versus SNP example, by maintaining that y1

and y2 are uncorrelated, we can compute exact critical values for any sample size to any degree

of accuracy by repeatedly drawing i:i:d: spherical normal vectors (y1; y2; y3), which e¤ectively

imposes the null hypothesis.

In Table 4 we compare the results of the two versions of our tests discussed above, with

the GMM test mentioned at the end of section 2.2 and two simple alternative procedures.

First, a standard LM test based on pseudo-Gaussian ML that checks the joint signi�cance of

y21 and y1y2 in the OLS regression of y3 on a constant and these two variables, which are the

transformations of the predictors missing from the part outside the exponent in the conditional

mean speci�cation. And second, a closely related LM test based on pseudo-Gaussian ML which

augments the previous regression with the following four cubic terms y31, y
2
1y2, y1y

2
2 and y

3
2. We

refer to these tests as OLS1 and OLS2, respectively.

The �rst three columns of Table 4 report rejection rates under the null at the 1%, 5% and 10%

levels for n = 400 (top) and n = 1; 600 (bottom) for the �rst alternative hypothesis we consider

while the last three do the same for the second one. Once again, the behavior of the di¤erent test

statistics is in accordance with expectations. In particular, our proposed statistics are the most

powerful in both cases. Part of the reason has to do with the fact that the linear regressions only

provide an approximation to the true non-linear conditional expectation. However, the fraction
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Table 4: Monte Carlo rejection rates (in %) under alternative hypotheses for white noise versus
a purely nonlinear regression test

Alternative hypotheses
Ha1 Ha2

1% 5% 10% 1% 5% 10%

Panel A: n = 400
GET 19.5 41.3 54.4 18.5 39.7 52.4
LR 21.7 41.7 56.2 20.5 40.4 54.1
LM3 17.6 39.8 52.9 18.2 38.8 50.9
GMM 15.3 34.3 47.0 14.3 33.4 45.5
OLS1 16.2 34.6 47.2 12.9 30.5 41.9
OLS2 9.6 23.9 37.0 7.3 20.2 32.4

Panel B: n = 1; 600
GET 65.5 83.9 90.2 61.3 80.5 87.6
LR 66.3 84.5 91.2 61.9 81.5 88.5
LM3 57.7 79.1 87.4 53.1 75.3 84.2
GMM 57.6 78.3 86.0 54.3 75.2 83.6
OLS1 53.2 74.1 83.3 42.7 64.6 75.1
OLS2 37.7 61.6 73.3 25.7 48.8 61.8

Notes: Results based on 10,000 samples. GET and LR are de�ned in Supplemental Appendix D. GMM
refers to the J-test based on the in�uence functions underlying GET. OLS1 denotes a standard LM test
that checks the joint signi�cance of y21 and y1y2 in the OLS regression of y3 on a constant and these
two variables while OLS2 is the LM test which augments the previous regression with the following four
cubic terms y31 , y

2
1y2, y1y

2
2 and y

3
2 . Finite sample critical values are computed by simulation. DGPs:

(y1y2) � i:i:d: N(0; I2) under both alternative hypotheses. In turn, y3jy2; y1 is i:i:d: standard normal
under the alternatives �1 = 0:25 and �2 = 0:25 (Ha1), and �1 = 0:3 and �2 = 0:1 (Ha2).

of the theoretical variance of y3 explained by y21; y1y2; y
3
1, y

2
1y2, y1y

2
2 and y

3
2 is essentially the

same as the fraction explained by the true conditional mean in Ha2. As a result, the superior

power of our tests relative to OLS2 comes from the reduction in degrees of freedom.

Given that in this case our test has a relatively standard asymptotic distribution �namely,

a 50:50 mixture of �22 and the sum of �21 with the larger of two other independent �
2
1�s�we can

also compute Davidson and MacKinnon (1998)�s p-value discrepancy plots to assess the �nite

sample reliability of this large sample approximation for every possible signi�cance level. The

results for the two sample sizes we consider, which are available on request, con�rm the high

quality of the asymptotic approximation.

Finally, our results indicate a .94-.95 Gaussian rank correlation between our proposed test
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statistic and the LR across Monte Carlo simulations generated under the null, which is in

line with our asymptotic equivalence results in Theorem 2. At the same time, they con-

�rm that the LR test typically takes about 200 times as much CPU time to compute as the

max fsupET1n; supET2ng version of our test.

E Relationship to the previous literature

Davies (1987) proposed perhaps the most cited sup-type test, so it is illustrative to provide

a link between Theorem 1 and his results. In view of the fact that k�rk remains irrelevant

regardless of qr, without loss of generality we can consider the reparametrization �r = ��, with

� 2 Rqr , k�k = 1 and � � 0, so that � and � represent the magnitude and direction of the

parameter vector �r, respectively. Given that

sup
�;�1;k�k=1;��0

Ln(�;�1; ��) = sup
�;�1;�r

Ln(�;�1;�r);

we could rewrite the null hypothesis as H0 : �1 = 0; � = 0, where � is a nuisance parameter that

only appears under the alternative. If we considered the rth derivative of li(�) along a speci�c

direction �, which would e¤ectively coincide with the rth derivative with respect to �, then we

could directly apply the Lee and Chesher (1986) approach to obtain the relationship between

the LR and ET tests along that direction. Next, we could look at the supremum of those tests

over all possible directions, as suggested by Davies (1987), which would e¤ectively yield GETn.

Nevertheless, this intuitive explanation in terms of � and � has some limitations. First, Lee

and Chesher (1986) would yield a pointwise result for a given �, while Theorem 1 relies on

uniform convergence. More importantly, Davies (1987) method is designed for models in which

the log-likelihood function is absolutely �at for some parameters under the null, so regardless

of its analytic nature, no higher order derivatives will provide moments to test. In contrast, we

consider situations in which the log-likelihood function written in terms of � only has a �nite

number of zero derivatives, so a test statistic can be based on the �rst round of non-zero ones.

In this respect, the underidenti�cation of � is an artifact of the �r = �� reparametrization that

would persist even if the information matrix had full rank, in which case the supremum over

� of the test of H0 : �1 = 0; � = 0 will yield the usual LM test. In any event, in Theorem 2

we derive a generalized extremum test in a more general context without resorting to any such

reparametrization.
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