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B Computation of the asymptotic efficiency of the -based

PML estimator when the true distribution of the in-

novations is elliptical

To compute the efficiency of the -based ML estimator relative to the GMM estimator under

ellipticity of the innovations, we first need to compute the pseudo-true values of the parameters.

For a fixed value of   0, we know that a∞() = a0, b∞() = b0 and Ω∞() = −1∞ ()Ω0, where

∞() solves



∙
 + 1

1− 2 + ∞()
∞()



¯̄̄̄
φ0

¸
= 1 (B9)

with the expectation computed with respect to the true distribution of . This implicit equation

is equivalent to the moment condition


£
s(a0b0 

−1
∞ ()ω0 )

¯̄
φ0
¤
= 0

(see e.g. proof of Proposition 16 in Fiorentini and Sentana (2007)).

If  is not fixed, though, we will also have to compute the pseudo-true value of , ∞, say.

If the innovations are distributed as a platykurtic elliptical random vector, then we know from

Proposition 4 that ∞ = 0 and ∞(0) = 1. But when the innovations are drawn from a leptokurtic

elliptical random vector instead, then under standard regularity conditions ∞ can be understood

as the value that makes

 [(θ∞ ∞)|φ0] = 0 (B10)

where

(θ ) =
()


+

 [∞  ]




Fiorentini, Sentana and Calzolari (2003) show that for   0 this derivative is given by
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where () is the di-gamma or Gauss’ psi function (see Abramovich and Stegun (1964)).

In general, the presence of a log term implies that we must compute (B10) by numerical

integration using recursive adaptive Simpson quadrature, where the required expectation is taken

with respect to the true distribution of .

Unfortunately, both (  ) and especially () are numerically unstable for  small,

as documented by Fiorentini, Sentana and Calzolari (2003). For that reason, we follow their

1



advice, and evaluate these expressions by means of the (directional) Taylor expansions around

 = 0 in the following cases:

(i) if   00008, then use
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4
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8
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instead of (), and
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instead of (  ). Consequently, we evaluate (B10) as the weighted average of this ex-

pectation conditional on the complementary events   00010 and   00010 weighted by

the corresponding probabilities. In many cases, both the expected value of (B11) conditional on

  00010 and  (  00010|0) can be computed analytically.
Having obtained the pseudo-true values, then we need to compute

m
 [ ∞()] = 
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and
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It turns out that we can obtain analytical expressions for these expectations in the two

examples that we consider in the paper.

B.1 Kotz innovations

As discussed in section 2.1,  is Gamma distributed when the true innovations follow a Kotz

distribution. Consequently, (B9), (B12) and (B13) can be decomposed in terms of the form
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where  =  is distributed as a standardized Gamma with parameter  =  [(+2)+2]−1,

 and  are non-negative integers, and ,   0, and   0 are real constants. In fact we only

need to find an analytical expression for 
£
(1 + )−

¤
for  = 1 and  = 2, where  =   0,

as
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where Γ() is the complete Gamma function and ∗ a standardized Gamma with parameter +.

To do so, we first compute the moment generating function of 1 + , which is given by

1+() = 
£
(1+)

¤
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£

¤
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(1− )

since () = () = (1 − )−. Then, we can exploit the result in equation (3) in Cressie,

Davis, Folks and Policello (1981), which in our case yields
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for any positive random variable  for which the above integral is well defined.

If we use the change of variable  =  + −1, so that  =  − −1,  =  + 1 and  = ,

then we obtain that for  = 1,



∙
1

(1 + )

¸
=

Z ∞

0

−

(1 + )
 =


−1



Z ∞

−1

−


 =


−1


Γ(1−  −1)

where Γ( ) is the non-normalized incomplete Gamma function, which can be computed using

standard software such as Mathematica or Maple. Similarly, for  = 2 we end up with
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Finally, note that the terms [|  0001−10 ;φ0] that appear in the expectation of (B11),
together with  [  0001−10 |φ0] can be easily computed in terms of incomplete Gamma func-
tions too.
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B.2 Two-component scale mixture of normals

Since in this case  is (2 12) conditional on the realization of the mixing variable

, we can use exactly the same formulas as in the case of the Kotz distribution, and then average

across the two values of . For instance,
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where  is distributed as a standardised Gamma with parameter  = 2.

C EM recursions for the multivariate  distribution

In this Appendix we specialise the expressions in Appendices B and D of Mencía and Sentana

(2008) to the conditionally homoskedastic multivariate regression model with symmetric  inno-

vations that we are considering. The rationale for using the EM algorithm comes from the fact

that the model r = a+b+Ω
12ε∗ , with ε

∗
 | −1;φ0 ∼  (0 I  0) can be rewritten

as

r = a+ b +Ω12

s
0 − 2


ε◦

where ε◦ |  −1;φ0 ∼ (0 ) and |φ0 ∼ (02 12)

Given that we know (r|;φ), (|φ) and (r|;φ), we can use Bayes theorem to

obtain the distribution of  conditional on r and . Specifically,

(|r ;φ) = (r| ;φ)(|φ)(r|;φ) ∝ (r| ;φ)(|φ)

Straightforward algebra shows that we can write
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On this basis, we can show that the EM recursions with respect to a, b and ω will be given

by µ
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where
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()b()ω() ̃()] =
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Although it is also possible to use the EM principle to update , it involves numerical optimisa-

tion, so in practice it may be better to define ̃(+1) = argmax (θ̃
(+1)

 ) using ̃() as starting

value. To initialise the EM recursions, we use the θ̂ and the sequential ML estimator for ,

̂, which in turn we obtain using the MM estimator (26) as starting value.

D The information matrix for scale mixtures of normals

The density of  when ∗ is a two-component scale mixture of normals is
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where  = [+κ(1− )]−1. If we combine (;η) with expression (2.21) in Fang, Kotz and Ng

(1990), then (5) follows. Hence,
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By analogy with Masoom and Nadarajah (2007), we can use the change of variable  =
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where z(  ) denotes the Lerch function (see Erdelyi, 1981), which can be represented as
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This function can be accurately computed using standard software such as Mathematica.
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Similarly, we can use
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κ−2

µ
1

1− κ
¶2+1

z
µ
−1− 


κ−2



2
+ 1

2− κ
1− κ

¶
;

C8 = −(2)
−2

Γ(2)

1

2
(1− )2(1− κ)2κ−(+2)

×
Z ∞

0

½
 + (1− )κ−2 exp

∙
−1− κ
2κ



¸¾−1
2+1 exp

∙
−2− κ
2κ



¸


= −(2)
−2

Γ(2)

1

2

(1− )2


(1− κ)2κ−(+2)

µ
2κ
1− κ

¶2+2

×
Z ∞

0

½
1 +

1− 


κ−2 exp [−]

¾−1
2+1 exp

∙
−2− κ
1− κ

¸


= − (1− )2


κ−2

µ
1

1− κ
¶2µ



2
+ 1

¶
z
µ
−1− 


κ−2



2
+ 2

2− κ
1− κ

¶
;

and



∙
(θ)



[ (θ);η]

κ

¯̄̄̄
φ

¸
=

Z ∞

0





½
(1− )

∙
 + (1− )κ−(2+1) exp

∙
−1− κ
2κ



¸¸
−
∙µ



2
+ 1

¶
(1− ) +



2

£
1− (1− κ−2)¤κ¸

× 1

κ−(2+2) exp

∙
−1− κ
2κ



¸
+

∙


2
(1− ) +



2

£
1− (1− κ−2)¤ (1− )κ

¸
κ−(2+1)



×
½
 + (1− )κ−2 exp

∙
−1− κ
2κ



¸¾−1
×
½
 + (1− )κ−(2+1) exp

∙
−1− κ
2κ



¸¾
exp

∙
−1− κ
2κ



¸¾
×(2)

−2

Γ(2)
2−1 exp

µ
− 1

2


¶


= D1 +D2 +D3 +D4 +D5 +D6 +D7
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where

D1 =
(2)−2

Γ(2)

(1− )



Z ∞

0

2 exp

µ
− 1

2


¶


=
(2)−2

Γ(2)

(1− )


(2)2+1Γ

µ


2
+ 1

¶
= (1− )

D2 = −(2)
−2

Γ(2)

κ−(2+2)


(1− )

∙
1



µ


2
+ 1

¶
− (1− )κ

¸ Z ∞

0

2 exp

µ
1

2κ


¶


= −(2)
−2

Γ(2)

κ−(2+2)


(1− )

∙
1



µ


2
+ 1

¶
− (1− )κ

¸
(2κ)2+1Γ

µ


2
+ 1

¶
= −(1− )

1

κ

∙µ


2
+ 1

¶
− (1− )κ

¸

D3 = −(2)
−2

Γ(2)

1

2

£
1− (1− κ−2)¤ (1− )κ−(2+1)

Z ∞

0

2+1 exp

µ
1

2κ


¶


= −(2)
−2

Γ(2)

1

2

£
1− (1− κ−2)¤ (1− )κ−(2+1)(2κ)2+2Γ

µ


2
+ 2

¶
= −

µ


2
+ 1

¶
(1− )κ

£
1− (1− κ−2)¤

D4 =
(2)−2

Γ(2)

1

2
(1− )κ−(2+1)

×
Z ∞

0

½
 + (1− )κ−2 exp

∙
−1− κ
2κ



¸¾−1
2 exp

∙
− 1

2κ


¸


=
(2)−2

Γ(2)

1

2
(1− )κ−(2+1)

µ
2κ
1− κ

¶2+1

×
Z ∞

0

½
1 +

1− 


κ−2 exp [−]

¾−1
2 exp

∙
− 1

1− κ
¸


=


2
(1− )

µ
1

1− κ
¶2+1

z
µ
−1− 


κ−2



2
+ 1

1

1− κ
¶


D5 =
(2)−2

Γ(2)

1

2
(1− )

£
1− (1− κ−2)¤κ−2

×
Z ∞

0

½
 + (1− )κ−2 exp

∙
−1− κ
2κ



¸¾−1
2+1 exp

∙
− 1

2κ


¸


=
(2)−2

Γ(2)

1

2
(1− )

£
1− (1− κ−2)¤κ−2µ 2κ

1− κ
¶2+2

×
Z ∞

0

½
1 +

1− 


κ−2 exp [−]

¾−1
2+1 exp

∙
− 1

1− κ
¸


= (1− )
£
1− (1− κ−2)¤µ κ

1− κ
¶2µ

1

1− κ
¶2

×
µ


2
+ 1

¶
z
µ
−1− 


κ−2



2
+ 2

1

1− κ
¶
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D6 =
(2)−2

Γ(2)

1



1

2
(1− )2κ−(+2)

×
Z ∞

0

½
 + (1− )κ−2 exp

∙
−1− κ
2κ



¸¾−1
2 exp

∙
−2− κ
2κ



¸


=
(2)−2

Γ(2)

1

2

(1− )2


κ−(+2)

µ
2κ
1− κ

¶2+1

×
Z ∞

0

½
1 +

1− 


κ−2 exp [−]

¾−1
2 exp

∙
−2− κ
1− κ

¸


=


2

(1− )2


[κ(1− κ)]−(2+1)z

µ
−1− 


κ−2



2
+ 1

2− κ
1− κ

¶


and

D7 =
(2)−2

Γ(2)

1

2

£
1− (1− κ−2)¤ (1− )2κ−(+1)

×
Z ∞

0

½
 + (1− )κ−2 exp

∙
−1− κ
2κ



¸¾−1
2+1 exp

∙
−2− κ
2κ



¸


=
(2)−2

Γ(2)

1

2

(1− )2



£
1− (1− κ−2)¤κ−(+1)µ 2κ

1− κ
¶2+2

×
Z ∞

0

½
1 +

1− 


κ−2 exp [−]

¾−1
2+1 exp

∙
−2− κ
1− κ

¸


=

µ


2
+ 1

¶

(1− )2



£
1− (1− κ−2)¤κ−(2−1)µ 1

1− κ
¶2+2

×z
µ
−1− 


κ−2



2
+ 2

2− κ
1− κ

¶
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