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B The test in practice

We recommend following these steps for computing the discrete grid test statistics in a

given sample:

1. Estimate the model by non-Gaussian PMLE assuming that the shocks follow indepen-

dent univariate �nite Gaussian mixtures, and compute the estimated structural residuals

"�it(�̂T )�s evaluated at the PMLEs �̂T using expression (4) for the unique ordering and

signs of the matrix C obtained using the selection procedure suggested by Ilmonen and

Paindaveine (2011) and adopted by Lanne et al. (2017). Importantly, the fact the struc-

tural shocks are only identi�ed up to permutations is numerically irrelevant for the test

statistic as long as one uses the same quantile grid for all of them since they only a¤ect

their labelling. Similarly, a change in the sign of one shock is also numerically irrelevant

as long as one adjusts its quantiles accordingly. In fact, there is no need for such an ad-

justment if one uses equally spaced quantiles (say terciles, quartiles or quintiles) for all

shocks.

2. For the q version of the test, partition the [0; 1] interval with knots (0; u1; u2; :::; uH ; 1),

where uh = 1
2 (2h� 1)H

�1 in the equally-spaced case, and obtain the corresponding mar-

ginal quantiles of each estimated shock "�it(�̂T ), namely [ki1(u1); : : : ; kiH(uH)], i = 1; : : : ; N

usingMatlab�s linear interpolation method. One could then replace the u�s with the mar-

ginal empirical cdf of each shock computed at the estimated quantiles to take into account

the linear interpolation method, but this would generate slightly di¤erent partitions of the

unit interval for di¤erent shocks.

For the p version of the tests, de�ne H points, k1 < � � � < kh < � � � < kH , together with
k0 = �1 and kH+1 = 1, and estimate the marginal empirical cdf for each shock as
pih = T�1

PT
t=1 I["

�
it(�̂T ) � kh]. One could then replace kh with its marginal empirical

quantile at the estimated pih for each shock using Matlab�s linear interpolation method,

but again this would generate slightly di¤erent partitions of the real line for di¤erent

shocks.

3. For the q version, estimate the joint cdf at the Cartesian product of the empirical quantiles

as qij = T�1
PT
t=1 I["

�
1t(�̂T ) � kih(uh); : : : ; "�Mt(�̂T ) � kMh0(uh0)], while for the p version

do the same but evaluate them at the N -ary Cartesian product of (k1; : : : ; kH)0.

4. Compute the HN in�uence functions underlying the test as the di¤erence between the

joint and the product of the marginal empirical cdfs.

5. Compute the HN �HN matrix whose elements are given by (13).

6. Estimate the asymptotic covariance matrix of the score and the expected Hessian of the

pseudo log-likelihood function replacing the true values of the parameters �0 with �̂T and

the expected values with sample averages in the expressions that appear in Appendices

D.3 and D.4, respectively, including (D33)-(D38) and (D39)-(D44), and use them in the
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sandwich formula A�1BA, retaining the N � N blocks corresponding to the elements of

vec(C). The consistency of the estimators of A and B follows from Lemma 4.3 in Newey

and McFadden (1994), while that of A�1BA from their Theorem 4.1.

7. Estimate the HN � N expected Jacobian matrix of the in�uence functions with respect

to the elements of vec(C) replacing the true values of the parameters �0 with �̂T and the

expected values with sample averages in the expressions in Lemma 1, using Silverman�s

(1986) robust rule-of-thumb bandwidth to obtain Gaussian kernel estimates of the true

density of the shocks that appear in expression (C1). Despite involving the indicator

function, the consistency of this procedure follows once again from Lemma 4.3 in Newey

and McFadden (1994).

8. Estimate the HN �N asymptotic covariance matrix between the in�uence functions and

the scores with respect to the elements of vec(C) replacing the true values of the para-

meters �0 with �̂T and the expected values with sample averages in the expressions that

appear in Lemma 2, including (C3)-(C9). As before, Lemma 4.3 in Newey and McFadden

(1994) guarantees the consistency of the resulting estimators despite the indicator function

appearing in the in�uence functions.

9. Combine these matrices to estimateW using (15), and replace this estimated matrix in (14)

to obtain the discrete grid test statistic. Theorems 2.2 and 2.3 in Newey (1985) guarantee

the consistent estimation of W and the asymptotic �2 distribution of (14), respectively.

Given that the continuous grid test can be regarded as a regularised version of the discrete

grid test computed at the �nest partition of the unit interval that remains meaningful when there

are T observations, its computation shares several of the elements that we have just described.

Speci�cally:

1. Estimate the model by non-Gaussian PMLE assuming that the shocks follow indepen-

dent univariate �nite Gaussian mixtures, and compute the estimated structural residuals

"�it(�̂T )�s evaluated at the PMLEs �̂T using expression (4) for the unique ordering and signs

of the matrix C obtained using the selection procedure suggested by Ilmonen and Paindav-

eine (2011) and adopted by Lanne et al. (2017). The fact the structural shocks are only

identi�ed up to permutations and sign changes is numerically irrelevant for the continuous

test statistic as it e¤ectively depends on the homogeneous, equally-spaced �discrete�grid

u� =
1
2 (2� � 1)T

�1, � = 1; : : : ; T .

2. Compute the empirical uniform ranks using expression (17) and use them to obtain the

elements of the T � T matrix D in (25).

3. Estimate the T �T matrix C by replacing the integrals in (27) by sums over the empirical
cdfs of the shocks. Speci�cally, if we denote by ��t (�̂) = [��it(�̂); :::; �

�
mt(�̂)] the vector

containing the empirical ranks of the tth observation of each of the estimated shocks that
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appear in M , we can estimate the rank one matrix C as

bC = `T `0T � TX
�1=1

� � �
TX

�m=1

j0[���1(�̂); :::; �
�
�m(�̂)]A�1(�̂)B(�̂)A�1(�̂)j[���1(�̂); :::; �

�
�m(�̂)];

where `T is a vector of T ones, while A(�̂), B(�̂) and j[���1(�̂); :::; �
�
�m(�̂)] are the consistent

estimators that we mention in points 6 and 7 of the description of the discrete grid test,

with the latter evaluated at u� = 1
2 (2� � 1)T

�1�1, � = 1; : : : ; T . Given that sums over

increasingly �ner grids converge to the relevant integral, bC will be consistent.
4. Finally, we consistently estimate E by adding up the consistent estimators of C and D,
which we then replace in expression (26) for a given choice of the regularization parameter

�. Interestingly, the fact that bC is proportional to `T `0T implies that the expression (26)
is numerically una¤ected if we replace the two Es that appear at the extremes of this
quadratic form with Ds.

C Lemmata

Lemma 1 If model (2) satis�es Assumption 1, then the non-zero elements of the expected Ja-

cobian matrix of the linearised p["�t (�);k;u] evaluated at �0 and the estimated values of u
i
h in

(10) are given by

jphcii0 (%1;'0) = �
X
i2M

X
i02M;i0 6=i

0@ Y
i002M;i00 6=i0 6=i

ui00

1A �ui0f(khi), for i 6= i0; (C1)

where �hi0 = E0["
�
it1(�1;khi )("

�
it)] for i 2M .

Proof. From (12), we have that

@mt(u)

@�
= E

"
@

@�

"Y
i2M

1(�1;{(ui))("
�
it)�

Y
i2M

ui

##

� @

@�

8<:X
i2M

�
1(�1;{(ui))("

�
it)� ui

� Y
i02M;i0 6=i

ui0

9=;
35

= �
X
i2M

24 Y
i02M;i0 6=i

1(�1;{(ui0 ))("
�
i0t)

35 �1(�1;{(ui))("�it)� ui� @1(�1;{(ui))("�it)@"�it

@"�it
@�
:

Moreover, it is worth noticing that

@"�it(�)

@� 0
= �ci:;

@"�it(�)

@a0j
= �(y0t�j 
 ci:) for j = 1; :::; p, and

@"�it(�)

@c0
= �["�0t (�)
 ci:]: (C2)
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Therefore, under the independence null,

E

�
@mu

t

@�i

�
= 0

except for the o¤-diagonal elements of C, namely,

E

8<:X
i2M

0@ X
i02M;i0 6=i

1(�1;{(ui0 ))("
�
i0t)

1A @1(�1;{(ui))("
�
it)

@"�it

@"�it
@c0

9=;
= �E

8<:X
i2M

0@ X
i0=1;i0 6=i

1(�1;{(ui0 ))("
�
i0t)

1A @1(�1;{(ui))("
�
it)

@"�it
["�0t (�)
 ci:]

�

= �
X
i2M

X
i02M;i0 6=i

E

0@ Y
i002M;i00 6=i0 6=i

1(�1;{(ui00 ))("
�
i00t)

1A
�E[1(�1;{(ui0 ))("

�
i0t)"

�
i0t]E

�
@1(�1;{(ui))("

�
it)

@"�it

�
(e0j 
 ci:)

= �
X
i2M

X
i02M;i0 6=i

0@ Y
i002M;i00 6=i0 6=i

ui00

1A �ui0f [{(ui)]
where the �rst equality uses (C2), the second one follows from the cross-sectional independence

of the shocks, and the last one implicitly de�nes �uj = E["
�
jt1(�1;{(uj))("

�
jt)]. �

Lemma 2 If model (2) satis�es Assumption 1, then the non-zero elements of the covariance

matrix between the linearised in�uence function p["�t (�);k;u] evaluated at �0 and the estimated

values of uih in (10) with the pseudo log-likelihood scores evaluated at the pseudo true values �1
is given by

covfp["�t (�0);k;u]; scii0 t(�1)j�0;�0g = E[Kpht(�1;�0)];

where

Kpkt(�1;�0) =
�
Zlt(�0) Zs(�0) 0
0 0 Iq

�24 0
Kpk(%1;�0)

0

35 ;
where Kpk(%1;�0) is a N2 � 1 vector whose entries s = N(i� 1) + i0 for i; i0 = 1; :::; N are

kp;s(%1;�0)=�
X
i2M

X
i02M

0@ Y
i002M;i00 6=i;i00 6=i0

ui00

1A �i0E�1("�it�khi ) � @ ln f("�it;%i1)@"�i

�����0;�0� ;
for i 6= i0, and zero otherwise.

Proof. We start by computing the covariance of the in�uence functions underlying our test

with the pseudo log-likelihood scores evaluated at the pseudo true values �1, namely

covfp["�t (�0);k;u]; s�t(�1)j�0;�0g = Kpk(�1;�0) = E[Kpkt(�1;�0)]
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and

covfp["�t (�0);k;u]; s�t(�1)j�0;�0g = Kpk(�1;�0) = E[Kpkt(�1;�0)];

where

K�t(�1;�0) =
�
Zlt(�0) Zs(�0) 0
0 0 Iq

�24 K�lt(%1;�0)
K�st(%1;�0)
K�rt(%1;�0)

35 :
Exploiting the cross-sectional independence of the shocks, we get for the mean parameters

kpkl(%1;�0) = �cov
�
p("�t ;k;u);

@ ln f("�it;%i1)

@"�i

�����0;�0�
= �E

�
1("�it�khi )

@ ln f("�it;%i1)

@"�i

�����0;�0� ; (C3)

kpkl(%1;�0) = �cov
�
p("�t ;k;u);

@ ln f("�it;%i1)

@"i�

�����0;�0�

= �

0@ Y
i02M;i0 6=i

ui0

1AE�1("�it�khi )@ ln f("�it;%i1)@"�i

�����0;�0� ; (C4)

and zero otherwise.

Similarly, K�s(%1;�0) is a N2 � 1 vector whose entries are such that for i with ji > 0,

kpks1(%1;�0) = �cov
�
p("�t ;k;u); 1 +

@ ln f("�it;%i1)

@"�i
� "�it
�����0;�0�

= �E
�
1("�it�khi )

�
1 +

@ ln f("�it;%i1)

@"�i
� "�it
������0;�0� ; (C5)

kpks1(%1;�0) = �cov
�
p("�t ;k;u); 1 +

@ ln f("�it;%i1)

@"�i
� "�it
�����0;�0�

= �

0@ Y
i02M;i0 6=i

�i0

1AE�"�it1("�it�khi ) �
�
1 +

@ ln f("�it;%i1)

@"�i
� "�it
������0;�0�; (C6)

kpks2(%1;�0) = �cov
�
p("�t ;k;u); 1 +

@ ln f("�it;%i1)

@"�i
� "�i0t

�����0;�0�

= �

0@ Y
i002M;i00 6=i;i00 6=i0

ui00

1A �i0E�1("�it�khi ) � @ ln f("�it;%i1)@"�i

�����0;�0� ; (C7)
and zero otherwise.

Finally, Kkr(%1;�0) = K0krvecd(In), where Kkr another block diagonal matrix of order N�q
with typical block of size 1� qi,

kpkr(%1;�0) = cov

�
p("�t ;k;u);

@ ln f("�it;%i1)

@%0i

�����0;�0�
= E

�
1("�it�khi ) �

@ ln f("�it;%i1)

@%0i

�����0;�0� (C8)
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kpkr(%1;�0) = cov

�
p("�t ;k;u);

@ ln f("�it;%i1)

@%0i

�����0;�0�

=

0@ Y
i02M;i0 6=i

ui0

1AE�1("�it�khi ) � @ ln f("�it;%i1)@%0i

�����0;�0� (C9)

and zero otherwise, again because of the cross-sectional independence of the shocks and the fact

that E[@ ln f("�it;%1)=@"
�
i j�0;�0] = 0.

Next, to obtain the covariance of the in�uence function evaluated at �0 and the estimated

values of uih in (10) with the pseudo log-likelihood scores evaluated at the true values �0;�0, we

can make use of (12) to write

cov[mt(u); s�t(�1)j�0;�0] = covfp("�t ;k;u); s�t(�1)j�0;�0g (C10)

�
X
i2M

0@ Y
i02M;i0 6=i

ui0

1A cov fpki("�it); s�t(�1)j�0;�0g :
Then, substituting (C3) and (C4) into (C10), we get

cov[mt(u); s� t(�1)j�0;�0] = 0

and

cov[mt(u); sajt(�1)j�0;�0] = 0, for j = 1; :::; p:

Similarly, substituting (C5) and (C6) into (C10), we get

cov[mt(u); sciit(�1)j�0;�0] = 0, for i = 1; :::; N ;

and substituting (C8) and (C9) into (C10), we get

cov[mt(u); s%it(�1)j�0;�0] = 0, for i = 1; :::; N:

Finally, substituting (C5) and (C7) into (C10), we get the result stated in the statement. �

Lemma 3 If model (2) satis�es Assumption 1, then the adjustment of the covariance operator

that accounts for the estimation of � is given by (27).

Proof. From 1, the expected Jacobian with respect to � of the in�uence functions linearised

with respect to the {�s can be written as

E

�
@nt (uM )

@�0

�
= �

X
i2M

X
i02M;i0 6=i

0@ Y
i002M;i00 6=i0 6=i

ui00

1A �ui0f [{(ui)](e0i0 
 ci:);
where

nt(uM ) =

"Y
i2M

1(�1;{i(ui))("
�
it)�

Y
i2M

ui

#
�
X
i2M

�
1(�1;{i(ui))("

�
it)� ui

� Y
i02M;i0 6=i

ui0 :
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We are afterZ
[0;1]m

�
nt(uM )� E

�
@nt(uM )

@�0

�p
T (�̂ � �0)

��
ns(uM )� E

�
@ns(uM )

@�0

�p
T (�̂ � �0)

�
duM :

Let us consider each of the four terms separately. The �rst one, namelyZ
[0;1]m

nt(uM )ns(uM )duM ;

is given in (13). Next, we have the cross-terms, which are of the form

�
Z
[0;1]m

E

�
@ns(uM )

@�0

�p
T (�̂ � �0)nt(uM )duM :

If we then use the fact that

p
T (�̂ � �0) =

p
TA�1(�1;'0)s� + op(1) = A�1(�1;'0)

p
T

T

TX
t=1

s�t + op(1);

we can see that

� 1p
T

Z
[0;1]m

E

�
@ns(uM )

@�0

� 
A�1(�1;'0)

TX
�=1

s��

!
nt(uM )duM = op(1)

because of the scaling factor 1=
p
T and the fact that the "�s entering into s�� (�) are asymp-

totically independent of the ones that appear in nt(uM ) and E
�
@ns(uM )=@�

0�. Therefore, the
covariance of the linearised in�uence function with the pseudo log-likelihood scores evaluated at

the pseudo true values �1 is asymptotically negligible.

Finally, regarding the last term, we obtain (27), as desired. �

D ML estimators with cross-sectionally independent shocks

In this appendix, we derive analytical expressions for the conditional variance of the score

and the expected value of the Hessian of Svar models with cross-sectionally independent non-

Gaussian shocks when the distributions assumed for estimation purposes may well be misspeci-

�ed, but all the parameters that characterise the conditional mean and covariance functions are

consistently estimated, as in the case of �nite normal mixtures. Fiorentini and Sentana (2023)

consider the general case.

D.1 Log-likelihood, its score and Hessian

Given the linear mapping between structural shocks and reduced form innovations, the con-

tribution to the conditional log-likelihood function from observation t will be given by

lt(yt;') = � ln jCj+ l["�1t(�);%1] + : : :+ l["�Nt(�);%N ]; (D11)
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where "�t (�) = C�1(yt � � �A1yt�1 � : : : �Apyt�p) and l("�it;%i) = ln f("�it;%i) is the log of

the univariate density function of "�it, which we assume twice continuously di¤erentiable with

respect to both its arguments, although this is stronger than necessary, as the Laplace example

illustrates.

Let st(�) denote the score function @lt(�)=@�, and partition it into two blocks, s�t(�) and

s%t(�), whose dimensions conform to those of � and %, respectively. Given that the mean vector

and covariance matrix of (2) conditional on It�1 are

�t(�) = � +A1yt�1 + : : :+Apyt�p; (D12a)

�t(�) = CC0; (D12b)

respectively, we can use the expressions in Supplemental Appendix D.1 of Fiorentini and Sentana

(2021) with �1=2t (�) = C to show that

@dt(�)

@�
= �@vec

0(C)

@�
vec(C�10) = �

0BBBBB@
0
0
...
0
IN2

1CCCCCA vec(C�10) = �Z0st(�)vec(IN ) (D13)

and

@"�t (�)

@�0
= �C�1@�t(�)

@�0
� ["�0t (�)
C�1]

@vec(C)

@�0
(D14)

= �fZ0lt(�) + ["�0t (�)
 IN ]Z0st(�)g;

where

Zlt(�) =
@�0t(�)

@�
�
�1=20
t (�) =

0BBBBB@
IN

yt�1 
 IN
...

yt�p 
 IN
0N2�N

1CCCCCAC�10; (D15)

Zst(�) =
@vec0[�t(�)]

@�
[IN 
��1=20t (�)] =

0BBBBB@
0N�N2

0N2�N2

...
0N2�N2

IN2

1CCCCCA (IN 
C�10); (D16)

which con�rms that the conditional mean and variance parameters are variation free. In addition,

st(�) =

�
s�t(�)
s%t(�)

�
=

�
Zlt(�) Zst(�) 0
0 0 Iq

�24 elt(�)
est(�)
ert(�)

35
=

�
Zdt(�) 0
0 Iq

� �
edt(�)
ert(�)

�
= Zt(�)et(�); (D17)
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where

elt(�) = �
@ ln f ["�t (�);%]

@"�
= �

26664
@ ln f1["

�
1t(�);%1]=@"

�
1

@ ln f2["
�
2t(�);%2]=@"

�
2

...
@ ln fN ["

�
Nt(�);%N ]=@"

�
N

37775 ; (D18)

est(�) = �vec
�
IN +

@ ln f ["�t (�);%]

@"�
"�0t (�)

�

= �vec

8>><>>:
1 +

@ ln f1["�1t(�);%1]
@"�1

"�1t(�) : : :
@ ln f1["�1t(�);%1]

@"�1
"�Nt(�)

...
. . .

...
@ ln fN ["

�
Nt(�);%N ]
@"�N

"�1t(�) : : : 1 +
@ ln fN ["

�
Nt(�);%N ]
@"�N

"�Nt(�)

9>>=>>; (D19)

and

ert(�) =
@ ln f ["�t (�);%]

@%
=

8>><>>:
@ ln f1["�1t(�);%1]

@%1
...

@ ln fN ["
�
Nt(�);%N ]
@%N

9>>=>>; =

26664
er1t(�)
er2t(�)
...

erN t(�)

37775 (D20)

by virtue of the cross-sectional independence of the shocks, so that the derivatives involved

correspond to the assumed univariate densities.

Let ht(�) denote the Hessian function @st(�)=@�0 = @2lt(�)=@�@�0. Supplemental Appen-

dix D.1 of Fiorentini and Sentana (2021) implies that

h��t(�) = Zlt(�)
@elt(�)

@�0
+ Zst(�)

@est(�)

@�0

+
�
e0lt(�)
 IN+(p+1)N2

� @vec[Zlt(�)]
@�0

+
�
e0st(�)
 IN+(p+1)N2

� @vec[Zst(�)]
@�0

; (D21)

where Zlt(�) and Zst(�) are given in (D15) and (D16), respectively. Therefore, we need to obtain

@vec(C�10)=@�0 and @vec(IN 
C�10)=@�0.
Let us start with the former. Given that

dvec(C�10) = �vec[C�10d(C0)C�10] = �(C�1 
C�10)dvec(C0) = �(C�1 
C�10)KNNdvec(C);

where KNN is the commutation matrix (see Magnus and Neudecker (2019)), we immediately

get that
@vec(C�10)

@�0
=
�
0N2�(N+pN2) �(C�1 
C�10)KNN

�
;

so that

@vec[Zlt(�)]

@�0
=

2666664IN 

0BBBBB@

IN
yt�1 
 IN

...
yt�p 
 IN
0N2�N

1CCCCCA

3777775
@vec(C�10)

@�0
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=

2666664IN 

0BBBBB@

IN
yt�1 
 IN

...
yt�p 
 IN
0N2�N

1CCCCCA

3777775
�
0N2�(N+pN2) (C�1 
C�10)KNN

�
:

Similarly, given that

vec(IN 
C�10) = f[(IN 
KNN )(vec(IN )
 IN )]
 INgvec(C�10)

so that

vec(IN 
C�10) = ((IN 
KNN )(vec(IN )
 IN )
 IN )dvec(C�10)

= �f[(IN 
KNN )(vec(IN )
 IN )]
 INg(C�1 
C�10)KNNdvec(C);

we will have that

@vec[Zst(�)]

@�0
=
@vec

@�0

��
0(N+pN2)�N2

IN2

�
(IN 
C�10)

�
:

But�
IN2 


�
0(N+pN2)�N2

IN2

��
@vec(IN 
C�10)

@�0

= �
�
IN2


�
0(N+pN2)�N2

IN2

��
[ 0 f[(IN
KNN )(vec(IN )
IN )]
INg(C�1
C�10)KNN ]:

In addition,

@elt(�;%)

@�0
= �@

2 ln f ["�t (�);%]

@"�@"�0
@"�t (�)

@�0
=
@2 ln f ["�t (�);%]

@"�@"�0
fZ0lt(�) + ["�0t (�)
 IN ]Z0st(�)g (D22)

and

@est(�)

@�0
= �["�t (�)
 IN ]

@2 ln f ["�t (�);%]

@"�@"�0
@"�t (�)

@�0
�
�
IN 


@ ln f ["�t (�);%]

@"�

�
@"�t (�)

@�0

=

�
["�t (�)
 IN ]

@2 ln f ["�t (�);%]

@"�@"�0
+

�
IN 


@ ln f ["�t (�);%]

@"�

��
�fZ0lt(�) + ["0�t (�)
 IN ]Z0st(�)g: (D23)

The assumed independence across innovations implies that

ln f ["�t (�);%]

@"�@"�0
=

26666664

@2 ln f1["�1t(�);%1]
(@"�1)

2 0 � � � 0

0
. . .

...
...

. . . 0

0 � � � 0
@2 ln fN ["

�
Nt(�);%N ]

(@"�N )
2

37777775 ; (D24)

which substantially simpli�es the above expressions.
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Moreover,

h�%t(�) = Zlt(�)
@elt(�)

@%0
+ Zst(�)

@est(�)

@%0
;

where

@elt(�)

@%0
= �@

2 ln f ["�t (�);%]

@"�@%0
;

@est(�)

@%0
= �["�t (�)
 IN ]

@2 ln f ["�t (�);%]

@"�@%0
:

with

@2 ln f ["�t (�);%]

@"�@%0
=

2666664
@2 ln f1["�1t(�);%1]

@"�1@%
0
1

0 � � � 0

0
. . .

...
...

. . . 0

0 � � � 0
@2 ln fN ["

�
Nt(�);%N ]

@"�N@%
0
N

3777775 (D25)

because of the cross-sectional independence assumption.

As for the shape parameters of the independent margins,

h%%t(�) =
@2 ln f ["�t (�) ;%]

@%@%0
=

2666664
@2 ln f1["�1t(�);%1]

@%1@%
0
1

0 � � � 0

0
. . .

...
...

. . . 0

0 � � � 0
@2 ln fN ["

�
Nt(�);%N ]

@%N@%
0
N

3777775 : (D26)

Finally, regarding the Jacobian term � ln jCj, we have that di¤erentiating (D13) once more
yields

�

0BBBBB@
0
0
...
0
IN2

1CCCCCA dvec(C�10) =
0BBBBB@

0
0
...
0
IN2

1CCCCCA (C�1 
C�10)KNNdvec(C);

so

@2dt(�)

@�@�0
=

0BBBBB@
0
0
...
0
IN2

1CCCCCA
�
0N2�(N+pN2) (C�1 
C�10)KNN

�
:

As usual, the pseudo true values of the parameters of a globally identi�ed model, �1,

are the unique values that maximise the expected value of the log-likelihood function over the

admissible parameter space, which is a compact subset of Rdim(�), where the expectation is
taken with respect to the true distribution of the shocks. Under standard regularity conditions

(see e.g., White (1982)), those pseudo true values will coincide with the values of the parameters

that set to 0 the expected value of the pseudo-log likelihood score.

More formally, if we de�ne �0 as the true values of the shape parameters, and '0 = (�0;�0),

11



we would normally expect that

E[st(�1)j'0] = 0:

Let us now consider the alternative parametrisation C = J	 studied in Fiorentini and Sen-

tana (2021, 2023), so that the parameters of interest become � , aj = vec(Aj) (j = 1; : : : ; p),

j = veco(J) and  = vecd(	), where veco(:) stacks by columns all the elements of the zero-

diagonal matrix J� IN except those that appear in its diagonal, and vecd(:) places the elements
in the main diagonal of 	 in a column vector (see Magnus and Sentana (2020) for some use-

ful properties of these operators). Given that a pseudo log-likelihood function based on �nite

Gaussian mixtures for the shocks will lead to consistent estimators for all these parameters re-

gardless of the true distribution, et(�1) will be serially independent and not just martingale

di¤erence sequences. Moreover, given that

Z(�) = E[Zt(�)j'0] =

266666664

C�10 0N�N2 0N�q
(�
 IN )C�10 0N2�N2 0N2�q

...
...

...
(�
 IN )C�10 0N2�N2 0N2�q
0N2�N (IN 
C�10) 0N2�q
0q�N 0q�N2 Iq

377777775
=

�
Zd(�) 0
0 Iq

�
(D27)

has full column rank,

E[et(�1)jIt�1;'0] = 0 (D28)

because

0 = E[st(�1)j'0] = EfE[st(�1)jIt�1;'0]j'0g = Z(�)E[et(�1)jIt�1;'0] = Z(�)E[et(�1)j'0]:

Furthermore, the diagonality of 	 means that the pseudo-shocks "�t (�1) will also inherit

the cross-sectional independence of the true shocks "�t . In addition, given that the estimators of

� that we consider are consistent, we will have that under standard regularity conditions

T�1
TP
t=1
"�it(�̂) ! E["�it(�1)j'0] = 0 and (D29)

T�1
TP
t=1
"�2it (�̂) ! E["�

2

it (�1)j'0] = 1; (D30)

where �̂ are the PMLEs of the conditional mean and variance parameters.

D.2 Asymptotic distribution

For simplicity, we assume henceforth that there are no unit roots in the autoregressive

polynomial, so that the Svar model (2) generates a covariance stationary process in which

rank(IN � A1 � : : : � Ap) = N . If the autoregressive polynomial (IN � A1L � : : : � ApLp)
had some unit roots, then yt would be a (co-) integrated process, and the estimators of the

conditional mean parameters would have non-standard asymptotic distributions, as some (linear

12



combinations) of them would converge at the faster rate T . In contrast, the distribution of the

ML estimators of the conditional variance parameters would remain standard (see, e.g., Phillips

and Durlauf (1986)).

We also assume that the regularity conditions A1-A6 in White (1982) are satis�ed, although

like in his Theorems 3.1 and 3.2, we drop Assumption A3(b) when talking about the neg-

ative de�niteness of the expected Hessian or the asymptotic normality of the PML estima-

tors because they are both local rather than global results. These conditions are only slightly

stronger than those in Crowder (1976), which guarantee that MLEs will be consistent and as-

ymptotically normally distributed under correct speci�cation. In particular, Crowder (1976)

requires: (i) �0 is locally identi�ed and belongs to the interior of the admissible parameter

space, which is a compact subset of Rdim(�); (ii) the Hessian matrix is non-singular and con-
tinuous throughout some neighbourhood of �0; (iii) there is uniform convergence to the inte-

grals involved in the computation of the mean vector and covariance matrix of st(�); and (iv)

�E�1
�
�T�1

P
t ht(�)

�
T�1

P
t ht(�)

p! Ip+q, where E�1
�
�T�1

P
t ht(�)

�
is positive de�nite

on a neighbourhood of �0.

We can use the law of iterated expectations to compute

A(�1;'0) = E[�h��t(�1)j�0;'0] = E [At(�1;'0)]

and

V [s�t(�1)j'0] = B(�1;'0) = E [Bt(�1;')] :

In this context, the asymptotic distribution of the PMLEs of � under the regularity conditions

A1-A6 in White (1982) will be given by

p
T (�̂� �1)! N [0;A�1(�1;'0)B(�1;'0)A�1(�1;'0)]:

As we explained before, analogous expressions apply mutatis mutandi to a restricted PML

estimator of � that �xes % some a priori chosen value to �%. In that case, we would simply

need to replace �1 by �1(�%) and eliminate the rows and columns corresponding to the shape

parameters % from the A and B matrices.
If we write C = J	, then the chain rule for �rst derivatives implies that the gradient

with respect to the parameters in C will be a linear combination of those corresponding to

j = veco(J� IN ) and  = vecd(	).
Therefore, we can invoke Proposition 3 in Fiorentini and Sentana (2023), which shows the

consistency of the Gaussian mixture-based Pseudo MLEs of j and  , to show that

E

�
@ ln f ["�it(�1);%1]

@"�i

�����0;�0� = 0
and

E

�
1 +

@ ln f ["�it(�1);%1]

@"�i
"�it(�1)

�����0;�0� = 0 (D31)
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for i = 1; :::; N . Moreover, the maintained assumption of cross-sectional independence of the

shocks also implies that

E

�
@ ln f ["�it(�1);%1]

@"�i
"�jt(�1)

�����0;�0� = 0
As a consequence,

E[elt(�1)j�0;�0] = 0 and E[est(�1)j�0;�0] = 0:

D.3 Variance of the score

If we maintain that �1 = �0 because of the aforementioned consistency, and adapt Propo-

sition D.2 in Fiorentini and Sentana (2023) to a PMLE context, we can show that

V [s�t(�1)j�0;�0] = B(�1;�0) = E [Bt(�1;�0)]

where

Bt(�1;�0) = Zt(�1)O(%1;�0)Z0t(�1); (D32)

Zt(�) =

�
Zlt(�) Zs(�) 0
0 0 Iq

�
;

and

O(%1;�0) =

24 Oll(%1;�0) Ols(%1;�0) Olr(%1;�0)
O0ls(%1;�0) Oss(%1;�0) Osr(%1;�0)
O0lr(%1;�0) O0sr(%1;�0) Orr(%1;�0)

35 ;
with

Oll(%1;�0) = V [elt(�1)j�0;�0],

Ols(%1;�0) = E[elt(�1)e0st(�1)j�0;�0],

Oss(%1;�0) = V [est(�1)j�0;�0],

Olr(%1;�0) = E[elt(�1)e0rt(�1)j�0;�0],

Osr(%1;�0) = E[est(�1)e0rt(�1)j�0;�0], and

Orr(%1;�0) = V [ert(�1)j�0;�0]:

Oll(%1;�0) will be a diagonal matrix of order N with typical element

oll(%i1;�0) = V
�
@ ln f("�it;%i1)

@"�i

�����0� ; (D33)

Ols(%1;�0) =OlsE0N , where E0N is the so-called diagonalization matrix and Ols is a diagonal
matrix of order N with typical element

ols(%i1;�0) = cov
�
@ ln f("�it;%i1)

@"�i
;
@ ln f("�it;%i1)

@"�i
"�it

�����0� ; (D34)

Oss(%1;�0) is the sum of the commutation matrix KNN and a block diagonal matrix �

14



of order N2 in which each of the N diagonal blocks is a diagonal matrix of size N with the

following structure:

�i(%1;�0) =

266666666664

oll;1 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0 oll;i�1 0 0 0 0
0 0 0 oss(%i1;�0)� 1 0 0 0
0 0 0 0 oll;i+1 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0 oll;N

377777777775
;

where oll;i =oll(%i1;�0) to shorten the expressions and

oss(%i1;�0) = V
�
@ ln f("�it;%i1)

@"�i
"�it

�����0� ; (D35)

Olr(%1;�0) is an N � q block diagonal matrix with typical diagonal block of size 1� qi

olr(%i1;�0) = �cov
�
@ ln f("�it;%i1)

@"�i
;
@ ln f("�it;%i1)

@%i

�����0� ; (D36)

Osr(%1;�0) = ENOsr, where Osr another block diagonal matrix of order N �q with typical
block of size 1� qi

osr(%i1;�0) = �cov
�
@ ln f("�it;%i1)

@"�i
"�it;

@ ln f("�it;%i1)

@%i

�����0� ; (D37)

and Orr(%1;�0) is a q � q block diagonal matrix with typical block of size qi � qi

orr(%i1;�0) = V
�
@ ln f("�it;%i1)

@%i

�����0� : (D38)

D.4 Expected Hessian

We can also show that

E[�h��t(�1)j�0;�0] = A(�1;�0) = E [At(�1;�0)]

where
At(�1;�0) = Zt(�0)H(%1;�0)Z0t(�0);

H(%1;�0) =

24 Hll(%1;�0) Hls(%1;�0) Hlr(%1;�0)
H0ls(%1;�0) Hss(%1;�0) Hsr(%1;�0)
H0lr(%1;�0) H0sr(%1;�0) Hrr(%1;�0)

35 ;

Hll(%1;�0) = �E
�
@2 ln f("�t ;%1)

@"�@"�0

�����0�
Hls(%1;�0) = �E

�
@2 ln f("�t ;%1)

@"�@"�0
("�0t 
 IN )

�����0�
Hss(%1;�0) = �E

��
["�t 
 IN ]

@2 ln f("�t ;%1)

@"�@"�0
+

�
IN 


@ ln f("�t ;%1)

@"�

��
["0�t 
 IN ]

�����0�
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Hlr(%1;�0) = E

�
@2 ln f("�t ;%1)

@"�@%0

�����0�
Hsr(%1;�0) = E

�
["�t 
 IN ]

@2 ln f("�t ;%1)

@"�@%0

�����0�
Hll(%1;�0) will be a diagonal matrix of order N with typical element

hll(%i1;�0) = �E
�
@2 ln f("�it;%i1)

(@"�i )
2

�����0� ; (D39)

Hls(%1;�0) =HlsE0N , Hls is a diagonal matrix of order N with typical element

hls(%i1;�0) = �E
�
@2 ln f("�it;%i1)

(@"�i )
2

� "�it
�����0� ; (D40)

Given (D31),

�E
���

IN 

@ ln f("�t ;%1)

@"�

��
["0�t 
 IN ]

�����0� = KNN ;

so Hss(%1;�0) will be the sum of the commutation matrix KNN and a block diagonal matrix

� of order N2 in which each of the N diagonal blocks is a diagonal matrix of size N with the

following structure:

�i(%1;�0) =

266666666664

hll;1 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0 hll;i�1 0 0 0 0
0 0 0 hss(%i1;�0) 0 0 0
0 0 0 0 hll;i+1 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0 hll;N

377777777775
;

where hll;i =hll(%i1;�0) to shorten the expressions and

hss(%i1;�0) = �E
�
@2 ln f("�it;%1)

(@"2i )
("�it)

2

�����0� : (D41)

Hlr(%1;�0) is an N � q block diagonal matrix with typical diagonal block of size 1� qi

hlr(%i1;�0) = E
�
@2 ln f("�it;i1 )

@"�i @%
0
i

�����0� ; (D42)

Hsr(%1;�0) = ENHsr, where Hsr another block diagonal matrix of order N �q with typical
block of size 1� qi

hsr(%i1;�0) = E
�
@2 ln f("�it;%i1)

@"�i @%
0
i

"�i

�����0� ; (D43)

and Hrr(%1;�0) is a q � q block diagonal matrix with typical block of size qi � qi

Hrr(%i1;�0) = �E
�
@2 ln f("�it;%i1)

@%i@%
0
i

�����0� : (D44)
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