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1 Introduction

Maximum likelihood and minimum chi-square methods have been competing for the estima-

tor throne for a long time. At the turn of the 19th century, Legendre (1805) and Gauss (1809)

put forward least squares estimation as a Gaussian-based alternative to Laplace�s (1774) least

absolute deviation method, which relied on his eponymous distribution. Almost a century later,

Pearson proposed not only the method of moments (see Pearson (1894)), but also the chi-square

criterion in the context of matching theoretical and empirical frequencies (see Pearson (1900)).

In turn, the development of maximum likelihood estimation (MLE) by Fisher (1922, 1925) was

one of the most important achievements in 20th century statistics. Under standard regularity

conditions, MLE asymptotically achieves the Cramér-Rao lower bound (see Cramér (1946) and

Rao (1945)), which makes it at least as good as any minimum �2 estimator. In addition, it

achieves second-order e¢ ciency after a bias correction (see Rao (1961)). Moreover, the imposi-

tion of valid equality restrictions on the parameters systematically leads to e¢ ciency gains (see

Rothenberg (1973)).

However, not everybody was convinced (see Neyman and Scott (1948) on the incidental

parameter problem, as well as the inconsistent MLE examples in Basu (1955), Kraft and Le

Cam (1956) and Bahadur (1958)), and minimum �2 methods remained popular. In fact, Berk-

son (1980) argued that ML was often just a special case of minimum �2, and not necessarily

the best one. Soon afterwards, White (1982), building on earlier work by Huber (1967), and

Gouriéroux, Monfort and Trognon (1984) studied the properties of Pseudo MLEs, characterising

their consistency and general ine¢ ciency. Arellano (1989a) put another nail on the ML co¢ n

by showing that valid equality restrictions could result in e¢ ciency losses for Gaussian PMLEs.

Arguably, the wooden stake to the heart was driven by Newey and Steigerwald (1997), who

described the inconsistency of non-Gaussian PMLE procedures under distributional misspeci�-

cation. Since then, graduate students with non-Bayesian teachers learn the normal distribution

only, and Gaussian PMLE is just an example of Hansen�s (1982) GMM. In this paper, though,

we argue that non-Gaussian PMLE, like a B-movie vampire, deserves a second life (or death).

We do so by revisiting the two-equation textbook example in Arellano (1989a),1 except that

instead of basing PMLE on the Gaussian distribution, as he did, we use discrete mixtures of

normals. The reason is twofold. First, Fiorentini and Sentana (2023) show that, under stan-

dard regularity conditions, such estimators are consistent for the conditional mean and variance

1Surprisingly, Arellano (1989a), which should be mentioned in all graduate econometric textbooks, has received
very few citations: Pollock (1988), Islam (1993), Monés and Ventura (1996), Calzolari, Fiorentini and Sentana
(2004), and Sentana (2005), plus a handful of self-citations, and two more which really meant to cite Arellano
(1989b).
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parameters regardless of the true distributions of the shocks to the model and the number of

mixture components, thereby nesting the results for Gaussian PMLE in Gouriéroux, Monfort

and Trognon (1984) while simultaneously avoiding the concerns raised by Newey and Steiger-

wald (1997). Second, �nite normal mixtures with a su¢ ciently large number of components can

provide good approximations to many distributions (see Nguyen et al (2020)), so it is reasonable

to conjecture that PMLEs based on them may get close to achieving the semiparametric (SP)

e¢ ciency bound, and therefore exploit the potential adaptivity of some of the parameters when

it exists, at least asymptotically.2

The rest of the paper is organised as follows. Section 2 introduces the example in Arellano

(1989a) and summarises his main results. Then, in section 3 we extend those results to the

entire parameter vector, derive the relevant semiparametric e¢ ciency bounds, and use them to

benchmark the di¤erent estimators, including the PMLEs based on �nite Gaussian mixtures.

Next, section 4 contains the results of our extensive Monte Carlo experiments while section 5

concludes. Proofs and auxiliary results are relegated to the appendices.

2 The example

Consider the following textbook example:

y1 = 
 + �y2 + �z1 + u1; (1)

y2 = �0 + �1z1 + �2z2 + u2; (2)

with

�
u1
u2

����� z1; z2 � D

��
0
0

�
;

�
�21 �12
�12 �22

��
:

As is well known, the unrestricted Gaussian PMLE of � and � coincides with the IV estimator

that uses a constant, z1 and z2 as instruments in the �rst equation. In turn, the restricted

Gaussian PMLE that imposes �12 = 0 coincides with the OLS estimator of the �rst equation.

When the joint conditional distribution of u1 and u2 is Gaussian, OLS is at least as e¢ cient

as IV, which justi�es the Durbin-Wu-Hausman test.3 But Arellano�s (1989a) seemingly coun-

terintuitive result says that when the true conditional distribution is not Gaussian, IV may be

more e¢ cient than OLS for � and � even though �12 = 0. Speci�cally, he showed that IV will

2See Fiorentini and Sentana (2022) for a related discussion in the context of structural Vars.
3Wu (1973) compared OLS with IV in linear single equation models to assess regressor exogeneity unaware

that Durbin (1954) had already suggested this. Hausman (1978) provided a procedure with far wider applicability.

2



beat OLS if and only if

�22 � 1 + ��2y2z2:z1 ; (3)

where

�22 = E

�
u21
�21

u22
�22

���� z1; z2�
is the co-kurtosis coe¢ cient between the two structural shocks and �y2z2:z1 is the correlation

coe¢ cient between y2 and z2 after partialling out the e¤ect of z1. Intuitively, �22 a¤ects the

correct sandwich version of the asymptotic covariance matrix of the OLS estimators of the slope

parameters.

Appendix A contains detailed expressions for the asymptotic variances of the OLS and IV

estimators of � and �. We have used those expressions to create Figure 1, which displays in

(�y2z2:z1 ; �22) space (minus one plus) the ratio of the asymptotic variances of the OLS and IV

estimators of � for positive values of �y2z2:z1 .
4 We do so for the special case in which the R2 of

equation (2) coincides with �2y2z2:z1 , which allows this parameter to vary freely from 0 to 1.5 As

expected, OLS is more/less e¢ cient than IV to the left/right of the boundary line (3).

This �gure also shows the locus of (�y2z2:z1 ; �22) combinations for which the IV estimator

of � reaches its maximum asymptotic e¢ ciency relative to the corresponding OLS estimator in

this set-up, which is given by the curve

�2y2z2:z1 =
�22

2 (�22 � 1)
:

Further increases in �y2z2:z1 for a given �22 result in decreases in relative e¢ ciency, with OLS and

IV becoming indistinguishable as �y2z2:z1 ! 1, in which case z2 becomes a perfect instrument

for y2.

In this context, Arellano�s (1989a) proposed solution is to replace Gaussian PMLE by Min-

imum Distance (MD) estimators, a special case of minimum chi-square methods popularised in

econometrics by Malinvaud (1970). The rationale is as follows. Let � = (
; �; �; �0; �1; �2; �
2
1; �

2
2)
0

denote the vector of structural parameters. Given that the reduced form of model (2) is�
y1
y2

����� z1; z2 � D [�(z1; z2;�);
(z1; z2;�)] (4)

�(z1; z2;�) =

�
(
 + ��0) + (� + ��1)z1 + ��2z2

�0 + �1z1 + �2z2

�
(5)


(z1; z2;�) =

�
�21 + �

2�22 + 2�12� ��22 + �12
��22 + �12 �22

�
; (6)

4The plot would be the mirror image of Figure 1 for negative values.
5As we shall see in Proposition 1 below, though, this special case is such that, asymptotically, the di¤ference

between the IV and OLS estimators a¤ects � exclusively.
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which is exactly identi�ed, the unrestricted MD estimator coincides with IV, which is Indirect

Least Squares. Then, Arellano (1989a) shows that imposing the restriction �12 = 0 leads to an

overidenti�ed optimal MD procedure (weakly) more e¢ cient than both IV and OLS for � and

�.

This optimal MD estimator requires an asymptotic covariance of the reduced form parameter

estimators which recognises that the third- and fourth-order multivariate cumulants of u1 and

u2 are not usually 0 when they are jointly non-normally distributed.

Appendix A also contains detailed expressions for the asymptotic variances of the optimal

MD estimators of � and �. We have used those expressions to create Figure 2, which depicts

in (�y2z2:z1 ; �22) space (minus one plus) the ratio of the asymptotic variance of the restricted

optimal MD of � to the asymptotic variance of either the OLS estimator (to the left of (3)) or

the IV one (to its right) in the same set up as Figure 1. As can be seen, the e¢ ciency gains are

relatively small over the displayed range, and they vanish when either the partial correlation

goes to 0 or 1 or the co-kurtosis term goes to 0.6

The predictable reaction of a fervent ML believer to Figures 1 and 2 would be to argue

that condition (3) requires the combination of a very good instrument (a high �2y2z2:z1) with

a substantial amount of non-normality (a large �22), in which case the Gaussian assumption

would be very inappropriate. For example, a joint Student t distribution for u1 and u2 cannot

satisfy this condition when the number of degrees of freedom is six or more, and the requirement

becomes increasingly di¢ cult for poor instruments.

A naïve ML solution would be to assume that u1 and u2 follow a bivariate Student t distri-

bution to estimate the model parameters, which should dominate MD. In this respect, we have

used the expressions in Appendix A to create Figures 3a and 3b, which display in (�y2z2:z1 ; �22)

space (minus one plus) the ratio of the asymptotic variances of the t-based MLE of � and �

that impose �12 = 0 to the asymptotic variances of the corresponding restricted optimal MD.

As can be seen, these �gures con�rm that ML does indeed dominate MD in this case.

The problem with this naïve approach is that if the assumed joint distribution is incorrect,

the resulting PMLEs may be inconsistent, as forcefully argued by Newey and Steigerwald (1997).

However, this does not mean that all parameters will be inconsistently estimated. Speci�cally,

Proposition 3 in Fiorentini and Sentana (2019) implies that the unrestricted t-based PMLEs of

� and � are always consistent irrespective of the true distribution. Similarly, their Proposition 1

implies that the restricted t-based PMLEs of � and � will remain consistent when the conditional

6Again, Proposition 1 below implies that the di¤erences in asymptotic variances between the MD, IV and OLS
estimators a¤ect � exclusively in the special case in which the (squared) partial correlation of y2 and z2 given z1
coincides with the R2 in the regression of y2 on z1 and z2
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distribution of ��11 u1 and ��12 u2 is elliptical even though it does not coincide with the distribution

assumed for estimation purposes. Besides, it may be possible to obtain two-step consistent

estimators in closed-form along the lines of Fiorentini and Sentana (2019).

More importantly, Fiorentini and Sentana (2023) show that all parameters will always be

consistently estimated if one assumes for estimation purposes that u1 and u2 follow a �nite mix-

ture of bivariate normals regardless of the true distribution of those innovations and the number

of components of the mixture, as long as the shape parameters are simultaneous estimated with

the mean and variance parameters.7 Thus, the consistency of the Gaussian PMLE is just a

special case.

The ability of �nite Gaussian mixtures to approximate many other distributions mentioned

in the introduction suggests that we may be able relate these �nite mixture PMLEs to SP

estimators which simply exploit the independence of the shocks and the conditioning variables

without making any parametric assumptions. For that reason, in the next section we take SP

estimators as our benchmark to study:

1. the e¢ ciency of the OLS, IV, MD and correct ML estimators relative to SP ones,

2. the relative e¢ ciency of restricted and unrestricted versions of these SP estimators, and

3. the relative e¢ ciency of �nite mixture-based PMLEs relative to SP estimators

in the context of model (2).

3 Theoretical analysis

3.1 Minimum distance revisited

Although the main focus of the analysis in Arellano (1989a) was � and �, it is of some interest

to study the asymptotic e¢ ciency of the optimal MD estimators of the remaining structural

model parameters relative to their OLS and IV counterparts. Given that the number of di¤erent

bivariate cumulants of orders three and four is 4 and 5, respectively, we focus on the special

case in which the joint distribution of the (standardised) structural shocks conditional on the

instruments is spherical, or s(0; I2;�) for short, where � is the possibly in�nite vector of shape

parameters. More formally,

Assumption 1
u1
�1
;
u2
�2

���� z1; z2;�;� � i:i:d: s(0; I2;�) (7)

7On the other hand, if the shape parameters of the mixture are �xed, then Theorem 7 in Gouriéroux, Monfort
and Trognon (1984) guarantees the inconsistency of the resulting estimators except in the Gaussian limiting case.

5



To simplify the expressions further, we are going to follow Appendix B in Fiorentini and

Sentana (2019) and re-parametrise the unrestricted covariance matrix of the structural residuals

as �
�21 �12
�12 �22

�
= �2

�
1 0
 12 1

��
e! 0
0 e�!

��
1  12
0 1

�
; (8)

where  12 is the coe¢ cient in the least squares projection of u2 on u1, and �2 and ! the

geometric mean of their variances and the natural log of the ratio of the standard deviations of

these shocks, respectively, under the maintained assumption that they are uncorrelated.8 Let

�y = (
; �; �; �0; �1; �2; !; �
2)0 denote the vector of structural parameters implied by (8) under

the restriction  12 = 0. Using the expressions for the Jacobian linking �y and � in (A17), we

can then show under standard regularity conditions that:

Proposition 1 Let (�1; �2) and (�2z1 ; �
2
z2 ; �z1z2) denote the means, variances and covariance of

z1 and z2. If Assumption 1 holds, then:
(a) The di¤erence between the asymptotic covariance matrices of the OLS and MD estimators

of �y, �̂
y
LS and �̂

y
MD, respectively, is positive semide�nite of rank 1 at most, with a basis for its

image given by �
�[�0 + (�2 � �z1z2��2z1 �1)�2]; 1;��1 + �z1z2�

�2
z1 �2;01�5

	
; (9)

and a basis for its kernel by �
1; �0 + (�2 � �z1z2��2z1 �1)�2; 0;01�5

�
; (10)�

�1 + �z1z2�
�2
z1 �2; 0; �0 + (�2 � �z1z2�

�2
z1 �1)�2;01�5

�
(11)

and
(05�3; I5) : (12)

(b) The di¤erence between the asymptotic covariance matrices of the IV and MD estimators of

�y, ~�
y
IV and �̂

y
MD, respectively, is positive semide�nite of rank 1 at most, with the same basis

for image and kernel.
(c) The di¤erence between the asymptotic covariance matrices of the OLS and IV estimators of

�y, �̂
y
LS and ~�

y
IV , respectively, is positive/negative semide�nite of rank 1 depending of condition

(3), with exactly the same basis for image and kernel.

This proposition considerably sharpens the results in Arellano (1989a) for the special case of

spherically symmetric disturbances by showing that the asymptotic e¢ ciency gains concentrate

in a single linear combination of the parameters of the �rst equation 
, � and � given by

(9). In contrast, any other linear combination of the parameters orthogonal to this one does

not generate any e¢ ciency gains. Speci�cally, the parameters of the second equation and the

residual variances are estimated just as e¢ ciently by the three procedures.

8More generally, �2 =
p
�21�

2
2 � �212 and ! = ln

�
�1=

p
�22 � �212=�21

�
.
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3.2 Semiparametric estimation and e¢ ciency bounds

The optimal instruments theory of Chamberlain (1987) implies that Arellano�s (1989a) MD

estimator achieves the SP e¢ ciency bound which exploits the correct speci�cation of the con-

ditional mean and variance functions for y1 and y2 in the reduced form model (2) when the

joint third- and fourth-order cumulants of u1 and u2 conditional on z1 and z2 are constant.

However, if this last maintained assumption is true, then one can in principle obtain an even

more e¢ cient MD estimator of the model parameters after augmenting it with equations for the

third- and fourth-order cumulants of the reduced-form residuals under the assumption that the

joint cumulants of u1 and u2 conditional on z1 and z2 are constant up to the eighth-order.

In fact, the results in Bickel et al (1993) allow us to obtain the SP e¢ ciency bound that

exploits that the joint distribution of u1 and u2 is independent of z1 and z2. Moreover, we can

also consider a restricted version of this SP bound under the maintained assumption that (7)

holds, as in Hodgson and Vorkink (2003), which will be bigger in the usual positive semide�nite

sense. Henceforth, we shall refer to this bound and its associated estimator by the abbreviation

SS, reserving SP for the one which does not impose sphericity.

An interesting question in this context is the possibility that some but not all of the para-

meters of model (2) can be partially adaptively estimated, in the sense that their SP estimators

are as asymptotically e¢ cient as the infeasible ML estimators which exploit the information of

the true distribution of the shocks, including the values of their shape parameters. The fol-

lowing proposition provides a precise answer to this question under sphericity for the restricted

estimators that impose �12 = 0:

Proposition 2 If Assumption 1 holds, then:
(a) The di¤erence between the asymptotic covariance matrices of the restricted SS and infeasible

ML estimators of �y, �̂
y
SS and �̂

y
ML(��), respectively, is positive semide�nite of rank 1 at most,

with a basis for its image given by (01�7; 1), and a basis for its kernel by (I7;07�1).
(b) The di¤erence between the asymptotic covariance matrices of the restricted SP and infeasible

ML estimators of �y, �̂
y
SP and �̂

y
ML(��), respectively, is positive semide�nite of rank 5 at most,

with a basis for its image given by (1;01�7); (0;�1; �1 + �z1z2�
�2
z1 �2;01�5), (01�3; 1;01�4) and

(02�6; I2), and a basis for its kernel by (0; �1 + �z1z2�
�2
z1 �2; 1;01�5) and (02�4; I2;02�2).

(c) The di¤erence between the asymptotic covariance matrices of the MD and SP estimators

of �y, �̂
y
MD and �̂

y
SP , respectively, is positive semide�nite of rank 4 at most, with a basis for

its image given by (02�1; I2;02�5) and (02�4; I2;02�2), and a basis for its kernel by (02�6; I2),
(1; �0 + �1�1 + �2�2; �1;01�5) and (01�3; 1; �1; �2;01�2).

The �rst part of the proposition implies that all the structural model parameters except the

overall residual scale �2 can be (partially) adaptively estimated by the SS estimator, as expected

from Proposition 12 in Fiorentini and Sentana (2021).

7



More interestingly, the second part of the proposition implies that in addition to �1 and �2,

the coe¢ cient of the linear projection of y1 onto a constant and z1, which is given by

� + (�1 + �z1z2�
�2
z1 �2)�;

will be adaptively estimated by the restricted SP estimator. In this respect, a very important

by-product of this proposition is that the model parameters that can be partially adaptively

estimated often continue to be consistently estimated under distributional misspeci�cation of

the innovations, as shown by Fiorentini and Sentana (2019, 2021) in the context of multivariate

location-scale models such as (2). We will revisit this issue in the Monte Carlo section.

Finally, the last part of the proposition says that the variances of the structural-form resid-

uals, as well as the intercepts in the reduced-form regressions of y1 and y2 on a constant and the

demeaned values of z1 and z2, which are given by 
+�1(�+��1)+�2(��2) and �0+�1�1+�2�2,

respectively, are asymptotically equally e¢ ciently estimated by the MD and SP estimators. More

importantly, it also says that the e¢ ciency gains are concentrated in the four slope coe¢ cients

of the two structural equations.

It would be tedious but otherwise straightforward to extend Propositions 1 and 2 to the

case in which the distribution of the shocks conditional on z1 and z2 is not spherical as a

function of the four third-order and �ve fourth-order cumulants of u1 and u2. In fact, there

is one important instance in which those higher-order cumulants would be unnecessary for the

comparisons. Speci�cally, we can use Proposition 13.2 in Fiorentini and Sentana (2021) to

prove that, subject to regularity, both the parameters of the unrestricted covariance matrix

of the reduced-form residuals and the intercepts in the reduced-form regressions of y1 and y2

on a constant and the demeaned values of z1 and z2 will be as e¢ ciently estimated by the

IV estimator and the unrestricted SP estimator, while the slopes will always be adaptively

estimated, just as in the second part of Proposition 2 above. The reason is twofold. First,

the information matrix, the feasible parametric e¢ ciency bound, the SP bound, and the usual

Gaussian sandwich formula become block-diagonal between those reduced-form parameters and

the four structural slope coe¢ cients �, �, �1 and �2. In turn, this block-diagonality leads to a

saddle-point characterisation of the asymptotic e¢ ciency of the SP estimator of �, with the slope

coe¢ cients being adaptive and the others only reaching the e¢ ciency of the Gaussian PMLE.

3.3 E¢ ciency gains from the equality constraint

It is also of interest to analyze the e¤ects of imposing the covariance restriction �12 = 0 on

the di¤erent estimators we have considered:

8



Proposition 3 If Assumption 1 holds, then:
(a) The di¤erence between the asymptotic covariance matrices of the unrestricted and restricted

infeasible ML estimators of �y, ~�
y
ML and �̂

y
ML, respectively, is positive semide�nite of rank 1 at

most, with the basis for its image given by (9), and a basis for its kernel by (10), (11) and (12).
(b) The di¤erence between the asymptotic covariance matrices of the unrestricted and restricted

SS estimators of �y, ~�
y
SS and �̂

y
SS, respectively, is positive semide�nite of rank 1 at most, with

the basis for its image given by (9), and a basis for its kernel by (10), (11) and (12).
(c) The di¤erence between the asymptotic covariance matrices of the unrestricted and restricted

SP estimators of �y, ~�
y
SP and �̂

y
SP , respectively, is positive semide�nite of rank 1 at most, with

the basis for its image given by (9), and a basis for its kernel by (10), (11) and (12).

Therefore, when one uses �e¢ cient�estimators, the imposition of the valid equality constraint

�12 = 0 always leads to (weak) e¢ ciency gains for exactly the same linear combination of the

parameters of the �rst structural equation for which optimal MD leads to an e¢ ciency gain

relative to both OLS and IV. In fact, it is straightforward to generalise (a) so that it applies to

the feasible parametric ML estimators of �y which simultaneously estimate the �nite vector of

shape parameters �, as well as to the ML estimators of these parameters themselves. This is in

contrast to the seemingly counterintuitive result in Arellano (1989a), which simply re�ects the

fact that OLS does not use the optimal MD weighting matrix in the non-normal case.

3.4 Finite mixtures as sieves

Finally, we study the extent to which PMLEs based on �nite mixtures of normals with an

increasing number of components could constitute a proper sieves-type SP procedure, as we

argued in the introduction.

We do so �rst when the shocks to model (2) conditional on z1 and z2 follow a bivariate

Student t with 0 means, unit standard deviations, no correlation and 5 degrees of freedom

but whose parameters are estimated by �nite scale mixture-based log-likelihood functions with

K = 2; 3 and 4 components. For comparison purposes, we consider four di¤erent benchmarks

that impose the restriction �12 = 0: (i) the MLE based on the correctly speci�ed log-likelihood

function that �xes the number of degrees of freedom to 5, (ii) the SS estimator, (ii) the OLS

estimator, and (iv) the optimal MD estimator.

We compute the expected value of the Hessian and outer product of the score of the scale

mixture-based PMLEs by means of large sample averages of the analytical expressions in Fioren-

tini and Sentana (2021) evaluated at the true values of the mean and variance parameters in �

and the pseudo true values of the shape parameters, which we numerically obtain from samples

of millions of simulated observations.

The results, which we report in Table 1, show that the scale mixture-based PMLEs of all

the model parameters except the overall residual scale �2 quickly approach the asymptotic

9



e¢ ciency of the infeasible MLE despite the fact that no �nite scale mixture of normals can

approximate the unbounded higher-order moments, tail behaviour or non-linear tail dependence

of a multivariate Student t. In fact, although panel (a) in Figure 3 of Gallant and Tauchen

(1999) clearly illustrates that a more complex misspeci�ed model does not necessarily lead to

more e¢ cient estimators because one is not simply adding new elements to the score, but also

changing the pseudo-true values of the shape parameters at which one evaluates the original

components of the score, we �nd that the e¢ ciency improvements occur monotonically.9 As a

result, it seems that the covariance matrix of the errors in the least squares projection of the

scores of the true model onto the scores of the mixture-based log-likelihood becomes smaller and

smaller as K increases (see Proposition 7 in Calzolari, Fiorentini and Sentana (2004)).

In contrast, the asymptotic variances of the scale mixture-based PMLEs of �2 coincides with

the asymptotic variances of the OLS estimators irrespective of the number of components, which

re�ects (i) the block diagonality of the di¤erent asymptotic covariance matrices in Proposition

12.2 of Fiorentini and Sentana (2021) because the determinant of (8) is precisely �4, and (ii)

the fact that the ML estimators of the mean in a scale mixture of K gammas is numerically the

same regardless of K, as explained in Fiorentini and Sentana (2023).

We then conduct a similar exercise when u1 and u2 conditional on z1 and z2 follow a bivariate

asymmetric Student t with 0 means, unit standard deviations, no correlation, negative tail

dependence and the same �22 as in the symmetric case. We estimate the unrestricted model

parameters using general �nite mixture-based log-likelihood functions with K = 2; 3 and 4

components, and consider as benchmarks the following three unrestricted estimators: infeasible

MLE, SP, and IV. In this case, we compute the expected value of the Hessian and outer product of

the score of the mixture-based PMLEs using large sample averages of the theoretical expressions

in Amengual, Fiorentini and Sentana (2023) evaluated at the true values of the mean and

variance parameters and the pseudo true values of the shape parameters obtained from very

large samples of simulated observations.

The results we report in Table 2 show that the mixture-based PMLEs of the slope parameters

approach the asymptotic e¢ ciency of the infeasible MLE despite the fact that no �nite mixture

of normals can approximate the unbounded higher-order moments, tail behaviour or non-linear

tail dependence of a multivariate asymmetric Student t. Again, we �nd that the e¢ ciency

improvements occur monotonically. In contrast, the asymptotic variances of the mixture-based

PMLEs of the intercepts and covariance matrix of the reduced form in mean-deviation form

9 In this respect, the e¢ cieny gains of any K > 1 relative to K = 1 should be easy to prove formally because
the ML estimators of the unconditional mean and covariance matrix of the mixture model coincide regardless of
K.
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coincide with the asymptotic variances of the corresponding IV estimators irrespective of the

number of components, which re�ects the fact that the ML estimators of the mean vector and

covariance matrix in mixtures of K normals are numerically the same for any K � 1 (see also

the discussion at the end of section 3.2).

4 Monte Carlo analysis

In previous sections, we have derived several asymptotic results regarding the relative e¢ -

ciency of the LS, IV and MD estimators, as well as the �nite mixture-based PMLEs, the SS

estimators, and the feasible and infeasible MLEs. In this section, in contrast, we make use of an

extensive Monte Carlo simulation exercise to asses their small sample behaviour.

4.1 Design

We consider three di¤erent parameter con�gurations:

a. �22 = 3 and �y2z2:z1 = (�22 � 1)�
1
2 = 1=

p
2 ' 0:71, which is such that the IV and OLS

estimators of � and � have the same asymptotic e¢ ciency (see the solid line in Figure 1);

b. �22 = 3 and �y2z2:z1 = 2�
1
2

p
�22=(�22 � 1) =

p
3=2 ' 0:87, which corresponds to the

dotted line in Figure 1; and

c. �22 = 7=3 and �y2z2:z1 = (�22 � 1)�
1
2 =

p
3=2 ' 0:87, which is another case of equal

e¢ ciency of IV and OLS, but with lower co-kurtosis.10

As for the distribution of the structural shocks, we consider four non-Gaussian possibilities

in which (u1; u2) follow a:

1. Student t distribution with � = 5 or � = 5:5 degrees of freedom corresponding to �22 = 3

and �22 = 7=3, respectively;

2. scale mixture of two normals in which the higher variance component has probability

� = :05 and the ratio of the variances is either { = 0:094 or { = 0:122 corresponding to

�22 = 3 and �22 = 7=3, respectively;

3. asymmetric Student t distribution with negative tail dependence b = (�1;�1)0 but degrees

of freedom � = 9:65 or � = 10:38, respectively;

10We do not consider the case in which �22 = 7=3 and �y2z2:z1 = :5
p
�22=(�22 � 1) because the e¢ ciency of IV

relative to OLS for � is just 1:02 in that case.

11



4. location-scale mixture of two normals in which the higher variance component has proba-

bility � = :05, �22 is as in 1., and the marginal skewness of u1 and u2 is as in 3., which is

achieved with

� =

�
�1:01
�1:06

�
or � =

�
�1:16
�1:24

�
and @L =

�
0:32 0
0 0:32

�
or
�
0:38 0
0 0:38

�
;

respectively (see Appendix D for further details on this parametrisation).

For illustrative purposes, we display the joint densities and contours for standardised versions

of these distributions in comparison to the bivariate spherical Gaussian distribution in Figures

4 and 5 for the spherically symmetric and general cases, respectively.

In all simulated samples the exogenous variables z = (z1; z2)0 are generated according to a

bivariate Student t distribution with 8 degrees of freedom with mean vector � = (1; 1)0 and an

identity variance covariance matrix.11

Next, for each choice of the partial correlation �y2z2:z1 mentioned above, we choose

R22 =
2�y2z2:z1
1 + �y2z2:z1

and �y2z1 = �y2z2 =

s
R22 � �2y2z2:z1
1� �y2z2:z1

;

which guarantees that (i) �2y2z2:z1 � R22 � 1, and (ii) the two slope coe¢ cients of the second

equations coincide. If we �x the variance of both y1 and y2 to 1 without loss of generality,

these restrictions implicitly determine the variance of the error term of the second equation as

�22 = 1� R22 . We also impose the same balancing restriction on the slopes of the �rst equation

by choosing

� = � =

s
(1 + �y2z1)R

2
1

2
:

Then, we �x R21 to 0:5, which implies �
2
1 = 1=2, an arbitrary choice that simply scales the

asymptotic variances of all the di¤erent estimators of � and � by the same amount (1�R21).12

Finally, we choose the values of the intercepts 
 and �0 so that E(y1) = E(y2) = 1 (see Appendix

C for further details).

4.2 Simulation results

We simulate 10; 000 samples of length N = 250 and N = 1; 000 for each of the above designs.

For each simulated sample, we compute the IV, LS and optimal MD estimators, together with

unrestricted and restricted versions of PMLE estimators that use either a discrete mixture of
11Notice that the choice of �z1z2 = 0 considerably simpli�es some of the eigenvectors in Propositions 1, 2 and

3. For example the linear combination that according to Proposition 2.b can be adaptively estimated by the SP
estimator and consistenly estimated by a distributionally misspeci�ed ML estimator becomes � + �1�.
12 In design a., we then have R22 = 2=3, �

2
2 = 1=3, 
 = 0:20, � = � = 0:40, �0 = 0:16, and �1 = �2 = 0:58. In

turn, in designs b and c., R22 = 6=7, �22 = 1=7, 
 = 0:22, � = � = 0:39, �0 = �0:31, and �1 = �2 = 0:66.
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two normals �UPML(mn), RPML(mn)�or a Student t distribution �UPML(t) and RPML(t).

In both cases, we simultaneously estimate the shape parameters. Finally, we also compute a

two-step SS estimator that starting from the consistent OLS estimator, �LS , carries out one

BHHH iteration using the e¢ cient spherically symmetric semiparametric score estimated non-

parametrically. Speci�cally, we compute the standardised reduced form residuals

v̂� = 
̂
� 1
2 [y � � (z1; z2;�LS)] ;

where 
̂
� 1
2 denotes the inverse of the Cholesky decomposition of the sample covariance matrix of

the reduced form residuals [y � � (z1; z2;�LS)], de�ne &̂ = v̂�0v̂� and estimate nonparametrically

the density of � = &1=3, g(�), and its derivative, g0(�), using a Gaussian kernel with the usual

Silverman (1986) �rule-of-thumb�bandwidth. The change of variable formula then yields

�(&) =
�2
3�2

g0(�)

g(�)
+

4

3�3
;

which we use to compute the semiparametric e¢ cient score using expression (C30) in the Sup-

plemental Appendix C of Fiorentini and Sentana (2021) by subtracting

Ws(�LS)

�
�(&)

&

2
� 1� 2

(4�+ 2)

� &
2
� 1
��

from the nonparametric score, where � denotes the coe¢ cient of multivariate excess kurtosis

(see Mardia (1970) for details) andWs(�) is de�ned in Appendix A.5.

We display the �nite sample results by means of the box-plots in Figures 6 to 11, which

concentrate on � and �, the two parameters of interest. Figures 6 to 8 show the Monte Carlo

results for 250 observations for cases a., b. and c., respectively, while Figures 9 to 11 contain

the results for 1; 000 observations in the same order.

Our �ndings indicate that OLS is better in �nite samples than what the asymptotic theory

suggests because the sample co-kurtosis coe¢ cient is downward biased for �22. In fact, the

asymptotic e¢ ciency of the IV estimator of � relative to LS can only be observed in panels b

and d of Figure 10 when the sample length is large and the distribution of the shocks is either a

spherical or a general �nite mixture of normals, which is when there seems to be a lower small

sample bias for �22.

They also con�rm that optimal MD dominates both OLS and IV in �nite samples, but

the need to estimate third- and fourth-order multivariate cumulants to compute the optimal

weighting matrix handicaps it somewhat (see Altonji and Segal (1996) for analogous results in

the context of optimal GMM estimators when the shocks are fat tailed)

Our results also indicate that non-Gaussian PML based on a restrictive parametric distribu-
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tion like the Student t or a discrete scale mixture of normals works well when the true distribution

is spherical, but it generates inconsistencies otherwise when we impose the constraint �12 = 0.

Notice, though, that the unrestricted estimators are always consistent for the slope parameters

while the restricted estimators seem to be consistent for � + �1� despite being inconsistent for

both � and �, which is in line with our theoretical discussion following Proposition 2.

In turn, the performance of the two-step SS estimators is very similar to the performance of

the corresponding parametric estimators, although their �nite sample variances are larger than

what the asymptotic theory predicts. Speci�cally, the consistency pattern of the restricted and

unrestricted SS estimators is almost identical.

More importantly, we �nd that non-Gaussian PMLEs based on a �exible distribution like a

general �nite mixture of normals works well in practice regardless of the true distribution, sys-

tematically dominating MD. In addition, the version that imposes the valid covariance restriction

�12 = 0 is always more e¢ cient than the unrestricted one.

5 Directions for further research

As we mentioned at the end of section 3.2, it would be useful to generalise our theoret-

ical results dropping the assumption of spherical symmetry. Similarly, and although we have

seen that our proposed �nite mixture-based PMLEs get close to achieving the SP e¢ ciency

bound both under sphericity and in general, an obvious extension of our Monte Carlo exper-

iments would be to consider standard two-step SP estimators that starting from a consistent

estimator such as OLS carry out one BHHH iteration using the e¢ cient SP score estimated non-

parametrically without imposing spherical symmetry. The curse of dimensionality in estimating

multivariate densities, though, might further reduce the theoretical advantages of this method

in �nite samples.

Another worthwhile exercise would be to extend the analysis in this paper to the general si-

multaneous equation model with an arbitrary numbers of endogenous variables and instrumental

ones considered by Arellano (1989a). Aside from involving more complex analytical expressions

than in the bivariate example we have considered, the main practical complication would be

that the number of free parameters of a standardised multivariate mixture increases with the

square of the cross-sectional dimension, as we explain in Appendix D.

Last, but not least, deriving a formal result that shows that �nite Gaussian-mixture based

PMLEs may provide a proper sieve ML estimator when the number of components increases at

a suitable rate constitutes a particularly interesting avenue for further research.
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Appendices

A Asymptotic covariance matrices

A.1 Instrumental Variables (IV)

Let vi = (v1i; v2i)0 denote the reduced form innovations

vi = yi �Czi = B�1ui,

where yi = (y1i; y2i)0 and zi = (z1i; z2i)0, so that E(vijzi) = 0 and V (vijzi) = B�1�B0�1 = 
,

with

B0�1 =

�
1 �
0 1

�
:

In this context, the unrestricted Gaussian PMLE of � and � coincides with the IV estimator

that uses a constant, z1 and z2 as instruments in the �rst equation. To consider both equations

at once, let # = (�0; �12)0 and

ZUdi(#) = [Z
U
li (#);Z

U
si(#)]; (A1)

where

ZUli (#) =
@�0i(#)

@#

�

1
2
0(#);

ZUsi(#) =
1

2

@vec0[
(#)]

@#

h

�

1
2
0(#)

�

1
2
0(#)

i
;

@�0i(#)

@#
=

0BBBBBBBBBBBB@

1 0
�0 + �1z1i + �2z2i 0

z2i 0
� 1
�z1i z1i
�z2i z2i
0 0
0 0
0 0

1CCCCCCCCCCCCA
,
@vec0[
(#)]

@#
=

0BBBBBBBBBBBB@

0 0 0 0
2(��22 + �12) �22 �22 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
�2 � � 1
2� 1 1 0

1CCCCCCCCCCCCA
;

and


�
1
2 (#) =

0B@
1p

�21+�
2�22+2��12

0

� ��22+�12
�21+�

2�22+2��12

�r
�21�

2
2��212

�21+�
2�22+2��12

r
�21+�

2�22+2��12
�21�

2
2��212

1CA
is the inverse of the (lower) Cholesky decomposition of 
.

We can then exploit Proposition C2 in Supplementary Appendix C of Fiorentini and Sentana

(2021) to obtain

AV ar(
p
n~#IV ) = [AU;##(#)]�1BU;##(#;%)[AU;##(#)]�1; (A2)
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where

AU;##(#) = E
�
ZUdi(#)K(0)ZU 0di (#)

�
and BU;##(#;%) = E

�
ZUdi(#)Kv(#;%)ZU 0di (#)

�
;

with

Kv(#;%) = V [edi(#;0)] =

�
I2 �v(#;%)

�v0(#;%) �v(#;%)

�
; (A3)

�v(#0;%0) = E[v�i vec
0(v�i v

�0
i )], �

v(#0;%0) = E[vec(v�i v
�0
i � I2)vec0(v�i v�0i � I2)] and v�i =


�1=2vi, so that �v(0) = 0 and �v(0) = (I4 +K22) if we use % = 0 to denote normality and

Kmn for the commutation matrix of orders m and n (see e.g. Magnus and Neudecker (2019)).

Given that the assumption of constant conditional higher-order cumulants applies to the

structural model, though, we need to relate the higher-order moments of the reduced form

residuals to those of the structural ones. De�ning

F(�) = L2[B
�1(�)
B�1(�)]D2 =

24 1 2� �2

0 1 �
0 0 1

35 ;
where L2 and D2 are the elimination and duplication matrices of order 2, respectively (see

Magnus and Neudecker (2019)), we will have that

E[vivec
0(viv

0
i)] = �B�1(�)�(�)

1
2�u(%)[�(�)

1
2
0 
�(�)

1
2
0]F0(�)

and

E[vec(viv
0
i � I2)vec0(viv0i � I2)] = F(�)[�(�)

1
2 
�(�)

1
2 ]�u(%)[�(�)

1
2
0 
�(�)

1
2
0]F0(�);

where �u(%0) = E[u�i vec
0(u�iu

�0
i )], �

u(%0) = E[vec(u�iu
�0
i � I2)vec0(u�iu�0i � I2)] and u�i =

��1=2ui.

After some tedious calculations, it is straightforward to prove that

AV ar(
p
n~�IV ) =

�21�
2
z1

�22(�
2
z1�

2
z2 � �2z1z2)

and

AV ar(
p
n~�IV ) =

�21(�
2
1�
2
z1 + �

2
2�
2
z2 + 2�1�2�z1z2)

�22(�
2
z1�

2
z2 � �2z1z2)

:

For our purposes, it is convenient to rewrite these expressions as

AV ar(
p
n~�IV ) =

(1�R21)(1� �2y2z2:z1)
(1�R22)�2y2z2:z1

and

AV ar(
p
n~�IV ) =

R22(1�R21)(1� �2y2z2:z1)
(1�R22)�2y2z2:z1

;
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where R21 and R22 are the population coe¢ cients of determination in equations (1) and (2),

respectively, and �y2z2:z1 the correlation coe¢ cient between y2 and z2 after partialling out the

e¤ect of z1.

A.2 Ordinary Least Squares (LS)

As mentioned in Section 2, the restricted Gaussian PMLE that imposes �12 = 0 coincides

with the OLS estimator of the �rst equation. To consider both equations at once, let

ZRdi(�) = (I8;08�1)Z
U
di(#; 0): (A4)

Then, analogous calculations to the ones in the previous subsection imply that

AV ar(
p
n�̂LS) = A�1R;��(�)BR;��(�;%)A

�1
R;��(�); (A5)

where

AR;��(�) = E
�
ZRdi(�)Kv(0)ZR0di (�)

�
and BR;��(�;%) = E

�
ZRdi(�)Kv(�;%)ZR0di (�)

�
;

After some straightforward calculations, it is easy to show that

AV ar(
p
n�̂LS) =

�21�z1(�
2
z1�

2
z2 � �

2
z1z2)�

2
2

[�22�
2
z1z2 � �2z1(�22 + �22�2z2)]2

+
�21�

2
2�
4
z1�22

[�22�
2
z1z2 � �2z1(�22 + �22�2z2)]2

and

AV ar(
p
n�̂LS) =

�21f�2z2�
2
2[�

4
z1�

2
1 + 2�z1(�

2
2 + �z1z2�1�2)� �2z1z2�

2
2] + �

2
z1�

4
z2�

4
2g

[�22�
2
z1 + �

2
2(�

2
z1�

2
z2 � �2z1z2)]2

+
�21(�

2
2 + �1�2�z1z2)[�

2
2�
2
z1 � �z1z2(�

2
z1�1�2 + 2�z1z2�

2
2)]

[�22�
2
z1 + �

2
2(�

2
z1�

2
z2 � �2z1z2)]2

+
�21�

2
2(�

2
z1�1 + �z1z2�2)

2�22
[�22�

2
z1 + �

2
2(�

2
z1�

2
z2 � �2z1z2)]2

:

Again, it is convenient to rewrite these expressions as

AV ar(
p
n�̂LS) =

(1�R21)(1� �2y2z2:z1)[�22(1� �
2
y2z2:z1) + �

2
y2z2:z1 ]

1�R22

and

AV ar(
p
n�̂LS) =

(1�R21)(1� �2y2z2:z1)[1 + (�22 � 1)(R
2
2 � �2y2z2:z1)]

1�R22
;
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A.3 Optimum Minimum Distance (MD)

Let c = vec(C) and ! = vech(
) denote the parameters of the unrestricted reduced form

model. From equations (5)-(6), we will have that

c10 = 
 + ��0; c20 = �0; !11 = �11 + �
2�22 + 2��12;

c11 = � + ��1; c21 = �1; !12 = ��22 + �12;
c12 = ��2; c22 = �2; !22 = �22:

;

Let ~�LS= (~c10; ~c11; ~c12; ~c20; ~c21; ~c22; ~!11; ~!12; ~!22)
0 denote their unrestricted Gaussian PML

estimators, which coincide with equation by equation OLS. To obtain the asymptotic distri-

butions of these estimators, we need the �rst derivatives of the conditional mean vector and

covariance matrix with respect to the unrestricted reduced form parameters, which are given by

@Czi
@c0

= z0i 
 I2 and
@vec[
(�)]

@!0
= D2:

In this notation, the contribution to the Gaussian log-likelihood scores for c and ! corresponding

to observation i will be given by

sci(c;!) = zi 

�1(�)vi(c)

and

s!i(c;!) =
1

2
D0
2vec[
(�)

�1vi(c)v
0
i(c)
(�)

�1 �
(�)�1]:

Consequently, the outer product of the scores will be

sci(c;!)s
0
ci(c;!) = ziz

0
i 

(�)

�1vi(c)v
0
i(c)
(�)

�1;

s!i(c;!)s
0
ci(c;!) =

1

2
D0
2vec[
(�)

�1vi(c)v
0
i(c)
(�)

�1 �
(�)�1][z0i 
 v0i(c)
(�)
�1]

and

s!i(c;!)s
0
!i(c;!) =

1

4
D0
2vec[
(�)

�1vi(c)v
0
i(c)
(�)

�1 �
(�)�1]

�vec0[
(�)�1vi(c)v0i(c)
(�)
�1 �
(�)�1]D2:

Similarly, we can easily adapt the expressions in Amengual, Fiorentini and Sentana (2022)

to write the contribution of observation i to the Hessian matrix hc;!i(c;!) as

= �
�

(ziz
0
i 

(�)

�1) [ziv
0
i(c)


�1(�)

(�)�1]D2

D0
2[
(�)

�1vi(c)z0i 

(�)
�1] D0

2f
(�)
�1 
 [
(�)�1vi(c)v0i(c)
(�)

�1 � 1
2
(�)

�1]gD2

�
:

Thus, we have all the ingredients to compute AV ar(
p
n~�LS) using the standard sandwich for-

mula in White (1982) and Gouriéroux, Monfort and Trognon (1984).

On this basis, we can show that the asymptotic variance of Malinvaud�s (1970) optimum MD
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estimator will be given by

AV ar(
p
n�̂MD) =

�
@�0(�)

@�

h
AV ar(

p
n~�LS)

i�1 @�(�)
@�0

��1
; (A6)

where

�(�) =

0BBBBBBBBBBBB@

c10 � 
 � ��0
c11 � � � ��1
c12 � ��2
c20 � �0
c21 � �1
c22 � �2

!11 � �11 � �2�22
!12 � ��22
!22 � �22

1CCCCCCCCCCCCA
:

Speci�cally, we obtain that

AV ar(
p
n�̂MD) =

�21�
2
z1�22

�2z1�
2
2 + (�

2
z1�

2
z2 � �2z1z2)�22�22

and

AV ar(
p
n�̂MD) =

�21[�
2
2 + (�

2
z1�

2
1 + �

2
z2�

2
2 + 2�z1z2�1�2)�22]

�2z1�
2
2 + (�

2
z1�

2
z2 � �2z1z2)�22�22

;

which, rewritten in terms of the population coe¢ cients of determination, become

AV ar(
p
n�̂MD) =

(1�R21)(1� �2y2z2:z1)�22
(1�R22)[1 + �2y2z2:z1(�22 � 1)]

and

AV ar(
p
n�̂MD) =

(1�R21)(1� �2y2z2:z1)[1 +R
2
2(�22 � 1)]

(1�R22)[1 + �2y2z2:z1(�22 � 1)]
:

A.4 Maximum likelihood with spherical innovations

Invoking Proposition C1 in Supplementary Appendix C of Fiorentini and Sentana (2021),

we can obtain the asymptotic variance of the ML estimator that imposes �12 = 0 as

AV ar(
p
n�̂ML) = I�1R (�;�), where IR(�;�) = E[ZRi (�)M(�)ZR0i (�)]; (A7)

ZRi (�) =

�
ZRdi(�) 0
0 Iq

�
, M(�) =

0@ Mll(�) 0 0
0 Mss(�) Msr(�)
0 M0

sr(�) Mrr(�)

1A ;

Mll(�) = mllI2;

Mss(�) = mss (I4 +K22) + [mss � 1]vec(I2)vec0(I2);

Msr(�) = vec(I2)msr
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and

Mrr(�) = V [ ert(�)j�] = �E[@ert(�)=@�0
���];

with

mll = E
h
�2(& i;�)

& i
2

i
;

mss = 1 + E
�
@�(& i;�)

@&

� & i
2

�2�
; and

msr = �E
�
& i
2

@�(& i;�)

@�0

�
:

Similarly, we can compute the asymptotic variance of the unrestricted ML estimator which also

estimates �12 as

AV ar(
p
n~�ML) = I�1U (�;�), where IU (�;�) = E[ZUi (�)M(�)ZU 0i (�)]; (A8)

with

ZUi (�) =

�
ZUdi(�) 0
0 Iq

�
:

As a consequence,

AV ar(
p
n�̂ML) =

�21�
2
z1

mss�22�
2
z1 +mll�

2
2(�

2
z1�

2
z2 � �2z1z2)

and

AV ar(
p
n�̂ML) =

�21[mss�
2
2 +mll(�

2
1�
2
z1 + �

2
2�
2
z2 + 2�1�2�z1z2)]

mll[mss�22�
2
z1 +mll�

2
2(�

2
z1�

2
z2 � �2z1z2)]

:

Analogous calculations using ZUt (�) in place of Z
R
t (�) for the unrestricted ML estimator

yield

AV ar(
p
n~�ML) =

�21�
2
z1

mll�22(�
2
z1�

2
z2 � �2z1z2)

and

AV ar(
p
n~�ML) =

�21(�
2
1�z1 + �

2
2�
2
z2 + 2�1�2�z1z2)

mll�22(�z1�
2
z2 � �2z1z2)

:

Once again, we can write these expressions as

AV ar(
p
n�̂ML) =

(1�R21)(1� �2y2z2:z1)
(1�R22)[(1� �2y2z2:z1)mss + �2y2z2:z1mll]

and

AV ar(
p
n�̂ML) =

(1�R21)(1� �2y2z2:z1)[R
2
2mll + (1�R22)mss]

(1�R22)mll[(1� �2y2z2:z1)mss + �2y2z2:z1mll]
for the restricted estimator, and as

AV ar(
p
n~�ML) =

(1�R21)(1� �2y2z2:z1)
(1�R22)�2y2z2:z1mll
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and

AV ar(
p
n~�ML) =

R22(1�R21)(1� �2y2z2:z1)
(1�R22)�2y2z2:z1mll

for the unrestricted one.

A.5 Spherically symmetric semiparametric estimator (SS)

From Proposition C3 in Supplementary Appendix C of Fiorentini and Sentana (2021), the

spherically symmetric SP e¢ ciency bound is given by

�Sj(�) = Ij;��(�)�Wj
s(�)W

j0
s (�) �

�
[2mss � 1]�

2

4�+ 2

�
where

Wj
s(�) = Z

j
d(�)[0

0; vec0(I2)]
0 for j = R;U;

and

I��(�;�) = E
�
Zdt(�)Mdd(�;�)Z

0
dt(�)

�
:

Under suitable regularity conditions, we have that

AV ar(
p
n�̂SS) = [�SR(�)]�1 (A9)

and

AV ar(
p
n~�SS) = [�SU (�)]�1: (A10)

Tedious but otherwise straightforward calculations show that for the restricted estimator

that imposes �12 = 0 we obtain

AV ar(
p
n�̂SS) = AV ar(

p
n�̂ML) and AV ar(

p
n�̂SS) = AV ar(

p
n�̂ML);

while for the unrestricted one we get

AV ar(
p
n~�SS) = AV ar(

p
n~�ML) and AV ar(

p
n~�SS) = AV ar(

p
n~�ML):

A.6 Maximum likelihood with general innovations

If we use Proposition D3 in Supplementary Appendix D of Fiorentini and Sentana (2021),

we can obtain the asymptotic variance of the ML estimator that imposes �12 = 0 by computing

AV ar(
p
n�̂ML) = I�1GR(�;%), where IGR(�;%) = E[ZGRi (�)M(%)ZGR0i (�)];

where

ZGRdi (�) = [Z
R
li (�);Z

GR
si (�)]; (A11)
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ZGRsi (�) =
@vec0[


1
2 (�)]

@�

h
I2 

�

1
2
0(�)

i
;

@vec0[

1
2 (�)]

@�
=

266666666666666664

0 0 0 0
��22p
�21+��

2
2

�21�
2
2

(�21+��
2
2)
3=2 0 � �

�21

�
�21�

2
2

�21+��
2
2

�3=2
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1

2
p
�21+��

2
2

� ��22
2(�21+��

2
2)
3=2 0

�2�22
2(�21+�

2�21�
2
2)

r
�21�

2
2

�21+��
2
2

�2

2
p
�21+��

2
2

2��21+�
3�22

2(�21+��
2
2)
3=2 0

�21
2(�21�

2
2+�

2�22)

r
�21�

2
2

�21+��
2
2

377777777777777775
;

and

M(%) =

24 Mll(%) Mls(%) Mlr(%)
M0

ls(%) Mss(%) Msr(%)
M0

lr(%) M0
sr(%) Mrr(%)

35 ;
with

Mll(%) = V [elt(�)j�] = E
�
@2 ln f("�t ;%)=@"

�@"�0
��%� ;

Mls(%) = E[elt(�)est(�)
0j�] = E

�
@2 ln f("�t ;%)=@"

�@"�0 � ("0�t 
 I2)
��%� ;

Mss(%) = V [est(�)j�] = E
�
("�t 
 I2) � @2 ln f("�t ;%)=@"�@"�0 � ("�0t 
 I2)j%

�
�K22;

Mlr(%) = E[elt(�)e
0
rt(�)j�] = �E

�
@2 ln f("�t ;%)=@"

�@%0j%
�
;

Msr(%) = E[est(�)e
0
rt(�)j�] = �E

�
("�t 
 I2)@2 ln f("�t ;%)=@"�@%0j%

�
;

and

Mrr(%) = V [ert(�)j�] = �E
�
@2 ln f("�t ;%)=@%@%

0j�
�
:

Analogously, we can obtain AV ar(
p
n~�ML) = I�1U (�;%) by exploiting the expressions for

the derivatives of the unrestricted model that we obtained when we discussed the IV estimators.

A.7 Semiparametric estimator (SP)

We can make use of Proposition D3 in Supplementary Appendix D of Fiorentini and Sentana

(2021), which indicates that the SP e¢ ciency bound for j = R;U will be given by

�Sj(�) = I��(�;%)� ZGjd (�)
�
Mdd (%)�K(0)Kv+(%)K(0)

�
ZGj0d (�); (A12)

where + denotes the Moore-Penrose inverse, with

Mdd (%) =

�
Mll(%) Mls(%)
M0

ls(%) Mss(%)

�
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and the matrix of third and fourth order central moments Kv(%) in (A3). Then, under suitable

regularity conditions, we will have that

AV ar(
p
n�̂SP ) = [ �SR(�)]�1 (A13)

and

AV ar(
p
n~�SP ) = [ �SU (�)]�1: (A14)

The expression for Ku(%) simpli�es considerably in the spherically symmetric case because

E(u�iu
�0
i 
 u�i ) = 0; (A15)

E(u�iu
�
i
0 
 u�iu�i 0)=E[vec(u�iu�i 0)vec0(u�iu�i 0)]= (�+1)[(I4+K22)+vec (I2) vec

0 (I2)]: (A16)

As a result, after some tedious calculations we obtain that for the estimator that imposes

the restriction �12 = 0,

AV ar(
p
n�̂SP ) =

�21�
2
z1(1 + �)

�22�
2
z1 +mll(1 + �)�

2
2(�

2
z1�

2
z2 � �2z1z2)

and

AV ar(
p
n�̂SP ) =

�21[�
2
2 + (1 + �)mll(�

2
1�
2
z1 + �

2
2�
2
z2 + 2�1�2�z1z2)]

mll[�22�
2
z1 + (1 + �)�

2
2(�

2
z1�

2
z2 � �2z1z2)]

;

while for the unrestricted one,

AV ar(
p
n~�SP ) =

�21�
2
z1

mll�22(�
2
z1�

2
z2 � �2z1z2)

and

AV ar(
p
n~�SP ) =

�21(�
2
1�
2
z1 + �

2
2�
2
z2 + 2�1�2�z1z2)

mll�22(�
2
z1�

2
z2 � �2z1z2)

:

Once again, we can rewrite these expressions as

AV ar(
p
n�̂SP ) =

(1�R21)(1� �2y2z2:z1)(1 + �)
(1�R22)[(1� �2y2z2:z1) + �2y2z2:z1mll(1 + �)]

and

AV ar(
p
n�̂SP ) =

(1�R21)(1� �2y2z2:z1)(1 + �)[1�R
2
2 +R

2
2mll(1 + �)]

(1�R22)[(1� �2y2z2:z1) + �2y2z2:z1mll(1 + �)]mll(1 + �)
;

in the restricted case, and as

AV ar(
p
n~�SP ) =

(1�R21)(1� �2y2z2:z1)
mll(1�R22)�2y2z2:z1

and

AV ar(
p
n~�SP ) =

R22(1�R21)(1� �2y2z2:z1)
mll(1�R22)�2y2z2:z1

when �12 is also estimated.
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A.8 Reparametrisations

The results in the previous subsections can be used to derive the asymptotic distribution of

alternative parametrisations. Speci�cally, for estimators that impose �12 = 0, the asymptotic

covariance of the reparametrisation in (8) is simply

AV ar(
p
n�̂

y
) = J�y�AV ar(

p
n�̂)J0

�y�
,

where

J�y� =
@�y

@�0
=

264 I6 0 0
0 1

2�21
� 1
2�22

0 �2
2�1

�1
2�2

375 : (A17)

In turn, for unconstrained estimators that also estimate �12, so that #y = (#0;  12)
0, we

would have

AV ar(
p
n~#

y
) = J#y#AV ar(

p
n~#)J0

#y#

with

J#y# =
@#y

@#0
=

2666664
I6 0 0 0

0
�21�

2
2�2�212

2�21(�
2
1�

2
2��212)

� �21
2(�21�

2
2��212)

�12
�21�

2
2��212

0
�22

2
p
�21�

2
2��212

�21
2
p
�21�

2
2��212

� �12
2
p
�21�

2
2��212

0 ��12
�41

0 1
�21

3777775 : (A18)

B Proofs of Propositions

Proof of Proposition 1

Computing in Mathematica the spectral decomposition of AV ar(
p
n�̂LS)�AV ar(

p
n�̂MD)

using the expressions (A5) and (A6), we �nd that it has only one eigenvalue di¤erent from zero,

namely,

(�22 � 1)2�22�21�22f�2z1z2(1 + �
2
1)�

2
2 + [1 + �

2
1 + (�0 + �2�2)

2]�4z1g(�
2
z1�

2
z2 � �

2
z1z2)

[�22�
2
2(�

2
z1�

2
z2 � �2z1z2)� �22�2z1 ][�22�2z1 � �22(�2z1�2z2 � �2z1z2)]2

�
2(�22 � 1)2�22�21�22�z1z2�2[�1(�0 + �2�2)� �1]�z1(�2z1�

2
z2 � �

2
z1z2)

[�22�
2
2(�

2
z1�

2
z2 � �2z1z2)� �22�z1 ][�22�z1 � �22(�2z1�2z2 � �2z1z2)]2

;

which is non-negative, with�
�z1(1 + �2�2)� �z1z2�2�1

�z1�1 + �z1z2�2
;� �z1

�2z1�1 + �z1z2�2
; 1;01�5

�0
(B19)

as associated eigenvector.

Analogously, after computing the spectral decomposition of AV ar(
p
n~�IV )�AV ar(

p
n�̂MD)

using the expressions (A2) and (A6), we �nd that it has only one eigenvalue di¤erent from zero,
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namely,

�21�
2
2f�2z1z2(1 + �

2
1)�

2
2 � 2�z1z2�2[�1(�0 + �2�2)� �1]�2z1 + [1 + �

2
1 + (�0 + �2�2)

2]�4z1g
[�22�

2
2(�

2
z1�

2
z2 � �2z1z2)� �22�2z1 ]�22(�2z1�2z2 � �2z1z2)

;

which is non-negative, with (B19) its associated eigenvector once again.

Finally, doing the same for AV ar(
p
n~�IV ) � AV ar(

p
n�̂MD) by combining (A2) and (A5),

we �nd that it has only one eigenvalue di¤erent from zero, namely,

(�22 � 1)2�22�2z1�
2
z2(�

2
z1�

2
z2 � �

2
z1z2)f�

2
z1z2(1 + �

2
1)�

2
2 � 2�z1z2�2[(�0 + �2�2)�1 � �1]�2z1g

[�22(�
2
z1�

2
z2 � �2z1z2)� �21�2z1 ]2[�22�22(�2z1�2z2 � �2z1z2)� �22�2z1 ]

+
(�22 � 1)2�22�2z1�

2
z2(�

2
z1�

2
z2 � �

2
z1z2)f[1 + �

2
1 + �

2
z1(�0 + �2�2)

2]g
[�22(�

2
z1�

2
z2 � �2z1z2)� �21�2z1 ]2[�22�22(�2z1�2z2 � �2z1z2)� �22�2z1 ]

;

which can be positive or negative depending on �22; and with the same eigenvector. �

Proof of Proposition 2

Computing in Mathematica the spectral decomposition ofAV ar(
p
n�̂

y
SS)�AV ar[

p
n�̂

y
ML(��)]

using (A17), the expression in (A9) and exploiting the fact that

AV ar[
p
n�̂ML(��)] = [I��(�;��)]�1;

where I��(�;�) denotes the block of the information matrix of the mean and variance parameters,

we �nd that it has only one eigenvalue di¤erent from zero, with associated eigenvector

(01�7; 1)
0 :

Similarly, we �nd that the spectral decomposition of AV ar(
p
n�̂SP ) � AV ar[

p
n�̂ML(��)]

using also (A13), has �ve eigenvalues di¤erent from zero. By looking at the orthogonal basis for

its null space, which is given by

�
0; �2z1�1 + �z1z2�2; �

2
z1 ;01�5

�0
and

(02�4; I2;02�2)
0;

we can immediately see that the parameters that are estimated adaptively are �1, �2, and the

linear combination of � and � indicated by the �rst eigenvector. In turn, a basis for its image is

given by

(1;01�7)
0;�

0;��2z1 ; �1�
2
z1 + �z1z2�2;01�5

�0
;
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(01�3; 1;01�4)
0

and

(01�6; I2)
0 :

Finally, using an entirely analogous procedure with (A13) and (A6), we �nd that the spectral

decomposition of AV ar(
p
n�̂MD)�AV ar(

p
n�̂SP ) has four eigenvalues di¤erent from zero, with

a basis for its image given by (02�1; I2;02�5) and (02�4; I2;02�2), and a basis for its kernel by

(02�6; I2), (1; �0 + �1�1 + �2�2; �1;01�5) and (01�3; 1; �1; �2;01�2), as can be easily checked by

premultiplying the di¤erence between the covariance matrices by an 8 � 8 matrix whose rows

concatenate those two basis and postmultiplying it by its transpose. �

Proof of Proposition 3

Computing in Mathematica the spectral decomposition of AV ar(
p
n~�ML)�AV ar(

p
n�̂ML)

using the expressions (A7) and (A8), we �nd that it has only one eigenvalue di¤erent from zero,

namely,

�21�
2
2mssf�2z1z2�

2
2(1 + �

2
1)� 2�z1z2�2z1�2[(�0 + �2�2)�1 � �1] + �

4
Z1
[1 + �21 + (�0 + �2�2)

2]g
�22mll(�

2
z1�

2
z2 � �2z1z2)[mss�22�2z1 + �22mll(�2z1�2z2 � �2z1z2)]

with associated eigenvector (B19).

Using (A9) and (A10), we �nd that the same turns out to be true for AV ar(
p
n~�SS) �

AV ar(
p
n�̂SS).

Finally, if we do the same for AV ar(
p
n~�NP )� AV ar(

p
n�̂NP ) using (A13) and (A14), we

also �nd that it has only one eigenvalue di¤erent from zero, namely

�21�
2
2f�2z1z2�

2
2(1 + �

2
1)� 2�z1z2�2z1�2[(�0 + �2�2)�1 � �1] + �

4
Z1
[1 + �21 + (�0 + �2�2)

2]g
�22mll(�

2
z1�

2
z2 � �2z1z2)[�22�2z1 + (1 + �)�22mll(�2z1�2z2 � �2z1z2)]

;

and that its image is given by the same eigenvector as in the previous cases. �

C Simplifying the DGP

C.1 Standardised variables

We start by assuming that:0BB@
y1
y2
z1
z2

1CCA �

2664
0BB@
0
0
0
0

1CCA ;

0BB@
1 �y1y2 �y1z1 �y1z2

�y1y2 1 �y2z1 �y2z2
�y1z1 �y2z1 1 �z1z2
�y1z2 �y2z2 �z1z2 1

1CCA
3775 ;

where the correlation matrix is positive de�nite.
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In this notation, the coe¢ cients of the least squares projection of y1 onto y2 and z1 are�
�
�

�
=

�
1 �y2z1

�y2z1 1

��1�
�y1y2
�y1z1

�
=

1

1� �2y2z1

�
�y1y2 � �y1z1�y2z1
�y1z1 � �y1y2�y2z1

�
;

the corresponding projection errors

u1 = y1 � �y2 � �z1 = y1 �
�y1y2 � �y1z1�y2z1

1� �2y2z1
y2 �

�y1z1 � �y1y2�y2z1
1� �2y2z1

z1

and the residual variance

V (u1) = 1�
�
�y1y2 �y1z1

�� 1 �y2z1
�y2z1 1

��1�
�y1y2
�y1z1

�
= 1�

�2y1y2 + �
2
y1z1 � 2�y2z1�y1y2�y1z1
1� �2y2z1

;

so that the R2 becomes

R21 =
�2y1y2 + �

2
y1z1 � 2�y2z1�y1y2�y1z1
1� �2y2z1

:

In turn, the coe¢ cients of the least squares projection of y2 onto z1 and z2 are�
�1
�2

�
=

�
1 �z1z2

�z1z2 1

��1�
�y2z1
�y2z2

�
=

1

1� �2z1z2

�
�y2z1 � �y2z2�z1z2
�y2z2 � �y2z1�z1z2

�
;

the corresponding projection errors

u2 = y2 � �1z1 � �2z2 = y2 �
�y2z1 � �y2z2�z1z2

1� �2z1z2
z1 �

�y2z2 � �y2z1�z1z2
1� �2z1z2

z2

and the residual variance

V (u2) = 1�
�
�y2z1 �y2z2

�� 1 �z1z2
�z1z2 1

��1�
�y2z1
�y2z2

�
= 1�

�2y2z1 + �
2
y2z2 � 2�z1z2�y2z1�y2z2
1� �2z1z2

;

so that the R2 becomes

R22 =
�2y2z1 + �

2
y2z2 � 2�z1z2�y2z1�y2z2
1� �2z1z2

:
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Finally, the covariance between the previous projection errors is

E[(y1 � �y2 � �z1)(y2 � �1z1 � �2z2)]

= E

��
y1 �

�y1y2 � �y1z1�y2z1
1� �2y2z1

y2 �
�y1z1 � �y1y2�y2z1

1� �2y2z1
z1

�
�
y2 �

�y2z1 � �y2z2�z1z2
1� �2z1z2

z1 �
�y2z2 � �y2z1�z1z2

1� �2z1z2
z2

��
= �y1y2 �

�y2z1 � �y2z2�z1z2
1� �2z1z2

�y1z1 �
�y2z2 � �y2z1�z1z2

1� �2z1z2
�y1z2

�
�y1y2 � �y1z1�y2z1

1� �2y2z1
+
�y1y2 � �y1z1�y2z1

1� �2y2z1

�y2z1 � �y2z2�z1z2
1� �2z1z2

�y2z1

+
�y1y2 � �y1z1�y2z1

1� �2y2z1

�y2z2 � �y2z1�z1z2
1� �2z1z2

�y2z2 �
�y1z1 � �y1y2�y2z1

1� �2y2z1
�y2z1

+
�y1z1 � �y1y2�y2z1

1� �2y2z1

�y2z1 � �y2z2�z1z2
1� �2z1z2

+
�y1z1 � �y1y2�y2z1

1� �2y2z1

�y2z2 � �y2z1�z1z2
1� �2z1z2

�z1z2

=
(�y2z2 � �y2z1�z1z2)

1� �2z1z2

[�y1y2(�y2z2 � �y2z1�z1z2) + �y1z1(�z1z2 � �y2z2�y2z1)� �y1z2(1� �2y2z1)]
1� �2y2z1

Therefore, for y2 to be exogenous in the �rst equation, we need either

�2 =
�y2z2 � �y2z1�z1z2

1� �2z1z2
= 0;

which seems very restrictive, or

�y1z2 =
�y1y2(�y2z2 � �y2z1�z1z2) + �y1z1(�z1z2 � �y2z1�y2z2)

1� �2y2z1
=
1� �2z1z2
1� �2y2z1

�2�y1y2 + ��y1z1 ; (C20)

where � is the coe¢ cient of z1 in the least squares projection of z2 onto y2 and z1, whose

coe¢ cients are given by�


�

�
=

�
1 �y2z1

�y2z1 1

��1�
�y2z2
�z1z2

�
=

1

1� �2y2z1

�
�y2z2 � �z1z2�y2z1
�z1z2 � �y2z2�y2z1

�
:

Therefore, if we assume �2 6= 0, then we need to choose �y1z2 so that (C20) holds.

C.2 Original variables

Let us now consider the least squares projection of yo2 onto a constant, z
o
1 and z

o
2, which is

given by

yo2 = �o0 + �
o
1z
o
1 + �

o
2z
o
2 + u

o
1:

We can then individually centre and standardise each of the variables involved as follows

y2 =
yo2 � �o0 � �o1E(zo1)� �o2E(zo2)p

�o21 V (z
o
1) + �

o2
2 V (z

o
2) + 2�

o
1�
o
2Cov(z

o
1; z

o
2) + V (u

o
1)
;
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z1 =
zo1 � E(zo1)p

V (zo1)
; and z2 =

zo2 � E(zo2)p
V (zo2)

;

which leads to the following transformed equation

y2 = �1z1 + �2z2 + u1;

where

�1 = �o1

s
V (zo1)

�o21 V (z
o
1) + �

o2
2 V (z

o
2) + 2�

o
1�
o
2Cov(z

o
1; z

o
2) + V (u

o
1)
;

�2 = �o2

s
V (zo2)

�o21 V (z
o
1) + �

o2
2 V (z

o
2) + 2�

o
1�
o
2Cov(z

o
1; z

o
2) + V (u

o
1)
;

and

V (u1) =
V (uo1)

�o21 V (z
o
1) + �

o2
2 V (z

o
2) + 2�

o
1�
o
2Cov(z

o
1; z

o
2) + V (u

o
1)
= 1�R22

The coe¢ cients �1 and �2 are sometimes called the standardised regression coe¢ cients, as

they explain the ceteris paribus change in yo2 (measured in standard deviation units) resulting

from a unit standard deviation change in zo1 or z
o
2.

Thus, once we standardise the three variables involved, the crucial ingredients of the �rst

equation are the coe¢ cient of determination R22, the correlation between the regressors �z1z2

and the partial correlations between y2 and each of the regressors, which are given by

�y2z1�z2 =
E[(y2 � �y2z2z2)(z1 � �z1z2z2)]q
V (y2 � �y2z2z2)V (z1 � �z1z2z2)

=
�y2z1 � �z1z2�y2z2q�
1� �2y2z2

� �
1� �2z1z2

� = �1

s
1� �2z1z2
1� �2y2z2

;

�y2z2�z1 =
E[(y2 � �y2z1z1)(z2 � �z1z2z1)]q
V (y2 � �y2z1z1)V (z2 � �z1z2z1)

=
�y2z2 � �z1z2�y2z1q
(1� d2)

�
1� �2z1z2

� = �2

s
1� �2z1z2
1� �2y2z1

:

In fact, there are only three underlying parameters that determine these four quantities:

�y2z1 , �y2z2 and �z1z2 because

�2y2z1�z2 =
R22 � �2y2z2
1� �2y2z2

;

�2y2z2�z1 =
R22 � �2y2z1
1� �2y2z1

;

or alternatively

�2y2z2 =
R22 � �2y2z1�z2
1� �2y2z1�z2

;

�2y2z1 =
R22 � �2y2z2�z1
1� �2y2z2�z1

:

Thus, we can either select �y2z1 , �y2z2 and �z1z2 , or we can select R
2
2, �

2
y2z1�z2 and �

2
y2z2�z1 .
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D On multivariate discrete mixture of normals

Consider the following mixture of two multivariate normals

ut �
�
N(�1;�1) with probability �;
N(�2;�2) with probability 1� �: (D21)

Let st denote a Bernoulli variable which takes the value 1 with probability � and 0 with

probability 1 � �. As is well known, the unconditional mean vector and covariance matrix of

the observed variables are:

E(ut) = � = E[E(utjst)] = ��1 + (1� �)�2;

V (ut) = 	 = V [E(utjst)] + E[V (utjst)] = �(1� �)��0 + ��1 + (1� �)�2;

where � = �1 � �2.

Therefore, this random vector, which we will denote as u�t , will be standardised if and only

if

��1 + (1� �)�2 = 0

and

�(1� �)(�1 � �2)(�1 � �2)0 + ��1 + (1� �)�2 = I:

For example, in the bivariate case, if we let 	L	
0
L denote the Cholesky decomposition of 	,

we can write

ut = � +	Lu
�
t ; where � =

�
�1
�2

�
and 	L =

�
 11 0
 21  22

�
:

Additionally, let

� =

�
�1
�2

�
; and @L =

�
{11 0
{21 {22

�
;

so that the vector of shape parameters of u�t becomes % = (�1; �2;{11;{21;{22; �)0.

Let us initially assume that �1 = �2 = 0, so that � = 0. Let �1L�01L and �2L�
0
2L denote

the Cholesky decompositions of the covariance matrices of the two components. Then, we can

write

��1 + (1� �)�2 = �1L[�I2 + (1� �)��11L�2L�
0
2L�

�10
1L ]�

0
1L = �1L(�I2 + (1� �)@L@0L)�01L:

Thus, it is not di¢ cult to see that choosing

�1 = [�I2 + (1� �)@L@0L]�1 and �2 = �1L@L@0L�
0
1L
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or, equivalently,

�1L = [�I2 + (1� �)@L@0L]�
1
2 and �2L = �1L@L

we can indeed obtain a bivariate standardised vector u�t .

Now consider the case � 6= 0, and let � = �(1� �)��0 + I2. Then, it is easy to see that

��1 = �
� 1
2�1, ��2 = �

� 1
2�2, ��1 = �

� 1
2

1 �1�
0� 1

2 , and ��2 = �
� 1
2�2�

0� 1
2

continue to generate another standardised vector.

In summary, we can generate a standardised bivariate mixture as

u�t = �
� 1
2 f(si � �)� + si + [�1L � si(�1L � �2L)]ztg ;

where zt � N(0; I2). The intuition is as follows. First, note that (st��)� is a shifted and scaled

Bernoulli random variable with 0 mean and variance �(1� �)��0. But since

[�1L � si(�1L � �2L)]zt

is a discrete scale mixture of normals with 0 unconditional mean and unit unconditional variance

that is orthogonal to (st � �)�, the sum of the two random variables will have variance I2 +

�(1� �)��0, which explains the �� 1
2 in front of the curly brackets.

Therefore, two equivalent ways of de�ning and simulating ut with mean � and variance 	

are

ut = � +	Lu
�
t , where u

�
t =

�
N [��1(�);�

�
1(�)] with probability �

N [��2(�);�
�
2(�)] with probability 1� �

(D22)

and

ut =

�
N(�1;�1L�

0
1L) with probability �

N(�2;�2L�
0
2L) with probability 1� �

where

�i = �i(vec
0(�); vech0(	L); vec

0(�); vech0(@L); �)

and

�iL = �iL(vec
0(�); vech0(	L); vec

0(�); vech0(�L); �)

for i = 1; 2. In this set up, the means of the components will be given by �1 = (�11; �
1
2)
0 with

�11 = �1 +
(1� �) 11�1q
1 + �(1� �)�21

and

�12 = �2 +
(1� �) 21�1q
1 + �(1� �)�21

+
(1� �) 22�2
1 + �(1� �)�21

s
1 + �(1� �)�21

1 + �(1� �)(�21 + �22)
;
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and �2 = (�21; �
2
2)
0 with

�21 = �1 �
� 11�1q

1 + �(1� �)�21
and

�22 = �2 �
� 11�1q

1 + �(1� �)�21
� � 22�2

1 + �(1� �)�21

s
1 + �(1� �)�21

1 + �(1� �)(�21 + �22)
:

As for the the Cholesky decompositions of the covariance matrices of the two components,

namely

�1L =

�

111 0

121 
122

�
and �2L =

�

211 0

221 
222

�
;

we will have


111 =
1q

[1 + �(1� �)�21][�+ (1� �){211]
 11;


122 =

s
[1 + �(1� �)�21][�+ (1� �){211]

[1 + �(1� �)(�21 + �22)]f�[({211 + {221)(1� �)� �] + (1� �)�{222 + (1� �)2{211{222g
 22;


121 = 
111
 21
 11

� 
122
(1� �){11{21
�+ (1� �){211

�
122(1� �)��1�2
p
�[({211 + {221)(1� �)� �] + (1� �)�{222 + (1� �)2{211{222

[1 + �(1� �)�21][�+ (1� �){211]
;


211 = {11
111;


222 = {22
122;

and


221 = 
211
 21
 11

� 
122
�{21

[�+ (1� �){211]{22

�
122(1� �)��1�2{11

q
{211{222 + (1� �)[{222 + {221 + {211(1� {222)]� �{211({222 � �) + �2

[1 + �(1� �)�21][�+ (1� �){211]{22
:

Similar calculations can be applied for general n, the only di¤erence being that the number

of free parameters of the standardised mixture increases with the square of the cross-sectional

dimension.
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Tables

Table 1: Asymptotic variances of alternative estimators

PML�SMNK
Parameter OLS K = 2 K = 3 K = 4 SS ML MD

Mean parameters of equation 1a

 1.268 0.931 0.905 0.902 0.901 0.901 1.201
� 1.500 0.782 0.731 0.725 0.723 0.723 1.125
� 1.000 0.656 0.631 0.627 0.627 0.627 0.875

Mean parameters of equation 1b
�0 1.000 0.792 0.775 0.772 0.771 0.771 1.000
�1 0.333 0.264 0.258 0.257 0.257 0.257 0.333
�2 0.333 0.264 0.258 0.257 0.257 0.257 0.333

(Reparametrised) variance parameters of structural innovations
! 3.000 1.493 1.313 1.290 1.286 1.286 3.000
�2 0.833 0.833 0.833 0.833 0.833 0.300 0.833

Notes: DGP for structural innovations: bivariate Student t with 0 means, unit standard deviations,
no correlation and 5 degrees of freedom. Parameter values: 
 = 0:204, � = � = 0:398, �0 = 0:155,
�1 = �2 = 0:577, �21 = 1=2, �22 = 1=3, �Z1 = �Z1 = 1, �2z1 = �2Z1 = 1, and �z1z2 = 0. OLS denotes
the usual ordinary least squares estimator, PML�SMNK denotes Pseudo-ML based on a bivariate scale
mixture of K normals, SS denotes the spherically symmetric SP estimator, ML denotes MLE which
exploit the information of the true distribution of the shocks, including the degrees of freedom, and
MD denotes the optimum minimum distance estimator. We compute the expected value of the Hessian
and variance of the score of the �nite mixture-based PMLEs by means of large sample averages of the
analytical expressions in Fiorentini and Sentana (2021) evaluated at the true values of the mean and
variance parameters in � and the pseudo true values of the shape parameters, which we numerically
obtain from samples of millions of simulated observations.
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Table 2: Asymptotic variances of alternative estimators

PML�MNK
Parameter IV K = 2 K = 3 K = 4 SP ML

Slope parameters of equation 1a
� 1.502 1.320 1.301 1.300 1.296 1.296
� 1.000 0.879 0.867 0.865 0.863 0.863

Slope parameters of equation 1b
�1 0.333 0.259 0.252 0.251 0.251 0.251
�2 0.333 0.259 0.252 0.251 0.251 0.251

(Reparametrised) reduced form intercepts
E(y1) 0.553 0.553 0.553 0.553 0.553 0.499
E(y2) 0.333 0.333 0.333 0.333 0.333 0.299

Reduced form variance parameters
!11 1.803 1.803 1.803 1.803 1.803 0.796
!22 0.950 0.950 0.950 0.950 0.950 0.308
!12 0.815 0.815 0.815 0.815 0.815 0.229

Notes: DGP for structural innovations: bivariate asymmetric Student t with 0 means, unit standard
deviations, no correlation and shape parameters � = 9:65 and bi = �1. Parameter values: 
 = 0:204,
� = � = 0:398, �0 = 0:155, �1 = �2 = 0:577, �

2
1 = 1=2, �

2
2 = 1=3, �Z1 = �Z1 = 1, �

2
z1 = �2Z1 = 1, and

�z1z2 = 0. IV denotes the usual instrumental variables estimator, PML�MNK denotes Pseudo-ML based
on a bivariate mixture of K normals, SP denotes the semiparametric estimator, ML denotes MLE which
exploit the information of the true distribution of the shocks, including the degrees of freedom. Moreover,
E(y1) and E(y2) are short-hand for 
 + �1(� + ��1) + �2(��2) and �0 + �1�1 + �2�2, respectively. We
compute the expected value of the Hessian and variance of the score of the �nite mixture-based PMLEs
using large sample averages of the theoretical expressions in Amengual, Fiorentini and Sentana (2023)
evaluated at the true values of the mean and variance parameters and the pseudo true values of the shape
parameters obtained from very large samples of simulated observations.
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Figures

Figure 1: Relative e¢ ciency OLS/IV for �

Notes: When the R2 of equation (2) coincides with �2y2z2:z1 , the relative e¢ ciency of the OLS/IV
estimators of � is given by

V (�̂LS)

V (�̂IV )
= [(1� �2y2z2:z1)�22 + �

2
y2z2:z1 ]�

2
y2z2:z1 :

The solid line denotes the boundary line �22 = 1 + ��2y2z2:z1 while the dotted line denotes the locus of
(�y2z2:z1 ; �22) combinations for which the IV estimator of � reaches its maximum asymptotic e¢ ciency
relative to the corresponding OLS estimator, which is given by �2y2z2:z1 =

1
2�22=(�22 � 1):
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Figure 2: Relative e¢ ciency MD/OLS-IV for �

Notes: When the R2 of equation (2) coincides with �2y2z2:z1 , the relative e¢ ciency of the MD/OLS
and MD/IV estimators of � are given by

V (�̂MD)

V (�̂LS)
=

�22
[1 + (�22 � 1)�2y2z2:z1 ][(1� �2y2z2:z1)�22 + �2y2z2:z1 ]

and
V (�̂MD)

V (�̂IV )
=

�22�
2
y2z2:z1

1 + (�22 � 1)�2y2z2:z1
;

respectively. The solid line denotes the boundary line �22 = 1 + �
�2
y2z2:z1 :
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Figure 3: Relative e¢ ciency Student t ML/MD for � and �

Figure 3a: Relative e¢ ciency ML/MD for �

Figure 3b: Relative e¢ ciency ML/MD for �

Notes: When the R2 of equation (2) coincides with �2y2z2:z1 , the relative e¢ ciency of the MD/OLS
and MD/IV estimators of � and � are, respectively, given by

AV ar(
p
n�̂MLt)

AV ar(
p
n�̂MD)

=
1 + (�22 � 1)�2y2z2:z1

[(1� �2y2z2:z1)mss + �2y2z2:z1mll]�22

and
AV ar(

p
n�̂MLt)

AV ar(
p
n�̂MD)

=
�2y2z2:z1

[(1� �2y2z2:z1)mss + �2y2z2:z1mll]�22
;

where mll = �(2 + �)=[(� � 2)(� + 4)] and mss = (� + 2)=(� + 4) with � = 2(2�22 � 1)=(�22 � 1).
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Figure 4: Monte Carlo spherical data generating processes versus Gaussian distribution

Figure 4a: Bivariate standard Gaussian Figure 4b: Contours of a bivariate
distribution standard Gaussian distribution

Figure 4c: Bivariate standard Student t Figure 4d: Contours of a bivariate
distribution density standard Student t density

Figure 4e: Bivariate standard scale Figure 4f: Contours of a bivariate standard
mixture of two normals scale mixture of two normals

Notes: In all panels, E(u�1i) = E(u�2i) = 0, V (u
�
1i) = V (u�2i) = 1, and cov(u

�
1i; u

�
2i) = 0. Panels c-d:

Student t distribution with � = 5 degrees of freedom. Panels e-f: Scale mixture of two normals with scale
parameter { = 0:09 and mixing probability � = 0:05.
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Figure 5: Monte Carlo non-spherical data generating processes versus Gaussian distribution

Figure 5a: Bivariate standard Gaussian Figure 5b: Contours of a bivariate
distribution density standard Gaussian distribution

Figure 5c: Bivariate standard asymmetric Figure 5d: Contours of a bivariate standard
Student t distribution density asymmetric Student t distribution

Figure 5e: Bivariate standard Figure 5f: Contours of a bivariate standard
location-scale mixture of two normals location-scale mixture of two normals

Notes: In all panels, E(u�1i) = E(u�2i) = 0, V (u�1i) = V (u�2i) = 1, and cov(u�1i; u
�
2i) = 0. Panels

c-d: Asymmetric Student t density with � = 9:65 degrees of freedom, skewness parameters bi = �1.
Panels e-f: Location-scale mixture of two normals with mixing probability � = 0:05, location vector
� = �(1:01; 1:06)0 and scale parameter { = 0:32 (see Appendix D for details).
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Figure 6: Monte Carlo results: T = 250, �22 = 3 and �y2z2:z1 = (�22 � 1)
�1

Figure 6a: Student t innovations Figure 6b: Scale mixture of two normals

Figure 6c: Asymmetric Student t innovations Figure 6d: Location-scale mixture of two
normals

Notes: IV denotes the instrumental variables estimator, LS denotes the ordinary least squares esti-
mator, MD denotes the optimum minimum distance estimator, UPML(mn) and RPML(mn) denote the
restricted (�12 = 0) and unrestricted PML estimators based on a mixture of two normals, UPML(smn)
and RPML(smn) denote the restricted (�12 = 0) and unrestricted PML estimators based on a scale mix-
ture of two normals, USS and RSS denote the restricted (�12 = 0) and unrestricted elliptically symmetric
semiparametric estimators described in section 3, while UPML(t) and RPML(t) denote the restricted
(�12 = 0) and unrestricted feasible PML estimators based on a Student-t. DGPs: Panel a: Student t
distribution with � = 5 degrees of freedom; Panel b: scale mixture of two normals with scale parameter
{ = 0:09 and mixing probability � = 0:05; Panel c: asymmetric Student t density with � = 9:65 degrees
of freedom, skewness parameters bi = �1; and Panel d: location-scale mixture of two normals with mix-
ing probability � = 0:05, location vector � = �(1:01; 1:06)0 and scale parameter { = 0:32 (see Appendix
D for details). In all DGPs, we set �21 = 1 so that R21 = 1=2. In order to have a tie between IV and
LS, we set �y2z2:z1 = 1=

p
2 so that �22 = 1=3 and, therefore, 
 = 0:20, � = � = 0:40, �0 = 0:15 and

�1 = �2 = 0:58.
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Figure 7: Monte Carlo results: T = 250, �22 = 3 and �y2z2:z1 =
1
2�22(�22 � 1)

�1

Figure 7a: Student t innovations Figure 7b: Scale mixture of two normals

Figure 7c: Asymmetric Student t innovations Figure 7d: Location-scale mixture of two
normals

Notes: IV denotes the instrumental variables estimator, LS denotes the ordinary least squares esti-
mator, MD denotes the optimum minimum distance estimator, UPML(mn) and RPML(mn) denote the
restricted (�12 = 0) and unrestricted PML estimators based on a mixture of two normals, UPML(smn)
and RPML(smn) denote the restricted (�12 = 0) and unrestricted PML estimators based on a scale mix-
ture of two normals, USS and RSS denote the restricted (�12 = 0) and unrestricted elliptically symmetric
semiparametric estimators described in section 3, while UPML(t) and RPML(t) denote the restricted
(�12 = 0) and unrestricted feasible PML estimators based on a Student-t. DGPs: Panel a: Student t
distribution with � = 5 degrees of freedom; Panel b: scale mixture of two normals with scale parame-
ter { = 0:09 and mixing probability � = 0:05; Panel c: asymmetric Student t density with � = 9:65
degrees of freedom, skewness parameters bi = �1; and Panel d: location-scale mixture of two normals
with mixing probability � = 0:05, location vector � = �(1:01; 1:06)0 and scale parameter { = 0:32 (see
Appendix D for details). In all DGPs, we set �21 = 1 so that R21 = 1=2. In order to have a maximum
relative e¢ ciency of IV versus LS, we set �y2z2:z1 =

p
3=2 so that �22 = 1=7 and, therefore, 
 = 0:22,

� = � = 0:39, �0 = 0:31 and �1 = �2 = 0:65.
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Figure 8: Monte Carlo results: T = 250, �22 = 7=3 and �y2z2:z1 = (�22 � 1)
�1

Figure 8a: Student t innovations Figure 8b: Scale mixture of two normals

Figure 8c: Asymmetric Student t innovations Figure 8d: Location-scale mixture of two
normals

Notes: IV denotes the instrumental variables estimator, LS denotes the ordinary least squares esti-
mator, MD denotes the optimum minimum distance estimator, UPML(mn) and RPML(mn) denote the
restricted (�12 = 0) and unrestricted PML estimators based on a mixture of two normals, UPML(smn)
and RPML(smn) denote the restricted (�12 = 0) and unrestricted PML estimators based on a scale mix-
ture of two normals, USS and RSS denote the restricted (�12 = 0) and unrestricted elliptically symmetric
semiparametric estimators described in section 3, while UPML(t) and RPML(t) denote the restricted
(�12 = 0) and unrestricted feasible PML estimators based on a Student-t. DGPs: Panel a: Student t
distribution with � = 11=2 degrees of freedom; Panel b: scale mixture of two normals with scale para-
meter { = 0:12 and mixing probability � = 0:05; Panel c: asymmetric Student t density with � = 10:38
degrees of freedom, skewness parameters bi = �1; and Panel d: location-scale mixture of two normals
with mixing probability � = 0:05, location vector � = �(1:16; 1:24)0 and scale parameter { = 0:38 (see
Appendix D for details). In all DGPs, we set �21 = 1 so that R

2
1 = 1=2. In order to have a tie between

IV and LS, we set �y2z2:z1 =
p
3=2 so that �22 = 1=7 and, therefore, 
 = 0:22, � = � = 0:39, �0 = 0:31

and �1 = �2 = 0:65.
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Figure 9: Monte Carlo results: T = 1; 000, �22 = 3 and �y2z2:z1 = (�22 � 1)
�1

Figure 9a: Student t innovations Figure 9b: Scale mixture of two normals

Figure 9c: Asymmetric Student t innovations Figure 9d: Location-scale mixture of two
normals

Notes: IV denotes the instrumental variables estimator, LS denotes the ordinary least squares esti-
mator, MD denotes the optimum minimum distance estimator, UPML(mn) and RPML(mn) denote the
restricted (�12 = 0) and unrestricted PML estimators based on a mixture of two normals, UPML(smn)
and RPML(smn) denote the restricted (�12 = 0) and unrestricted PML estimators based on a scale mix-
ture of two normals, USS and RSS denote the restricted (�12 = 0) and unrestricted elliptically symmetric
semiparametric estimators described in section 3, while UPML(t) and RPML(t) denote the restricted
(�12 = 0) and unrestricted feasible PML estimators based on a Student-t. DGPs: Panel a: Student t
distribution with � = 5 degrees of freedom; Panel b: scale mixture of two normals with scale parameter
{ = 0:09 and mixing probability � = 0:05; Panel c: asymmetric Student t density with � = 9:65 degrees
of freedom, skewness parameters bi = �1; and Panel d: location-scale mixture of two normals with mix-
ing probability � = 0:05, location vector � = �(1:01; 1:06)0 and scale parameter { = 0:32 (see Appendix
D for details). In all DGPs, we set �21 = 1 so that R21 = 1=2. In order to have a tie between IV and
LS, we set �y2z2:z1 = 1=

p
2 so that �22 = 1=3 and, therefore, 
 = 0:20, � = � = 0:40, �0 = 0:15 and

�1 = �2 = 0:58.

46



Figure 10: Monte Carlo results: T = 1; 000, �22 = 3 and �y2z2:z1 =
1
2�22(�22 � 1)

�1

Figure 10a: Student t innovations Figure 10b: Scale mixture of two normals

Figure 10c: Asymmetric Student t innovations Figure 10d: Location-scale mixture of two
normals

Notes: IV denotes the instrumental variables estimator, LS denotes the ordinary least squares esti-
mator, MD denotes the optimum minimum distance estimator, UPML(mn) and RPML(mn) denote the
restricted (�12 = 0) and unrestricted PML estimators based on a mixture of two normals, UPML(smn)
and RPML(smn) denote the restricted (�12 = 0) and unrestricted PML estimators based on a scale mix-
ture of two normals, USS and RSS denote the restricted (�12 = 0) and unrestricted elliptically symmetric
semiparametric estimators described in section 3, while UPML(t) and RPML(t) denote the restricted
(�12 = 0) and unrestricted feasible PML estimators based on a Student-t. DGPs: Panel a: Student t
distribution with � = 5 degrees of freedom; Panel b: scale mixture of two normals with scale parame-
ter { = 0:09 and mixing probability � = 0:05; Panel c: asymmetric Student t density with � = 9:65
degrees of freedom, skewness parameters bi = �1; and Panel d: location-scale mixture of two normals
with mixing probability � = 0:05, location vector � = �(1:01; 1:06)0 and scale parameter { = 0:32 (see
Appendix D for details). In all DGPs, we set �21 = 1 so that R21 = 1=2. In order to have a maximum
relative e¢ ciency of IV versus LS, we set �y2z2:z1 =

p
3=2 so that �22 = 1=7 and, therefore, 
 = 0:22,

� = � = 0:39, �0 = 0:31 and �1 = �2 = 0:65.
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Figure 11: Monte Carlo results: T = 1; 000, �22 = 7=3 and �y2z2:z1 = (�22 � 1)
�1

Figure 11a: Student t innovations Figure 11b: Scale mixture of two normals

Figure 11c: Asymmetric Student t innovations Figure 11d: Location-scale mixture of two
normals

Notes: IV denotes the instrumental variables estimator, LS denotes the ordinary least squares esti-
mator, MD denotes the optimum minimum distance estimator, UPML(mn) and RPML(mn) denote the
restricted (�12 = 0) and unrestricted PML estimators based on a mixture of two normals, UPML(smn)
and RPML(smn) denote the restricted (�12 = 0) and unrestricted PML estimators based on a scale mix-
ture of two normals, USS and RSS denote the restricted (�12 = 0) and unrestricted elliptically symmetric
semiparametric estimators described in section 3, while UPML(t) and RPML(t) denote the restricted
(�12 = 0) and unrestricted feasible PML estimators based on a Student-t. DGPs: Panel a: Student t
distribution with � = 11=2 degrees of freedom; Panel b: scale mixture of two normals with scale para-
meter { = 0:12 and mixing probability � = 0:05; Panel c: asymmetric Student t density with � = 10:38
degrees of freedom, skewness parameters bi = �1; and Panel d: location-scale mixture of two normals
with mixing probability � = 0:05, location vector � = �(1:16; 1:24)0 and scale parameter { = 0:38 (see
Appendix D for details). In all DGPs, we set �21 = 1 so that R

2
1 = 1=2. In order to have a tie between

IV and LS, we set �y2z2:z1 =
p
3=2 so that �22 = 1=7 and, therefore, 
 = 0:22, � = � = 0:39, �0 = 0:31

and �1 = �2 = 0:65.
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