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B PML estimators with cross-sectionally independent shocks

In this appendix, we derive analytical expressions for the conditional variance of the score

and the expected value of the Hessian of Svar models with cross-sectionally independent non-

Gaussian shocks when the distributions assumed for estimation purposes may well be misspeci-

fied. In addition, we consider some useful reparametrisations.

B.1 Log-likelihood, its score and Hessian

Given the linear mapping between structural shocks and reduced form innovations, the con-

tribution to the conditional log-likelihood function from observation t (t = 1, . . . , T ) will be

given by

lt(yt;ϕ) = − ln |C|+ l[ε∗1t(θ);%1] + . . .+ l[ε∗Nt(θ);%N ], (B1)

where ε∗t (θ) = C−1(yt − τ −A1yt−1 − . . . − Apyt−p) and l(ε∗i ;%i) = ln f(ε∗i ;%i) is the log of

the univariate density function of ε∗i , which we assume twice continuously differentiable with

respect to both its arguments, although this is stronger than necessary, as the Laplace example

illustrates.

Let st(φ) denote the score function ∂lt(φ)/∂φ, and partition it into two blocks, sθt(φ) and

s%t(φ), whose dimensions conform to those of θ and %, respectively. Given that the mean vector

and covariance matrix of (1) conditional on It−1 are

µt(θ) = τ + A1yt−1 + . . .+ Apyt−p, (B2a)

Σt(θ) = CC′, (B2b)

respectively, we can use the expressions in Supplemental Appendix D.1 of Fiorentini and Sentana

(2021b) with Σ
1/2
t (θ) = C to show that

∂dt(θ)

∂θ
= −∂vec

′(C)

∂θ
vec(C−1′) = −


0
0
...
0

IN2

 vec(C−1′) = −Z′st(θ)vec(IN ) (B3)

and

∂ε∗t (θ)

∂θ′
= −C−1∂µt(θ)

∂θ′
− [ε∗′t (θ)⊗C−1]

∂vec(C)

∂θ′
(B4)

= −{Z′lt(θ) + [ε∗′t (θ)⊗ IN ]Z′st(θ)},
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where

Zlt(θ) =
∂µ′t(θ)

∂θ
Σ
−1/2′
t (θ) =


IN

yt−1 ⊗ IN
...

yt−p ⊗ IN
0N2×N

C−1′, (B5)

Zst(θ) =
∂vec′[Σt(θ)]

∂θ
[IN ⊗Σ

−1/2′
t (θ)] =


0N×N2

0N2×N2

...
0N2×N2

IN2

 (IN ⊗C−1′), (B6)

which confirms that the conditional mean and variance parameters are variation free. In addition,

st(φ) =

[
sθt(φ)
s%t(φ)

]
=

[
Zlt(θ) Zst(θ) 0

0 0 Iq

] elt(φ)
est(φ)
ert(φ)


=

[
Zdt(θ) 0

0 Iq

] [
edt(φ)
ert(φ)

]
= Zt(θ)et(φ), (B7)

where

elt(φ) = −∂ ln f [ε∗t (θ);%]

∂ε∗
= −


∂ ln f1[ε∗1t(θ);%1]/∂ε∗1
∂ ln f2[ε∗2t(θ);%2]/∂ε∗2

...
∂ ln fN [ε∗Nt(θ);%N ]/∂ε∗N

 , (B8)

est(φ) = −vec
{

IN +
∂ ln f [ε∗t (θ);%]

∂ε∗
ε∗′t (θ)

}

= −vec


1 +

∂ ln f1[ε∗1t(θ);%1]
∂ε∗1

ε∗1t(θ) . . .
∂ ln f1[ε∗1t(θ);%1]

∂ε∗1
ε∗Nt(θ)

...
. . .

...
∂ ln fN [ε∗Nt(θ);%N ]

∂ε∗N
ε∗1t(θ) . . . 1 +

∂ ln fN [ε∗Nt(θ);%N ]
∂ε∗N

ε∗Nt(θ)

 (B9)

and

ert(φ) =
∂ ln f [ε∗t (θ);%]

∂%
=


∂ ln f1[ε∗1t(θ);%1]

∂%1
...

∂ ln fN [ε∗Nt(θ);%N ]
∂%N

 =


er1t(φ)
er2t(φ)
...

erN t(φ)

 (B10)

by virtue of the cross-sectional independence of the shocks, so that the derivatives involved

correspond to the assumed univariate densities.

These expressions simplify when the assumed distribution of the shocks is symmetric. Some

popular examples are Student t, DSMN and Laplace. In all three cases, we can write the scores

as

−∂ ln fi[ε
∗
it(θ);%i]

∂ε∗i
= δ[ε∗2it (θ);%i]ε

∗
it(θ),

where δ[ε∗2it (θ);%i], a scalar function of the square of ε
∗
it(θ), is defined in (A3).
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Specifically, the log-density of a univariate Student t random variable with 0 mean, unit

variance and degrees of freedom νi = η−1
i is given by

l[ε∗it(θ); ηi] = c(ηi)−
(
ηi + 1

2ηi

)
log

[
1 +

ηi
1− 2ηi

ε∗2it (θ)

]
,

with

c(ηi) = log

(
ηi + 1

2ηi

)
− log

[
Γ

(
1

2ηi

)]
− 1

2
log

(
1− 2ηi
ηi

)
− 1

2
log π,

so that

δ[ε∗2it (θ);%i] =
ηi + 1

1− 2ηi + ηiε
∗2
it (θ)

,

which converges to 1 as the Student t approaches the normal distribution.

In contrast, it becomes

l[ε∗it(θ);λi, κi] = c(λi, κi) + log

[
λi exp

(
−ε
∗2
it (θ)

κ∗i

)
+ (1− λi)κ−1/2

i exp

(
−ε
∗2
it (θ)

κ∗iκi

)]
for a two-component DSMN, with

c(λi, κi) = −1

2
log κ∗i − log Γ

(
−1

2

)
,

κ∗i =
1

λi + (1− λi)κi

and

δ[ε∗2it (θ);%i]=[λi+(1− λi)κi]
λi exp

[
− 1

2κ∗i
ε∗2it (θ)

]
+(1− λi)κ−3/2

i exp
[
− 1

2κ∗i κi
ε∗2it (θ)

]
λi exp

[
− 1

2κ∗i
ε∗2it (θ)

]
+(1− λi)κ−1/2

i exp
[
− 1

2κ∗i κi
ε∗2it (θ)

] .
Finally, it will be

l[ε∗it(θ)] = − log(2)−
√

2|ε∗it(θ)| = − log(2)−
√

2ε∗2it (θ)

under the Laplace assumption, which introduces no additional shape parameter, so that

δ[ε∗2it (θ);%i] =

√
2

ε∗2it (θ)
=

√
2

|ε∗it(θ)| .

Let ht(φ) denote the Hessian function ∂st(φ)/∂φ′ = ∂2lt(φ)/∂φ∂φ′. Supplemental Appen-

dix D.1 of Fiorentini and Sentana (2021b) implies that

hθθt(φ) = Zlt(θ)
∂elt(φ)

∂θ′
+ Zst(θ)

∂est(φ)

∂θ′

+
[
e′lt(φ)⊗ IN+(p+1)N2

] ∂vec[Zlt(θ)]

∂θ′
+
[
e′st(φ)⊗ IN+(p+1)N2

] ∂vec[Zst(θ)]

∂θ′
, (B11)

where Zlt(θ) and Zst(θ) are given in (B5) and (B6), respectively. Therefore, we need to obtain

∂vec(C−1′)/∂θ′ and ∂vec(IN ⊗C−1′)/∂θ′.
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Let us start with the former. Given that

dvec(C−1′) = −vec[C−1′d(C′)C−1′] = −(C−1 ⊗C−1′)dvec(C′) = −(C−1 ⊗C−1′)KNNdvec(C),

where KNN is the commutation matrix (see Magnus and Neudecker (2019)), we immediately

get that
∂vec(C−1′)

∂θ′
=
[

0N2×(N+pN2) −(C−1 ⊗C−1′)KNN

]
,

so that

∂vec[Zlt(θ)]

∂θ′
=

IN ⊗


IN

yt−1 ⊗ IN
...

yt−p ⊗ IN
0N2×N




∂vec(C−1′)

∂θ′

=

IN ⊗


IN

yt−1 ⊗ IN
...

yt−p ⊗ IN
0N2×N




[

0N2×(N+pN2) (C−1 ⊗C−1′)KNN

]
.

Similarly, given that

vec(IN ⊗C−1′) = {[(IN ⊗KNN )(vec(IN )⊗ IN )]⊗ IN}vec(C−1′)

so that

vec(IN ⊗C−1′) = ((IN ⊗KNN )(vec(IN )⊗ IN )⊗ IN )dvec(C−1′)

= −{[(IN ⊗KNN )(vec(IN )⊗ IN )]⊗ IN}(C−1 ⊗C−1′)KNNdvec(C),

we will have that

∂vec[Zst(θ)]

∂θ′
=
∂vec

∂θ′

[(
0(N+pN2)×N2

IN2

)
(IN ⊗C−1′)

]
.

But[
IN2 ⊗

(
0(N+pN2)×N2

IN2

)]
∂vec(IN ⊗C−1′)

∂θ′

= −
[
IN2⊗

(
0(N+pN2)×N2

IN2

)]
[ 0 {[(IN⊗KNN )(vec(IN )⊗IN )]⊗IN}(C−1⊗C−1′)KNN ].

In addition,

∂elt(θ,%)

∂θ′
= −∂

2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
∂ε∗t (θ)

∂θ′
=
∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
{Z′lt(θ) + [ε∗′t (θ)⊗ IN ]Z′st(θ)} (B12)
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and

∂est(φ)

∂θ′
= −[ε∗t (θ)⊗ IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
∂ε∗t (θ)

∂θ′
−
{

IN ⊗
∂ ln f [ε∗t (θ);%]

∂ε∗

}
∂ε∗t (θ)

∂θ′

=

{
[ε∗t (θ)⊗ IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
+

[
IN ⊗

∂ ln f [ε∗t (θ);%]

∂ε∗

]}
×{Z′lt(θ) + [ε′∗t (θ)⊗ IN ]Z′st(θ)}. (B13)

The assumed independence across innovations implies that

ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
=



∂2 ln f1[ε∗1t(θ);%1]
(∂ε∗1)2

0 · · · 0

0
. . .

...
...

. . . 0

0 · · · 0
∂2 ln fN [ε∗Nt(θ);%N ]

(∂ε∗N )2

 , (B14)

which substantially simplifies the above expressions.

Moreover,

hθ%t(φ) = Zlt(θ)
∂elt(φ)

∂%′
+ Zst(θ)

∂est(φ)

∂%′
,

where

∂elt(φ)

∂%′
= −∂

2 ln f [ε∗t (θ);%]

∂ε∗∂%′
,

∂est(φ)

∂%′
= −[ε∗t (θ)⊗ IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂%′
.

with

∂2 ln f [ε∗t (θ);%]

∂ε∗∂%′
=


∂2 ln f1[ε∗1t(θ);%1]

∂ε∗1∂%
′
1

0 · · · 0

0
. . .

...
...

. . . 0

0 · · · 0
∂2 ln fN [ε∗Nt(θ);%N ]

∂ε∗N∂%
′
N

 (B15)

because of the cross-sectional independence assumption.

As for the shape parameters of the independent margins,

h%%t(φ) =
∂2 ln f [ε∗t (θ) ;%]

∂%∂%′
=


∂2 ln f1[ε∗1t(θ);%1]

∂%1∂%
′
1

0 · · · 0

0
. . .

...
...

. . . 0

0 · · · 0
∂2 ln fN [ε∗Nt(θ);%N ]

∂%N∂%
′
N

 . (B16)

Finally, regarding the Jacobian term − ln |C|, we have that differentiating (B3) once more
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yields

−


0
0
...
0

IN2

 dvec(C−1′) =


0
0
...
0

IN2

 (C−1 ⊗C−1′)KNNdvec(C),

so

∂2dt(θ)

∂θ∂θ′
=


0
0
...
0

IN2


[

0N2×(N+pN2) (C−1 ⊗C−1′)KNN

]
.

In the case of a restricted PMLE in which the elements of % are fixed to some arbitrary

parameter values %̄, we would simply eliminate all the row and column blocks corresponding to

% from the expressions above.

B.2 The pseudo true values

In what follows, we maintain the assumptions that (i) µt(θ) and Σt(θ) in (B2) are correctly

specified and (ii) the true shocks ε∗t are serially and cross-sectionally independent. Nevertheless,

we continue to allow for misspecification of the marginal densities.

As usual, the pseudo true values of the parameters of a globally identified model, φ∞,

are the unique values that maximise the expected value of the log-likelihood function over the

admissible parameter space, which is a compact subset of Rdim(φ), where the expectation is

taken with respect to the true distribution of the shocks. Under standard regularity conditions

(see e.g. White (1982)), those pseudo true values will coincide with the values of the parameters

that set to 0 the expected value of the pseudo-log likelihood score.

More formally, if we define$0 as the true values of the shape parameters, and ϕ0 = (θ0,$0),

we would normally expect that

E[st(φ∞)|ϕ0] = 0.

We have shown in Proposition 1 that the parameters aj = vec(Aj) (j = 1, . . . , p) and

j = veco(J) are consistently estimated regardless of the true distribution. As a result, aj∞ = aj0

and j∞ = j0. In contrast, τ and ψ = vecd(Ψ) may be inconsistently estimated, so that τ∞ 6= τ 0

and ψ∞ 6= ψ0 in general. It is then easy to see that

ε∗t (θ∞) = Ψ−1
∞ J−1

0 (yt − τ∞ −A10yt−1 − . . .−Ap0yt−p)

= Ψ−1
∞ [J−1

0 (τ 0 − τ∞) + Ψ0ε
∗
t ] = Ψ−1

∞ [(υ0 − υ∞) + Ψ0ε
∗
t ]. (B17)

Therefore, both ε∗t (θ∞) and et(φ∞) will be serially independent and not just martingale
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difference sequences. Moreover, given that

Z(θ) = E[Zt(θ)|ϕ0] =



C−1′ 0N×N2 0N×q
(µ⊗ IN )C−1′ 0N2×N2 0N2×q

...
...

...
(µ⊗ IN )C−1′ 0N2×N2 0N2×q

0N2×N (IN ⊗C−1′) 0N2×q
0q×N 0q×N2 Iq


=

[
Zd(θ) 0

0 Iq

]
(B18)

has full column rank,

E[et(φ∞)|It−1,ϕ0] = 0 (B19)

because

0 = E[st(φ∞)|ϕ0] = E{E[st(φ∞)|It−1,ϕ0]|ϕ0} = Z(θ)E[et(φ∞)|It−1,ϕ0] = Z(θ)E[et(φ∞)|ϕ0].

Furthermore, the diagonality of Ψ means that the pseudo-shocks ε∗t (θ∞) will also inherit

the cross-sectional independence of the true shocks ε∗t . Nevertheless, in general

E[ε∗t (θ∞)|ϕ0] = Ψ−1
∞ (υ0 − υ∞), (B20)

V [ε∗t (θ∞)|ϕ0] = Ψ−1
∞Ψ2

0Ψ
−1
∞ , and (B21)

E[ε∗t (θ∞)ε∗′t (θ∞)|ϕ0] = Ψ−1
∞ [(υ0 − υ∞)(υ0 − υ∞)′ + Ψ2

0]Ψ−1
∞ , (B22)

where the diagonality of V [ε∗t (θ∞)|ϕ0] confirms the cross-sectional independent nature of the

shocks. Under standard regularity conditions

T−1
T∑
t=1

ε∗it(θ̂) → E[ε∗it(θ∞)|ϕ0] =
υi0 − υi∞
ψi∞

and (B23)

T−1
T∑
t=1

ε∗2it (θ̂) → E[ε∗
2

it (θ∞)|ϕ0] =
(υi0 − υi∞)2 + ψi0

ψi∞
, (B24)

where θ̂ are the PMLEs of the conditional mean and variance parameters.

We have also shown in Proposition 1 that a and j will remain consistently estimated by the

restricted PMLEs that fix the shape parameters of the assumed distributions to %̄. To avoid

confusion, we will denote by τ∞(%̄) and ψ∞(%̄) the pseudo true values of τ and ψ in that case.

Proposition 3 shows that the unrestricted PMLEs of τ and ψ which simultaneously estimate

% will be consistent too when the univariate distributions used for estimation purposes are

discrete mixtures of normals, in which case θ∞ = θ0 and ε∗t (θ∞) = ε∗t . Since the probability

limits of the estimators of the shape parameters will also be affected, in what follows we will

denote them by %̄∞ to emphasise the distinction, so that φ̄∞ = (θ′0, %̄
′
∞)′. We could have called

them %∞(θ0) to stress the fact that they would coincide with the plims of the PMLEs that

estimate from (B1) the shape parameters only after fixing the mean and variance parameters to

their true values, but the subsequent expressions would become too cumbersome.

Next, we will first obtain expressions for the conditional variance of the score and expected
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value of the Hessian for any assumed univariate distributions, but then we will simplify them to

those cases, like finite normal mixtures, in which θ∞ = θ0. In this respect, Proposition F1 in

Appendix F.1 implies that (B23) and (B24) are numerically identical to 0 and 1, respectively,

in the finite normal mixture case.

B.3 The conditional variance of the score

B.3.1 General expression

The serial independence of et(φ∞) combined with (B7) immediately implies that

Bt(φ∞,ϕ0) = V [st(φ∞)|It−1,ϕ0] = Zt(θ∞)O(φ∞;ϕ0)Z′t(θ∞), (B25)

O(φ∞;ϕ0) = V [et(φ∞)|ϕ0] = V

 elt(φ∞)
est(φ∞)
ert(φ∞)

∣∣∣∣∣∣ϕ0


=

 Oll(φ∞;ϕ0) Ols(φ∞;ϕ0) Olr(φ∞;ϕ0)
O′ls(φ∞;ϕ0) Oss(φ∞;ϕ0) Osr(φ∞;ϕ0)
O′lr(φ∞;ϕ0) O′sr(φ∞;ϕ0) Orr(φ∞;ϕ0)



= E


∂ ln f [ε∗t (θ);%]

∂ε∗
∂ ln f [ε∗t (θ);%]

∂ε∗′

vec
{

IN +
∂ ln f [ε∗t (θ);%]

∂ε∗ ε∗′t (θ)
}
∂ ln f [ε∗t (θ);%]

∂ε∗′

−∂ ln f [ε∗t (θ∞);%∞]
∂%∗

∂ ln f [ε∗t (θ);%]
∂ε∗′

∂ ln f [ε∗t (θ);%]
∂ε∗ vec′

{
IN +

∂ ln f [ε∗t (θ);%]
∂ε∗ ε∗′t (θ)

}
vec

{
IN +

∂ ln f [ε∗t (θ);%]
∂ε∗ ε∗′t (θ)

}
vec′

{
IN +

∂ ln f [ε∗t (θ);%]
∂ε∗ ε∗′t (θ)

}
−∂ ln f [ε∗t (θ∞);%∞]

∂%∗ vec′
{

IN +
∂ ln f [ε∗t (θ);%]

∂ε∗ ε∗′t (θ)
}

−∂ ln f [ε∗t (θ);%]
∂ε∗

∂ ln f [ε∗t (θ∞);%∞]
∂%′

−vec
{

IN +
∂ ln f [ε∗t (θ);%]

∂ε∗ ε∗′t (θ)
}
∂ ln f [ε∗t (θ∞);%]

∂%′

∂ ln f [ε∗t (θ∞);%]
∂%

∂ ln f [ε∗t (θ∞);%]
∂%′

∣∣∣∣∣∣∣∣ϕ0

 .
Expressions (B8) and (B19), together with the fact that the pseudo shocks (B17) are cross-

sectionally independent, imply that Oll(φ∞;ϕ0) will be a diagonal matrix of order N with

typical non-zero element

oill(φ∞;ϕ0) = V

{
∂ ln fi[ε

∗
it(θ∞);%i∞]

∂ε∗i

∣∣∣∣ϕ0

}
.

As usual, under standard regularity conditions we can consistently estimate oill(φ∞;ϕ0) by

replacing ε∗it(θ∞) with ε∗it(θ̂) and the population variance by its sample counterpart.

For the same reasons,

Ols(φ∞;ϕ0) = [ O1
ls(φ∞;ϕ0) . . . Oils(φ∞;ϕ0) . . . ONls (φ∞;ϕ0) ],

8



where Oils(φ∞;ϕ0) is a diagonal matrix of order N whose non-zero elements are

ojll(φ∞;ϕ0)E[ε∗it(θ∞)|ϕ0] (j 6= i) and

oils(%i∞,ϕ0) = cov

{
∂ ln f [ε∗it(θ∞);%i∞]

∂ε∗i
,
∂ ln f [ε∗it(θ∞);%i∞]

∂ε∗i
ε∗it(θ∞)

∣∣∣∣ϕ0

}
(j = i).

As for Oss(φ∞;ϕ0), the same argument implies that it will be given by the sum of the

commutation matrix KNN and
Υ11(φ∞;ϕ0) . . . Υ1i(φ∞;ϕ0) . . . Υ1N (φ∞;ϕ0)

...
. . .

...
...

Υi1(φ∞;ϕ0) . . . Υii(φ∞;ϕ0) . . . ΥiN (φ∞;ϕ0)
...

...
. . .

...
ΥN1(φ∞;ϕ0) . . . ΥNi(φ∞;ϕ0) . . . ΥNN (φ∞;ϕ0)

 ,

where Υij(φ∞;ϕ0) = Υji(φ∞;ϕ0) (j 6= i) is a diagonal matrix of size N whose non-zero

elements are

okll(φ∞;ϕ0)E[ε∗it(θ∞)|ϕ0]E[ε∗jt(θ∞)|ϕ0] (k 6= i, j),

oils(%i∞,ϕ0)E[ε∗jt(θ∞)|ϕ0] (k = i) and

ojls(%i∞,ϕ0)E[ε∗it(θ∞)|ϕ0] (k = j),

while Υii(φ∞;ϕ0) is another diagonal matrix of the same size whose non-zero elements are

ojll(φ∞;ϕ0)E[ε∗2it (θ∞)|ϕ0] (j 6= i) and

oiss(φ∞;ϕ0) = V

{
∂ ln fi[ε

∗
it(θ∞);%i∞]

∂ε∗i
ε∗it(θ∞)

∣∣∣∣ϕ0

}
− 1 (j = i).

It is worth noting that the off-diagonal elements of KNN reflect the fact that

E

[(
∂ ln fi(ε

∗
it;%2)

∂ε∗i
ε∗jt

)(
∂ ln fk(ε

∗
kt;%2)

∂ε∗k
ε∗lt

)]
= 1

when i = k and j = l despite the fact that i 6= j.

In turn, Olr(φ∞;ϕ0) is an N × q block diagonal matrix with typical diagonal block of size
1× qi

oilr(φ∞,ϕ0) = −cov
[
∂ ln fi[ε

∗
it(θ∞);%i∞]

∂ε∗i
,
∂ ln fi[ε

∗
it(θ∞);%i∞]

∂%i

∣∣∣∣ϕ0

]
,

while

O′sr(φ∞;ϕ0) = [ O1′
sr(φ∞;ϕ0) . . . Oi′sr(φ∞;ϕ0) . . . ON ′sr (φ∞;ϕ0) ],

where Oisr(φ∞;ϕ0) is another block diagonal matrix of order N × q whose non-zero blocks of
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size 1× qj will be

ojlr(φ∞,ϕ0)E[ε∗it(θ∞)|ϕ0], i 6= j and

oisr(φ∞,ϕ0) = −cov
[
∂ ln fi[ε

∗
it(θ∞);%i∞]

∂ε∗i
ε∗it(θ∞),

∂ ln fi[ε
∗
it(θ∞);%i∞]

∂%i

∣∣∣∣ϕ0

]
, i = j.

Finally, Orr(φ∞;ϕ0) is a q × q block diagonal matrix with typical diagonal block of size

qi × qi
oirr(φ∞;ϕ0) = V

{
∂ ln fi[ε

∗
it(θ∞);%i∞]

∂%i

∣∣∣∣ϕ0

}
.

Let us now combine these expressions with the special structure of Zlt and Zst to obtain the

conditional covariance matrix of the score for model (1) in more detail.

If we expand (B25), we end up with Zlt(θ)Oll(φ∞;ϕ0)Z′lt(θ) + Zst(θ)O′ls(φ∞;ϕ0)Z′lt(θ)
+Zlt(θ)Ols(φ∞;ϕ0)Z′st(θ) + Zst(θ)Oss(φ∞;ϕ0)Z′st(θ)

Zlt(θ)Olr(φ∞;ϕ0)
+Zst(θ)Osr(φ∞;ϕ0)

O′lr(φ∞;ϕ0)Z′lt(θ) +O′sr(φ∞;ϕ0)Z′st(θ) Orr(φ∞;ϕ0)

 .
Thus, diagonal block of the covariance matrix of the score corresponding to θ will be

IN
yt−1⊗IN

...
yt−p⊗IN
0N2×N

C−1′Oll(φ∞;ϕ0)C−1
(

IN y′t−1⊗IN . . . y′t−p⊗IN 0N×N2

)

+


0N×N2

0N2×N2

...
0N2×N2

IN2

 (IN⊗C−1′)O′ls(φ∞;ϕ0)C−1
(

IN y′t−1⊗IN . . . y′t−p⊗IN 0N×N2

)

+


IN

yt−1⊗IN
...

yt−p⊗IN
0N2×N

C−1′Ols(φ∞;ϕ0)(IN⊗C−1)
(

0N2×N 0N2×N2 . . . 0N2×N2 IN2

)

+


0N×N2

0N2×N2

...
0N2×N2

IN2

 (IN⊗C−1′)Oss(φ∞;ϕ0)(IN⊗C−1)
(

0N2×N 0N2×N2 . . . 0N2×N2 IN2

)
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=


C−1′Oll(φ∞;ϕ0)C−1 y′t−1⊗C−1′Oll(φ∞;ϕ0)C−1 . . .

yt−1⊗C−1′Oll(φ∞;ϕ0)C−1 yt−1y
′
t−1⊗C−1′Oll(φ∞;ϕ0)C−1 . . .

...
...

. . .
yt−p⊗C−1′Oll(φ∞;ϕ0)C−1 yt−py′t−1⊗C−1′Oll(φ∞;ϕ0)C−1 . . .
(IN⊗C−1′)O′ls(φ∞;ϕ0)C−1 (IN⊗C−1′)O′ls(φ∞;ϕ0)C−1(y′t−1⊗IN ) . . .

y′t−p⊗C−1′Oll(φ∞;ϕ0)C−1 C−1′Ols(φ∞;ϕ0)(IN⊗C−1)

yt−1y
′
t−p⊗C−1′Oll(φ∞;ϕ0)C−1 (yt−1⊗IN )C−1′Ols(φ∞;ϕ0)(IN⊗C−1)

...
...

yt−py′t−p⊗C−1′Oll(φ∞;ϕ0)C−1 (yt−p⊗IN )C−1′Ols(φ∞;ϕ0)(IN⊗C−1)

(IN⊗C−1′)O′ls(φ∞;ϕ0)C−1(y′t−p⊗IN ) (IN⊗C−1′)Oss(φ∞;ϕ0)(IN⊗C−1)

 . (B26)

As a result, the block of the unconditional covariance matrix of the score corresponding to

the conditional mean parameters τ and a will be

E




1
yt−1
...

yt−p

( 1 y′t−1 . . . y′t−p
)
⊗C−1′Oll(φ∞;ϕ0)C−1

=


1 µ′ . . . µ′

µ Γ(0) + µµ′ . . . Γ(p− 1) + µµ′

...
...

. . .
...

µ Γ′(p− 1) + µµ′ . . . Γ(0) + µµ′

⊗C−1′Oll(φ∞;ϕ0)C−1, (B27)

where Γ(j) is the jth autocovariance matrix of yt.

In turn, the off-diagonal θ% block of the conditional covariance matrix of the score will be
IN

yt−1 ⊗ IN
...

yt−p ⊗ IN
0N2×N

C−1′Olr(φ∞;ϕ0) +


0N×N2

0N2×N2

...
0N2×N2

IN2

 (IN ⊗C−1′)Osr(φ∞;ϕ0)

=


C−1′Olr(φ∞;ϕ0)

(yt−1 ⊗ IN )C−1′Olr(φ∞;ϕ0)
...

(yt−p ⊗ IN )C−1′Olr(φ∞;ϕ0)
(IN ⊗C−1′)Osr(φ∞;ϕ0)

 =


C−1′Olr(φ∞;ϕ0)

yt−1 ⊗C−1′Olr(φ∞;ϕ0)
...

yt−p ⊗C−1′Olr(φ∞;ϕ0)
(IN ⊗C−1′)Osr(φ∞;ϕ0)

 , (B28)

whose unconditional expectation is trivially
C−1′Olr(φ∞;ϕ0)

µ⊗C−1′Olr(φ∞;ϕ0)
...

µ⊗C−1′Olr(φ∞;ϕ0)
(IN ⊗C−1′)Osr(φ∞;ϕ0)

 .
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Unfortunately, there seems to be no obvious simplification to the matrices

C−1′Oll(φ∞;ϕ0)C−1,

C−1′Ols(φ∞;ϕ0)(IN ⊗C−1),

(IN ⊗C−1′)Oss(φ∞;ϕ0)(IN ⊗C−1),

C−1′Olr(φ∞;ϕ0), and

(IN ⊗C−1′)Osr(φ∞;ϕ0)

unless C is diagonal (see, e.g., the discussion in the proof of Proposition 14 in Fiorentini and

Sentana (2021b)). In principle, we could effectively make C equal to the identity matrix by

premultiplying yt in (1) by C−1, which would preserve the vector autoregressive structure with

the similar autoregressive matrices C−1AjC for j = 1, . . . , p. Moreover, we could also effectively

set the drifts to 0 by subtracting the unconditional mean µ from the observations. However, we

shall not pursue any of these avenues.

B.3.2 Special case: θ consistently estimated

Many of the elements of O(φ∞;ϕ0) simplify considerably when τ and ψ are consistently

estimated, in which case υi∞ − υi0 = 0 and ψi0/ψi∞ = 1 for all i. Specifically, Amengual et al

(2021b) show that Ols(φ̄∞;ϕ0) =Ols(φ̄∞;ϕ0)E′N , where Ols(φ̄∞;ϕ0) is a diagonal matrix of

order N with typical element

oils(φ̄∞;ϕ0) = cov

{
∂ ln fi[ε

∗
it(θ0); %̄i∞]

∂ε∗i
,
∂ ln fi[ε

∗
it(θ0); %̄i∞]

∂ε∗i
ε∗it(θ0)

∣∣∣∣ϕ0

}
.

Similarly, they show that Υ will be a block diagonal matrix of order N2 in which each of

the diagonal blocks Υii(φ̄∞;ϕ0) is a diagonal matrix of order N whose non-zero elements are

ojll(φ̄∞;ϕ0) = V

{
∂ ln fj [ε

∗
jt(θ0); %̄j∞]

∂ε∗j

∣∣∣∣∣ϕ0

}
(j 6= i) and

oiss(φ̄∞;ϕ0) = V

{
∂ ln fi[ε

∗
it(θ0); %̄i∞]

∂ε∗i
ε∗it(θ0)

∣∣∣∣ϕ0

}
− 1 (j = i).

Finally, they prove that Osr(φ̄∞;ϕ0) = ENOsr(φ̄∞;ϕ0), where Osr(φ̄∞;ϕ0) is another

block diagonal matrix of order N × q with typical block of size 1× qi

osr(φ̄∞;ϕ0) = −cov
[
∂ ln fi[ε

∗
it(θ0); %̄i∞]

∂ε∗i
ε∗it(θ∞),

∂ ln fi[ε
∗
it(θ0); %̄i∞]

∂%i

∣∣∣∣ϕ0

]
.

B.4 The conditional expected value of the Hessian

B.4.1 General expression

Given that Zdt(θ∞) ∈ It−1, the first thing to note is that (B19) sets to 0 the conditional

expectation of the last two terms of (B11). Moreover, the serial independence of et(φ∞) in
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(B17), together with (B12) and (B13) implies that

−E[ht(φ∞)|It−1,ϕ0] =

[
Zlt(θ∞) Zst(θ∞) 0

0 0 Iq

]

×E


−∂2 ln f [ε∗t (θ∞);%∞]

∂ε∗∂ε∗′

−[ε∗t (θ∞)⊗ IN ]
∂2 ln f [ε∗t (θ∞);%∞]

∂ε∗∂ε∗′ −
[
IN ⊗ ∂ ln f [ε∗t (θ∞);%∞]

∂ε∗

]
∂2 ln f [ε∗t (θ∞);%∞]

∂%∂ε∗′

−∂2 ln f [ε∗t (θ∞);%∞]
∂ε∗∂ε∗′ [ε∗′t (θ∞)⊗ IN ]

−
{

[ε∗t (θ∞)⊗ IN ]
∂2 ln f [ε∗t (θ∞);%∞]

∂ε∗∂ε∗′ +
[
IN ⊗ ∂ ln f [ε∗t (θ∞);%∞]

∂ε∗

]}
[ε′∗t (θ∞)⊗ IN ]

∂2 ln f [ε∗t (θ∞);%∞]
∂%∂ε∗′ [ε′∗t (θ∞)⊗ IN ]

∂2 ln f [ε∗t (θ∞);%∞]
∂ε∗∂%′

[ε∗t (θ∞)⊗ IN ]
∂2 ln f [ε∗t (θ∞);%]

∂ε∗∂%′

−∂2 ln f [ε∗t (θ∞);%∞]
∂%∂%′

∣∣∣∣∣∣∣∣ϕ0


×

 Z′lt(θ∞) 0
Z′st(θ∞) 0

0 Iq

 .
But

−
[
IN ⊗

∂ ln f [ε∗t (θ∞);%∞]

∂ε∗

]
= [IN ⊗ elt(φ∞)],

whose expected value is clearly 0 in view of (B19). In turn, if we now focus on est(φ∞), (B19)

also implies that the expected value of

−
[
IN ⊗

∂ ln f [ε∗t (θ∞);%∞]

∂ε∗

]
[ε′∗t (θ∞)⊗ IN ]

will be KNN because

−KNN

[
∂ ln f [ε∗t (θ∞);%∞]

∂ε∗
ε′∗t (θ∞)⊗ IN

]
= −KNN

[
∂ ln f [ε∗t (θ∞);%∞]

∂ε∗
⊗ IN

]
[ε′∗t (θ∞)⊗ IN ]

= −
[
IN ⊗

∂ ln f [ε∗t (θ∞);%∞]

∂ε∗

]
[ε′∗t (θ∞)⊗ IN ].

Consequently, we can write

At(φ∞;ϕ0) = −E[hφφt(φ∞)|It−1,ϕ0] = Zt(θ∞)H(φ∞;ϕ0)Z′t(θ∞), (B29)

where

H(φ∞;ϕ0) =

 Hll(φ∞;ϕ0) Hls(φ∞;ϕ0) Hlr(φ∞;ϕ0)
H′ls(φ∞;ϕ0) Hss(φ∞;ϕ0) Hsr(φ∞;ϕ0)
H′lr(φ∞;ϕ0) H′sr(φ∞;ϕ0) Hrr(φ∞;ϕ0)


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with

Hll(φ∞;ϕ0) = −E
{
∂2 ln f [ε∗t (θ∞);%∞]

∂ε∗∂ε∗′

∣∣∣∣ϕ0

}
,

Hls(φ∞;ϕ0) = −E
{
∂2 ln f [ε∗t (θ∞);%∞]

∂ε∗∂ε∗′
[ε∗′t (θ∞)⊗ IN ]

∣∣∣∣ϕ0

}
,

Hss(φ∞;ϕ0) = −E
{

[ε∗t (θ∞)⊗ IN )
∂2f [ε∗t (θ∞);%∞]

∂ε∗∂ε∗′
[ε′∗t (θ∞)⊗ IN ]

∣∣∣∣ϕ0

}
+ KNN

Hlr(φ∞;ϕ0) = E

{
∂2 ln f [ε∗t (θ∞);%∞]

∂ε∗∂%′

∣∣∣∣ϕ0

}
,

Hsr(φ∞;ϕ0) = E

{
[ε∗t (θ∞)⊗ IN ]

∂2 ln f [ε∗t (θ∞);%∞]

∂ε∗∂%′

∣∣∣∣ϕ0

}
, and

Hrr(φ∞;ϕ0) = −E
{
∂2 ln f [ε∗t (θ∞);%∞]

∂%∂%′

∣∣∣∣ϕ0

}
Expression (B14) implies that Hll(φ∞;ϕ0) will be a diagonal matrix of order N with typical

non-zero element.

hill(%i∞,ϕ0) = −E
{
∂2 ln fi[ε

∗
it(θ∞);%i∞]

(∂ε∗i )
2

∣∣∣∣ϕ0

}
.

Once again, under standard regularity conditions we can consistently estimate hill(φ∞;ϕ0)

by replacing ε∗it(θ∞) with ε∗it(θ̂) and the expected value by its sample counterpart.

For the same reason,

Hls(φ∞;ϕ0) = [ H1
ls(φ∞;ϕ0) . . . Hils(φ∞;ϕ0) . . . HNls (φ∞;ϕ0) ],

where Hils(φ∞;ϕ0) is a diagonal matrix of order N whose non-zero elements are

hjll(φ∞;ϕ0)E[ε∗it(θ∞)|ϕ0] (j 6= i) and

hils(%i∞,ϕ0) = −E
[
∂2 ln fi[ε

∗
it(θ∞);%i∞]

(∂ε∗i )
2

· ε∗it(θ∞)

∣∣∣∣ϕ0

]
(j = i).

As for the first summand of Hss(φ∞;ϕ0), the cross-sectional independence implies that it

will be given by 
Γ11(φ∞;ϕ0) . . . Γ1i(φ∞;ϕ0) . . . Γ1N (φ∞;ϕ0)

...
. . .

...
...

Γi1(φ∞;ϕ0) . . . Γii(φ∞;ϕ0) . . . ΓiN (φ∞;ϕ0)
...

...
. . .

...
ΓN1(φ∞;ϕ0) . . . ΓNi(φ∞;ϕ0) . . . ΓNN (φ∞;ϕ0)

 ,

where Γij(φ∞;ϕ0) = Γji(φ∞;ϕ0) (j 6= i) is a diagonal matrix of size N whose non-zero elements
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are

hkll(φ∞;ϕ0)E[ε∗it(θ∞)|ϕ0]E[ε∗jt(θ∞)|ϕ0] (k 6= i, j),

hils(%i∞,ϕ0)E[ε∗jt(θ∞)|ϕ0] (k = i) and

hjls(%i∞,ϕ0)E[ε∗it(θ∞)|ϕ0] (k = j),

while Γii(φ∞;ϕ0) is another diagonal matrix of the same size whose non-zero elements are

hjll(φ∞;ϕ0)E[ε∗2it (θ∞)|ϕ0] (j 6= i) and

hiss(φ∞;ϕ0) = −E
{
∂2 ln fi[ε

∗
it(θ∞);%i∞]

(∂εi)2
ε∗2it (θ∞)

∣∣∣∣ϕ0

}
(j = i).

In turn, Hlr(φ∞;ϕ0) is an N × q block diagonal matrix with typical diagonal block of size
1× qi

hilr(%i∞,ϕ0) = E

[
∂2 ln fi[ε

∗
it(θ∞);%i∞]

∂ε∗i ∂%
′
i

∣∣∣∣ϕ0

]
,

while

H′sr(φ∞;ϕ0) = [ H1′
sr(φ∞;ϕ0) . . . Hi′sr(φ∞;ϕ0) . . . HN ′sr (φ∞;ϕ0) ],

where Hisr(φ∞;ϕ0) is another block diagonal matrix of order N × q whose non-zero blocks of
size 1× qj will be

hjlr(%i∞,ϕ0)E[ε∗it(θ∞)|ϕ0], i 6= j and

hisr(%i∞,ϕ0) = E

{
∂2 ln fi[ε

∗
it(θ∞);%i∞]

∂ε∗i ∂%
′
i

ε∗i (θ∞)

∣∣∣∣ϕ0

}
, i 6= j.

Finally, Hrr(φ∞;ϕ0) is a q × q block diagonal matrix with typical block of size qi × qi

Hirr(%i∞,ϕ0) = −E
[
∂2 ln fi[ε

∗
it(θ∞);%i∞]

∂%i∂%
′
i

∣∣∣∣ϕ0

]
.

As a result, if we expand (B29), we end up with Zlt(θ)Hll(φ∞;ϕ0)Z′lt(θ) + Zst(θ)H′ls(φ∞;ϕ0)Z′lt(θ)
+Zlt(θ)Hls(φ∞;ϕ0)Z′st(θ) + Zst(θ)Hss(φ∞;ϕ0)Z′st(θ)

Zlt(θ)Hlr(φ∞;ϕ0)
+Zst(θ)Hsr(φ∞;ϕ0)

H′lr(φ∞;ϕ0)Z′lt(θ) +H′sr(φ∞;ϕ0)Z′st(θ) Orr(φ∞;ϕ0)

 ,
which in turn adopt expressions entirely analogous to the ones we have obtained before for the

conditional covariance matrix of the score in Appendix B.3.

B.4.2 Special case: θ consistently estimated

Again, many of the elements of H(φ∞;ϕ0) will also simplify considerably if τ and ψ

are consistently estimated. Specifically, Amengual et al (2021b) show that Hls(φ̄∞;ϕ0) =

Hls(φ̄∞;ϕ0)E′N , where Hls(φ̄∞;ϕ0) is a diagonal matrix of order N with typical element

hils(φ̄∞;ϕ0) = −E
[
∂2 ln fi[ε

∗
it(θ0); %̄i∞]

(∂ε∗i )
2

· ε∗it(θ0)

∣∣∣∣ϕ0

]
.
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Similarly, they show that Γ will be a block diagonal matrix of order N2 in which each of the

diagonal blocks Γii(φ∞;ϕ0) is a diagonal matrix of order N whose non-zero elements are

hjll(φ̄∞;ϕ0) = −E
{
∂2 ln fj [ε

∗
it(θ0); %̄i∞]

(∂εj)2

∣∣∣∣ϕ0

}
(j 6= i) and

hiss(φ̄∞;ϕ0) = −E
{
∂2 ln fi[ε

∗
it(θ0); %̄i∞]

(∂εi)2
ε∗2it (θ0)

∣∣∣∣ϕ0

}
(j = i).

Finally, they prove that Hsr(φ̄∞;ϕ0) = ENHsr(φ̄∞;ϕ0), where Hsr(θ0, %̄∞;ϕ0) another

block diagonal matrix of order N × q with typical block of size 1× qi

hsr(φ̄∞;ϕ0) = E

{
∂2 ln fi[ε

∗
it(θ0); %̄i∞]

∂ε∗i ∂%
′
i

ε∗i (θ0)

∣∣∣∣ϕ0

}
.

B.5 Asymptotic distribution

B.5.1 Robust standard errors for the PMLEs

For simplicity, we assume henceforth that there are no unit roots in the autoregressive

polynomial, so that the Svar model (1) generates a covariance stationary process in which

rank(IN − A1 − . . . − Ap) = N . If the autoregressive polynomial (IN − A1L − . . . − ApL
p)

had some unit roots, then yt would be a (co-) integrated process, and the estimators of the

conditional mean parameters would have non-standard asymptotic distributions, as some (linear

combinations) of them would converge at the faster rate T . In contrast, the distribution of the

ML estimators of the conditional variance parameters would remain standard (see, e.g., Phillips

and Durlauf (1986)).

We also assume that the regularity conditions A1-A6 in White (1982) are satisfied. These

conditions are only slightly stronger than those in Crowder (1976), which guarantee that MLEs

will be consistent and asymptotically normally distributed under correct specification. In par-

ticular, Crowder (1976) requires: (i) φ0 is locally identified and belongs to the interior of the

admissible parameter space, which is a compact subset of Rdim(φ); (ii) the Hessian matrix is

non-singular and continuous throughout some neighbourhood of φ0; (iii) there is uniform con-

vergence to the integrals involved in the computation of the mean vector and covariance matrix

of st(φ); and (iv) −E−1
[
−T−1

∑
t ht(φ)

]
T−1

∑
t ht(φ)

p→ Ip+q, where E−1
[
−T−1

∑
t ht(φ)

]
is positive definite on a neighbourhood of φ0.

We can use the law of iterated expectations to compute

A(φ∞,ϕ0) = E[−hφφt(φ∞)|θ0,ϕ0] = E [At(φ∞,ϕ0)]

and

V [sφt(φ∞)|ϕ0] = B(φ∞,ϕ0) = E [Bt(φ∞,ϕ)] .

In this context, the asymptotic distribution of the PMLEs of φ under the regularity conditions
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A1-A6 in White (1982) will be given by

√
T (φ̂− φ∞)→ N [0,A−1(φ∞,ϕ0)B(φ∞,ϕ0)A−1(φ∞,ϕ0)].

As we explained before, analogous expressions apply mutatis mutandi to a restricted PML

estimator of θ that fixes % some a priori chosen value to %̄. In that case, we would simply

need to replace θ∞ by θ∞(%̄) and eliminate the rows and columns corresponding to the shape

parameters % from the A and B matrices.

B.5.2 The information matrix under correct distributional specification

If the distribution of the shocks were correctly specified, then %̄∞ = $0 and the information

matrix equality holds, so that H(ϕ0;ϕ0) = O(ϕ0;ϕ0) =M(%0) and At(φ0,ϕ0) = Bt(φ0,ϕ0) =

It(φ0) (see Proposition D.2 in Fiorentini and Sentana (2021b)).

In this context, we can see more clearly the structure ofM(%) by appropriately re-arranging

the elements of est(φ). Expression (A5) allows us to conveniently re-write

est(φ) =
(

EN ∆N

) [ E′Nest(φ)
∆′Nest(φ)

]
,

where

E′Nedt(φ) = −vecd
{

IN +
∂ ln f [ε∗t (θ);%]

∂ε∗
ε∗′t (θ)

}
= −


1 +

∂ ln f1[ε∗1t(θ);%1]
∂ε∗1

ε∗1t(θ)
...

1 +
∂ ln fN [ε∗Nt(θ);%N ]

∂ε∗N
ε∗Nt(θ)


and

∆′Nedt(φ) = −veco
{

IN +
∂ ln f [ε∗t (θ);%]

∂ε∗
ε∗′t (θ)

}
= −



∂ ln f1[ε∗1t(θ);%1]
∂ε∗1

ε∗1t(θ)
...

∂ ln fN [ε∗Nt(θ);%N ]
∂ε∗N

ε∗1t(θ)

...
∂ ln f1[ε∗1t(θ);%1]

∂ε∗1
ε∗Nt(θ)

...
∂ ln fN [ε∗Nt(θ);%N ]

∂ε∗N
ε∗Nt(θ)



.

This vector is such that(
EN ∆N

) [ E′Nest(φ)
∆′Nest(φ)

]
= −vec

[
dg

{
IN +

∂ ln f [ε∗t (θ);%]

∂ε∗
ε∗′t (θ)

}]
−vec

[{
IN +

∂ ln f [ε∗t (θ);%]

∂ε∗
ε∗′t (θ)

}
− dg

{
IN +

∂ ln f [ε∗t (θ);%]

∂ε∗
ε∗′t (θ)

}]
,

where dg is the operator which transforms a square matrix into a diagonal one by setting its

off-diagonal elements to zero.
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Then, we can use Propositions 6 and 7 in Magnus and Sentana (2020) to prove that

V

[
E′Nest(φ)
∆′Nest(φ)

]
=

(
E′N
∆′N

)
V [est(φ)]

(
EN ∆N

)
=

(
E′N
∆′N

)
(KNN + Υ)

(
EN ∆N

)
=

[
E′N (KNN + Υ)EN E′N (KNN + Υ)∆N

∆′N (KNN + Υ)EN ∆′N (KNN + Υ)∆N

]
=

[
Mss 0
0 ∆′N (KNN + Υ)∆N

]
,

where Mss = (IN + E′NΥEN ) is a diagonal matrix of order N with typical element mss(%i).

Hence,

V


elt(φ)

E′Nest(φ)
∆′Nest(φ)

ert(φ)

 =


IN 0 0
0 E′N 0
0 ∆′N 0
0 0 Iq

V

 elt(φ0)
est(φ0)
ert(φ0)

 IN 0 0 0
0 EN ∆N 0
0 0 0 Iq



=


Mll Mls 0 Mlr

Mls Mss 0 Msr

0 0 ∆′N (KNN + Υ)∆N 0
M′lr M′sr 0 Mrr

 . (B30)

Therefore, ∆′Nest(φ) is orthogonal to all the other elements of the score.

Importantly, when any of the N distributions is symmetric, it is easy to see that bot mls(%i)

and mlr(%i) will be equal to 0, so (B30) simplifies even further.

B.6 Reparametrisations

A convenient property of the expressions for st(φ∞), At(φ∞,ϕ0) and Bt(φ∞,ϕ0) above is

that reparametrisations only have an effect on the Zlt and Zst matrices, which only involve first

derivatives of the conditional mean vector and covariance matrix functions.

B.6.1 Unconditional mean

The first reparametrisation that we will consider involves rewriting the drift τ as (IN−A1−
. . .−Ap)µ, which we can always do under our maintained assumption of covariance stationarity.

The Jacobian from one vector of parameters to the other is

∂

(
τ
a

)
∂(µ′,a′)

=


IN −A1 − . . .−Ap −µ′ ⊗ IN . . . −µ′ ⊗ IN

0 IN2 . . . 0
...

...
. . .

...
0 0 . . . IN2

 .

Consequently, Zlt(θ) for (µ′,a′, c′) becomes
(IN −A1 − . . .−Ap)C

−1′

(yt−1 − µ)⊗C−1′

...
(yt−p − µ)⊗C−1′

0N2×N

 .
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Given that E(yt) = µ ∀t, and that the rest of the elements of Zlt and Zst are constant

over time, it is clear from (B26) and (B28) that both A(φ∞,ϕ0) and B(φ∞,ϕ0) will become

block-diagonal between the elements of a and the rest. In addition, it is also easy to see from

the same expressions that

Aµµ = (IN −A1 − . . .−Ap)C
−1′Hll(φ∞;ϕ0)C−1(IN −A1 − . . .−Ap)

′,

Aaa =

 Γ(0) . . . Γ(p− 1)
...

. . .
...

Γ′(p− 1) . . . Γ(0)

⊗C−1′Hll(φ∞;ϕ0)C−1,

where Γ(j) is the jth autocovariance matrix of yt, with analogous expressions for Bµµ and Baa.

Consequently, the asymptotic variances of the restricted and unrestricted ML estimators of a

will be given by Γ(0) . . . Γ(p− 1)
...

. . .
...

Γ′(p− 1) . . . Γ(0)


−1

⊗CH−1
ll (φ∞;ϕ0)Oll(φ∞;ϕ0)H−1

ll (φ∞;ϕ0)C′.

But since the PML estimators of a are the same regardless of whether we estimate the model

in terms of τ or µ, the asymptotic variance of a above is valid under covariance stationarity.

B.6.2 Standard deviations of shocks

Another reparametrisation that is very relevant in this paper is the one that expresses

C = JΨ. In this case, the parameters of interest become

j = veco(J− IN ) = (c21/c11, ..., cN1/c11, ..., c1N/cNN , ..., cN−1N/cNN )′,

ψ = vecd(Ψ) = (c11, ..., cNN )′.

The product rule for differentials dC = (dJ)Ψ + J(dΨ) immediately implies that

dvec(C) = (Ψ⊗ IN )∆Ndveco(J) + (IN ⊗ J)ENdveco(Ψ).

Therefore, the Jacobian will be

∂vec(C)

∂(j′,ψ′)
= [ (Ψ⊗ IN )∆N (IN ⊗ J)EN ] = [ ∆N (Ψ⊗ IN−1) (IN ⊗ J)EN ], (B31)

where we have used that Υ∆N = ∆N (∆′NΥ∆N ) for any diagonal matrix Υ and ∆′N (Ψ ⊗
IN )∆N = (Ψ⊗ IN−1) (see Proposition 6 in Magnus and Sentana (2020)).
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As a result, the chain rule for derivatives leads to[
sjt(φ)
sψt(φ)

]
=

(
∂c′/∂j
∂c′/∂ψ

)
sc(φ)

= −
[

(Ψ⊗ IN−1)∆′N
E′N (IN ⊗ J′)

]
(IN ⊗ J−1′)(IN ⊗Ψ−1)vec

{
IN +

∂ ln f [ε∗t (θ);%]

∂ε∗
ε∗′t (θ)

}
= −

[
(Ψ⊗ IN−1)∆′N (IN ⊗ J−1′)(IN ⊗Ψ−1)

Ψ−1E′N

]
vec

{
IN +

∂ ln f [ε∗t (θ);%]

∂ε∗
ε∗′t (θ)

}
= −

[
∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)

Ψ−1E′N

]
vec

{
IN +

∂ ln f [ε∗t (θ);%]

∂ε∗
ε∗′t (θ)

}

=

 −veco{J−1′Ψ−1 ∂ ln f [ε∗t (θ);%]
∂ε∗ ε∗′t (θ)Ψ + J−1′

}
−Ψ−1vecd

{
∂ ln f [ε∗t (θ);%]

∂ε∗ ε∗′t (θ) + IN

}  , (B32)

where we have used the fact that ∆′Nvec(A) = veco(A) and E′Nvec(A) = vecd(A) for any

square matrix A of order N .

In particular,

sψit(φ) = − 1

ψi

{
∂ ln f [ε∗it(θ);%i]

∂ε∗i
ε∗it(θ) + 1

}
(i = 1, . . . , N). (B33)

Once again, we can use (B31) to transform A(φ∞,ϕ0) and B(φ∞,ϕ0) appropriately.

B.6.3 Unconditional means of the shocks

A third possible parametrisation associated to the previous one would replace τ by υ,

where τ = Jυ. This is slightly more involved than before because it combines mean and

variance parameters. The steps, though, are otherwise standard. In particular, given that

dτ = (dJ)υ + Jdυ, we will have that after vectorising

dτ = (υ′ ⊗ IN )∆Ndveco(J) + Jdυ,

whence
∂τ

∂(j′,υ′)
= [ (υ′ ⊗ IN )∆N J ]. (B34)
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Hence, if we combine this expression with the Jacobian in (B31) we will have sjt(φ)
sυt(φ)
sψt(φ)

 =

 ∂τ ′/∂j ∂c′/∂j
∂τ ′/∂υ 0

0 ∂c′/∂ψ

[ sτ t(φ)
sc(φ)

]

=

 ∆′N (υ ⊗ IN ) ∆′N (Ψ⊗ IN )
J′ 0
0 E′N (IN ⊗ J′)

[ J−1′Ψ−1 ∂ ln f [ε∗t (θ);%]
∂ε∗

(IN ⊗ J−1′)(IN ⊗Ψ−1)vec
{

IN +
∂ ln f [ε∗t (θ);%]

∂ε∗ ε∗′t (θ)
} ]

= −

 ∆′N (υ ⊗ IN )J−1′Ψ−1 ∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)
Ψ−1 0

0 Ψ−1E′N

[ ∂ ln f [ε∗t (θ);%]
∂ε∗

vec
{

IN +
∂ ln f [ε∗t (θ);%]

∂ε∗ ε∗′t (θ)
} ]

= −


∆′N (υ ⊗ IN )J−1′Ψ−1 ∂ ln f [ε∗t (θ);%]

∂ε∗ + veco
{

J−1′Ψ−1 ∂ ln f [ε∗t (θ);%]
∂ε∗ ε∗′t (θ)Ψ + J−1′

}
Ψ−1 ∂ ln f [ε∗t (θ);%]

∂ε∗

Ψ−1vecd
{
∂ ln f [ε∗t (θ);%]

∂ε∗ ε∗′t (θ) + IN

}


This expression makes immediately clear that υ and ψ mop up any potential biases in the

MLEs based on a misspecified distribution, as we saw in Proposition 1.

B.6.4 Non-standardised shocks

So far, we have maintained the identifying assumption that the distribution for the shocks

used for estimation purposes is such that they all have 0 mean and unit variance by construction.

However, this restriction might be cumbersome to impose with certain distributions. For exam-

ple, while in Supplemental Appendix D1 of Fiorentini and Sentana (2021a) we explained how

to recursively standardise a discrete mixture of normals with K components, the expressions

become tedious for K > 3.

For that reason, it may sometimes be preferable to work with non-standardised distributions.

For identification purposes, though, one would need to eliminate υ (or τ ) and ψ from the

set of parameters to estimate, leaving only a and j plus an extended set of shape parameters

ρ = (ρ′1, . . . ,ρ
′
N )′ that implicitly capture the mean and variance of the structural shocks. In the

case of a finite Gaussian mixture with Ki components, those extended set parameters would be

ρi = (µ′i,σ
′
i,λ
′
i)
′ = (µi1, . . . , µiKi

;σ2
i1, . . . , σ

2
iKi

;λi1, . . . , λiKi−1)′

if we impose the adding up constraint on the mixing probabilities by making λiKi = 1 − λi1 −
. . .− λiKi−1.

In this context, it is easy to see that the expressions for the covariance matrix of the score and

the expected value of the Hessian that we derived in this appendix continue to hold if we define

the estimated pseudo-standardised shocks as ε∗t (0,a, j, `N ) = J−1(yt −A1yt−1 − . . .−Apyt−p),

so that in this respect it is as if τ = 0 and ψ = `N . Nevertheless, it is important to remember

that the consistency of the PMLEs of a and j hinges on the shape parameters effectively being

estimated to mop up the biases in the estimation of the mean and variance of the shocks.
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Having estimated the parameters in this way, it would be straightforward to go back to the

standardised parametrisation by means of the delta method if we express the mean and variance

of each shock as a function of its extended set of shape parameters ρi. For example, in the case

of finite mixtures of normals,

υi = λi1µi1 + . . .+ λiKi−1µiKi−1 + (1− λi1 − . . .− λiKi−1)µiKi

so
∂υi
∂µ′i

= ( λi1 . . . λiKi−1 1− λi1 − . . .− λiKi−1 )

while
∂υi
∂λ′i

= ( µi1 − µiKi
· · · µiKi−1 − µiKi

).

Similarly, given that

ψi=
√
λi1(µ2

i1+σ2
i1)+. . .+λi,Ki−1(µ2

i,Ki−1+σ2
iKi−1)+(1−λi1−. . .−λiKi−1)(µ2

i,Ki
+σ2

i,Ki
)−υ2

ii,

we will have that ∂ψi/∂ρ
′
i = .5ψi · ∂ψi/∂ρ′i, where

dψ2
i

dµ′i
= 2[ λi1µi1 . . . λiKi−1µiKi−1 (1− λi1 − . . .− λiKi−1)µiKi

]− 2υi
∂υi
∂µ′i

= 2[ λi1(µi1 − υi) . . . λi,Ki−1(µiKi−1 − υi) (1− λi1 − . . .− λiKi−1)(µi,Ki
− υi) ],

∂ψ2
i

∂σ′i
= ( λi1 . . . λi,Ki−1 1− λi1 − . . .− λiKi−1 ),

and

∂ψ2
i

∂λ′i
= [ (µ2

i1 + σ2
i1)− (µ2

iKi
+ σ2

iKi
) . . . (µ2

iKi−1 + σ2
iKi−1)− (µ2

iKi
+ σ2

iKi
) ]− 2υi

∂υi
∂λ′i

[ (µi1+µiKi
−2υi)(µi1−µiKi

)+(σ2
i1−σ2

iKi
) . . . (µiKi−1+µiKi

−2υi)(µiKi−1−µiKi
)+(σ2

iKi−1−σ2
iKi

) ].

C The FS consistent estimators

In Fiorentini and Sentana (2007) we proposed consistent estimators for the mean and variance

parameters of conditionally heteroskedastic dynamic regression models that are inconsistently

estimated by a distributionally misspecified log-likelihood function. An important advantage

of these estimators is that they can be written in closed-form as simple means, variances and

covariances of residuals, which make them very easy to code. In turn, in Fiorentini and Sentana

(2019) we studied in detail their statistical properties. The purpose of this appendix is to derive

analogous estimators in the context of the structural vector autoregression in (1) when its shocks

are cross-sectionally independent.
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C.1 The estimators

There are in fact two types of consistent FS estimators. The first one assumes that the true

distribution of the shocks is symmetric, and exploits the fact that the Gaussian pseudo score for

ψ is

sψt(θ; 0) = Ψ−1vecd[ε∗t (θ)ε∗′t (θ)− IN ] (C35)

to propose

ψ̃
2
i = ψit(τ̂ , â, ̂), i = 1, . . . , N,

as in (3), but using the consistent PMLEs of τ , a and j to compute ε∗t (τ̂ , â, ̂, `N ) = Ĵ−1(yt −
τ̂ − Â1yt−1 − . . .− Âpyt−p).

Let Ψ̃ = diag(ψ̃1, . . . , ψ̃N ) denote the symmetric FS estimators obtained in this manner.

Then the FS consistent estimator of C is obtained as

C̃ = ĴΨ̃. (C36)

In turn, the asymmetric FS estimators exploit the fact that the sample mean of the Gaussian

pseudo scores for τ , which are given by

sτ t(θ; 0) = J−1′Ψ−1ε∗t (θ), (C37)

will be 0 if and only if the sample average of εt(τ ,a) is 0 too. This yields

τ̃ i = τ i(â), i = 1, . . . , N,

as in (2), but using the consistent PMLEs of a to compute εt(0, â) = (yt−Â1yt−1−. . .−Âpyt−p).

Naturally, if we parametrise the model in terms of υ instead, then

υ̃i =
1

T

T∑
t=1

ε∗it(0, â, ̂, `N ),

while we would use (I− Â1 − . . .− Âp)
−1τ̃ = (I− Â1 − . . .− Âp)

−1Jυ̃ if we focused on µ.

As for the standard deviations, in the asymmetric case the estimator of ψ would be

ψ̃
2
i = ψit(τ̃ , â, ̂), i = 1, . . . , N,

with ε∗t (τ̃ , â, ̂, `N ) = Ĵ−1(yt− τ̃ − Â1yt−1− . . .− Âpyt−p), while the estimator of c would again

be given by (C36).

In both cases, the fact that the first step estimators of j are based on a non-Gaussian log-

likelihood function allows the use of the Gaussian scores for τ and ψ despite the fact that the

Gaussian log-likelihood function is unable to point identify j.
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C.2 The asymptotic covariance matrix

To obtain the asymptotic covariance matrices, we can follow Proposition 13 of the supple-

mental appendix of Fiorentini and Sentana (2019) and treat the sequential estimators as exactly

identified GMM estimators based on the extended set of moment conditions:

sτ t(τ ,a, j,ψ,%)
sat(τ ,a, j,ψ,%)
sjt(τ ,a, j,ψ,%)
sψt(τ ,a, j,ψ,%)
s%t(τ ,a, j,ψ,%)
sτ̄ t(τ̄ ,a, j, ψ̄,0)
sψ̄t(τ̄ ,a, j, ψ̄,0)


, (C38)

where we have introduced τ̄ and ψ̄ to denote the parameters that are consistently estimated in

the second step, which differ from their namesakes in the first stage, whose pseudo true values

are τ∞ and ψ∞. In this respect, it is also convenient to distinguish between the shocks estimated

with the first step estimators, ε∗t (τ ,a, j,ψ), and the FS standardised shocks

εt(τ̄ ,a, j, ψ̄) = Ψ̄−1J−1

yt − τ̄ −
p∑
j=1

Ajyt−j

 , (C39)

Appendices B.3 and B.4 give us the covariance matrix and expected Jacobian of the first five

components of the influence functions in (C38), which we combined to obtain the asymptotic

covariance matrix of the first step estimators. To obtain the joint distribution of the first- and

second-step estimators, we need all the remaining elements. In this respect, it is worth mention-

ing that quite a few other blocks of the Jacobian will be identically 0 because sτ̄ t(τ̄ ,a, j, ψ̄,0)

and sψ̄t(τ̄ ,a, j, ψ̄,0) do not depend on % or the inconsistent first-step estimators of τ and ψ.

As for the remaining blocks of the expected Jacobian, (C37) leads to

dsτ (τ̄ ,a, j, ψ̄,0) = d(J−1′) · Ψ̄−1εt(τ̄ ,a, j, ψ̄) + J−1′ · d(Ψ̄−1) · εt(τ̄ ,a, j, ψ̄)

+J−1′Ψ̄−1dεt(τ̄ ,a, j, ψ̄) = −J−1′ · dJ′ · J−1′Ψ̄−1εt(τ̄ ,a, j, ψ̄)

−J−1′Ψ̄−1 · dΨ̄−1 · Ψ̄−1εt(τ̄ ,a, j, ψ̄) + J−1′Ψ̄−1dεt(τ̄ ,a, j, ψ̄)

= −[ε′t(τ̄ ,a, j, ψ̄)Ψ̄−1J−1′ ⊗ J−1′]dvec(J′)− [ε′t(τ̄ ,a, j, ψ̄)Ψ̄−1 ⊗ J−1′Ψ̄−1]dvec(Ψ̄)

+J−1′Ψ̄−1dεt(τ̄ ,a, j, ψ̄) = −[ε′t(τ̄ ,a, j, ψ̄)Ψ̄−1J−1′ ⊗ J−1′]KNNdvec(J)

−[ε′t(τ̄ ,a, j, ψ̄)Ψ̄−1 ⊗ J−1′Ψ̄−1]ENdvecd(Ψ̄) + J−1′Ψ̄−1dεt(τ̄ ,a, j, ψ̄)

= −[J−1′ ⊗ ε′t(τ̄ ,a, j, ψ̄)Ψ̄−1J−1′]∆Ndveco(J)

−[ε′t(τ̄ ,a, j, ψ̄)Ψ̄−1 ⊗ J−1′Ψ̄−1]ENdvecd(Ψ̄) + J−1′Ψ̄−1dεt(τ̄ ,a, j, ψ̄).
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Given that (C39) implies that

dεt(τ̄ ,a, j, ψ̄)=d(Ψ̄−1) · J−1

yt − τ̄ −
p∑
j=1

Ajyt−j

+Ψ̄−1 · d(J−1) ·

yt − τ̄ −
p∑
j=1

Ajyt−j


−Ψ̄−1J−1 · dτ̄ − Ψ̄−1J−1

p∑
j=1

(dAj) · yt−j = −Ψ̄−1 · dΨ̄ · Ψ̄−1J−1

yt − τ̄ −
p∑
j=1

Ajyt−j


−Ψ̄−1J−1 · dJ · J−1

yt − τ̄ −
p∑
j=1

Ajyt−j

− Ψ̄−1J−1 · dτ̄

−Ψ̄−1J−1
p∑
j=1

(dAj) · yt−j = −Ψ̄−1 · dΨ̄ · εt(τ̄ ,a, j, ψ̄)− Ψ̄−1J−1 · dJ · Ψ̄εt(τ̄ ,a, j, ψ̄)

−Ψ̄−1J−1 · dτ̄ − Ψ̄−1J−1
p∑
j=1

(dAj) · yt−j = −[ε′t(τ̄ ,a, j, ψ̄)⊗ Ψ̄−1]dvec(Ψ̄)

−[ε′t(τ̄ ,a, j, ψ̄)Ψ̄⊗ Ψ̄−1J−1]dvec(J)− Ψ̄−1J−1dτ̄ −
p∑
j=1

(y′t−j ⊗ Ψ̄−1J−1)dvec(Aj)

=− [ε′t(τ̄ ,a, j, ψ̄)⊗ Ψ̄−1]ENdvecd(Ψ̄)

−[ε′t(τ̄ ,a, j, ψ̄)Ψ̄⊗ Ψ̄−1J−1]∆Ndveco(J)− Ψ̄−1J−1dτ̄ −
p∑
j=1

(y′t−j ⊗ Ψ̄−1J−1)dvec(Aj),

if we take into account that E[εt(τ̄ 0,a0, j0, ψ̄0)|ϕ0] = 0, then we are only left with the following

non-zero blocks for the expected Jacobian of sτ̄ t(τ̄ ,a, j, ψ̄,0):

E

[
∂sτ (τ̄ 0,a0, j0, ψ̄0,0)

∂a′j

∣∣∣∣∣ϕ0

]
= −J−1′

0 Ψ̄−1
0 (y′t−j ⊗ Ψ̄−1

0 J−1
0 ).

E

[
∂sτ (τ̄ 0,a0, j0, ψ̄0,0)

∂τ̄ ′

∣∣∣∣ϕ0

]
= −J−1′

0 Ψ̄−2
0 J−1

0 .

Similarly, we have from (C35) that

dsψ̄i(τ̄ ,a, j, ψ̄,0) = −ψ̄2
i [ε

2
it(τ̄ ,a, j, ψ̄)− 1]dψ̄i +

2εit(τ̄ ,a, j, ψ̄)

ψ̄i
dεit(τ̄ ,a, j, ψ̄).

As a result, the expected value of the Jacobian of sψ̄i(τ̄ ,a, j, ψ̄,0) with respect to τ̄ and a

evaluated at the true parameter values will be 0. In addition,

dsψ̄i(τ̄ ,a, j, ψ̄,0)

dψ̄i
= −ψ̄2

i [ε
2
it(τ̄ ,a, j, ψ̄)− 1]− 2εit(τ̄ ,a, j, ψ̄)2

ψ̄
2
i

so that

E

[
∂sψ̄t(τ̄ 0,a0, j0, ψ̄0,0)

∂ψ̄
′

∣∣∣∣∣ϕ0

]
= −2Ψ̄−2.
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Finally,

dsψ̄(τ̄ ,a, j, ψ̄,0)

dj′
= 2diag[Ψ̄−1

0 εt(τ̄ ,a, j, ψ̄)]
dεt(τ̄ ,a, j, ψ̄)

dj′

= −2diag[Ψ̄−1
0 εt(τ̄ ,a, j, ψ̄)][ε′t(τ̄ ,a, j, ψ̄)Ψ̄⊗ Ψ̄−1J−1]∆N

so that

E

[
dsψ̄(τ̄ ,a, j, ψ̄,0)

dj′

]
= −2diagN

(
Ψ̄−1J−1

)
,

where diagN is the N block-diagonalisation operator in Yang (2000), which is such that

diagN
(
C−1

)
=

N∑
i=1

eie
′
iC
−1Hi

when the blocks are of dimension 1 × N , with ei being the ith canonical vector and H1 =

[IN ,0N×(N2−N)], H2 = [0N×N , IN ,0N×(N2−2N)], . . ., HN = [0N×(N2−N), IN ].

Some of the expressions for the expected Jacobian would be different if in the first-step one

estimates the model in terms of c rather than j and ψ. Nevertheless, the relevant terms can be

easily obtained from the ones above by using the chain rule for first-derivatives

dsψ̄(τ̄ ,a, j, ψ̄,0)

dc′
=
dsψ̄(τ̄ ,a, j, ψ̄,0)

d(j′,ψ′)

d(j′,ψ′)′

dc′
,

with the last term computed from the inverse of (B31).

Let us now turn to the covariance matrix of the influence functions. The covariance between

sτ̄ t(τ̄ ,a, j, ψ̄,0) and sψ̄t(τ̄ ,a, j, ψ̄,0) is straightforward in view of (C35) and (C37) and the

cross-sectional independence of the shocks. Specifically,

V [sτ t(θ0; 0)|ϕ0] = J−1′
0 Ψ̄−2

0 J−1
0 ,

cov[sτ t(θ0; 0), sψt(θ0; 0)] = J−1′Ψ̄−2
0 Kls

and

V [sψt(θ0; 0)|ϕ0] = Ψ̄−2
0 Kss,

where Kls and Kss are the diagonal matrices of order N with typical element ϕ(%i) and κ(%i)−1

defined in the proof of Proposition 5.

To compute the blocks of the covariance matrix of sτ̄ t(τ̄ ,a, j, ψ̄,0) and sψ̄t(τ̄ ,a, j, ψ̄,0) with

the non-Gaussian scores with respect to all the other parameters, we must take into account that

the latter scores will be evaluated at inconsistent parameter estimators for τ and ψ. Specifically,

E
{

sτ̄ t(τ̄ 0,a0, j0, ψ̄0,0)
[

s′τ t(τ∞,a0, j0,ψ∞,%∞) s′at(τ∞,a0, j0,ψ∞,%∞)
]∣∣ϕ0

}
= J−1′

0 Ψ̄−1
0 Dll(φ∞;ϕ0)Ψ̄−1

0 J−1
0

(
IN µ′0 ⊗ IN . . . µ′0 ⊗ IN

)
,
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where

Dll(φ∞;ϕ0) = −E
[
ε∗t (θ0)

∂ ln f [ε∗t (θ∞);%∞]

∂ε∗′

∣∣∣∣ϕ0

]
is a diagonal matrix with typical element

dill(φ∞;ϕ0) = −E
{
ε∗it(θ0)

∂ ln fi[ε
∗
it(θ∞);%i∞]

∂ε∗i

∣∣∣∣ϕ0

}
6= −1

thanks to the cross-sectional independence of both the true and pseudo-standardised shocks

(B17).

Similarly,

E
{

sτ̄ t(τ̄ 0,a0, j0, ψ̄0,0)
[

s′jt(τ∞,a0, j0,ψ∞,%∞) s′ψt(τ∞,a0, j0,ψ∞,%∞)
]∣∣ϕ0

}
= J−1′Ψ̄−1Dls(φ∞;ϕ0)

[
ENΨ−1

∞ (Ψ∞ ⊗Ψ−1
∞ )(IN ⊗ J−1

0 )∆N

]
,

where

Dls(φ∞;ϕ0) = −E
[
ε∗t (θ0)vec′

{
IN +

∂ ln f [ε∗t (θ∞);%∞]

∂ε∗
ε∗′t (θ∞)

}∣∣∣∣ϕ0

]
= [ D1

ls(φ∞;ϕ0) . . . Dils(φ∞;ϕ0) . . . DNls (φ∞;ϕ0) ],

and Dils(φ∞;ϕ0) is a diagonal matrix of order N whose non-zero elements are

djll(φ∞;ϕ0)E[ε∗it(θ∞)|ϕ0] (j 6= i) and

dils(%i∞,ϕ0) = −E
{
ε∗it(θ0)

∂ ln f [ε∗it(θ∞);%i∞]

∂ε∗i
ε∗it(θ∞)

∣∣∣∣ϕ0

}
(j = i).

If in the first-step one estimates the model in terms of c rather than j and ψ, then the

relevant covariances would change, but once again they could be obtained from the previous

expression by using the chain rule for derivatives.

In addition,

E
{

sτ̄ t(τ̄ 0,a0, j0, ψ̄0,0)s′%t(τ∞,a0, j0,ψ∞,%∞)′
∣∣ϕ0

}
= J−1′Ψ̄−1Dlr(φ∞;ϕ0),

where

Dlr(φ∞;ϕ0) = E

[
ε∗t (θ0)

∂ ln fi[ε
∗
t (θ∞);%∞]

∂%′

∣∣∣∣ϕ0

]
,

an N × q block diagonal matrix with typical diagonal block of size 1× qi

dilr(φ∞,ϕ0) = E

[
ε∗it(θ0)

∂ ln fi[ε
∗
it(θ∞);%i∞]

∂%′i

∣∣∣∣ϕ0

]
.

In turn,

E
{

sψ̄t(τ̄ 0,a0, j0, ψ̄0,0)
[

s′τ t(τ∞,a0, j0,ψ∞,%∞) s′at(τ∞,a0, j0,ψ∞,%∞)
]∣∣∣ϕ0

}
= Ψ̄−1

0 E′NDsl(φ∞;ϕ0)Ψ̄−1
0 J−1

0

(
IN µ′0 ⊗ IN . . . µ′0 ⊗ IN

)
= Ψ̄−1

0 Dsl(φ∞;ϕ0)Ψ̄−1
0 J−1

0

(
IN µ′0 ⊗ IN . . . µ′0 ⊗ IN

)
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in view of (A5), where

Dsl(φ∞;ϕ0) = −E
[
vec

[
ε∗t (θ0)ε∗′t (θ0)− IN

] ∂ ln f [ε∗t (θ∞);%∞]

∂ε∗′

∣∣∣∣ϕ0

]
= ENDsl(φ∞;ϕ0),

and Dsl(φ∞;ϕ0) is a diagonal matrix of order N whose diagonal elements are

disl(%i∞,ϕ0) = −E
{
ε∗2it (θ0)

∂ ln f [ε∗it(θ∞);%i∞]

∂ε∗i

∣∣∣∣ϕ0

}
.

Moreover,

E
{

sψ̄t(τ̄ 0,a0, j0, ψ̄0,0)
[

s′jt(τ∞,a0, j0,ψ∞,%∞) s′ψt(τ∞,a0, j0,ψ∞,%∞)
]∣∣∣ϕ0

}
= Ψ̄−1E′NDss(φ∞;ϕ0)

[
ENΨ−1

∞ (Ψ∞ ⊗Ψ−1
∞ )(IN ⊗ J−1

0 )∆N

]
,

where

Dss(φ∞;ϕ0) = −E
[
vec [ε∗t (θ0)ε∗t (θ0)− IN ] vec′

{
IN +

∂ ln f [ε∗t (θ∞);%∞]

∂ε∗
ε∗′t (θ∞)

}∣∣∣∣ϕ0

]

=


D11
ss (φ∞;ϕ0) . . . D1i

ss(φ∞;ϕ0) . . . D1N
ss (φ∞;ϕ0)

...
. . .

...
...

Di1ss(φ∞;ϕ0) . . . Diiss(φ∞;ϕ0) . . . DiNss (φ∞;ϕ0)
...

...
. . .

...
DN1
ss (φ∞;ϕ0) . . . DNiss (φ∞;ϕ0) . . . DNNss (φ∞;ϕ0)

 .

Although this matrix contains many 0’s, its pattern is a bit more complex than in Appendix

B.4. For example, the elements of this matrix that correspond to the off-diagonal 1’s in KNN

are no longer 1. Specifically, they will be

−E
{
ε∗it(θ0)ε∗jt(θ0)

∂ ln f [ε∗jt(θ∞);%i∞]

∂ε∗j
ε∗it(θ∞)

∣∣∣∣∣ϕ0

}
= djll(φ∞;ϕ0)E[ε∗it(θ0)ε∗it(θ∞)|ϕ0]

because

E[ε∗t (θ0)ε∗′t (θ∞)|ϕ0] = E{ε∗t [(υ′0 − υ′∞) + ε∗′t Ψ0]Ψ−1
∞ |ϕ0} = Ψ0Ψ

−1
∞ 6= IN .

But all the remaining elements of Dijss(φ∞;ϕ0) (j 6= i) are 0 except its ith diagonal element,

which will be given by

disl(%i∞,ϕ0)E[ε∗jt(θ∞)|ϕ0],

while Diiss(φ∞;ϕ0) is another diagonal matrix of the same size whose non-zero elements are

djll(φ∞;ϕ0)E[ε∗it(θ0)ε∗it(θ∞)|ϕ0] (j 6= i) and

diss(φ∞;ϕ0) = −E
{
ε∗2it (θ0)

∂ ln fi[ε
∗
it(θ∞);%i∞]

∂ε∗i
ε∗it(θ∞)

∣∣∣∣ϕ0

}
− 1 (j = i).

Nevertheless, since the scores for ψ̄ only involve vecd[ε∗t (θ0)ε∗′t (θ0)−IN ], the calculation of some

of the above elements is unnecessary.
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Finally,

E
{

sψ̄t(τ̄ 0,a0, j0, ψ̄0,0)s′%t(τ∞,a0, j0,ψ∞,%∞)′
∣∣∣ϕ0

}
=Ψ̄−1E′NDsr(φ∞;ϕ0)=Ψ̄−1Dsr(φ∞;ϕ0),

where

Dsr(φ∞;ϕ0) = E

[
vec[ε∗t (θ0)ε∗′t (θ0)− IN ]

∂ ln f [ε∗t (θ∞);%∞]

∂%′

∣∣∣∣ϕ0

]
= ENDsr(φ∞;ϕ0),

and Dsr(φ∞;ϕ0) is another block diagonal matrix of order N×q with typical block of size 1×qi

dsr(φ∞;ϕ0) = E

{
ε2∗
it (θ0)

∂ ln fi[ε
∗
it(θ∞);%i∞]

∂%i

∣∣∣∣ϕ0

}
.

Once again, sample versions of the previous expressions will consistently estimate their pop-

ulation counterparts under standard regularity conditions as long as we replace θ∞ by the

first-step estimator and θ0 by the FS one in evaluating ε∗it(θ∞) and ε∗it(θ0), respectively.

We can use the delta method to obtain the covariance matrix of the FS estimator of c in

(C36). Specifically, if we define

C̄ = JΨ̄ = CΨ
−1

Ψ̄,

it immediately follows that

dC̄ = dC ·Ψ−1Ψ̄+C ·d(Ψ−1) · Ψ̄+CΨ−1 ·dΨ̄ = dC ·Ψ−1Ψ̄−CΨ−1 ·dΨ ·Ψ−1Ψ̄+CΨ−1 ·dΨ̄,

which after vectorising yields

dc̄ = (Ψ̄Ψ
−1 ⊗ IN )dc− (Ψ̄Ψ

−1 ⊗CΨ−1)ENdψ + (IN ⊗CΨ−1)ENdψ̄,

and hence

∂c̄

∂c′
= (Ψ̄Ψ

−1 ⊗ IN ),

∂c̄

∂ψ′
= −(Ψ̄Ψ

−1 ⊗CΨ−1)EN ,

∂c̄

∂ψ̄
′ = (IN ⊗CΨ−1)EN .

But since ψ = vecd(C),

dc̄

dc′
= (Ψ̄Ψ

−1 ⊗ IN )− (Ψ̄Ψ
−1 ⊗CΨ−1)ENE′N .

D Semiparametric estimators with cross-sectionally indepen-
dent shocks

In this appendix, we initially provide a new characterisation of the unrestricted ML para-

metric estimators under correct specification, which we then exploit to derive SP estimators that

impose the cross-sectional independence of shocks, first in general and then under symmetry.
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D.1 The parametric effi cient score

Let

I(φ) = E[It(φ)] =

[
Iθθ(φ) Iθ%(φ)
I ′θ%(φ) I%%(φ)

]
=

[
E[Zdt(θ)Mdd(%)Z′dt(θ)] Zd(φ)Mdr(%)

M′dr(%)Z′d(φ) Mrr(%)

]
,

with Zd(φ) defined in (B18), denote the unconditional information matrix. The residual from

the unconditional theoretical regression of the score corresponding to θ, sθt(φ0), on the score

corresponding to %, s%t(φ0), namely

sθ|%t(θ0,%0) = sθt(θ0,%0)− Iθ%(φ0)I−1
%% (φ0)s%t(θ0,%0)

= Zdt(θ)edt(φ)− Zd(φ)Mdr(%)M−1
rr (%)ert(φ), (D40)

is sometimes called the unrestricted parametric effi cient score of θ, and its covariance matrix,

P(φ0) = [Iθθ(φ0)]−1, the marginal information matrix of θ, or the unrestricted parametric

effi ciency bound.

We can interpret the second summand of (D40) as Zd(φ) times the theoretical least squares

projection of edt(φ0) on (the linear span of) ert(φ0), which is conditionally orthogonal to

edt(θ0,0) from Proposition 3 in Fiorentini and Sentana (2007). In this respect, it is impor-

tant to note that the different erit(φ) in (B10) are orthogonal to each other, so the projection of

edt(φ0) on the linear span of ert(φ0) coincides with the sum of the projections of edt(φ0) onto

the linear spans of ∂ ln f(ε∗it;%i)/∂%i (i = 1, . . . , N). In fact, the special structure ofMlr,Msr

andMrr discussed in Appendices B.3.2 and B.5.2 implies that we simply need to project each

edit(φ0) = −
[

∂ ln fi(ε
∗
it;%i0)/∂ε∗i

[1 + ε∗it∂ ln fi(ε
∗
it;%i0)/∂ε∗i ]

]
onto the linear span of ∂ ln f(ε∗it;%i)/∂%i. Thus, we will end up with the following projections

−∂ ln f(ε∗it;%i)

∂ε∗i
: mlr(%i)m

−1
rr (%i)

∂ ln f(ε∗it;%i)

∂%i
,

−(1 +
∂ ln f(ε∗it;%i)

∂ε∗i
ε∗it) : msr(%i)m

−1
rr (%i)

∂ ln f(ε∗it;%i)

∂%i
,

where

mlr(%i) = cov

[
∂ ln f(ε∗it;%i)

∂ε∗i
,
∂ ln f(ε∗it;%i)

∂%i

∣∣∣∣%i] ,
msr(%i) = cov

[
∂ ln f(ε∗it;%i)

∂ε∗i
ε∗it,

∂ ln f(ε∗it;%i)

∂%i

∣∣∣∣%i] ,
and

mrr(%i) = V

[
∂ ln f(ε∗it;%i)

∂%′i

∣∣∣∣%i] .
In contrast, the projection of the off-diagonal terms ε∗jt∂ ln f(ε∗it;%i)/∂ε

∗
i onto the linear span

of ∂ ln f(ε∗kt;%k)/∂%k is 0 for all possible combinations of i, j and k with i 6= j.
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We can compactly re-write these expressions in matrix form by working with the rearranged

version of est(φ). Specifically, we can use (B30) to write he parametric effi cient score as

sθ|%t(φ) = Vdt(φ)

 elt(φ)
E′Nest(φ)
∆′Nest(φ)

−Vd(θ)

(
Mlr

Msr

)
M−1

rr ert(φ)

=


C−1′[elt(φ)−MlrM−1

rr ert(φ)]
(yt−1 ⊗ IN )C−1′elt(φ)− (µ⊗ IN )C−1′MlrM−1

rr ert(φ)
...

(yt−p ⊗ IN )C−1′elt(φ)− (µ⊗ IN )C−1′MlrM−1
rr ert(φ)

(IN ⊗C−1′)EN [E′Nest(φ)−MsrM−1
rr ert(φ)] + (IN ⊗C−1′)∆N∆′Nest(φ)

 ,

whereMlr, Msr andMrr are block-diagonal matrices with typical blocks mlr(%i), msr(%i) and

mrr(%i), respectively,

Vdt(φ)=Zdt(θ)

(
IN 0 0
0 EN ∆N

)
=


C−1′ 0N×N 0N×N(N−1)

(yt−1⊗IN )C−1′ 0N2×N 0N2×N(N−1)
...

...
...

(yt−p⊗IN )C−1′ 0N2×N 0N2×N(N−1)

0N2×N (IN⊗C−1′)EN (IN⊗C−1′)∆N


and

Vd(θ) = Zd(θ)

(
IN 0
0 EN

)
=


C−1′ 0N×N

(µ⊗ IN )C−1′ 0N2×N
...

...
(µ⊗ IN )C−1′ 0N2×N

0N2×N (IN ⊗C−1′)EN

 .
The covariance matrix of this score then becomes

V {sθ|%t(φ)} = E
[
Zdt(θ)edt(φ)e′dt(φ)Zdt(θ)|φ

]
−E

Vdt(θ)

 elt(φ)
E′Nest(φ)
∆′Nest(φ)

 e′rt(φ)
(
M′lr M′sr

)
V′d(φ)

∣∣∣∣∣∣φ


−E
{

Vd(φ)

(
Mlr

Msr

)
M−1

rr ert(φ)
[

e′lt(φ) e′st(φ)EN e′st(φ)∆N

]
V′dt(θ)

∣∣∣∣φ}
+E

{
Vd(φ)

(
Mlr

Msr

)
M−1

rr ert(φ)e′rt(φ)M−1
rr

(
M′lr M′sr

)
V′d(φ)

∣∣∣∣φ}
= Iθθ(φ)−Vd(φ)

[(
Mlr

Msr

)
M−1

rr

(
M′lr M′sr

)]
V′d(φ) = Pθθ(φ). (D41)
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If we then re-write this expression as

Iθθ(φ)− Pθθ(φ) =


C−1′ 0N×N

(µ⊗ IN )C−1′ 0N2×N
...

...
(µ⊗ IN )C−1′ 0N2×N

0N2×N (IN ⊗C−1′)EN


(
MlrM−1

rrM′lr MlrM−1
rr M

′
sr

MsrM−1
rrM′lr MsrM−1

rr M
′
sr

)

×
[

C−1 C−1(µ′ ⊗ IN ) . . . C−1(µ′ ⊗ IN ) 0
0N×N 0N×N2 . . . 0N×N2 E′N (IN ⊗C−1)

]

=


C−1′MlrM−1

rrM′lrC−1 C−1′MlrM−1
rrM′lrC−1(µ′ ⊗ IN ) . . .

(µ⊗ IN )C−1′MlrM−1
rrM′lrC−1 (µ⊗ IN )C−1′MlrM−1

rrM′lrC−1(µ′ ⊗ IN )
...

. . .
(µ⊗ IN )C−1′MlrM−1

rrM′lrC−1 (µ⊗ IN )C−1′MlrM−1
rrM′lrC−1(µ′ ⊗ IN )

(IN ⊗C−1′)ENMsrM−1
rrM′lrC−1 (IN ⊗C−1′)ENMsrM−1

rrM′lrC−1(µ′ ⊗ IN ) . . .

C−1′MlrM−1
rrM′lrC−1(µ′ ⊗ IN ) C−1′MlrM−1

rr M
′
srE
′
N (IN ⊗C−1)

(µ⊗ IN )C−1′MlrM−1
rrM′lrC−1(µ′ ⊗ IN ) (µ⊗ IN )C−1′MlrM−1

rr M
′
srE
′
N (IN ⊗C−1)

...
(µ⊗ IN )C−1′MlrM−1

rrM′lrC−1(µ′ ⊗ IN ) (µ⊗ IN )C−1′MlrM−1
rr M

′
srE
′
N (IN ⊗C−1)

(IN ⊗C−1′)ENMsrM−1
rrM′lrC−1(µ′ ⊗ IN ) (IN ⊗C−1′)ENMsrM−1

rr M
′
srE
′
N (IN ⊗C−1)

 ,

we can easily see that there will be some functions of the original parameters θ which can be

estimated equally effi ciently by the restricted and unrestricted parametric estimators because

this matrix has less than full rank. Specifically, given that Vd(θ) has column rank 2N , and that(
MlrM−1

rrM′lr MlrM−1
rr M

′
sr

MsrM−1
rrM′lr MsrM−1

rr M
′
sr

)
,

whose four blocks are diagonal matrices of order N , has rank q at most, the rank of the differ-

ence between Iθθ(φ) and Pθθ(φ) will be min(2N, q). Therefore, a relevant question is which

transformations of parameters this rank deficiency suggests. Proposition 5 implies that the un-

restricted and restricted MLEs of a and j will be equally effi cient both when q ≥ 2N and when

q < 2N . In this last case, which arises when some of the shocks follow for instance skew-normal

distributions, whose standardised densities depend on a single parameter, or when they follow a

distribution like the Laplace that contains no shape parameters, there will be other functions of

θ for which unrestricted and restricted MLEs are equally effi cient, the extreme example being

q = 0.

The analysis of the rank of the difference between Iθθ(φ) and Pθθ(φ) changes when the

distributions of the shocks are symmetric, such as a Student t. The reason is becauseMlr = 0
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in that case, which means that

Iθθ(φ)− Pθθ(φ)

=


0N×N
0N2×N
...

0N2×N
(IN ⊗C−1′)EN

MsrM−1
rr M

′
sr

[
0N×N 0N×N2 . . . 0N×N2 E′N (IN ⊗C−1)

]
,

whose only non-zero block, which appears in the last position, is

(IN ⊗C−1′)ENMsrM−1
rr M

′
srE
′
N (IN ⊗C−1),

a matrix of rankmin(N, q). Once again, this rank deficiency implies there will be some additional

combinations of the original parameters θ which can be estimated equally effi ciently by the

restricted and unrestricted parametric estimators. Proposition 6 shows that the additional

parameters will be τ both when q ≥ N and when q < N, as explained in Proposition 14 in

Fiorentini and Sentana (2021b).

Finally, a closer inspection of the information matrix Iθθ(φ) indicates that in this symmetric

case the unrestricted estimators of the mean parameters τ and a are asymptotically orthogonal

to the corresponding estimators for c and % precisely becauseMlr = 0.

D.2 The cross-sectionally independent SP effi cient score

The interpretation of the difference between sθt(φ) and sθ|%t(θ,%) in terms of projections

that we derived above allows us to replace the parametric assumption on the shape of each of

the distributions of the standardised innovations in ε∗t by a non-parametric alternative. Specifi-

cally, we can replace the linear span of ∂ ln f(ε∗it;%i)/∂%i by the so-called marginal unrestricted

tangent set, which is the Hilbert space generated by all time-invariant functions of ε∗it with

bounded second moments that have zero conditional means and are conditionally orthogonal to

e′dit(θ0,0) = (ε∗it, ε
∗2
it − 1). Moreover, since the different shocks are stochastically independent of

each other, we can continue to compute the multivariate projection as the sum of the univariate

projections, as explained by Chen and Bickel (2006). The main difference with their approach

is that they normalised the scale of the shocks so that med[|ε∗it|] = 1 while we use E(ε∗2it ) = 1, so

their tangent set differs from ours in that respect (see Appendix D.2.1 below for further details).

In practice, we simply need to theoretically regress edit(φ) onto edit(θ,0) and retain the

projection error because the projection of edit(φ0) onto edkt(θ0,0) for k 6= i will be 0 under

independence. In this respect, please note that we do need to regress the off-diagonal elements

of edt(φ0) onto any edkt(θ0,0) because the projection of ε∗jt∂ ln f(ε∗it;%i)/∂ε
∗
i onto the linear

span of edkt(θ0,0) is also 0 for all possible combinations of i, j and k with i 6= j thanks to

independence.
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We also need

V [edit(θ0,0)] = V

(
ε∗it

ε∗2it − 1

)
=

(
1 φi(%i)

φi(%i) κi(%i)− 1

)
= Kii(%i), (D42)

where ϕ(%i) = E(ε∗3it |%i) and κii(%i) = E(ε∗4it |%i) are the usual coeffi cients of skewness and
kurtosis of ε∗it. In the Student t case, ϕ(%i) = 0 and κii(%i) = 3(νi − 2)/(νi − 4), while under

normality ϕ(0) = κii(0) = 0.

It is then easy to see that

K−1
ii (%) =

1

κi(%i)− 1− φ2
i (%i)

(
κi(%i)− 1 −φi(%i)
−φi(%i) 1

)
is generally well defined because the Cauchy-Schwarz inequality implies that κi(%i) ≥ 1 +φ2

i (%i)

for all distributions, with equality when ε∗it is a centred and standardised Bernoulli. The gener-

alised hyperbolic family of distributions can also reach the skewness-kurtosis bound, but it does

so in limiting cases in which its standardised members approach a centred and standardised

Bernoulli.

We can also use the generalised information matrix equality to show that

−E [ε∗it∂ ln fi(ε
∗
it;%i)/∂ε

∗
i ] = E(∂ε∗it/∂ε

∗
i ) = 1

−E
[
(ε∗2it − 1)∂ ln fi(ε

∗
it;%i)/∂ε

∗
i

]
= E[∂(ε∗2it − 1)/∂ε∗i ] = 0,

−E{ε∗it[1 + ε∗it∂ ln fi(ε
∗
it;%i)/∂ε

∗
i ]} = E(∂ε∗2it /∂ε

∗
i ) = 0,

−E{(ε∗2it − 1)[1 + ε∗it∂ ln fi(ε
∗
it;%i)/∂ε

∗
i ]} = −1− E

[
ε∗3it ∂ ln fi(ε

∗
it;%i)/∂ε

∗
i

]
= −1 + E(∂ε∗3it /∂ε

∗
i ) = 2.

so that

E[edit(φ0)e′dit(θ0,0)] = Kii(0).

On this basis, we can easily find the required projections

−∂ ln f(ε∗it;%i)

∂ε∗i
:

[κi(%i)− 1]ε∗it − φi(%i)(ε∗2it − 1)

κi(%i)− 1− φ2
i (%i)

,

−(1 +
∂ ln f(ε∗it;%i)

∂ε∗i
ε∗it) :

−2φi(%i)ε
∗
it + 2(ε∗2it − 1)

κi(%i)− 1− φ2
i (%i)

.

To express these in matrix notation it is convenient to remember that under cross-sectional

independence of the shocks

K(%) = V [edt(θ,0)| It−1;φ]

=

[
IN E[ε∗t vec

′(ε∗tε
∗′
t −IN )|φ]

E[vec(ε∗tε
∗′
t −IN )ε∗′t |φ] E[vec(ε∗tε

∗′
t −IN )vec′(ε∗tε

∗′
t −IN )|φ]

]
=

[
IN KlsE

′
N

ENKls KNN+Λ

]
,

where Kls is the diagonal matrix of order N with typical element ϕ(%i) defined in the proof of

Proposition 5 and Λ is a block diagonal matrix of order N2 in which each of the N blocks is
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diagonal matrix of size N with the following structure:

Λii =



1 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0 1 0 0 0 0
0 0 0 κii(%i)− 2 0 0 0
0 0 0 0 1 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0 1


.

In addition, it is also well known that he covariance between edt(φ) and edt(θ,0) is given by

K(0) =

[
IN 0
0 KNN + IN2

]
.

As usual, the off-diagonal elements of KNN in these two covariance matrices simply reflect the

fact that

−E
[
∂ ln fi(ε

∗
it;%2)

∂ε∗i
ε∗jtε

∗
ktε
∗
lt

]
= E(ε∗itε

∗
jtε
∗
ktε
∗
lt) = 1

when i = k and j = l despite the fact that i 6= j.

It is then easy to see that the covariance matrix of the rearranged vector of Gaussian scores

will be given by

V

 elt(θ,0)
E′Nest(θ,0)
∆′Nest(θ,0)

 =

 IN 0
0 E′N
0 ∆′N

[ IN KlsE
′
N

ENKls KNN + Λ

](
IN 0 0
0 EN ∆N

)

=

 IN Kls 0
Kls Kss 0
0 0 ∆′NKNN∆N + IN(N−1)

 , (D43)

where Kss = IN +E′NΛEN is the diagonal matrix with typical element κii(%i)−1 defined in the

proof of Proposition 5. Notice that this matrix contains the same information as the Kii(%i)
′s,

but in arranged in different order. Notice also that even though ∆′NKNN∆N is a symmetric

orthogonal matrix (see Proposition 5 in Magnus and Sentana (2020)), ∆′NKNN∆N +IN(N−1) =

∆′N (KNN + IN2)∆N is a singular matrix because (KNN + IN2) is singular of rank N(N + 1)/2

(see Theorem 3.11 in Magnus and Neudecker (2019)). Intuitively, ∆′Nest(θ,0) only contains

N(N − 1)/2 non-duplicated elements, so its covariance matrix must necessarily be singular.
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Similarly,

E

 elt(φ)
E′Nest(φ)
∆′Nest(φ)

 [ elt(θ,0) e′st(θ,0)EN e′st(θ,0)∆N

]

=

 IN 0
0 E′N
0 ∆′N

( IN 0
0 KNN + IN2

)(
IN 0 0
0 EN ∆N

)

=

 IN 0 0
0 2IN 0
0 0 ∆′NKNN∆N + IN2

 . (D44)

Thus, the projections of elt(φ) and E′Nest(φ) onto the linear span of elt(φ) and E′Nest(φ)

can be written in matrix notation as(
IN 0
0 2IN

)(
IN Kls

Kls Kss

)−1 [
elt(θ,0)

E′Nest(θ,0)

]
=

[
Kss(Kss −K2

ls)
−1 −Kls(Kss −K2

ls)
−1

−2Kls(Kss −K2
ls)
−1 2(Kss −K2

ls)
−1

] [
elt(θ,0)

E′Nest(θ,0)

]
because (

IN Kls

Kls Kss

)−1

=

[
IN +Kls(Kss −K2

ls)
−1Kls −Kls(Kss −K2

ls)
−1

−Kls(Kss −K2
ls)
−1 (Kss −K2

ls)
−1

]
by virtue of the partitioned inverse formula and IN+Kls(Kss−K2

ls)
−1Kls =Kss(Kss−K2

ls)
−1 in

view of the diagonality of all the matrices involved.

Consequently, the cross-sectionally independent SP effi cient score will be

....
s θt(φ) = Vdt(φ)

 elt(φ)
E′Nest(φ)
∆′Nest(φ)


−Vd(θ)

{[
elt(φ)

E′Nest(φ)

]
−
[

Kss(Kss −K2
ls)
−1 −Kls(Kss −K2

ls)
−1

−2Kls(Kss −K2
ls)
−1 2(Kss −K2

ls)
−1

](
elt(θ,0)

E′Nest(θ,0)

)}

=



C−1′[Kss(Kss −K2
ls)
−1elt(θ,0)−Kls(Kss −K2

ls)
−1E′Nest(θ,0)]

[(yt−1−µ)⊗IN ]C−1′elt(φ)
+(µ⊗ IN )C−1′[Kss(Kss−K2

ls)
−1elt(θ,0)−Kls(Kss−K2

ls)
−1E′Nest(θ,0)]

...
[(yt−p−µ)⊗IN ]C−1′elt(φ)

+(µ⊗ IN )C−1′[Kss(Kss−K2
ls)
−1elt(θ,0)−Kls(Kss−K2

ls)
−1E′Nest(θ,0)]

(IN⊗C−1′)EN [−2Kls(Kss−K2
ls)
−1elt(θ,0)

+2(Kss−K2
ls)
−1E′Nest(θ,0)]+(IN⊗C−1′)∆N∆′Nest(φ)


. (D45)

To see why, we can make use of the fact that

E

[{[[
elt(φ)

E′Nest(φ)

]
−
[

Kss(Kss −K2
ls)
−1 −Kls(Kss −K2

ls)
−1

−2Kls(Kss −K2
ls)
−1 2(Kss −K2

ls)
−1

](
elt(θ,0)

E′Nest(θ,0)

)]}
×
[

elt(θ,0)
E′Nest(θ,0)

]∣∣∣∣ It−1;φ

]
= 0
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for any distribution because the projection errors are orthogonal to the regressors by construc-

tion.

In addition, we also know that

E

{[
elt(φ)

E′Nest(φ)

]
−
[
Kss(Kss−K2

ls)
−1 −Kls(Kss−K2

ls)
−1

−2Kls(Kss−K2
ls)
−1 2(Kss−K2

ls)
−1

](
elt(θ,0)

E′Nest(θ,0)

)∣∣∣∣ It−1;φ

}
=0

because both edt(φ) and edt(θ,0) are martingale difference sequences. Hence, the second sum-

mand of (D45), which can be interpreted as Vd(φ0) times the residual from the theoretical

regression of elt(φ) and E′Nest(φ) (and 0) on the linear span generated by a constant, elt(θ,0)

and E′Nest(θ,0), belongs to the cross-sectionally independent tangent set, which is the orthog-

onal sum for i = 1, . . . , N of the marginal unrestricted tangent sets defined above. Importantly,

note that ert(φ) trivially belongs to this cross-sectionally independent tangent set because it is

conditionally orthogonal to all the elements of edt(θ0,0) from Proposition 3 in Fiorentini and

Sentana (2007).

The expression for the cross-sectionally independent SP effi ciency bound will then become

V {....s θt(φ)} = E
[
Zdt(θ)edt(φ)e′dt(φ)Zdt(θ)|φ

]

−E


Vdt(θ)

 elt(φ)
E′Nest(φ)
∆′Nest(φ)


×


[

e′lt(φ) e′st(φ)EN

]
−
[

e′lt(θ,0) e′st(θ,0)EN

]
×
[
Kss(Kss −K2

ls)
−1 −2Kls(Kss −K2

ls)
−1

−Kls(Kss −K2
ls)
−1 2(Kss −K2

ls)
−1

] V′d(φ)

∣∣∣∣∣∣∣∣∣∣∣∣
φ



−E

 Vd(φ)


[

elt(φ)
E′Nest(φ)

]
−
[

Kss(Kss −K2
ls)
−1 −Kls(Kss −K2

ls)
−1

−2Kls(Kss −K2
ls)
−1 2(Kss −K2

ls)
−1

](
elt(θ,0)

E′Nest(θ,0)

)


×
[

e′lt(φ) e′st(φ)EN e′st(φ)∆N

]
V′dt(θ)

∣∣∣∣∣∣∣∣∣∣
φ



+E


Vd(φ)


[

elt(φ)
E′Nest(φ)

]
−
[

Kss(Kss −K2
ls)
−1 −Kls(Kss −K2

ls)
−1

−2Kls(Kss −K2
ls)
−1 2(Kss −K2

ls)
−1

](
elt(θ,0)

E′Nest(θ,0)

)


×


[

e′lt(φ) e′st(φ)EN

]
−
[

e′lt(θ,0) e′st(θ,0)EN

]
×
[
Kss(Kss −K2

ls)
−1 −2Kls(Kss −K2

ls)
−1

−Kls(Kss −K2
ls)
−1 2(Kss −K2

ls)
−1

] V′d(φ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
φ


= Iθθ(φ)

−Vd(φ)

{(
Mll Mls

M′ls Mss

)
−
[

Kss(Kss −K2
ls)
−1 −2Kls(Kss −K2

ls)
−1

−2Kls(Kss −K2
ls)
−1 4(Kss −K2

ls)
−1

]}
V′d(φ)

=
....
S θθ(φ).

where we have exploited the fact that ∆′Nest(φ) is orthogonal both to elt(φ) and E′Nest(φ) and
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to elt(θ,0) and E′Nest(θ,0). Importantly,(
Mll Mls

M′ls Mss

)
−
[

Kss(Kss −K2
ls)
−1 −2Kls(Kss −K2

ls)
−1

−2Kls(Kss −K2
ls)
−1 4(Kss −K2

ls)
−1

]
is the residual covariance matrix in the projection of elt(φ) and E′Nest(φ) onto the linear span

of elt(θ,0) and E′Nest(θ,0) because(
IN 0
0 2IN

)(
IN Kls

Kls Kss

)−1(
IN 0
0 2IN

)
=

[
Kss(Kss −K2

ls)
−1 −2Kls(Kss −K2

ls)
−1

−2Kls(Kss −K2
ls)
−1 4(Kss −K2

ls)
−1

]
.

D.2.1 The Chen and Bickel (2006) approach

Chen and Bickel (2006) consider a model in which the mean is correctly specified to be 0 so

that the only parameters of interest are the elements of the so-called unmixing matrixW = C−1,

which we denote by w = vec(W).

Given that dC = −W−1(dW)W−1, we will have that dvec(C) = −(W−1′⊗W−1)dvec(W)

so that ∂c/∂w′ = −(W−1′ ⊗W−1). But since sct(c) = (IN ⊗ C−1′)est(φ), the chain rule

immediately implies that

swt(w) =
∂c′

∂w
sct(c) = −(W−1 ⊗W−1′)(IN ⊗W′)est(φ)

= −(W−1 ⊗ IN )est(φ) = vec

[{
∂ ln f [ε∗t (θ);%]

∂ε∗
ε∗′t (θ) + IN

}
W−1

]
.

They also normalise the shocks so that med(|ε∗i |) = 1, which is equivalent to P (|ε∗i | ≤ 1) = 1
2 ,

which is in turn equivalent to

2

∫ 1

−1
fi(ε

∗
i )dε

∗
i = 1,

which they finally re-write in terms of the following equivalent moment condition

E [2I(|ε∗i | ≤ 1)− 1] = E[d(ε∗i )] = 0. (D46)

Thus, Chen and Bickel (2006) impose three restrictions on the density of ε∗i : a) it must

integrate to 1; b) it must have 0 mean, and c) it must be such that (D46) holds.

They obtain the effi cient score for w by projecting the entries of swt(w) corresponding to

the diagonal elements onto the linear span of 1, ε∗i and d(ε∗i ) and retaining the projection errors.

Let

V

{[
ε∗i
d(ε∗i )

]}
=

(
σ2
i υi
υi 1

)
because [2I(|ε∗i | ≤ 1)− 1]2 = 4I2(|ε∗i | ≤ 1) + 1 − 4I(|ε∗i | ≤ 1) = 1 regardless of the distribution

of ε∗i .
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Similarly, let

E

{
−
[
1 +

∂ ln fi(ε
∗
i )

∂ε∗i
ε∗i

] [
ε∗i
d(ε∗i )

]}
=

(
0

ωi − 1

)
,

with

ωi = E

[
−∂ ln fi(ε

∗
i )

∂ε∗i
ε∗i 2I(|ε∗i | ≤ 1)

]
,

because

E
[
(ε∗2it ∂ ln fi(ε

∗
it;%i)/∂ε

∗
i

]
= E[∂ε∗2it /∂ε

∗
i ] = 0

by the generalised information matrix equality.

Hence, the coeffi cients of the projection of −[1 + ε∗2it ∂ ln fi(ε
∗
it;%i)/∂ε

∗
i ] onto the linear span

of 1, ε∗i and d(ε∗i ) will be given by(
σ2
i υi
υi 1

)−1(
0
ωi

)
=

ωi − 1

σ2
i − υ2

i

(
−υi
σ2
i

)
so the projection error will be

−
[
1 +

∂ ln fi(ε
∗
i )

∂ε∗i
ε∗i

]
+

(ωi − 1)υi
σ2
i − υ2

i

ε∗i −
(ωi − 1)σ2

i

σ2
i − υ2

i

d(ε∗i ).

On this basis, the effi cient score finally becomes −(W−1 ⊗ IN ) times the vec of a square

matrix of order N which has

−
[
1 +

∂ ln fi(ε
∗
i )

∂ε∗i
ε∗i

]
−
{
−
[
1 +

∂ ln fi(ε
∗
i )

∂ε∗i
ε∗i

]
+

(ωi − 1)υi
σ2
i − υ2

i

ε∗i −
(ωi − 1)σ2

i

σ2
i − υ2

i

d(ε∗i )

}
= −(ωi − 1)υi

σ2
i − υ2

i

ε∗i +
(ωi − 1)σ2

i

σ2
i − υ2

i

d(ε∗i )

as diagonal elements and

−∂ ln fi(ε
∗
i )

∂ε∗i
ε∗j

as off-diagonal ones.

D.3 The unrestricted SP effi cient score

The procedure described in Appendix D.2 is different from the unrestricted effi cient SP

procedure described in Appendix D.4 of Fiorentini and Sentana (2021b) even if one makes use

of the cross-sectional independence of the shocks in computing the different expressions. The

reason is that the unrestricted tangent space is the Hilbert space generated by all the time-

invariant functions of ε∗t with bounded second moments that have zero conditional means and

are conditional orthogonal to edt(θ,0). This means that they must be orthogonal not only to

ε∗it and (ε∗2it − 1) for i = 1, . . . , N , but also to cross-product terms of the form ε∗itε
∗
jt with i 6= j.

The addition of these cross-products has two effects. First, the covariance matrix of elt(θ,0),

E′Nest(θ,0) and ∆′Nest(θ,0) in (D43) is an augmented version of the covariance matrix of the

first two elements, which an additional singular block diagonal term because of the duplicated
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cross-product terms. Similarly, the covariance matrix of elt(φ), E′Nest(φ) and ∆′Nest(φ) with

elt(θ,0), E′Nest(θ,0) and ∆′Nest(θ,0) in (D44) is also an augmented version of the covariance

matrix between the first two blocks of each vector, which exactly the same additional singular

block. As a result, we must take into account the projections of ∆′Nest(φ) onto the linear span

of the Gaussian scores ∆′Nest(θ,0).

Using the same notation as in the previous sections of this appendix, the unrestricted SP

effi cient score will be given by:

s̈θt(φ) = sθt(φ)− Zd(φ)
[
edt(φ)−K (0)K+(ρ)edt(θ,0)

]
, (D47)

while the unrestricted SP effi ciency bound is

S̈θθ(φ) = Iθθ(φ)− Zd(φ)
[
Mdd(%)−K (0)K+(ρ)K (0)

]
Z′d(φ), (D48)

where + denotes Moore-Penrose inverses.

The fact that the residual variance of a multivariate regression cannot increase as we increase

the number of regressors immediately implies that
....
S θθ(φ) is at least as large (in the positive

semidefinite matrix sense) as S̈θθ(φ0), reflecting the fact that the relevant tangent sets become

increasing larger.

D.4 The cross-sectionally independent symmetric SP effi cient score

Assuming that each shock is symmetrically distributed, we can also consider another SP

estimator which exploits not only the cross-sectional independence of the structural shocks, but

also their symmetry. This estimator is different from the spherically symmetric SP estimator

discussed in Appendix C.5 of Fiorentini and Sentana (2021b), which would in fact be inconsistent

in this case since the joint distribution of the shocks is not spherically symmetric unless all shocks

are Gaussian even though all their marginal distributions are symmetric.

To derive this score, we need to define the marginal spherically symmetric tangent sets, which

are the Hilbert spaces generated all time-invariant functions of ε∗2it with bounded second moments

that have zero conditional means and are conditionally orthogonal to (ε∗2it − 1). Once again,

given that the different shocks are stochastically independent of each other, we can continue to

compute the multivariate projection as the sum of the univariate projections.

To obtain the cross-sectionally independent symmetric SP effi cient score, the first thing

we need to note is that we only need to correct E′Nest(φ) as both elt(φ) and ∆′Nest(φ) are

orthogonal to E′Nest(θ,0) under the assumption that the shocks are not only cross-sectionally

independent but also symmetric.

Note also that in this case

−
[
1 +

∂ ln fi(ε
∗
it;%i)

∂ε∗i
ε∗it

]
= −[1 + δ(ε∗2it ;%i)ε

∗2
it ],
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with δ[ε∗2it (θ);%i] defined in (A3), is a function of the shocks through ε
∗2
i only. As a result, the

projections are trivial to find. Given that we have proved before that

−E{(ε∗2it − 1)[1 + ε∗it∂ ln fi(ε
∗
it;%i)/∂ε

∗
i ]} = 2

and that V (ε∗2it ) = κ(%i)− 1, each projection will be given by 2[κ(%i)− 1]−1ε∗2it .

Once again, we can use matrix notation to write the cross-sectionally independent symmetric

SP effi cient score in compact form.

Let

Ud(θ) = Zd(θ)

(
0

EN

)
=


0N×N2

0N2×N2

...
0N2×N2

(IN ⊗C−1′)

 .
Then

...
s θt(φ) = Vdt(φ)

 elt(φ)
E′Nest(φ)
∆′Nest(φ)

−Ud(θ)
[
E′Nest(φ)− 2K−1

ss E′Nest(θ,0)
]

=


C−1′elt(φ)

(yt−1 ⊗ IN )C−1′elt(φ)
...

(yt−p ⊗ IN )C−1′elt(φ)
(IN ⊗C−1′)EN2K−1

ss E′Nest(θ,0) + (IN ⊗C−1′)∆N∆′Nest(φ)

 . (D49)

Analogous derivations to the ones in previous sections of this appendix show that the asso-

ciated effi ciency bound will be

V [
...
s θt(φ)] = Iθθ(φ)−Ud(φ)(Mss − 4K−1

ss )U′d(φ) =
...
S θθ(φ).

The fact that the residual variance of a multivariate regression cannot increase as we increase

the number of regressors immediately implies that
...
S θθ(φ) is at least as large (in the positive

semidefinite matrix sense) as
....
S θθ(φ), reflecting the fact that the relevant tangent sets become

increasing larger.

Therefore, we will have the following ranking of effi ciency bounds

Iθθ(φ) ≥ Pθθ(φ) ≥
...
S θθ(φ) ≥

....
S θθ(φ) ≥ S̈θθ(φ0).

In fact, one can show that the corresponding estimators have the Matryoshka doll covariance

structure discussed by Fiorentini and Sentana (2021b). The only difference is that here we do

not consider the Gaussian PMLE because it fails to point identify the parameters of the matrix

J.
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E Mittnik and Zadrozny (1993) standard errors for IRFs and
FEVDs

As is well known, assuming covariance stationarity, we can re-write (1) as

yt = µ+ (IN −A1L− . . .−ApL)−1Cε∗t = (IN + B1L+ B2L
2 + . . .)Cε∗t ,

where

(IN + B1L+ B2L
2 + . . .)(IN −A1L− . . .−ApL) = IN .

Hence, the impulse response function (Irf) of the structural shocks in model (1) is given by

BkC = BkJΨ.

Mittnik and Zadrozny (1993) explain how to use the delta method to compute asymptotically

valid standard errors for these expressions once we know the asymptotic distribution of the

estimators of the Svar parameters.

For simplicity of exposition, let us consider the simplest possible case in which p = 1. Then

we know that the Ma coeffi cient matrices satisfy the recursion Bk = A1Bk−1 = Ak
1 with initial

condition B0 = IN . Following Magnus et al (2021), we can use the product rule for differentials

to show that

dBk = d(A1Bk−1) = (dA1)Bk−1 + A1(dBk−1)

and

dvec(Bk) = (B′k−1 ⊗ IN )a1 + (IN ⊗A1)dvec(Bk−1),

so that
∂vec(Bk)

∂a′1
= (B′k−1 ⊗ IN ) + (IN ⊗A1)

∂vec(Bk−1)

∂a′
,

with initial condition ∂vec(B1)/∂a′1 = IN2 , which leads to

∂vec(Bk)

∂a′1
=

k∑
j=0

[(A′1)k−j ⊗Aj
1].

For example,

∂vec(B2)

∂a′1
= (A′1 ⊗ IN ) + (IN ⊗A1),

∂vec(B3)

∂a′1
= (A2

1 ⊗ IN )′ + (A′1 ⊗A1) + (IN ⊗A2
j ).

The product rule for differentials also implies that

d(BkC) = (dBk)C + Bk(dC),

d(BkJΨ) = (dBk)JΨ + Bk(dJ)Ψ + BkJ(dΨ),
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so that

∂vec(BkC)

∂φ′
= (C′ ⊗ IN )

∂vec(Bk)

∂φ′
+ (IN ⊗Bk)

∂vec(C)

∂φ′

∂vec(BkJΨ)

∂φ′
= (ΨJ′ ⊗ IN )

∂vec(Bk)

∂φ′
+ (Ψ⊗Bk)

∂vec(J)

∂φ′
+ (IN ⊗BkJ)

∂vec(Ψ)

∂φ′
.

As expected, the delta method may lead to a singular covariance matrix if we simultaneously

consider multiple values of k. Specifically, a singularity will arise when k > 3 because B1 and

B2 already contain as many elements as A1 and C.

Entirely analogous calculations apply to the forecast error variance decomposition of those

shocks, which are given by

BkCB′k = BkJΨ2J′B′k.

F Discrete mixture of normals

F.1 General mixtures and their ML estimators

Let s = (s1, . . . , sk, . . . , sK) denote a categorical random variable of dimension K, which

is nothing other than a collection of K mutually exclusive Bernoulli random variables with

P (sk = 1) = λk such that
∑K

k=1 λk = 1. If z|s is N(0, IN ), then

x =
∑K

k=1 sk(µk + Σ
1/2
k z), (F50)

is a K-component mixture of normals, whose first two unconditional moments are

π=E(x)=
∑K

k=1 λkµk=E[E(x|s)], and (F51)

Ω=V (x)=
∑K

k=1 λk[(µkµ
′
k)+Σk]−(

∑K
k=1 λkµk)(

∑K
k=1 λkµ

′
k)=E[V (x|s)]+V [E(x|s)]. (F52)

The model parameters are λ = (λ1, . . . , λk, . . . , λK), subject to the unit simplex restrictions

λk ≥ 0 ∀k and
∑K

k=1 λk = 1, µ = (µ′1, . . . ,µ
′
k, . . . ,µ

′
K)′ and σ = (σ′1, . . . ,σ

′
k, . . . ,σ

′
K)′, where

σk = vech(Σk). The representation in (F50) is very general, and may give rise to substantially

deviations from multivariate normality through higher order moments. In particular, it nests

random vectors consisting of N independent univariate mixtures with Ki components each, in

which case K =
∏N
i=1Ki, which play an important role in our analysis of Svars with cross-

sectional independent structural shocks in section 2. Third- and fourth-order raw moments,

defined as E[vec(xx′)x′] and E[vec(xx′)vec(xx′)′] respectively, can be readily obtained as con-

vex combinations of the third- and fourth-order raw moments of the K underlying Gaussian

components using the law of iterated expectations. Subtracting the corresponding moments for

a N(π,Ω) random vectors yields the third- and fourth-order cumulants.

If we observe a random sample of size T on x, ML estimation of the model parameters by

numerical methods is conceptually straightforward. Nevertheless, the log-likelihood function of

a finite normal mixture has a pole for each observation. Specifically, it will go to infinity if we
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set µ̂1 = xt and let |Σ̂1| and λ̂1 go to 0 and 1/T , respectively. As a result, the ML estimator

must be defined as the consistent root of the first order conditions (see Kiefer (1978)). In

practice, one may deal with this issue by starting the numerical algorithm from many different

values. In addition, there is a trivial identification issue that arises by exchanging the labels

of the components, but this is also easy to fix. Boldea and Magnus (2009) provide analytical

expressions for the score and Hessian matrix, and compare several numerical algorithms and

asymptotic covariance matrix estimators, while Amengual et al (2021c) exploit the EM principle

to compute the score and the expected value of the Hessian in an intuitive and fast way.

However, it is usually convenient to start the recursions from sensibly chosen values. In this

respect, the EM algorithm discussed by Dempster et al (1977) allows us to obtain initial values

as close to the MLEs as desired. In the unrestricted case, the recursions are as follows:

µ̂
(n
k =

1

λ̂
(n

k

1

T

T∑
t=1

wk(xt;ϕ
(n−1)xt, (F53a)

Σ̂
(n
k =

1

λ̂
(n

k

1

T

T∑
t=1

wk(xt;ϕ
(n−1)xtx

′
t − µ̂

(n
k µ̂

(n′
k , (F53b)

λ̂
(n

k =
1

T

∑T

t=1
wk(xt;ϕ

(n−1) (F53c)

where

wk(xt;ϕ) = P (skt = 1|xt) =
λk|Σk|−N/2φN [Σ

−1/2
k (xt − µk)]∑K

j=1 λj |Σj |−N/2φN [Σ
−1/2
j

(
xt − µj

)
]

(F54)

is the posterior probability that observation t comes from the kth component, and φN (.) the

spherical normal density of dimension N . These recursions had been proposed by several authors

without appealing to the EM principle. For example, Hassenblad (1966) shows that they coincide

with the steepest descent recursions, which confirms that they always lead to improvements in

the log-likelihood function (see also Wolfe (1970) and Peters and Walker (1978)).

The EM algorithm might get stuck in at least two situations. First, if one starts up the

recursions with µ̂(0
k = µ(0 and Σ̂

(0
k = Σ(0 for all k, then wk(xt;ϕ(0) = λ

(0
k and the parameter

values do not get updated because priors and posteriors coincide. The second undesirable

situation may arise when the mean of one component equals xt for some t. In this case, the

algorithm may be irresistibly attracted to one of the log-likelihood poles mentioned before.

The following proposition, which generalises the univariate result in Behboodian (1970), is

instrumental for our consistency results:

Proposition F1 The (pseudo) maximum likelihood estimators of the unconditional mean vec-
tor (F51) and covariance matrix (F52) of the discrete unrestricted mixture of K multivariate
normals in (F50) are given by the sample mean vector and covariance matrix (with denominator
T ) of xt, respectively.
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Proof. It is easy to check that the EM recursions (F53a)-(F53c) imply that

π̂(n =
∑K

k=1 µ̂
(n
k λ̂

(n

k =
1

T

∑T

t=1
xt,

Ω̂(n =
∑K

k=1(µ̂
(n
k µ̂

(n′
k + Σ̂

(n
k )λ̂

(n

k − π̂(nπ̂(n′ =
1

T

∑T

t=1
xtxt −

(
1

T

∑T

t=1
xt

)(
1

T

∑T

t=1
xt

)′
,

for all T regardless of the values of ϕ(n−1. Since the ML estimators constitute the fixed point

of the EM recursions, (i.e. ϕ̂ = ϕ(∞), it follows that π̂(n and Ω̂(n coincide with the Gaussian

PML estimators. �
As a result, if we reparametrise the model as xt = π + Ω1/2ε∗t , where ε

∗
t is a standardised

discrete mixture of normals, then we can maximise the log-likelihood function with respect to

λ and the free elements of this distribution keeping π̂ and Ω̂ fixed at their Gaussian pseudo

ML values. Interestingly, this somewhat surprising result will continue to be true even in a

complete log-likelihood situation in which we would observe not only xt but also st. Amengual

et al (2022) explain how to parametrise the distribution of ε∗t so as to ensure that E(ε∗t ) = 0

and V (ε∗t ) = IN when K = 2 as a function of N mean difference parameters δ, N(N + 1)/2

relative variance parameters K and a single probability parameter λ, and then generalise this

procedure for any K.

Given that Proposition F1 is a numerical result that holds for any sample size T and does not

depend in any way on the true distribution of the data, the discrete mixture of normals PMLEs of

π and Ω will continue to be consistent for E(x) and V (x) under distributional misspecification.

F.2 Scale mixtures and their ML estimators

Given that they are rather popular in empirical research, for completeness we also analyse

scale mixtures of normals, which as we will see below, inherit the consistency properties of

general mixtures under distributional misspecifications that preserve ellipticity.

The random vector x = µ+ Σ1/2√ςu, where u is uniform on the unit sphere surface in RN ,
is distributed as a discrete scale mixture of normals (DSMN) if

ς =
∑K

k=1 skκ
1/2
k ςoi , (F55)

where ςo|s is χ2
N . This is a special case of (F50) in which µk = µ and Σk = κkΣ ∀k. Therefore,

its unconditional mean is µ while its unconditional variance will be

Ω = V (x) = $Σ = E[V (x|s)],

$ = E(ς/N) =
∑K

k=1 λkκk. (F56)

As a result, we can easily standardise x by assuming that µ = 0, Σ = IN and defining the

relative variance parameters

κ∗k = κk/$, k = 1, . . . ,K.
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DSMNs with µ = 0 and Σ = IN are a particular case of spherically symmetric random

vectors. Therefore, all their odd central moments will be 0, while their fourth-order moments,

which exceed those of the multivariate normal, depend on a single parameter known as the

multivariate coeffi cient of excess kurtosis, which is given by E(ς2)/N(N + 1)− 1.

DSMNs approach the multivariate normal when κ∗k → 1 for all k, or when any λk → 1.

Near the limit, though, the distributions can be radically different. For instance, given that we

can choose κ2/κ1 ∈ (0, 1] when K = 2 without loss of generality, when λ → 0+ there are very

few observations with very large variance (“outliers case”), while when λ → 1− the opposite

happens, very few observations with very small variance (“inliers case”) (see Amengual and

Sentana (2011) for further details).

It is also possible to apply the EM algorithm to DSMNs but the recursions are different.

Specifically, they become:

µ̂(n =

∑T
t=1wk(xt;ϕ

(n−1)(κ
(n
k )−1xt∑T

t=1

∑K
j=1wj(xt;ϕ

(n−1)(κ
(n
j )−1

, (F57a)

Σ̂(n =

∑T
t=1wk(xt;ϕ

(n−1)(κ
(n
k )−1(xt − µ̂(n)(xt − µ̂(n)′∑T

t=1

∑K
j=1wj(xt;ϕ

(n−1)(κ
(n
j )−1

, (F57b)

κ
(n
k =

1

λ̂
(n

k

1

TN

T∑
t=1

wk(xt;ϕ
(n−1)(xt − µ̂(n)′(Σ̂(n)−1(xt − µ̂(n) (F57c)

with λ̂
(n

k and wk(xt;ϕ) still given by (F53c) and (F54), respectively. Some overall scale nor-

malisation is obviously required. For example, we could fix one κ1 to 1, work with the relative

variance parameters κ∗k subject to the restriction
∑K

k=1 λkκ
∗
j = 1 or fix |Ω| = 1, as explained

in appendix B of Fiorentini and Sentana (2019). In the first case, the recursions (F57a)-(F57c)

continue to be valid after excluding the relevant element. Given the invariance properties of ML

estimators, we recommend the first normalisation, which can be changed after convergence has

been achieved.

But if we keep µ and Σ fixed, then the recursions for the λ′s and κ′s simplify considerably.

To understand why, it is convenient to work with the log-likelihood function of ς, which is a

discrete mixture of K gamma random variables with common shape parameter N/2 and scale

parameters 2κk, so that their means are Nκk.

Let

hς(ςt;η) =
ς
N/2−1
t

2N/2Γ(N/2)

∑K
k=1 λkκ

−N/2
k exp(−.5κ−1

k ς)

denote the marginal density of ς, where η contains the free elements of λ and κ. In this context,

the EM recursions are given by

κ
(n
k =

1

λ̂
(n

k

1

NT

T∑
t=1

wk(ςt;η
(n−1)ςt (F58)
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and

λ̂
(n

k =
1

T

∑T

t=1
wk(ςt;η

(n−1), (F59a)

where

wk(ςt;ϕ) = P (skt = 1|ςt) =
λkκ

−N/2
k exp(−.5κ−1

k ς)∑K
j=1 λjκ

−N/2
j exp(−.5κ−1

j ς)
(F60)

is the posterior probability that observation t comes from the kth component. Not surprisingly,

(F58) and (F60) coincide with (F57c) and (F54), respectively, when

ςt(µ̂
(n, σ̂(n) = (xt − µ̂(n)′(Σ̂(n)−1(xt − µ̂(n).

The following proposition, which is the counterpart to Proposition F1, is also instrumental

for our consistency results in the spherically symmetric case:

Proposition F2 The (pseudo) maximum likelihood estimators of the unconditional mean (F56)
of the discrete unrestricted mixture of K gammas with common shape parameter N/2 and scale
parameters 2κk in (F55) is given by the sample mean of ςt.

Proof. It is easy to check that the EM recursions (F58)-(F59a) imply that

$̂(n =
∑K

k=1 κ̂
(n
k λ̂

(n

k =
1

T

∑T

t=1
ςt,

for all T regardless of the values of η(n−1. Since the ML estimators constitute the fixed point of

the EM recursions, (i.e. η̂ = η(∞), it follows that $̂ coincides with the sample mean of ςt. �
Given that Proposition F2 is a numerical result that holds for any sample size T and does not

depend in any way on the true distribution of the data, the discrete scale mixture of normals

PMLE of $ will continue to be consistent for E(ς/N) under distributional misspecification

for any spherically symmetric distribution. Once again, this somewhat surprising result will

continue to be true even in a complete log-likelihood situation in which we would observe not

only ςt but also st.

G Additional Monte Carlo results

In this appendix we complement the results of the Monte Carlo analysis in section 3 for

samples of size T = 2, 000 rather than T = 500, which are representative of financial applications

with daily data, such as the one in section 4.

In terms of biases, the results in Table G1 are entirely analogous to those in Table 2, although

those of the consistent estimators are noticeably smaller.

As for effi ciency, a comparison of the results in Tables G2 and 3 clearly indicates that the

RMSEs almost halve when we consider samples of size T = 2, 000.

Finally, the results in Tables G3 and G4 confirm the conclusions about coverage we reached

when we discussed Tables 4 and 5.
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TABLE G1: Monte Carlo results. Mean absolute bias of pooled groups of estimators

(T = 2000).

DGP: ε1t ∼ Student t5 ε2t ∼ Student t5 ε3t ∼ Student t5
S SAFS M SM SMAFS L LAFS IC-S IC-L IC-M

τ 0.0001 0.0002 0.0002 0.0001 0.0002 0.0003 0.0002 0.0002 0.0002 0.0002
Aii 0.0014 0.0014 0.0015 0.0015 0.0015 0.0012 0.0012 0.0018 0.0018 0.0018
Aij,i6=j 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004 0.0004 0.0003 0.0003 0.0003
Cii 0.0010 0.0023 0.0024 0.0024 0.0024 0.0355 0.0028 0.0025 0.0035 0.0026
Cij,i>j 0.0003 0.0004 0.0004 0.0004 0.0004 0.0076 0.0003 0.0004 0.0003 0.0004
Cij,i<j 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0005 0.0005 0.0006 0.0004
Jij,i>j 0.0004 0.0004 0.0002 0.0003 0.0003 0.0004 0.0004 0.0004 0.0004 0.0002
Jij,i<j 0.0008 0.0008 0.0008 0.0008 0.0008 0.0012 0.0012 0.0008 0.0012 0.0008

DGP: ε1t ∼ Laplace ε2t ∼ Laplace ε3t ∼ Laplace
S SAFS M SM SMAFS L LAFS IC-S IC-L IC-M

τ 0.0001 0.0001 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Aii 0.0009 0.0009 0.0008 0.0009 0.0009 0.0007 0.0007 0.0016 0.0016 0.0016
Aij,i6=j 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0003 0.0003 0.0003
Cii 0.0915 0.0014 0.0013 0.0012 0.0013 0.0016 0.0010 0.0017 0.0015 0.0016
Cij,i>j 0.0183 0.0003 0.0002 0.0002 0.0002 0.0004 0.0003 0.0003 0.0003 0.0002
Cij,i<j 0.0004 0.0004 0.0003 0.0003 0.0003 0.0005 0.0005 0.0004 0.0005 0.0003
Jij,i>j 0.0001 0.0001 0.0001 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001
Jij,i<j 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004 0.0004 0.0003 0.0006 0.0003

DGP: ε1t ∼ dlsmn(0.8, 0.06, 0.52) ε2t ∼ dlsmn(1.2, 0.08, 0.4) ε3t ∼ dlsmn(−1, 0.2, 0.2)

S SAFS M SM SMAFS L LAFS IC-S IC-L IC-M
τ 0.1865 0.0001 0.0001 0.2624 0.0001 0.1998 0.0001 0.0001 0.0001 0.0001
Aii 0.0009 0.0009 0.0007 0.0007 0.0007 0.0009 0.0009 0.0015 0.0015 0.0015
Aij,i6=j 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002
Cii 3.3282 0.0011 0.0007 0.0399 0.0008 0.0128 0.0011 0.0021 0.0083 0.0012
Cij,i>j 0.7173 0.0002 0.0002 0.0108 0.0002 0.0016 0.0003 0.0005 0.0088 0.0003
Cij,i<j 0.0005 0.0003 0.0001 0.0002 0.0002 0.0004 0.0004 0.0007 0.0098 0.0001
Jij,i>j 0.0003 0.0003 0.0002 0.0002 0.0002 0.0003 0.0003 0.0006 0.0094 0.0003
Jij,i<j 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0008 0.0103 0.0000

DGP: ε1t ∼ Asy. Student t12,1 ε2t ∼ Asy. Student t14,5 ε3t ∼ Asy. Student t16,100

S SAFS M SM SMAFS L LAFS IC-S IC-L IC-M
τ 0.1244 0.0001 0.0001 0.1081 0.0001 0.1692 0.0002 0.0001 0.0001 0.0001
Aii 0.0011 0.0011 0.0010 0.0011 0.0011 0.0011 0.0011 0.0016 0.0016 0.0016
Aij,i6=j 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
Cii 0.0075 0.0022 0.0016 0.0046 0.0020 0.0349 0.0034 0.0027 0.0094 0.0019
Cij,i>j 0.0005 0.0002 0.0002 0.0003 0.0002 0.0129 0.0004 0.0002 0.0006 0.0002
Cij,i<j 0.0004 0.0004 0.0004 0.0002 0.0002 0.0004 0.0004 0.0004 0.0024 0.0004
Jij,i>j 0.0004 0.0004 0.0003 0.0002 0.0002 0.0008 0.0008 0.0004 0.0020 0.0003
Jij,i<j 0.0004 0.0004 0.0002 0.0002 0.0002 0.0006 0.0006 0.0006 0.0039 0.0004

Sample length=2000, Replications=5,000. S: Student-t MLE, M: DLSMN MLE, SM: DSMN MLE, L: Laplace
MLE, IC: GMR two step estimator, AFS: general FS correction.
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TABLE G2: Monte Carlo results. (RMSE) of pooled groups of estimators (T = 2000).

DGP: ε1t ∼ Student t5 ε2t ∼ Student t5 ε3t ∼ Student t5
S SAFS M SM SMAFS L LAFS IC-S IC-L IC-M

τ 0.0208 0.0232 0.0232 0.0210 0.0232 0.0237 0.0232 0.0233 0.0233 0.0233
Aii 0.0182 0.0182 0.0183 0.0183 0.0183 0.0206 0.0206 0.0203 0.0203 0.0203
Aij,i6=j 0.0181 0.0181 0.0183 0.0183 0.0183 0.0207 0.0207 0.0202 0.0202 0.0202
Cii 0.0286 0.0309 0.0310 0.0310 0.0310 0.0426 0.0314 0.0309 0.0317 0.0310
Cij,i>j 0.0350 0.0350 0.0365 0.0364 0.0364 0.0467 0.0445 0.0352 0.0469 0.0367
Cij,i<j 0.0344 0.0343 0.0359 0.0359 0.0359 0.0456 0.0439 0.0346 0.0461 0.0361
Jij,i>j 0.0346 0.0346 0.0362 0.0361 0.0361 0.0444 0.0444 0.0349 0.0468 0.0364
Jij,i<j 0.0345 0.0345 0.0361 0.0361 0.0361 0.0444 0.0444 0.0347 0.0466 0.0363

DGP: ε1t ∼ Laplace ε2t ∼ Laplace ε3t ∼ Laplace
S SAFS M SM SMAFS L LAFS IC-S IC-L IC-M

τ 0.0185 0.0232 0.0232 0.0185 0.0232 0.0171 0.0231 0.0233 0.0233 0.0233
Aii 0.0163 0.0163 0.0162 0.0162 0.0162 0.0151 0.0151 0.0203 0.0203 0.0203
Aij,i6=j 0.0162 0.0162 0.0162 0.0162 0.0162 0.0151 0.0151 0.0201 0.0201 0.0201
Cii 0.1042 0.0255 0.0255 0.0255 0.0255 0.0227 0.0254 0.0256 0.0254 0.0255
Cij,i>j 0.0332 0.0243 0.0242 0.0242 0.0242 0.0207 0.0208 0.0253 0.0221 0.0249
Cij,i<j 0.0255 0.0233 0.0232 0.0232 0.0232 0.0200 0.0200 0.0244 0.0214 0.0240
Jij,i>j 0.0238 0.0238 0.0237 0.0237 0.0237 0.0202 0.0202 0.0248 0.0216 0.0244
Jij,i<j 0.0231 0.0231 0.0231 0.0231 0.0231 0.0199 0.0199 0.0242 0.0213 0.0239

DGP: ε1t ∼ dlsmn(0.8, 0.06, 0.52) ε2t ∼ dlsmn(1.2, 0.08, 0.4) ε3t ∼ dlsmn(−1, 0.2, 0.2)

S SAFS M SM SMAFS L LAFS IC-S IC-L IC-M
τ 0.2342 0.0231 0.0231 0.3128 0.0231 0.2470 0.0231 0.0232 0.0232 0.0232
Aii 0.0152 0.0152 0.0131 0.0138 0.0138 0.0166 0.0166 0.0202 0.0202 0.0202
Aij,i6=j 0.0151 0.0151 0.0130 0.0137 0.0137 0.0165 0.0165 0.0201 0.0201 0.0201
Cii 5.7535 0.0227 0.0225 0.0545 0.0226 0.0282 0.0228 0.0235 0.0295 0.0226
Cij,i>j 1.1805 0.0223 0.0187 0.0239 0.0200 0.0273 0.0271 0.0330 0.0844 0.0210
Cij,i<j 0.1166 0.0192 0.0133 0.0152 0.0148 0.0218 0.0215 0.0333 0.0836 0.0144
Jij,i>j 0.0219 0.0219 0.0183 0.0195 0.0195 0.0268 0.0268 0.0327 0.0852 0.0206
Jij,i<j 0.0184 0.0184 0.0130 0.0144 0.0144 0.0204 0.0204 0.0339 0.0985 0.0150

DGP: ε1t ∼ Asy. Student t12,1 ε2t ∼ Asy. Student t14,5 ε3t ∼ Asy. Student t16,100

S SAFS M SM SMAFS L LAFS IC-S IC-L IC-M
τ 0.1424 0.0231 0.0230 0.1244 0.0231 0.1861 0.0231 0.0231 0.0231 0.0231
Aii 0.0180 0.0180 0.0168 0.0178 0.0178 0.0215 0.0215 0.0201 0.0201 0.0201
Aij,i6=j 0.0181 0.0181 0.0169 0.0179 0.0179 0.0216 0.0216 0.0202 0.0202 0.0202
Cii 0.0340 0.0324 0.0320 0.0335 0.0322 0.0530 0.0338 0.0326 0.0397 0.0320
Cij,i>j 0.0338 0.0340 0.0252 0.0319 0.0319 0.0567 0.0516 0.0393 0.0890 0.0253
Cij,i<j 0.0366 0.0363 0.0288 0.0349 0.0346 0.0558 0.0547 0.0410 0.0888 0.0295
Jij,i>j 0.0336 0.0336 0.0246 0.0315 0.0315 0.0517 0.0517 0.0391 0.0911 0.0247
Jij,i<j 0.0383 0.0383 0.0303 0.0367 0.0367 0.0575 0.0575 0.0427 0.0909 0.0308

Sample length=2000, Replications=5,000. S: Student-t MLE, M: DLSMN MLE, SM: DSMN MLE, L: Laplace
MLE, IC: GMR two step estimator, AFS: general FS correction.
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TABLE G3: Coverage of Impulse Response Functions. Nominal 90%. T = 2000.

Mixture Student-AFS Student
Lag (1,1) (2,1) (1,2) (2,2) (1,1) (2,1) (1,2) (2,2) (1,1) (2,1) (1,2) (2,2)

DGP: ε1t ∼ Student t5 ε2t ∼ Student t5
0 87.3 89.2 89.3 88.4 87.3 89.5 89.3 88.2 89.4 89.1 89.1 90.2
1 89.2 89.6 89.3 90.2 89.3 89.8 89.6 90.0 89.7 89.8 89.7 90.4
2 89.5 89.5 89.3 89.8 89.6 89.4 89.6 90.0 89.8 89.5 89.6 90.1
3 89.3 89.3 89.2 89.6 89.4 89.4 89.5 89.8 89.4 89.3 89.5 89.7
4 89.0 89.1 89.2 89.3 89.4 89.3 89.4 89.5 89.3 89.4 89.3 89.6
5 89.0 88.8 89.2 89.2 89.0 89.0 89.0 89.5 89.1 89.4 89.3 89.5
6 88.9 88.7 89.0 89.2 89.0 89.1 89.1 89.4 89.2 89.1 89.3 89.5

DGP: ε1t ∼ Laplace ε2t ∼ Laplace
0 89.8 89.0 88.9 89.3 89.8 89.6 89.7 89.3 50.2 85.3 79.8 50.1
1 89.5 89.9 89.5 89.1 89.9 90.2 89.7 89.5 63.4 82.2 75.8 66.4
2 89.2 89.9 89.7 89.2 89.5 90.3 90.2 89.6 73.6 82.2 78.6 76.2
3 89.0 89.8 89.8 89.3 89.3 90.3 89.8 89.8 80.3 83.8 81.3 81.1
4 88.8 89.7 89.6 89.4 89.3 89.9 89.8 89.6 84.0 85.5 83.9 84.8
5 89.0 89.6 89.3 89.2 89.1 89.9 89.4 89.3 86.7 87.1 86.3 87.0
6 89.1 89.6 89.2 89.0 89.2 89.8 89.2 89.3 88.1 88.4 87.9 88.5

DGP: ε1t ∼ dlsmn(0.8, 0.06, 0.52) ε2t ∼ dlsmn(1.2, 0.08, 0.4)

0 89.6 90.1 89.7 89.7 89.6 90.0 89.8 89.9 15.0 97.3 35.7 95.9
1 89.7 89.7 89.7 90.0 89.4 89.9 89.6 90.0 18.3 96.9 26.3 96.0
2 89.8 90.0 89.7 89.9 89.5 90.3 89.6 89.8 25.9 96.9 30.0 96.3
3 89.6 89.9 89.8 89.8 89.4 90.3 89.6 89.8 34.8 97.0 36.4 96.7
4 89.6 89.8 89.6 89.8 89.4 90.0 89.8 89.9 44.2 97.3 43.8 97.1
5 89.6 89.8 89.6 89.7 89.5 89.8 89.8 89.8 52.8 97.6 51.2 97.5
6 89.6 89.9 89.7 89.5 89.6 89.8 89.7 89.6 60.4 97.9 58.2 97.7

DGP: ε1t ∼ Asy. Student t12,1 ε2t ∼ Asy. Student t14,5

0 89.3 89.3 89.3 87.5 89.2 89.2 89.6 87.6 88.1 88.7 88.5 87.2
1 89.3 89.8 89.6 89.2 89.5 89.5 89.7 89.4 88.9 89.1 88.9 88.7
2 89.2 89.6 89.5 89.4 89.3 89.6 89.6 89.3 88.8 89.3 88.9 88.7
3 89.3 89.3 89.2 89.3 89.1 89.4 88.9 89.4 88.6 89.3 88.6 89.0
4 89.1 89.1 89.0 89.6 89.1 89.4 88.8 89.4 88.8 89.0 88.3 89.0
5 89.0 89.0 89.1 89.7 88.8 89.1 88.7 89.3 88.5 88.8 88.3 89.1
6 88.9 89.1 89.1 89.5 88.8 89.0 88.7 89.1 88.3 88.8 88.3 88.9

Sample length=2000, Replications=10,000. Bivariate VAR(1). Mixture: DLSMN MLE; Student-AFS: general FS
correction applied to the Student t; Student: Student t MLE.
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.
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.
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en
t
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4
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t
∼
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sy
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ud
en
t
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6
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0
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.7
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.1
89
.4
89
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89
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89
.4
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89
.1
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87
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89
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.6
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89
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88
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89
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88
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88
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89
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.6
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.3
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.3
89
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.7
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.0
89
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e
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=
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00
,
R
ep
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=
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00
.
T
ri
va
ri
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e
V
A
R
(1
).
M
ix
tu
re
:
D
L
SM

N
M
L
E
;
St
ud
en
t-
A
F
S:
ge
ne
ra
l
F
S
co
rr
ec
ti
on
ap
pl
ie
d
to
th
e
St
ud
en
t
t;
St
ud
en
t:
St
ud
en
t
t

M
L
E
.
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