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1 Introduction

Statistical identification of the parameters of a structural vector autoregression (Svar)

through independent non-Gaussian shocks is becoming increasingly popular after Lanne et al

(2017) and Gouriéroux et al (2017).1 A selected list of recent papers that exploit the non-

Gaussian features of the structural shocks includes Lanne and Lütkepohl (2010), Hyvärinen

et al (2013), Moneta et al (2013), Capasso and Moneta (2016), Herwartz and Plödt (2016),

Herwartz (2018), Coad and Grassano (2019), Herwartz (2019), Puonti (2019), Tank et al (2019),

Gouriéroux et al (2020), Maxand (2020), Bekaert et al (2020, 2021), Guay (2021), Lanne and

Luoto (2021), Bernoth and Herwartz (2021), Montiel Olea et al (2021), Braun (2021) and Davis

and Ng (2021).

Maximum likelihood estimation and inference in Svarmodels with independent non-Gaussian

shocks is relatively simple to implement, and leads to effi cient estimators of all the structural

parameters when the assumed univariate distributions are correctly specified. Unfortunately,

while Gaussian pseudo maximum likelihood estimators (PMLE) remain consistent for the iden-

tified conditional mean and variance parameters under relatively weak conditions when the true

shocks are not Gaussian, the same is not true for many other distributions (see e.g. Newey

and Steigerwald (1997)). Nevertheless, this does not mean that all the parameters are incon-

sistently estimated. In this respect, an important contribution of our paper is to prove that

the autoregressive matrices of the Var and the (scaled) matrix of impact multipliers, which

jointly determine the temporal pattern of the Impulse Response Functions (Irfs), continue to

be consistently estimated under distributional misspecification. In contrast, we show that in

general the standard deviation of the structural shocks will be inconsistently estimated in those

circumstances, which distorts the scale of the Irfs and the entire forecast error variance decom-

positions (Fevds). Further, we prove that while the drifts of the Var will also be consistently

estimated when both the assumed and true distributions of the shocks are symmetric, they will

be inconsistently estimated otherwise, thereby leading to biased forecasts.

In principle, semiparametric (SP) estimators could provide a very attractive solution in

this context because under appropriate regularity conditions they would be not only consistent

but also attain full effi ciency for the subset of the parameters that continue to be consistently

estimated under distributional misspecification, as we show in section 2.3 below. Unfortunately,

SP estimators are usually computed using one BHHH iteration of the effi cient score evaluated

at a consistent estimator. But for Svars the usual initial estimator, namely Gaussian PMLE,

1The vast signal processing literature on Independent Component Analysis popularised by Comon (1994)
exploits the same identification scheme.
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can only identify the elements of the impact multiplier matrix up to an orthogonal rotation of

order N , so it is of no use.

In Fiorentini and Sentana (2007, 2019) (FS), we discussed some simple consistent estima-

tors to replace the parameters inconsistently estimated by a distributionally misspecified log-

likelihood in multivariate, conditionally heteroskedastic, dynamic regression models. In this

paper, we show that the analogous consistent estimators for Svar models with cross-sectionally

independent shocks are simple transformations of the first and second sample moments of the

estimated shocks obtained using the non-Gaussian PMLEs.

In this respect, another important contribution of the present paper is to show that if the

non-Gaussian log-likelihood is based on a discrete scale mixture of normals in the spherically

symmetric case, or an unrestricted finite Gaussian mixture more generally, there is no need

to replace any of the initial estimators because all the parameters are consistently estimated

to begin with. Intuitively, the reason is that the discrete normal mixture-based maximum

likelihood estimators of the unconditional mean vector and covariance matrix of an observed

series coincide with the first and second sample moments, so that the second-step FS estimators

are numerically identical to the first-step ones.2 Similarly, the discrete gamma mixture-based

maximum likelihood estimators of the unconditional mean also coincides with the sample mean

in the spherically symmetric case. In both cases, though, the shape parameters of the mixture,

including the mixing proportions, must be estimated simultaneously with the mean and variance

parameters.

Still, the fact that log-likelihoods based on discrete normal mixtures lead to consistent es-

timators for Svar models with independent non-Gaussian shocks does not imply that these

estimators are more effi cient than the two-step FS estimators that use an alternative parametric

distribution, such as the popular Student t or the Laplace. The analytical expressions for the

asymptotic covariance matrices of these two estimators that we derive allow us to study this

important issue both in theory and by means of Monte Carlo simulations. The fact that un-

der certain conditions discrete mixture of normals with multiple components can provide good

approximations to many other distributions (see Hamdan (2006) for scale mixtures of normals

and Nguyen et al (2020) for general ones) suggests that the flexible parametric procedure we

consider has the potential to achieve the cross-sectionally independent SP effi ciency bound,

which we obtain in closed-form. We also compare our estimators to the two-step procedure in

Gouriéroux et al (2017), which estimates all the reduced form parameters by Gaussian PML,

and the orthogonal rotation matrix mapping structural shocks and reduced form innovations by

2This result was first noted by Behboodian (1970) for univariate mixtures but largely ignored in the subsequent
literature (but see Supplemental Appendix E.7 in Fiorentini and Sentana (2021a)).
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non-Gaussian PML.

Finally, we apply our proposed estimators to the empirical analysis of the dynamic linkages

between three popular market-based volatility indices representative of some of the most actively

traded asset classes: stocks, exchange rates and commodities. The empirical analysis of such

linkages has become a very active area of research (see e.g. Diebold and Yilmaz (2014) and

Barigozzi and Brownlees (2019)). Specifically, we analyse the omnipresent VIX, which captures

the one-month ahead volatility of the S&P500 stock market index; the EVZ, which computes the

30-day volatility of the $US/Euro exchange rate from options on the CurrencyShares Euro Trust

(Ticker - FXE); and the GVZ, which measures the market’s expectation of 30-day volatility of

gold prices by applying the VIX methodology to options on SPDR Gold Shares (Ticker - GLD)

index futures.

The rest of the paper is organised as follows. In section 2 we introduce Svar models with

cross-sectionally independent shocks, characterise the parameters that remain consistently esti-

mated under distributional misspecification, and show that they can be adaptively estimated, in

the sense that a suitable SP procedure would be as effi cient for them as a parametric procedure

that exploited knowledge of the true distribution of the shocks, including the values of its shape

parameters. Next, in section 3 we present an extensive Monte Carlo exercise that combines

several simulation and estimation densities, paying special attention to the coverage of the Irfs,

whose confidence bands we also compute analytically. Then, we describe our empirical applica-

tion to the aforementioned volatility indices in section 4, followed by our concluding remarks.

Proofs and auxiliary results are gathered in appendices.

2 Structural vector autoregressions

2.1 The model

Consider the following N -variate Svar process of order p:

yt = τ +
∑p

j=1 Ajyt−j + Cε∗t , ε∗t |It−1 ∼ i.i.d. (0, IN ), (1)

where It−1 is the information set, C the matrix of impact multipliers and ε∗t the “structural”

shocks, which are normalised to have zero means, unit variances and zero covariances. In what

follows, we will often reparametrise C = JΨ, where Ψ is a diagonal matrix whose elements

contain the scale of the structural shocks, while the columns of J, whose diagonal elements

are normalised to 1, measure the relative impact effects of each of the structural shocks on

all the remaining variables, so that the parameters of interest become j = veco(J − IN ) and

ψ = vecd(Ψ), where veco(J−IN ) stacks by columns all the elements of the zero-diagonal matrix
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J− IN except those that appear in its diagonal, while vecd(Ψ) places the elements in the main

diagonal ofΨ in a column vector.3 Similarly, the drift τ is often written as (IN−A1−. . .−Ap)µ

under the assumption of covariance stationarity, where µ is the unconditional mean of the

observed process.

Let εt = Cε∗t denote the reduced form innovations, so that εt|It−1 ∼ i.i.d. (0,Σ) with

Σ = CC′ = JΨ2J′. As is well known, a Gaussian (pseudo) log-likelihood is only able to identify

Σ, which means the structural shocks ε∗t and their loadings in C are only identified up to an

orthogonal transformation. Specifically, we can use the so-called LQ matrix decomposition4 to

relate the matrix C to the Cholesky decomposition of Σ = ΣLΣ′L as C = ΣLQ, where Q is an

N ×N orthogonal matrix, which we can model as a function of N(N − 1)/2 parameters ω by

assuming that |Q| = 1.5,6 While ΣL is identified from the Gaussian log-likelihood, ω is not. In

fact, the underidentification of ω would persist even if we assumed for estimation purposes that

ε∗t followed an elliptical distribution or a location-scale mixture of normals.
7

Nevertheless, Lanne et al (2017) show that statistical identification of both the structural

shocks and C (up to column permutations and sign changes) is possible assuming (i) cross-

sectional independence of the N shocks, (ii) a non-Gaussian distribution for at least N − 1 of

them, and (iii) C has full rank. In what follows, we assume that the N structural shocks are

cross-sectionally independent and non-Gaussian, such as ε∗it|It−1 ∼ i.i.d. t(0, 1, νi). Univariate

t distributions are very popular in finance as a way of capturing fat tails while nesting the

traditional Gaussian assumption, and their popularity is also on the rise in macroeconomics, as

illustrated by Brunnermeier et al (2021). Other popular examples are the generalised error (or

Gaussian) distribution, which includes normal, Laplace (or double exponential) and uniform as

special cases, as well as symmetric and asymmetric finite normal mixtures.

Let θ = [τ ′, vec′(A1), . . . , vec′(Ap), vec
′(C)]′ = (τ ′,a′1, . . . ,a

′
p, c
′) = (τ ′,a′, c′) denote the

structural parameters characterising the first two conditional moments of yt. In addition, let

% = (%′1, . . . ,%
′
N )′ denote the shape parameters, so that ϕ = (θ′,%′)′. We consider two ML

estimators: a restricted one which fixes % to its supposedly true value, and an unrestricted one,

3See Magnus and Sentana (2020) for some useful properties of the veco(.) and vecd(.) operators.
4The LQ decomposition is intimately related to the QR decomposition. Specifically, Q′Σ′L provides the QR

decomposition of the matrix C′,which is uniquely defined if we restrict the diagonal elements of ΣL to be positive
(see e.g. Golub and van Loan (2013) for further details).

5See section 10 of Magnus et al (2021) for a detailed discussion of three ways of explicitly parametrising a
rotation (or special orthogonal) matrix: (i) as the product of Givens matrices that depend on N(N − 1)/2 Tait-
Bryan angles, one for each of the strict upper diagonal elements; (ii) by using the so-called Cayley transform of
a skew-symmetric matrix; and (iii) by exponentiating a skew-symmetric matrix.

6 If |Q| = −1 instead, we can change the sign of the ith structural shock and its impact multipliers in the
ith column of the matrix C without loss of generality as long as we also modify the shape parameters of the
distribution of ε∗it to alter the sign of all its non-zero odd moments.

7The identifying assumption of Proposition 1 in Lanne and Lütkepohl (2010) explicitly rules out scale mixtures
of normals, which are elliptical.
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which simultaneously estimates all the elements of ϕ (see Fiorentini and Sentana (2021b) for

further details).

2.2 Consistency results

Maximum likelihood will usually be not only consistent but also fully effi cient when the as-

sumed univariate distributions are correctly specified under standard regularity conditions (see

Appendix B for detailed assumptions). Unfortunately, a misspecified non-Gaussian distribution

might lead to inconsistencies. Nevertheless, this does not mean that all the parameters are

inconsistently estimated. In fact, it turns out that both the slope parameters a and the (scaled)

impact multiplier coeffi cients j will continue to be consistently estimated by distributional mis-

specified ML estimators under suitable regularity conditions, which we also discuss in Appendix

B. More formally:

Proposition 1 If the true joint density of the structural shocks ε∗t in (1) is the product of
N univariate densities but they are potentially different from the ones assumed for estimation
purposes, then the restricted and unrestricted non-Gaussian (pseudo) ML estimators of model
(1) remain consistent for a and j.

Intuitively, the pseudo-standardised residuals J−1
0 (yt−A10yt−1− . . .−Ap0yt−p) remain time

series and cross-sectionally i.i.d. with means J−1
0 τ 0 and covariance matrix Ψ2

0 under distribu-

tional misspecification, so in effect, the pseudo true values of τ mop up the biases in the means

of those residuals while the pseudo true values of ψ do the same for their standard deviations.

This intuition also justifies that the FS consistent estimators, which replace the non-Gaussian

PMLEs of τ i and ψi by some simple transformations of the sample mean and variance of the i
th

pseudo-standardised residual, will work in this context too, as we explain in Appendix C.

Proposition 1 also illustrates the practical consequences of distributional misspecification.

Given that the Irfs of the structural Var model in (1) will be given by (IN − A1L − . . . −

ApL
p)−1JΨ, where L is the usual lag operator, their temporal pattern will be consistent esti-

mated. In contrast, the estimated scale of the Irfs, and the Fevds will generally be inconsistent.

As we mentioned in the introduction, we can strengthen the consistency results in Proposition

1 by assuming that both the true univariate distributions of the structural shocks and the ones

assumed for estimation purposes are symmetric, even though they do not necessarily coincide:

Proposition 2 If the true joint density of the structural shocks ε∗t in (1) is the product of
N univariate symmetric densities but they are potentially different from the symmetric ones
assumed for estimation purposes, then the restricted and unrestricted non-Gaussian (pseudo)
ML estimators of model (1) remain consistent for a, j and τ .

Propositions 1 and 2 are reminiscent of the fact that estimators based on a Gaussian pseudo

log-likelihood function are consistent for all the conditional mean and variance parameters when
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these two moments are correctly specified under some regularity conditions. One of those con-

ditions, though, is that the parameters be identified from this criterion function. However, a

Gaussian log-likelihood can only identify the matrix C up to an orthogonal rotation, so they are

not useful in this case. Remarkably, we can show that we can still achieve consistency for all the

conditional mean and variance parameters if we replace the Gaussian log-likelihood function by

one based on discrete mixtures of normals. More formally:

Proposition 3 If the true joint density of the structural shocks ε∗t in (1) is the product of N
univariate densities, then the unrestricted (pseudo) ML estimators of model (1) that assume
discrete mixtures of normals for the shocks are consistent for τ , a, j and ψ.

Not surprisingly, there is a symmetric version of this result too:

Proposition 4 If the true joint density of the structural shocks ε∗t in (1) is the product of N
univariate symmetric densities, then the unrestricted (pseudo) ML estimators of model (1) that
assume discrete scale mixtures of normals for the shocks are consistent for τ , a, j and ψ.

These results suggest the use of log-likelihood functions based on discrete normal mixtures

to estimate the parameters of model (1). Nevertheless, their effi ciency is also an important

consideration. In section 3, we will use our simulation experiments to compare these mixture-

based PMLEs to two-step FS estimators that rely on an alternative parametric distribution, such

as the popular Student t or the Laplace. In addition, in the next subsection we compare the

analytical expressions for the asymptotic covariance matrix of these two estimators, which we

derive in Appendices B and C, respectively. In addition, we characterise the maximum effi ciency

that they can achieve.

Finally, it is illustrative to compare the results in this section to the consistency results

in Gouriéroux et al (2017), who work with the alternative reparametrisation C = ΣLQ(ω).

They show that regardless of the specific distributions assumed for estimation purposes, a non-

Gaussian PMLE can usually consistently estimate the N(N − 1)/2 underlying free elements of

Q(ω) when the true value ofΣL is either known, or replaced by a consistent estimator such as the

Gaussian PMLE. In contrast, Proposition 1 shows that a non-Gaussian PMLE can consistently

estimate the N(N−1) elements of J, so there are only N left. In addition, Proposition 3 implies

that the non-Gaussian PMLE of the diagonal elements of Ψ will also be consistently estimated

if we assume for estimation purposes that the structural shocks follow univariate mixtures of

normals. Moreover, the FS estimators, which are effectively Gaussian PMLEs based on pseudo-

standardised residuals, will provide consistent estimators of the N elements of ψ too.
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2.3 Effi ciency results

There are situations in which some, but not all elements of θ can be estimated as effi ciently

as if the true distribution of the shocks were known, a fact described in the semiparametric

literature as partial adaptivity. Effectively, this requires that some elements of the score be

orthogonal to the relevant tangent set after partialling out the effects of the remaining elements

of score by regressing the former on the latter. In the context of the multivariate, conditionally

heteroskedastic, dynamic regression models, Fiorentini and Sentana (2021b) show that the model

parameters that continue to be consistently estimated under distributional misspecification of

the innovations coincide with the parameters that can be adaptively estimated. In this section,

we show that this result also holds for model (1), with adaptivity achieved by the class of SP

estimators that impose the assumption of cross-sectionally independent shocks along the lines

of Chen and Bickel (2006), which we discuss in detail in Appendix D.8

More formally, let εt(τ ,a) = (yt−τ −A1yt−1− . . .−Apyt−p) denote the estimated reduced

form residuals, ε∗t (τ ,a, j,ψ) = Ψ−1J−1εt(τ ,a) their structural counterparts and `N a vector of

N ones:

Proposition 5 1. If the true joint density of the structural shocks ε∗t in (1) is the product
of N univariate densities, then:
(a) the cross-sectionally independent SP estimators of a and j,

....
a and

....
j , respectively,

are (τ ,ψ)-adaptive,

(b) the iterated cross-sectionally independent SP estimators of τ and ψ are
....
τ = τ (

....
a )

and
....
ψ = ψ(

....
τ ,
....
a ,
....
j ), where for i = 1, . . . , N

τ i(a) = T−1∑T
t=1 εit(0,a), (2)

ψi(τ ,a, j) = T−1
T∑
t=1

ε∗2it (τ ,a, j, `N ). (3)

Remarkably, (2) and (3) coincide with the FS consistent estimators based on the Gaussian

pseudo-scores for τ and ψ, the only difference being the first-step estimators chosen for a and j

(see Appendix C for further details).

Another important implication of this proposition is that the restricted and unrestricted

parametric estimators of a and j will be equally effi cient despite the simultaneous estimation of

the shape parameters.9,10

As before, we can strengthen the results in Proposition 5 by assuming that the true univariate

distributions of the structural shocks are symmetric:
8See Lee and Mesters (2021) for the application of the Chen and Bickel (2006) estimators in simultaneous

equation models.
9The full effi ciency of the unrestricted MLEs confirms the analysis of the rank of the difference between the

two parametric effi ciency bounds at the end of Appendix D.1
10We also show in the proof of Proposition 5 that the restricted and unrestricted estimators of a and j will be

asymptotically independent of each other, but not necessarily of the estimators of τ , ψ or the shape parameters.
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Proposition 6 1. If the true joint density of the structural shocks ε∗t in (1) is the product
of N univariate symmetric densities, then:
(a) the cross-sectionally independent symmetric SP estimators of τ , a and j,

...
τ ,
...
a and...

j , respectively, are ψ-adaptive,

(b) the iterated cross-sectionally independent symmetric SP estimator of ψ is given by...
ψ i = ψi(

...
τ ,
...
a ,
...
j ).

Once again, the expression for
...
ψ i coincides with the FS consistent estimators that impose

symmetry, the only difference being the first-step estimators for τ , a and j (see Appendix C for

further details).

As in the case of Proposition 5, this result also implies that the unrestricted parametric

estimators of τ , a and j that rely on the correct distributional specification of the shocks will

be fully effi cient too despite the simultaneous estimation of the shape parameters.11

As we mentioned in the introduction, finite mixtures of normals with an increasing number of

components may approximate many other distributions. To gain some insights on whether they

could constitute the basis for a proper sieves-type SP procedure, we have conducted a simple

exercise in which we look at a bivariate version of model (1) with cross-sectionally independent

Student t shocks with 5 degrees of freedom each whose parameters are estimated by finite

mixture-based log-likelihood functions withK = 2, . . . , 5 components. For comparison purposes,

we consider two different benchmarks: (i) the true MLE based on the correctly specified log-

likelihood function, and (ii) the FS estimator which uses those MLEs as first-step estimators,

but still replaces the estimators of τ and ψ. Importantly, this FS estimator is asymptotically

equivalent to the cross-sectionally independent SP estimator in view of Proposition 5.12

We compute the information matrix of the correctly specified MLE and the asymptotic

covariance matrix of the two-step FS estimator using the expressions in Appendix D of Fiorentini

and Sentana (2021b) and Appendix C of this paper, respectively, evaluated at the true values

of the parameters. As for the mixture-based PMLEs, we compute the expected value of the

Hessian and variance of the score using the expressions in Amengual et al (2021a), which are a

special case of the expressions in Appendix B, evaluated at the true values of τ , a, j and ψ and

the pseudo true values of the shape parameters, which we numerically obtain from samples of

40 million simulated observations.

The results, which we report in Table 1, show that the mixture-based PMLEs of a and

j quickly approach the asymptotic effi ciency of the true MLEs. In fact, although panel (a)
11The same conclusion derives from Proposition 14 in Fiorentini and Sentana (2021b), whose proof compares the

diagonal block of the inverse information matrix corresponding to τ , a and j when ψ and % are jointly estimated
to the corresponding block when only ψ is simultaneously estimated while % is fixed to its true value.
12Moreover, the FS estimator that imposes symmetry will be in this case asymptotically equivalent to the cross-

sectionally independent symmetric SP estimator, which in turn is as effi cient as the MLE for all the parameters
except ψ in view of Proposition 6.

8



in Figure 3 of Gallant and Tauchen (1999) clearly illustrates that a more complex misspecified

model does not necessarily lead to more effi cient estimators because one is not simply adding new

elements to the score, but also changing the pseudo true values of the shape parameters at which

one evaluates the original components of the score, we find that the effi ciency improvements occur

monotonically.

In contrast, the asymptotic variances of the mixture-based PMLEs of τ and ψ reach a

plateau well above the asymptotic variances of the correctly specified MLEs. Not surprisingly,

their asymptotic variances effectively coincide with the asymptotic variances of the FS estimators

that use the correct MLEs of a and j as first-step estimators.13

3 Monte Carlo evidence

In this section, we assess the small sample behaviour of the different estimators discussed

in the previous section by means of an extensive Monte Carlo simulation exercise in which we

generate samples from the following three-variate Svar(1) process x1t

x2t

x3t

 =

 0
0
0

+

 0.5 0.2 0.2
0.2 0.5 0.2
0.2 0.2 0.2

 x1t−1

x2t−1

x3t−1

+

 1 0 0
0.2 1 0
0.2 0.2 1

 ε∗1t
ε∗2t
ε∗3t

 . (4)

The main aim of the partial interchangeability of this design is to save space in presenting the

simulation results by pooling several groups of parameters. Nevertheless, the estimators that

we consider are fully unrestricted and do not exploit any of the restrictions resulting from the

fact that the true unconditional means are zero or the true loading matrix of the shocks has a

triangular structure.

In accordance with the assumptions in section 2, the error terms ε∗t are stochastically indepen-

dent from each other with zero mean and unit variance. We simulate four different distributions,

two of which are symmetric: (i) three homogeneous univariate Student t distributions; (ii) three

Laplace distributions; (iii) three heterogenous discrete location scale mixtures of two normals

(DLSMN); and (iv) three heterogenous asymmetric Student ts (see Mencía and Sentana (2009)

for details).

For each simulation design, we generate 5, 000 samples of length T = 500, which is realistic

in macro applications with monthly data such as Ludvigson et al (2021) (see Supplemental

Appendix G for the corresponding results for simulated samples of length T = 2, 000, which

are representative of financial applications with daily data, such as the one in section 4). We

13The fact that the asymptotic variances of ψ1 and ψ2 for some of the mixture-based PMLEs are marginally
below those of the FS estimators is likely due to the numerical approximation error in the pseudo-true values in
such complex models.
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then estimate the model parameters with ten different estimators. In particular, we use: (1)

the Student t MLE and (2) the corresponding consistent FS correction, (3) the MLE based on

unrestricted two-component Gaussian mixtures (DLSMN), which are consistent regardless of

the true distribution, as we have previously shown, (4) the MLE which assumes that the shocks

are symmetric scale mixture of two normals (DSMN) and (5) the corresponding consistent FS

correction, (6) the Laplace-based MLE and (7) its FS consistent correction. We also compute

three versions of the two-step consistent procedure in Gouriéroux et al (2017) (GMR). As we

mentioned at the end of the previous section, in their first step, they estimate the N + pN2 +

N(N + 1)/2 reduced form parameters (τ ′,a′,σ′L)′, with σL = vech′(ΣL), by Gaussian PML.

Then, they compute the orthogonalised reduced form residuals ũ∗t = Σ̃−1
L (yt−τ̃−

∑p
j=1 Ãjyt−j),

on the basis of which they estimate by non-Gaussian PML the N(N − 1)/2 free elements ω of

the orthogonal rotation matrix Q, which maps structural shocks and reduced form innovations

as u∗t = Q(ω)ε∗t . To level the playing field, in this second step we consider estimators based on

the Student t, the DLSMN and the Laplace likelihoods. These three estimators, though, share

the first step, so they only differ in the estimated values of C that they produce. As for the FS

corrections, we use a Gaussian PMLE for the N parameters in ψ and the N parameters in τ ,

except when we use unrestricted finite mixtures of normals to compute our joint non-Gaussian

ML estimators, in which case we estimate all the parameters in one go because the correction is

unnecessary. In all cases, we choose a unique global maximum from the different observationally

equivalent permutations and sign changes of the columns of the matrix C using the selection

procedure suggested by Ilmonen and Paindaveine (2011) and adopted by Lanne et al (2017).

Biases In Table 2, we report the Monte Carlo mean absolute bias for several groups of para-

meters: the drifts τ , the diagonal elements of the autoregressive matrix {A}ii, the off-diagonal

elements {A}ij,i6=j , the diagonal elements of the impact multiplier matrix {C}ii, and its lower

and upper diagonal elements {C}ij,i>j and {C}ij,i<j , respectively. Finally, we also report the

biases of the lower and upper diagonal elements of J = CΨ−1, for which non-Gaussian PMLEs

should be consistent according to Propositions 1 and 2.

When the structural shocks follow independent Student t distributions with 5 degrees of

freedom, all estimators are consistent except the Laplace-based MLE of C. As expected, the

Student t MLE and the corresponding FS correction dominate the others, but the Mixture-

based MLE and the Student t based GMR perform rather well. In turn, when the errors follow

independent Laplace distributions, the results are analogous, in that this time the bias appears

in the Student t MLE of C with all other estimators showing extremely low finite sample bias.

The third panel of Table 2 displays the results for the simulation with DLSMN shocks. In this
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case, the biases of Student tMLEs of C and τ are large while the biases of the Laplace MLEs are

more apparent in the drift estimators. Not surprisingly, the DLSMN MLE is the best but the

two consistent FS corrections of the Student and Laplace MLEs are also very good and compare

favourably even to the DLSMN version of GMR. Finally, when the error terms follow asymmetric

Student t distributions, all estimators are based on misspecified likelihoods. Nevertheless, the

last panel of Table 2 indicates that many of them perform rather well in terms of finite sample

biases, with the DLSMN MLE being probably the best one.

Therefore, our Monte Carlo exercises confirm the practical relevance of our consistency results

for both the mixture-based PMLEs and the FS two-step estimators.

Effi ciency Next, we evaluate the finite sample relative effi ciency of the different consistent

estimators using the Monte Carlo root mean squared errors (RMSE) in Table 3 for the same

groups of parameters. For the Student t DGP, the Student t MLE is obviously the best but

its FS correction also performs very well, and the same is true of the estimators that rely on

a finite normal mixture. As for the Student-based GMR estimators, they are clearly ineffi cient

for τ and a but fully effi cient for the elements of C because the information matrix is block

diagonal between conditional mean and variance parameters (see Proposition B1 in Fiorentini

and Sentana (2021b) and Appendix D). In contrast, the estimators that rely on a Laplace

likelihood are the worst. Somewhat surprisingly, the Laplace MLEs is more precise for J than

the Laplace GMR estimator even though the asymptotic covariance matrix of this estimator is

presumably block diagonal between the conditional mean and variance parameters in view of

the symmetry of the true distribution.

As expected, the second panel of Table 3 confirms that the relative performance of the

Student t and Laplace estimators is by and large the mirror image of the first panel. The main

difference is that the Laplace-based GMR estimators are noticeably less effi cient for C than the

Laplace-based MLEs.

Once more, the MLE based on the correct distribution is the best performer when we sim-

ulate DLSMN shocks, but the GMR-DLSMN estimator of the diagonal elements of C is also

very precise. In contrast, this estimator is again suboptimal when we look at the elements of

the autoregressive matrix A since it relies on the first-step Gaussian PMLE, which is clearly

dominated by both the Student and Laplace PMLEs.

Finally, we can see in the last panel of Table 3 that the DLSMN MLE is the best performer in

terms of precision when the true shocks follow asymmetric Student ts even though all estimators

are based on misspecified likelihood functions. Among the remaining consistent non-Gaussian

PMLE estimators, the FS correction to the Laplace MLEs shows more finite sample variability
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than the others, with the GMR-Laplace being even worse, especially for J and the off-diagonal

elements of C.

In summary, our Monte Carlo exercises confirm the effi ciency under distributional misspeci-

fication of our proposed PMLEs based on unrestricted discrete mixtures of normals relative to

other consistent proposals.

Coverage We compute pointwise confidence bands for the Irfs generated by the estimated

models using the parametric procedure in Mittnik and Zadrozny (1993) (see Appendix E for

further details). Since their procedure relies on the delta method, we first compute the asymp-

totic variance of the finite normal mixture PMLEs and the FS estimators based on the Student

t MLE, as explained at the end of section 2.3. To capture what a researcher who believes in the

correct specification of the distribution of the shocks would do, we also compute the asymptotic

variance of the Student t MLE using the inverse information matrix. When the shocks follow

independent Student t distributions, the confidence bands thus computed would be the narrow-

est possible, while they will generally be centred around inconsistent point estimates of the Irfs

under distributional misspecification.

We first conduct Monte Carlo simulations for a bivariate Svar(1) process obtained by simply

removing the third variable from equation (4), leaving everything else unchanged. We report the

results in Table 4 using 10, 000 replications to reduce sampling errors in estimating the coverage

proportions. As expected, when the true distribution of the shocks is a Student t, the most

accurate coverage is achieved by the Student MLE. Nevertheless, the coverages of the Mixture

PMLE and the Student-AFS are reasonably close to their nominal values. In contrast, when the

shocks do not follow symmetric Student ts, the Student MLE coverages are wrong. The only

notable exception occurs when the shocks follow asymmetric Student innovations, the reason

being that in that case the bias of the estimators is absorbed by the drift parameters, as we saw

in Table 2. More importantly, the coverage of the mixture-based PMLE and the Student-AFS

is reasonable in all instances.

The substantially more detailed results for the three-variate system (4) that we report in

Table 5 lead to very similar conclusions.

Number of components The consistency results in Proposition 3 are valid for any finite

Gaussian mixture regardless of the number of componentsK ≥ 2. At the same time, at the end of

section 2.3 we saw that, asymptotically at least, a larger number of components leads to a better

approximation to the true distribution of the shocks, which in turn seems to generate effi ciency

gains. In finite samples, though, things are not so straightforward, as there is a clear trade-off
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between the accuracy of the approximating mixture and the number of estimated parameters.

To shed some light on this trade-off, we have simulated 5, 000 samples of T = 500, T = 2, 000

and T = 20, 000 observations each from the trivariate Svar(1) process (4), with stochastically

independent shocks drawn from three heterogenous asymmetric Student ts. Then, for each of

those samples, we estimate the model parameters using a mixture-based log-likelihood function

with both K = 2 and K = 3 components. We report the Monte Carlo root mean squared

errors for the usual groups of parameters in Table 6. When the sample length is very large

(T = 20, 000), the estimator based on K = 3 is unsurprisingly superior to the one that relies on

K = 2, which confirms the asymptotic results in Table 1. In contrast, it seems better to use the

estimator with K = 2 when T = 500. In the intermediate case (T = 2, 000) the more flexible

estimator, K = 3, tends to be slightly better for most groups of parameters, but not for all of

them.

Although these results suggest that practitioners should use a number of components that

increases slowly with the sample size, additional research is required before making a more

precise and firmer recommendation.

4 Empirical application to volatility indices

We consider three daily series of market-based implied volatilities as measured by the VIX

index, the EVZ EuroCurrency ETF volatility index and the GVZ Gold ETF volatility index.

The series are compiled by the Chicago Board of Options Exchange (CBOE) and can be freely

downloaded from the St. Louis FRED site. They represent three of the most actively traded

asset classes, namely stocks, exchange rates and commodities, and since their inception have

become incredibly popular among academics, financial market practitioners and commentators.

Our sample spans from June 2nd 2008 to September 24th 2020 for a total of 3,101 observations.

Let xt = (xV IX,t, xEV Z,t, xGV Z,t)
′ denote the log-transformation of these volatility indexes,

which we depict in Figure 1. A preliminary univariate data analysis confirms their high persis-

tence, with a first-order autocorrelation above 0.98 and a slow rate of decay for higher orders.

This is hardly surprising, as it is well known that the temporal pattern of volatility indices at

the daily frequency shows mean reversion over the long run but persistent deviations from the

mean during extended periods. This is confirmed by the fact that Arma(2,1) models, which

correspond to the exact discretisation of the stationary central tendency process in continuous

time considered by Mencía and Sentana (2013), provide a good representation for the three

series.

Given that our interest is to study the dynamic linkages between these volatility indices, we
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estimate the following three-variate Svar(5) model

xt = τ + A1xt−1 + . . .+ A5xt−5 + Cε∗t ,

where we have selected the lag order by looking at the Akaike information criterion and the

likelihood ratio test for the null hypothesis of lack of residual serial correlation.

We estimate the structural parameters using three of the consistent estimators in the previous

section. The first estimator assumes that ε∗it ∼ i.i.d. t(0, 1, νi), where νi denotes the Student t

degrees of freedom parameter, but then we apply the FS correction, which is consistent even if the

true shock distributions are asymmetric. In turn, the second estimator assumes that ε∗it ∼ i.i.d.

DLSMN(δi, κi, λi) and estimates all the parameters jointly. Finally, the third estimator employs

the GMR two-step strategy with the same unrestricted finite mixture of normals assumption in

the second step.

As for initial values, we use standard Gaussian PMLE, which is equivalent to running OLS

regression for each of the three variables and computing the covariance matrix of the estimated

residuals. Thus, we obtain

µ̂tFS =

 2.895
2.254
2.880

 ; µ̂DLSMN =

 2.893
2.253
2.877

 ; µ̂GMR =

 2.902
2.265
2.886

 .
where µ = τ (I−A1 − . . . −A5)−1 are the unconditional means. Notice that by construction

µ̂GMR is numerically the same as the corresponding OLS estimator. As expected from the

results in previous sections, the three estimators provide very similar point estimates.

As for the structural impact multipliers matrix, we find that

ĈtFS =

 0.0766 0.0074 0.0007
0.0123 0.0497 0.0033
0.0210 0.0118 0.0502

 ;

ĈDLSMN =

 0.0769 0.0052 0.0016
0.0135 0.0493 0.0033
0.0206 0.0111 0.0505

 ;

ĈGMR =

 0.0766 0.0064 0.0025
0.0133 0.0493 0.0034
0.0207 0.0122 0.0506

 ,
which are also rather similar, confirming once again our theoretical and simulation findings in

previous sections.

The estimated structural shocks are shown in Figure 2. Reassuringly, they appear to be

serially i.i.d. but highly non-normal. To help with the interpretation of the structural shocks, it

is convenient to look not only at the estimated values of C but also at those of its inverse, which
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expresses the structural shocks ε∗t as linear combinations of the reduced form prediction errors

ut. Given that both C and C−1 are almost lower triangular matrices despite the fact that they

are freely estimated, we can label the first shock as a stock volatility shock. Similarly, we will

refer to the second and third shocks as FX and Gold volatility shocks, respectively, in view of

the largely recursive nature of the estimated structural model.

Figures 3 displays the Irfs and Fevds up to one-year ahead.14 The strong persistence

implied by the Svar(5) parameter estimates implies that all the Irfs decay rather slowly. The

responses of VIX to both FX and Gold volatility shocks are hump shaped but small in magnitude.

The volatility of the $/euro exchange rate seems to react mostly to its own shock, while Gold

volatility is mostly affected by the other shocks and, in particular, by the FX one.

A convenient way of summarising the information in the Fevd plots is to compute the con-

nectedness measures proposed by Diebold and Yilmaz (2014). Importantly, given that we have

identified and consistently estimated the matrix of impact multipliers C and the autoregressive

matrices Ai (i = 1, . . . , 5), we can compute those measures without having to resort to the

generalised Fevds of Pesaran and Shin (1996).

Using the entire sample, we find that the one-year ahead Fevds yield the following sample

connectedness table
Stock FX Gold

VIX 0.659 0.227 0.114
EVZ 0.024 0.931 0.045
GVZ 0.104 0.343 0.553

As can be seen, the historical total connectedness of the three volatility series, defined as the

sum of the off-diagonal elements of this table divided by N , takes the value of 0.286, which is

not very high if we take into account that the elements of each row add up to 1.

“From”connectedness, which we compute by summing the off-diagonal elements of the rows

in the previous table, is
VIX 0.341
EVZ 0.070
GVX 0.447

,

which, somewhat surprisingly, is very low for the EuroCurrency volatility index but moderately

high for Gold volatility, most of which being due to FX volatility shocks.

Similarly, “To”connectedness, which is the sum of the off-diagonal column elements, yields

Stock 0.129
FX 0.570
Gold 0.159

,

being high for the FX shock but moderately low for the other two.

14We have not included confidence bands to avoid cluttering the pictures, but they can be easily obtained using
the parametric procedure in Mittnik and Zadrozny (1993) explained in Appendix E.
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In summary, we find an approximate recursive structure for the impact multipliers, which

combined with the estimates of the autoregressive matrices implies that FX volatility shocks

explain a non-negligible fraction of the forecast error variation of the VIX and especially the

GVX index. In contrast, the converse is not true, as most of the forecast error variation in the

EVZ index is explained by its own shocks.

5 Conclusions and directions for future research

We prove that maximum likelihood estimation of structural vector autoregressions with in-

dependent non-Gaussian shocks generates consistent estimators of the autoregressive coeffi cients

and (scaled) impact multipliers under distributional misspecification, which in turn implies con-

sistent estimation of the temporal pattern of the Irfs. In contrast, the drifts and standard

deviations of the shocks are generally inconsistently estimated, and so are the Fevds. Never-

theless, we show consistency of all the parameters when the non-Gaussian log-likelihood is a

discrete scale mixture of normals in the symmetric case, or an unrestricted finite mixture more

generally. We also confirm the validity of two-step consistent estimators à la Fiorentini and

Sentana (2007, 2019) when the shocks are assumed to follow other non-Gaussian distributions

such as the Student t or the Laplace.

Detailed Monte Carlo exercises confirm the practical relevance of our consistency results

for both the mixture-based PMLEs and the FS two-step estimators under distributional mis-

specification, and illustrate the relative effi ciency of the mixture-based PMLEs relative to other

consistent proposals. Furthermore, they show that the closed-form expressions for the asymp-

totic covariance matrices of our proposed estimators that we derive in Appendices B and C in

combination with the delta method proposed by Mittnik and Zadrozny (1993) lead to reliable

confidence bands for the Irfs. Importantly, while we find that mixture-based PMLEs approach

the SP effi ciency bound as the number of components of the mixtures increases, we also observe

that in finite samples practitioners should probably use more than two components only if their

sample size is suffi ciently large.

In fact, finding the rate at which the number of mixture components should increase as a

function of the sample size in a sieves-type procedure to achieve the SP effi ciency bound would be

a non-trivial but worthwhile extension of our paper. Similarly, it would be interesting to study

the finite sample performance of kernel-type SP estimators which use our proposed consistent

estimators as initial values for a single BHHH iteration based on the cross-sectionally indepen-

dent SP effi cient score. Although our theoretical results indicate that such SP estimators are

(partially) adaptive for the matrices of Var coeffi cients Aj (j = 1, . . . , p) and the scaled impact
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multipliers in J, and the cross-sectional independence of the shocks allows the estimation of their

densities at univariate non-parametric rates regardless of N , the finite sample performance of

these kernel-based estimators could be subpar. A comparison of these two SP estimators with

the distribution-free methods in Herwartz (2018), who exploits the proposal in Matteson and

Tsay (2017), and Lanne and Luoto (2021), who employ a GMM estimator that replaces the

assumption of independent shocks with analogous restrictions on a finite number of high-order

cross-cumulants, would also be valuable.

Finally, we study the dynamic linkages between the popular volatility indices for the S&P500,

the US $/euro exchange rate and gold. Somewhat surprisingly, we find that the matrix of impact

multipliers is close to lower triangular, which suggests that the structural volatility shocks that

we estimate correspond to stocks, foreign exchange and gold. We also find that the historical

total connectedness at the one-year ahead horizon is not very high, and that the FX volatility

shocks explain a non-negligible fraction of the forecast error variation of the VIX and especially

the GVX index.

The empirical credibility of the identification approach that we have exploited would be

enhanced if our proposed estimators would be complemented by specification tests that confirm

the assumption of cross-sectionally independent shocks (see Hyvärinen (2013), Amengual et al

(2021a,b), Montiel Olea et al (2021) and Davis and Ng (2021) for some proposals). Assessing

the non-normality assumption in combination with independence is also fundamental, as is the

study of the properties of the different estimators that we consider in near Gaussian situations

(see Amengual et al (2021a) and Lee and Mesters (2021) for recent suggestions in those two

directions). Nevertheless, the closer the true distribution of the shocks were to the normal, the

better the finite Gaussian mixture approximation, and the more effi cient our proposed estimators

would be relative to the correctly specified parametric ones. The study of the effects on our

proposed estimators of structural shocks which are not serially independent because of the

presence of time-varying volatility would also be worth pursuing.

We would like to emphasise that our results are valid not only for Svars with cross-sectional

independent structural shocks, but also for many dynamic, conditionally heteroskedastic, multi-

variate regression models routinely used in empirical finance and other fields, including Arch-M

models and multivariate regressions (see Amengual et al (2022)). For that reason, it would be

interesting to assess the performance of discrete mixture of normals maximum likelihood esti-

mators in those contexts. We are currently exploring some of these interesting research avenues.
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Appendices

A Proofs

A.1 Proposition 1

Expression (B7) in Appendix B implies that

[
sτ t(φ)
sat(φ)

]
= −


IN

yt−1 ⊗ IN
...

yt−p ⊗ IN

J−1′Ψ−1


∂ ln f1[ε∗1t(θ);%1]

∂ε∗1
...

∂ ln fN [ε∗Nt(θ);%N ]
∂ε∗N

 .

In turn, expression (B32) in the same appendix yields

sj(θ;%) = −veco

J−1′ + J−1′Ψ−1


∂ ln f1[ε∗1t(θ);%1]

∂ε∗1
ε∗1t(θ) . . .

∂ ln f1[ε∗1t(θ);%1]
∂ε∗1

ε∗Nt(θ)
...

. . .
...

∂ ln fN [ε∗Nt(θ);%N ]
∂ε∗N

ε∗1t(θ) . . .
∂ ln fN [ε∗Nt(θ);%N ]

∂ε∗N
ε∗Nt(θ)

Ψ

 ,
where ∆N is an N2 ×N(N − 1) matrix such that vec(J− IN ) = ∆Nveco(J− IN ) (see Magnus

and Sentana (2020)), and

sψ(θ;%) = −Ψ−1


1 +

∂ ln f1[ε∗1t(θ);%1]
∂ε∗1

ε∗1t(θ)
...

1 +
∂ ln fN [ε∗Nt(θ);%N ]

∂ε∗N
ε∗Nt(θ)

 .

Let us start by assuming that the shape parameters % are fixed to some value %̄. Let

υ = J−1τ so that τ = Jυ. In addition, let

ε∗t (τ ,a0, j0,ψ) = Ψ−1J−1
0 (yt − τ −A10yt−1 − . . .−Ap0yt−p) = Ψ−1[(υ0 − υ) + Ψ0ε

∗
t ].

Next, define the pseudo true values of the parameters υ∞(%̄), τ∞(%̄) = J0υ∞(%̄) and ψ∞(%̄)

such that for i = 1, . . . , N

E

[
∂ ln fi{ε∗it[τ∞(%̄),a0, j0,ψ∞(%̄)]; %̄i}

∂ε∗i

]
= E

{
∂ ln fi[ψ

−1
i∞(%̄i){[υ0 − υ∞(%̄i)] + ψi0ε

∗
it}; %̄i]

∂ε∗i

}
= 0, (A1)

E

[
1 +

∂ ln f{ε∗it(τ∞(%̄),a0, j0,ψ∞(%̄)); %̄i}
∂ε∗

ε∗it(τ∞,a0, j0,ψ∞)

]
= E

{
1+

∂ ln f [ψ−1
i∞(%̄i){[υ0−υ∞(%̄i)]+ψi0ε

∗
it}; %̄i]

∂ε∗
ψ−1
i∞(%̄i){[υ0−υ∞(%̄i)]+ψi0ε

∗
it}
}

=0, (A2)

so that the expected value of the scores of τ and ψ are 0. The cross-sectional independence

of the true shocks combined with these expressions imply that the expected value of the scores

of a and j and will also be 0. Consequently, all parameters except possibly τ and ψ will be
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consistently estimated. The consistency of a but not j also follows from Proposition 12 in the

supplemental appendix of Fiorentini and Sentana (2019).

When % is simultaneously estimated, one should understand the solutions τ∞ and ψ∞ to the

equations (A1) and (A2) above as functions of %, and add the scores for these shape parameters

as additional model conditions, which implicitly define their pseudo true values %∞. �

A.2 Proposition 2

The proof is very similar to the proof of Proposition 1. As we explain in Appendix B, the

main difference is when the assumed distributions of all the structural shocks are symmetric,

the score expressions simplify to

sτ (θ;%) = J−1′Ψ−1


δ[ε∗21t (θ);%1]ε∗1t(θ)

...
δ[ε∗2Nt(θ);%N ]ε∗Nt(θ)

 ,

sa(θ;%) =

 yt−1 ⊗ IN
...

yt−p ⊗ IN

J−1′Ψ−1


δ[ε∗21t (θ);%1]ε∗1t(θ)

...
δ[ε∗2Nt(θ);%N ]ε∗Nt(θ)

 ,

sj(θ;%) = veco

J−1′Ψ−1


δ[ε∗21t (θ);%1]ε∗21t (θ)− 1 . . . δ[ε∗21t (θ);%1]ε∗1t(θ)ε∗Nt(θ)

...
. . .

...
δ[ε∗2Nt(θ);%1]ε∗Nt(θ)ε∗1t(θ) . . . δ[ε∗2Nt(θ);%1]ε∗2Nt(θ)− 1

Ψ

 ,
sψ(θ;%) = Ψ−1


δ[ε∗21t (θ);%1]ε∗21t (θ)− 1

...
δ[ε∗2Nt(θ);%1]ε∗2Nt(θ)− 1

 ,

where

δ[ε∗2it (θ);%i] =− 2
∂ ln fi[ε

∗
it(θ);%i]

∂ε∗2i
(A3)

is a scalar function of ε∗2it (θ) due to the symmetry of the assumed univariate distributions.

In this case, it is easy to see that ε∗t (τ 0,a0, j0,ψ) = Ψ−1Ψ0ε
∗
t , so that for a fixed value of

the shape parameters %̄,

E{δ[ε∗2it (τ 0,a0, j0,ψ); %̄i]ε
∗
it(τ 0,a0, j0,ψ)} = E[δ(ψ−1

i ψi0ε
∗
it; %̄i)ψ

−1
i ψi0ε

∗
it] = 0 ∀i (A4)

for any value of ψ because the integrand is an odd function of ε∗it, whose true distribution is

symmetric. As a result, the expected value of the scores of τ will be 0 regardless of the value of

ψ, and the same applies to the scores of a because of the law of iterated expectations.

Next, let us define ψ∞(%̄) such that

E[δ{ε∗2it [τ 0,a0, j0,ψ(%̄)]; %̄i}ε∗2it [τ 0,a0, j0,ψ(%̄)]] = E{δ[ψ−1
i∞(%̄i)ψi0ε

∗
it; %̄i]ψ

−2
i∞(%̄i)ψ

2
i0ε
∗2
it } = 1,
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so that the expected value of the score of ψ is 0. The cross-sectional independence of the true

shocks combined with (A4) implies that the expected value of the scores of j will also be 0.

Consequently, all parameters except possibly ψ will be consistently estimated.

Once again, when % is simultaneously estimated, one should understand the solution ψ∞

to the above equation as a function of %, and add the scores for these shape parameters as

additional model conditions, which implicitly define their pseudo true values %∞. �

A.3 Proposition 3

Proposition 1 implies that a and j will be consistently estimated, so we only need to focus

on τ and ψ. Let

ε∗t (0,a0, j0, `N ) = J−1
0 (yt −A10yt−1 − . . .−Ap0yt−p) = υ0 + Ψ0ε

∗
t ,

whose mean vector and covariance matrix are υ0 and Ψ0, respectively, where υ0 = J−1
0 τ 0. The

usual numerical invariance property of ML estimators to bijective reparametrisations allows us

to replace υi, ψi and %i with the natural parametrisation of finite mixtures of normals discussed

in Appendix F.1. But then, Proposition F1 in that appendix applied to each shock implies that

a discrete mixture log-likelihood function will consistently estimate υi0 and ψi0 for i = 1, . . . , N

regardless of the true distribution of the shocks. �

A.4 Proposition 4

Proposition 2 implies that τ , a and j will be consistently estimated, so we only need to focus

on ψ. Let

ε∗t (τ 0,a0, j0, `N ) = J−1
0 (yt − τ 0 −A10yt−1 − . . .−Ap0yt−p) = Ψ0ε

∗
t ,

whose mean vector and covariance matrix are 0 and Ψ0, respectively. The usual numerical

invariance property of ML estimators to bijective reparametrisations allows us to replace ψi and

%i with the natural parametrisation of finite scale mixtures of normals discussed in Appendix

F.2. But then, Proposition F2 in that appendix applied to each shock implies that a discrete

scale mixture log-likelihood function will consistently estimate ψi0 for i = 1, . . . , N regardless of

the true distribution of the shocks as long as they are symmetric. �
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A.5 Proposition 5

To prove the first part of the proposition, let us group the scores with respect to θ into two

sets: a and j on the one hand, and τ and ψ on the other. Thus, we end up with

sat(φ) =

 (yt−1 ⊗ IN )J−1′Ψ−1

...
(yt−p ⊗ IN )J−1′Ψ−1

 elt(φ),

sjt(φ) = ∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)
(

EN ∆N

) [ E′Nest(φ)
∆′Nest(φ)

]
,

and

sτ t(φ) = J−1′Ψ−1elt(φ),

sψt(φ) = Ψ−1E′Nest(φ),

where we have used Proposition 4 in Magnus and Sentana (2020), which says that

ENE′N + ∆N∆′N =

(
E′N
∆′N

)(
EN ∆N

)
= IN2 , (A5)

with EN being the N2 × N matrix such that vec(Ψ) = ENvecd(Ψ) for any diagonal matrix

Ψ. We can use expression (B30) in Appendix B.5.2 to show that the unconditional covariance

matrix between these two sets of scores is

E

{[
sat(φ)
sjt(φ)

] [
s′τ t(φ) s′ψt(φ)

]}

= E




(yt−1⊗IN )J−1′Ψ−1 0 0
...

...
...

(yt−p⊗IN )J−1′Ψ−1 0 0
0 ∆′N (IN⊗J−1′)(Ψ⊗Ψ−1)EN ∆′N (IN⊗J−1′)(Ψ⊗Ψ−1)∆N


 Mll Mls 0
Mls Mss 0
0 0 ∆′N (KNN + Υ)∆N

 Ψ−1J−1 0
0 Ψ−1

0 0


=


(µ⊗ IN )J−1′Ψ−1 0 0

...
...

...
(µ⊗ IN )J−1′Ψ−1 0 0

0 ∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)EN ∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)∆N


×

 Mll Mls 0
Mls Mss 0
0 0 ∆′N (KNN + Υ)∆N

 Ψ−1J−1 0
0 Ψ−1

0 0



=


(µ⊗ IN )J−1′Ψ−1MllΨ

−1J−1 (µ⊗ IN )J−1′Ψ−1MlsΨ
−1J−1

...
...

(µ⊗ IN )J−1′Ψ−1MllΨ
−1J−1 (µ⊗ IN )J−1′Ψ−1MllΨ

−1J−1

∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)ENMlsΨ
−1J−1 ∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)ENMssΨ

−1

 ,
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whereMll, Mls and Mss are diagonal matrices with typical elements V [∂ ln fi(ε
∗
it;%i0)/∂ε∗i |φ0],

cov[∂ ln fi(ε
∗
it;%i0)/∂ε∗i , ε

∗
it∂ ln fi(ε

∗
it;%i0)/∂ε∗i |φ0] and V [ε∗it∂ ln fi(ε

∗
it;%i0)/∂ε∗i |φ0], respectively.

In turn, the unconditional covariance matrix of the scores for τ and ψ is(
J−1′Ψ−1 0

0 Ψ−1

)(
Mll Mls

Mls Mss

)(
Ψ−1J−1 0

0 Ψ−1

)
=

(
J−1′Ψ−1MllΨ

−1J−1 J−1′Ψ−1MlsΨ
−1

Ψ−1MlsΨ
−1J−1 Ψ−1MssΨ

−1

)
,

whose inverse is given by(
JΨ 0
0 Ψ

)(
Mll Mls

Mls Mss

)−1(
ΨJ′ 0
0 Ψ

)
.

As a result, the coeffi cients in the least squares projection of the scores of a and j onto the

linear span of the scores of τ and ψ will be given by
(µ⊗ IN )J−1′Ψ−1 0 0

...
...

...
(µ⊗ IN )J−1′Ψ−1 0 0

0 ∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)EN ∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)∆N


×

 Mll Mls 0
Mls Mss 0
0 0 ∆′N (KNN + Υ)∆N

 Ψ−1J−1 0
0 Ψ−1

0 0


×
(

JΨ 0
0 Ψ

)(
Mll Mls

Mls Mss

)−1(
ΨJ′ 0
0 Ψ

)

=


(µ⊗ IN )J−1′Ψ−1 0 0

...
...

...
(µ⊗ IN )J−1′Ψ−1 0 0

0 ∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)EN ∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)∆N


×

 Mll Mls

Mls Mss

0 0

( Mll Mls

Mls Mss

)−1(
ΨJ′ 0
0 Ψ

)

=


(µ⊗ IN )J−1′Ψ−1 0

...
...

(µ⊗ IN )J−1′Ψ−1 0
0 ∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)EN


(

ΨJ′ 0
0 Ψ

)

=


(µ⊗ IN ) 0

...
...

(µ⊗ IN ) 0
0 ∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)ENΨ

 ,
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so that the corresponding projections are
(µ⊗ IN ) 0

...
...

(µ⊗ IN ) 0
0 ∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)ENΨ


(

J−1′Ψ−1 0
0 Ψ−1

)[
elt(φ)

E′Nest(φ)

]

=


(µ⊗ IN )J−1′Ψ−1 0

...
...

(µ⊗ IN )J−1′Ψ−1 0
0 ∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)EN


[

elt(φ)
E′Nest(φ)

]
.

Hence, the projection errors will be

[
sa|τ ,ψt(φ)

sj|τ ,ψt(φ)

]
=


[(yt−1 − µ)⊗ IN ]J−1′Ψ−1elt(φ)

...
[(yt−p − µ)⊗ IN ]J−1′Ψ−1elt(φ)

∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)∆′Nest(φ)

 .

The last projection error is conditionally orthogonal to elt(θ,0) and E′Nest(θ,0) in view

of (D44). The projection error in the first block, though, are not conditionally orthogonal to

elt(θ,0) or E′Nest(θ,0), but they are unconditionally orthogonal because µ = E(yt−j) for all j

under covariance stationarity. As a result, the cross-sectionally independent SP estimators of a

and j will indeed be partially adaptive.

Interestingly, note that sa|τ ,ψt(φ) and sj|τ ,ψt(φ) are conditionally orthogonal, so their un-

conditional covariance matrix will be block diagonal, with blocks

V
[
sa|τ ,ψt(φ)

]
= E



 yt−1 − µ

...
yt−p − µ

⊗ IN

J−1′Ψ−1MllΨ
−1J−1′

[(
yt−1 − µ

... yt−p − µ
)
⊗ IN

]
and

V
[
sj|τ ,ψt(φ)

]
= ∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)∆′N (KNN + Υ)∆N (Ψ⊗Ψ−1)(IN ⊗ J−1)∆N .

As a result, the restricted and unrestricted ML estimators of these parameters will be as-

ymptotically independent. In general, though, the restricted and unrestricted ML estimators of

a will be correlated with the corresponding estimators of τ while the restricted and unrestricted

ML estimators of j will be correlated with the corresponding estimators of ψ.

To prove the second part, let us apply the Jacobian ∂c′/∂ψ = E′N (IN ⊗ J′) to the cross-

sectionally independent SP effi cient score for c that appear in (D45) in Appendix D. Specifically,

if we define Kls and Kss as diagonal matrices of order N with typical elements ϕ(%i) = E(ε∗3it |%i)
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and κii(%i) − 1 = E(ε∗4it |%i) − 1, respectively, it is then easy to see that the cross-sectionally

independent SP effi cient score for ψ will be

E′N (IN ⊗ J′){(IN ⊗C−1′)EN [−2Kls(Kss −K2
ls)
−1elt(θ,0) + 2(Kss −K2

ls)
−1E′Nest(θ,0)]

+(IN ⊗C−1′)∆N∆′Nest(φ)}

= E′N (IN ⊗Ψ−1)EN [−2Kls(Kss −K2
ls)
−1elt(θ,0) + 2(Kss −K2

ls)
−1E′Nest(θ,0)]

+E′N (IN ⊗Ψ−1)∆N∆′Nest(φ)}

= Ψ−1[−2Kls(Kss −K2
ls)
−1elt(θ,0) + 2(Kss −K2

ls)
−1E′Nest(θ,0)]

because E′N (IN ⊗Ψ−1)EN = Ψ−1 and E′N (IN ⊗Ψ−1)∆N = 0 in view of Propositions 2 and 6

of Magnus and Sentana (2020).

Given that the cross-sectionally independent SP effi cient score for τ is

J−1′Ψ−1[Kss(Kss −K2
ls)
−1elt(θ,0)−Kls(Kss −K2

ls)
−1E′Nest(θ,0)],

it is clear that the iterated version of the cross-sectionally independent SP estimators will satisfy

1

T

T∑
t=1

elt(
....
τ ,
....
a ,
....
j ,
....
ψ ; 0) = 0,

1

T

T∑
t=1

E′Nest(
....
τ ,
....
a ,
....
j ,
....
ψ ; 0) = 0.

But this means that

1

T

T∑
t=1

ε∗t (
....
τ ,
....
a ,
....
j ,
....
ψ ) = 0,

1

T

T∑
t=1

vecd[ε∗t (
....
τ ,
....
a ,
....
j ,
....
ψ )ε

∗′
t (
....
τ ,
....
a ,
....
j ,
....
ψ )− IN ] = 0,

where

ε∗t (
....
τ ,
....
a ,
....
j ,
....
ψ ) =

....
Ψ
−1....

J
−1(yt −

....
τ −

....
A 1yt−1 − . . .−

....
A pyt−p),

so they coincide with the second-step estimators of τ and ψ in the FS procedure but with the

first-step estimators of a and j being the (iterated) cross-sectionally independent SP estimators
....
a and

....
j . �

A.6 Proposition 6

The proof of the first part is very similar to the proof Proposition 5, but in this instance the

two groups in which we split the scores correspond to τ , a and j on the one hand, and ψ on the

other.
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The unconditional covariance matrix between these two sets of scores when all the shocks

are symmetrically distributed is

E


 sτ t(φ)

sat(φ)
sjt(φ)

 s′ψt(φ)



= E




J−1′Ψ−1 0 0

(yt−1⊗IN )J−1′Ψ−1 0 0
...

...
...

(yt−p⊗IN )J−1′Ψ−1 0 0
0 ∆′N (IN⊗J−1′)(Ψ⊗Ψ−1)EN ∆′N (IN⊗J−1′)(Ψ⊗Ψ−1)∆N


 Mll 0 0

0 Mss 0
0 0 ∆′N (KNN + Υ)∆N

 0
Ψ−1

0



=


J−1′Ψ−1 0 0

(µ⊗ IN )J−1′Ψ−1 0 0
...

...
...

(µ⊗ IN )J−1′Ψ−1 0 0
0 ∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)EN ∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)∆N


×

 0
MssΨ

−1

0


because Mls = 0. In turn, the covariance matrix of sψt(φ) is simply Ψ−1MssΨ

−1, so the

regression coeffi cients are
J−1′Ψ−1 0 0

(µ⊗ IN )J−1′Ψ−1 0 0
...

...
...

(µ⊗ IN )J−1′Ψ−1 0 0
0 ∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)EN ∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)∆N



×

 0
MssΨ

−1

0

ΨM−1
ss Ψ =


0
0
...
0

∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)ENΨ

 .
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Hence, the projection errors become
J−1′Ψ−1 0 0

(yt−1 ⊗ IN )J−1′Ψ−1 0 0
...

...
...

(yt−p ⊗ IN )J−1′Ψ−1 0 0
0 ∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)EN ∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)∆N


×

 elt(φ)
E′Nest(φ)
∆′Nest(φ)



−


0
0
...
0

∆′N (IN⊗J−1′)(Ψ⊗Ψ−1)ENΨ

Ψ−1E′Nest(φ)=


J−1′Ψ−1elt(φ)

(yt−1⊗ IN )J−1′Ψ−1elt(φ)
...

(yt−p⊗IN )J−1′Ψ−1elt(φ)
∆′N (IN⊗J−1′)(Ψ⊗Ψ−1)∆N∆′Nest(φ)

.

All these scores are conditionally orthogonal to E′Nest(θ,0) when all the shock distributions

are symmetric, which proves that the cross-sectionally independent symmetric SP estimators of

τ , a and j are partially effi cient in that case.

To prove the second part, we apply the Jacobian ∂c′/∂ψ = E′N (IN ⊗ J′) to the cross-

sectionally independent symmetric SP effi cient score for c in (D49), which leads to

E′N (IN ⊗ J′)(IN ⊗ J−1′Ψ−1)EN2K−1
ss E′Nest(θ,0)

+E′N (IN ⊗ J′)(IN ⊗ J−1′Ψ−1)∆N∆′Nest(φ) = Ψ−12K−1
ss E′Nest(θ,0).

As a result, the iterated version of the cross-sectionally independent symmetric SP effi cient

estimators will be such that

1

T

T∑
t=1

vecd[ε∗t (
...
τ ,
...
a ,
...
j ,
...
ψ)ε

∗′
t (
...
τ ,
...
a ,
...
j ,
...
ψ)− IN ] = 0,

so the estimator of ψ coincides with the second-step estimators in the symmetric version of

the FS procedure, but with the first-step estimators of τ , a and j being the (iterated) cross-

sectionally independent symmetric SP estimators
...
τ ,
...
a and

...
j . �
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TABLE 1: Asymptotic variance of estimators. Bivariate Var(1).

DGP: ε1t ∼ Student t5 ε2t ∼ Student t5
K = 2 K = 3 K = 4 K = 5 Student-AFS Student

τ1 1.001 1.001 1.001 1.001 1.001 0.800
τ1 1.040 1.040 1.040 1.040 1.040 0.832
A11 0.632 0.622 0.621 0.621 0.620 0.620
A21 0.656 0.646 0.645 0.645 0.645 0.645
A12 0.613 0.604 0.603 0.602 0.602 0.602
A22 0.637 0.627 0.626 0.626 0.626 0.626
ψ1 2.089 2.093 2.095 2.077 2.093 1.481
ψ2 2.048 2.041 2.039 2.037 2.041 1.572
J21 2.409 2.240 2.221 2.218 2.218 2.218
J12 2.413 2.244 2.224 2.221 2.221 2.221

K = k: PMLE based on finite mixture of k normals; Student-AFS: General FS correction to the Student t MLE;
Student: Student t MLE. Pseudo true values obtained with T = 40, 000, 000.
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TABLE 2: Monte Carlo results. Mean absolute bias of pooled groups of estimators (T = 500).

DGP: ε1t ∼ Student t5 ε2t ∼ Student t5 ε3t ∼ Student t5
S SAFS M SM SMAFS L LAFS IC-S IC-L IC-M

τ 0.0004 0.0003 0.0003 0.0006 0.0003 0.0006 0.0003 0.0003 0.0003 0.0003
Aii 0.0053 0.0053 0.0053 0.0053 0.0053 0.0048 0.0048 0.0066 0.0066 0.0066
Aij,i6=j 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0010 0.0010 0.0010
Cii 0.0048 0.0107 0.0118 0.0112 0.0115 0.0239 0.0108 0.0114 0.0150 0.0125
Cij,i>j 0.0006 0.0018 0.0019 0.0020 0.0020 0.0050 0.0020 0.0019 0.0029 0.0021
Cij,i<j 0.0003 0.0003 0.0003 0.0002 0.0002 0.0006 0.0006 0.0004 0.0004 0.0004
Jij,i>j 0.0003 0.0003 0.0004 0.0004 0.0004 0.0005 0.0005 0.0003 0.0002 0.0003
Jij,i<j 0.0009 0.0009 0.0016 0.0012 0.0012 0.0007 0.0007 0.0010 0.0014 0.0015

DGP: ε1t ∼ Laplace ε2t ∼ Laplace ε3t ∼ Laplace
S SAFS M SM SMAFS L LAFS IC-S IC-L IC-M

τ 0.0003 0.0004 0.0004 0.0003 0.0004 0.0004 0.0004 0.0003 0.0003 0.0003
Aii 0.0044 0.0044 0.0041 0.0041 0.0041 0.0037 0.0037 0.0065 0.0065 0.0065
Aij,i6=j 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0007 0.0007 0.0007
Cii 0.1109 0.0066 0.0061 0.0057 0.0061 0.0075 0.0052 0.0077 0.0073 0.0076
Cij,i>j 0.0229 0.0009 0.0011 0.0010 0.0011 0.0013 0.0008 0.0010 0.0010 0.0014
Cij,i<j 0.0007 0.0006 0.0003 0.0004 0.0004 0.0004 0.0003 0.0006 0.0009 0.0003
Jij,i>j 0.0009 0.0009 0.0004 0.0005 0.0005 0.0007 0.0007 0.0010 0.0011 0.0006
Jij,i<j 0.0014 0.0014 0.0008 0.0010 0.0010 0.0009 0.0009 0.0014 0.0016 0.0010

DGP: ε1t ∼ dlsmn(0.8, 0.06, 0.52) ε2t ∼ dlsmn(1.2, 0.08, 0.4) ε3t ∼ dlsmn(−1, 0.2, 0.2)
S SAFS M SM SMAFS L LAFS IC-S IC-L IC-M

τ 0.1792 0.0003 0.0003 0.2607 0.0003 0.1970 0.0003 0.0003 0.0003 0.0003
Aii 0.0040 0.0040 0.0028 0.0032 0.0032 0.0037 0.0037 0.0066 0.0066 0.0066
Aij,i6=j 0.0002 0.0002 0.0001 0.0003 0.0003 0.0005 0.0005 0.0005 0.0005 0.0005
Cii 3.2478 0.0059 0.0043 0.0367 0.0048 0.0104 0.0058 0.0100 0.0248 0.0064
Cij,i>j 0.8004 0.0011 0.0011 0.0100 0.0008 0.0013 0.0013 0.0018 0.0123 0.0011
Cij,i<j 0.0060 0.0016 0.0005 0.0013 0.0012 0.0016 0.0015 0.0016 0.0147 0.0006
Jij,i>j 0.0002 0.0002 0.0005 0.0004 0.0004 0.0003 0.0003 0.0012 0.0147 0.0001
Jij,i<j 0.0014 0.0014 0.0005 0.0010 0.0010 0.0016 0.0016 0.0016 0.0139 0.0005

DGP: ε1t ∼ Asy. Student t12,1 ε2t ∼ Asy. Student t14,5 ε3t ∼ Asy. Student t16,100

S SAFS M SM SMAFS L LAFS IC-S IC-L IC-M
τ 0.1220 0.0008 0.0008 0.1091 0.0008 0.1634 0.0010 0.0008 0.0008 0.0008
Aii 0.0057 0.0057 0.0050 0.0057 0.0057 0.0057 0.0057 0.0073 0.0073 0.0073
Aij,i6=j 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0007 0.0006 0.0006 0.0006
Cii 0.0123 0.0103 0.0074 0.0055 0.0097 0.0290 0.0131 0.0129 0.0393 0.0085
Cij,i>j 0.0009 0.0010 0.0009 0.0009 0.0015 0.0119 0.0013 0.0018 0.0079 0.0015
Cij,i<j 0.0003 0.0003 0.0005 0.0008 0.0008 0.0011 0.0012 0.0007 0.0014 0.0004
Jij,i>j 0.0010 0.0010 0.0006 0.0008 0.0008 0.0027 0.0027 0.0007 0.0022 0.0002
Jij,i<j 0.0016 0.0016 0.0003 0.0015 0.0015 0.0026 0.0026 0.0028 0.0094 0.0005

Sample length=500, Replications=5,000. S: Student-t MLE, M: DLSMN MLE, SM: DSMN MLE, L: Laplace
MLE, IC: GMR two step estimator, AFS: general FS correction.
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TABLE 3: Monte Carlo results. (RMSE) of pooled groups of estimators (T = 500).

DGP: ε1t ∼ Student t5 ε2t ∼ Student t5 ε3t ∼ Student t5
S SAFS M SM SMAFS L LAFS IC-S IC-L IC-M

τ 0.0433 0.0479 0.0480 0.0438 0.0480 0.0488 0.0480 0.0484 0.0484 0.0484
Aii 0.0372 0.0372 0.0379 0.0377 0.0377 0.0420 0.0420 0.0413 0.0413 0.0413
Aij,i6=j 0.0370 0.0370 0.0376 0.0375 0.0375 0.0420 0.0420 0.0410 0.0410 0.0410
Cii 0.0607 0.0617 0.0627 0.0623 0.0625 0.0528 0.0620 0.0618 0.0646 0.0629
Cij,i>j 0.0760 0.0756 0.0820 0.0808 0.0808 0.0878 0.0847 0.0764 0.0973 0.0829
Cij,i<j 0.0741 0.0736 0.0804 0.0790 0.0790 0.0868 0.0834 0.0744 0.0953 0.0811
Jij,i>j 0.0772 0.0772 0.0841 0.0828 0.0828 0.0863 0.0863 0.0782 0.1008 0.0853
Jij,i<j 0.0763 0.0763 0.0845 0.0825 0.0825 0.0860 0.0860 0.0774 0.0991 0.0857

DGP: ε1t ∼ Laplace ε2t ∼ Laplace ε3t ∼ Laplace
S SAFS M SM SMAFS L LAFS IC-S IC-L IC-M

τ 0.0384 0.0471 0.0470 0.0385 0.0470 0.0363 0.0468 0.0481 0.0481 0.0481
Aii 0.0328 0.0328 0.0332 0.0331 0.0331 0.0317 0.0317 0.0405 0.0405 0.0405
Aij,i6=j 0.0330 0.0330 0.0334 0.0333 0.0333 0.0320 0.0320 0.0406 0.0406 0.0406
Cii 0.2278 0.0519 0.0517 0.0517 0.0517 0.0460 0.0512 0.0520 0.0516 0.0519
Cij,i>j 0.0776 0.0510 0.0516 0.0513 0.0513 0.0450 0.0453 0.0533 0.0497 0.0535
Cij,i<j 0.0555 0.0497 0.0500 0.0498 0.0498 0.0439 0.0439 0.0521 0.0482 0.0518
Jij,i>j 0.0505 0.0505 0.0511 0.0508 0.0508 0.0447 0.0447 0.0530 0.0493 0.0531
Jij,i<j 0.0509 0.0509 0.0510 0.0507 0.0507 0.0448 0.0448 0.0533 0.0492 0.0530

DGP: ε1t ∼ dlsmn(0.8, 0.06, 0.52) ε2t ∼ dlsmn(1.2, 0.08, 0.4) ε3t ∼ dlsmn(−1, 0.2, 0.2)

S SAFS M SM SMAFS L LAFS IC-S IC-L IC-M
τ 0.2317 0.0474 0.0469 0.3131 0.0470 0.2468 0.0475 0.0486 0.0486 0.0486
Aii 0.0311 0.0311 0.0264 0.0281 0.0281 0.0336 0.0336 0.0405 0.0405 0.0405
Aij,i6=j 0.0310 0.0310 0.0264 0.0280 0.0280 0.0336 0.0336 0.0405 0.0405 0.0405
Cii 5.6613 0.0456 0.0452 0.0682 0.0453 0.0492 0.0457 0.0479 0.0617 0.0453
Cij,i>j 1.2843 0.0465 0.0388 0.0452 0.0415 0.0550 0.0547 0.0704 0.1362 0.0430
Cij,i<j 0.2174 0.0414 0.0273 0.0319 0.0312 0.0445 0.0439 0.0712 0.1368 0.0297
Jij,i>j 0.0462 0.0462 0.0381 0.0409 0.0409 0.0546 0.0546 0.0711 0.1441 0.0426
Jij,i<j 0.0393 0.0393 0.0267 0.0302 0.0302 0.0421 0.0421 0.0744 0.1611 0.0309

DGP: ε1t ∼ Asy. Student t12,1 ε2t ∼ Asy. Student t14,5 ε3t ∼ Asy. Student t16,100

S SAFS M SM SMAFS L LAFS IC-S IC-L IC-M
τ 0.1466 0.0481 0.0478 0.1332 0.0481 0.1864 0.0484 0.0486 0.0486 0.0486
Aii 0.0371 0.0371 0.0347 0.0367 0.0367 0.0438 0.0438 0.0411 0.0411 0.0411
Aij,i6=j 0.0370 0.0370 0.0345 0.0365 0.0365 0.0440 0.0440 0.0410 0.0410 0.0410
Cii 0.0743 0.0645 0.0622 0.0653 0.0640 0.0622 0.0672 0.0658 0.0962 0.0621
Cij,i>j 0.0729 0.0728 0.0526 0.0692 0.0690 0.1034 0.0967 0.0848 0.1811 0.0530
Cij,i<j 0.0783 0.0771 0.0594 0.0749 0.0743 0.1043 0.1022 0.0875 0.1795 0.0599
Jij,i>j 0.0741 0.0741 0.0521 0.0697 0.0697 0.0996 0.0996 0.0874 0.2078 0.0526
Jij,i<j 0.0846 0.0846 0.0642 0.0825 0.0825 0.1103 0.1103 0.0961 0.2106 0.0647

Sample length=500, Replications=5,000. S: Student-t MLE, M: DLSMN MLE, SM: DSMN MLE, L: Laplace
MLE, IC: GMR two step estimator, AFS: general FS correction.
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TABLE 4: Coverage of Impulse Response Functions. Nominal 90%. T = 500.

Mixture Student-AFS Student
Lag (1,1) (2,1) (1,2) (2,2) (1,1) (2,1) (1,2) (2,2) (1,1) (2,1) (1,2) (2,2)

DGP: ε1t ∼ Student t5 ε2t ∼ Student t5
0 84.5 84.7 84.9 85.3 84.7 87.7 88.6 85.5 88.8 87.0 87.8 89.2
1 87.3 87.1 87.2 87.4 88.0 89.0 89.0 88.6 89.5 88.6 88.9 89.8
2 87.0 87.8 87.5 87.2 88.0 89.2 88.8 88.7 88.9 89.2 89.1 89.1
3 86.5 87.8 87.1 87.1 87.5 88.6 88.2 88.4 88.0 88.6 88.7 88.9
4 86.5 87.5 86.7 86.8 87.5 88.2 88.0 88.1 87.7 88.3 88.2 88.3
5 86.2 87.0 86.4 86.7 87.4 88.0 87.6 87.6 87.6 88.1 88.0 87.8
6 86.0 86.7 86.2 86.6 87.0 87.4 87.4 87.1 87.3 87.7 87.8 87.5

DGP: ε1t ∼ Laplace ε2t ∼ Laplace
0 88.4 85.0 85.5 88.3 88.4 88.5 88.9 88.4 98.2 84.0 86.6 98.0
1 87.0 87.0 87.5 87.4 88.3 89.6 89.3 88.8 96.1 90.5 91.9 95.8
2 86.6 87.7 87.5 87.3 88.6 89.3 89.2 88.8 94.2 92.4 92.5 94.0
3 86.9 87.6 87.0 86.8 88.4 89.3 88.7 88.1 93.2 92.6 92.7 93.5
4 86.6 87.2 86.9 86.4 88.1 88.8 88.0 87.9 92.9 92.5 92.5 93.0
5 86.5 86.6 86.6 86.1 87.6 88.0 87.7 87.6 92.5 92.5 92.3 92.5
6 86.2 86.3 86.3 86.0 87.4 87.6 87.3 87.2 92.0 92.1 92.0 92.3

DGP: ε1t ∼ dlsmn(0.8, 0.06, 0.52) ε2t ∼ dlsmn(1.2, 0.08, 0.4)

0 89.2 88.2 88.8 89.7 89.1 88.7 89.0 89.8 98.1 96.0 92.3 99.2
1 88.4 88.3 89.0 88.5 88.4 89.0 89.3 88.9 97.1 98.9 95.8 99.2
2 87.8 88.5 88.7 88.7 88.2 88.9 88.7 88.9 96.6 99.1 96.6 99.1
3 88.0 88.3 88.7 88.1 87.9 88.6 88.4 88.9 96.6 99.2 96.8 99.2
4 87.8 87.8 88.2 87.9 87.8 88.5 88.4 88.7 96.8 99.4 96.9 99.3
5 87.9 87.8 88.1 87.8 87.9 88.2 88.1 88.4 96.7 99.4 96.9 99.4
6 87.9 87.6 88.1 87.6 87.5 87.9 87.9 88.0 96.8 99.4 97.0 99.4

DGP: ε1t ∼ Asy. Student t12,1 ε2t ∼ Asy. Student t14,5

0 86.7 86.3 86.6 85.6 86.5 88.5 88.4 86.5 86.9 87.2 87.1 88.5
1 87.5 87.6 87.9 87.9 88.5 89.0 89.3 89.0 88.3 88.5 88.2 89.4
2 87.4 87.8 88.3 87.7 88.2 88.8 88.8 88.5 88.0 88.6 88.2 88.5
3 87.0 87.3 87.9 87.3 87.8 88.4 88.3 88.5 87.5 88.3 88.0 88.3
4 86.6 87.1 87.6 87.1 87.3 87.8 87.9 88.0 87.1 87.6 87.6 87.8
5 86.2 86.6 87.2 86.8 86.7 87.3 87.3 87.5 86.4 87.2 87.0 87.4
6 85.8 86.3 86.6 86.4 86.5 86.8 86.9 87.1 86.3 86.9 86.7 87.0

Sample length=500, Replications=10,000. Bivariate VAR(1). Mixture: DLSMN MLE; Student-AFS: general FS
correction applied to the Student t; Student: Student t MLE.
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TABLE 6: Monte Carlo results. (RMSE) of pooled groups of estimators.

DGP: ε1t ∼ Asy. Student t12,1 ε2t ∼ Asy. Student t14,5 ε3t ∼ Asy. Student t16,100

K = 2 K = 3 K = 2 K = 3 K = 2 K = 3
T = 500 T = 2000 T = 20000

τ 0.0478 0.0482 0.0230 0.0231 0.0072 0.0072
Aii 0.0347 0.0355 0.0168 0.0163 0.0053 0.0051
Aij,i6=j 0.0345 0.0350 0.0169 0.0164 0.0053 0.0051
Cii 0.0623 0.0671 0.0318 0.0329 0.0099 0.0099
Cij,i>j 0.0528 0.0516 0.0252 0.0227 0.0079 0.0071
Cij,i<j 0.0598 0.0614 0.0288 0.0271 0.0089 0.0083
Jij,i>j 0.0523 0.0507 0.0246 0.0219 0.0077 0.0068
Jij,i<j 0.0645 0.0677 0.0303 0.0285 0.0093 0.0087

Replications=5,000. K=2: PMLE estimator based on finite mixture of two normals, K=3: PMLE estimator based
on finite mixture of three normals.
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