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B PML estimators with cross-sectionally independent shocks

In this appendix, we derive analytical expressions for the conditional variance of the score
and the expected value of the Hessian of SVAR models with cross-sectionally independent non-
Gaussian shocks when the distributions assumed for estimation purposes may well be misspeci-

fied. In addition, we consider some useful reparametrisations.

B.1 Log-likelihood, its score and Hessian

Given the linear mapping between structural shocks and reduced form innovations, the con-

tribution to the conditional log-likelihood function from observation ¢ (¢t = 1,...,7T) will be
given by

k(i) = —In|C| + U[e1,(0); 1] + - .. + [en:(0); on], (B1)
where () = C Lyt — 7 — A1yi—1 — ... — Apyi—p) and (e} 0;) = In f(e}; 0;) is the log of

the univariate density function of ¢}, which we assume twice continuously differentiable with
respect to both its arguments, although this is stronger than necessary, as the Laplace example
illustrates.

Let s¢(¢) denote the score function 0l;(¢)/0¢, and partition it into two blocks, sg;(¢) and
sot(¢), whose dimensions conform to those of 8 and g, respectively. Given that the mean vector

and covariance matrix of (1) conditional on I;_; are

pi(0) = T+Aryi1+ . Ay, (B2a)
3.(0) = CC, (B2b)

respectively, we can use the expressions in Supplemental Appendix D.1 of Fiorentini and Sentana
(2021b) with X./%(8) = C to show that
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which confirms that the conditional mean and variance parameters are variation free. In addition,
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by virtue of the cross-sectional independence of the shocks, so that the derivatives involved
correspond to the assumed univariate densities.
These expressions simplify when the assumed distribution of the shocks is symmetric. Some
popular examples are Student ¢, DSMN and Laplace. In all three cases, we can write the scores

as
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where 0[e}2(0); 0,], a scalar function of the square of £},(0), is defined in (A3).



Specifically, the log-density of a univariate Student ¢ random variable with 0 mean, unit

variance and degrees of freedom v; = n;l is given by
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with
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which converges to 1 as the Student ¢ approaches the normal distribution.
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In contrast, it becomes
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for a two-component DSMN, with
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Finally, it will be
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under the Laplace assumption, which introduces no additional shape parameter, so that
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Let h;(¢) denote the Hessian function ds,(¢)/0¢" = 9%1;(¢)/0pd¢’. Supplemental Appen-
dix D.1 of Fiorentini and Sentana (2021b) implies that
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where Z;;(0) and Z(0) are given in (B5) and (B6), respectively. Therefore, we need to obtain
Ovec(C~Y) /00" and dvec(Iy @ C~1)/06'.



Let us start with the former. Given that
dvec(C™Y) = —vec[CTVd(CCTV] = —(C! @ CV)dvec(C') = —(C™' @ CV)K yndvec(C),

where Ky is the commutation matrix (see Magnus and Neudecker (2019)), we immediately
get that
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Similarly, given that
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we will have that
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In addition,
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and
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As for the shape parameters of the independent margins,
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Finally, regarding the Jacobian term —In|C|, we have that differentiating (B3) once more



yields
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In the case of a restricted PMLE in which the elements of g are fixed to some arbitrary
parameter values p, we would simply eliminate all the row and column blocks corresponding to

o from the expressions above.

B.2 The pseudo true values

In what follows, we maintain the assumptions that (i) p,(0) and %;(0) in (B2) are correctly
specified and (ii) the true shocks e} are serially and cross-sectionally independent. Nevertheless,
we continue to allow for misspecification of the marginal densities.

As usual, the pseudo true values of the parameters of a globally identified model, ¢,
are the unique values that maximise the expected value of the log-likelihood function over the
admissible parameter space, which is a compact subset of RY™(®)  where the expectation is
taken with respect to the true distribution of the shocks. Under standard regularity conditions
(see e.g. White (1982)), those pseudo true values will coincide with the values of the parameters
that set to 0 the expected value of the pseudo-log likelihood score.

More formally, if we define o as the true values of the shape parameters, and ¢, = (69, o)),

we would normally expect that
Elst(¢o0)lpo] = 0.

We have shown in Proposition 1 that the parameters a; = vec(A;) (j = 1,...,p) and
Jj = veco(J) are consistently estimated regardless of the true distribution. As a result, ajo = ajo
and joo = jo. In contrast, 7 and 1) = vecd(¥) may be inconsistently estimated, so that 7., # T

and ¥, # 1Y in general. It is then easy to see that
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Therefore, both € (0~ ) and e:(¢,,) will be serially independent and not just martingale



difference sequences. Moreover, given that
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has full column rank,
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Furthermore, the diagonality of ¥ means that the pseudo-shocks €;(0~) will also inherit

the cross-sectional independence of the true shocks €;. Nevertheless, in general
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where the diagonality of V[e} (0 )|¢o] confirms the cross-sectional independent nature of the

shocks. Under standard regularity conditions
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where 6 are the PMLEs of the conditional mean and variance parameters.

We have also shown in Proposition 1 that a and j will remain consistently estimated by the
restricted PMLEs that fix the shape parameters of the assumed distributions to @. To avoid
confusion, we will denote by 7+ (@) and ¥ (@) the pseudo true values of 7 and ¥ in that case.

Proposition 3 shows that the unrestricted PMLEs of 7 and 1) which simultaneously estimate
o will be consistent too when the univariate distributions used for estimation purposes are
discrete mixtures of normals, in which case 8 = 6y and € (0~) = €f. Since the probability
limits of the estimators of the shape parameters will also be affected, in what follows we will
denote them by ., to emphasise the distinction, so that ¢, = (8}, 8.,)". We could have called
them g,,(0p) to stress the fact that they would coincide with the plims of the PMLEs that
estimate from (B1) the shape parameters only after fixing the mean and variance parameters to
their true values, but the subsequent expressions would become too cumbersome.

Next, we will first obtain expressions for the conditional variance of the score and expected



value of the Hessian for any assumed univariate distributions, but then we will simplify them to
those cases, like finite normal mixtures, in which O, = 6g. In this respect, Proposition F1 in
Appendix F.1 implies that (B23) and (B24) are numerically identical to 0 and 1, respectively,

in the finite normal mixture case.

B.3 The conditional variance of the score

B.3.1 General expression

The serial independence of e;(¢,,) combined with (B7) immediately implies that
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Expressions (B8) and (B19), together with the fact that the pseudo shocks (B17) are cross-
sectionally independent, imply that Oy(¢.;¢o) will be a diagonal matrix of order N with

typical non-zero element
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As usual, under standard regularity conditions we can consistently estimate Ofl(qboo;cpo) by

replacing €,(0) with 5:15(@) and the population variance by its sample counterpart.

For the same reasons,



where O} (¢.o; po) is a diagonal matrix of order N whose non-zero elements are
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As for Oss(oo; @p), the same argument implies that it will be given by the sum of the

commutation matrix Kyy and
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It is worth noting that the off-diagonal elements of Ky reflect the fact that
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when ¢ = k and j = [ despite the fact that i # j.

In turn, O (d; pp) is an N x g block diagonal matrix with typical diagonal block of size
1 x g
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where O (¢o;¥g) is another block diagonal matrix of order N x g whose non-zero blocks of



size 1 x g; will be
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Finally, O, (¢; o) is a ¢ x ¢ block diagonal matrix with typical diagonal block of size
qi X qi

; 81 7 : 900; 100
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Let us now combine these expressions with the special structure of Z;; and Zg; to obtain the
conditional covariance matrix of the score for model (1) in more detail.

If we expand (B25), we end up with
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Thus, diagonal block of the covariance matrix of the score corresponding to 8 will be
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As a result, the block of the unconditional covariance matrix of the score corresponding to

the conditional mean parameters T and a will be
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where T'(5) is the j** autocovariance matrix of y;.

In turn, the off-diagonal 8o block of the conditional covariance matrix of the score will be
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Unfortunately, there seems to be no obvious simplification to the matrices

C VO £0)C 1,

C ™V O1s(¢oo; o) AN ® C 1),

(Iy ® C)Oss(Pooi o) (Iv ® C71),
C O (¢ooi p), and
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unless C is diagonal (see, e.g., the discussion in the proof of Proposition 14 in Fiorentini and
Sentana (2021b)). In principle, we could effectively make C equal to the identity matrix by
premultiplying y; in (1) by C~!, which would preserve the vector autoregressive structure with
the similar autoregressive matrices C_lAjC for j =1,...,p. Moreover, we could also effectively
set the drifts to 0 by subtracting the unconditional mean g from the observations. However, we

shall not pursue any of these avenues.

B.3.2 Special case: 0 consistently estimated

Many of the elements of O(¢.;¥) simplify considerably when 7 and 1 are consistently
estimated, in which case Vi — vio = 0 and ©;5/1;o, = 1 for all 7. Specifically, Amengual et al
(2021b) show that Ojs(Peo; o) =0is(Poo; o) Ely, where Ojs(doo; o) is a diagonal matrix of
order N with typical element
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Finally, they prove that O (¢..;@0) = EnOgs(@us; @), where Oy (¢o; @p) is another
block diagonal matrix of order N x ¢ with typical block of size 1 x ¢;
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B.4 The conditional expected value of the Hessian

B.4.1 General expression

Given that Zg(0~) € I;—1, the first thing to note is that (B19) sets to 0 the conditional

expectation of the last two terms of (B11). Moreover, the serial independence of e;(¢,,) in
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(B17), together with (B12) and (B13) implies that
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whose expected value is clearly 0 in view of (B19). In turn, if we now focus on ey (¢, ), (B19)

also implies that the expected value of
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with
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His(Poos o) = E{ nfaiias*,) ; 0o [E* (O )®IN]' 20 }

2 *
Hoslfocin) = =F { )@ Ly) : f{gtg(*agzl Occ] [6 *(Os0) ® IN]‘ } +Knyn
0?1

Hir(Bosi o) = E{ nfa?*ag )i Oso) ‘ %}7

0) @ IN]

o) = P00 )

Oe*0o’
0?1
Hrr(gboo;so()) - _E{ nf[gz)(ag ) QOO] 900}

Expression (B14) implies that Hy(¢.; ) will be a diagonal matrix of order N with typical

non-zero element.

7 82 lnfz 5: 000 5 Qico
Hll(QiooaSOO) = _E{ [(atg(*)g ) ] ’900} .

Once again, under standard regularity conditions we can consistently estimate Hfl(qboo; ©o)
by replacing €% (84) with £%(8) and the expected value by its sample counterpart.

For the same reason,

His(booi P0) = [ His(Dooi o) - Hi(@ooi®o) - H(Dooi®o) 1,

where Hi (¢oo; o) is a diagonal matrix of order N whose non-zero elements are

Hu(¢oo><Po)E[ +(00)|po] (7 # 1) and

2 1 Jil€+\Voo )5 Ojoo * . .
Hls(onoaQ"O) —L i f[(ég(;k)2) £ ] 'Eit(OOO)'QOO:| (] :Z)'

As for the first summand of Hss(¢oo; ¥g), the cross-sectional independence implies that it

will be given by

[ T1(Pei0) - Tii(Pi®o) - Tin(Poo; o)
Fil(ﬁbc;ossoo) Fii(d)c;o;(PO) FiN(¢.oo;SOO> ;
i I‘Nl((f;oo;soo) FNi(¢.oo;<Po) FNN(d;ooHPo) i

where I';; (¢oo; o) = T'ji(boo; o) (§ # 1) is a diagonal matrix of size N whose non-zero elements
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are

18 (Boo: 00) Ele5(000) | 00) Ele% (0s) 0] (k # i, ),
H;S(Qioov (pO)E[g;(t(eoo)hoo] (k? = ’L) and
17 (@500s P0) Elels (000 p0) (k = 3),

while I';i(¢oo; o) is another diagonal matrix of the same size whose non-zero elements are

1], (Booi P0) Ble} (00) 0] (j # i) and

i (9uciipo) = £ { SR el o) g} (=),
In turn, H;(¢oo; po) is an N x ¢ block diagonal matrix with typical diagonal block of size
1 % gi
: 0% In fi[ef,(00); @io]
7 ) —F L=\ 00 /)y &0
le(onm‘PO) I: 85:892 $ol s
while

where H., (¢o; @) is another block diagonal matrix of order N x ¢ whose non-zero blocks of

size 1 x q; will be

1 (0i00s P0) Bl (000) 0], i # j and

) 82 lnfik: (000);91'00] * . .
Hsr(Qiow‘PO):E{ 88}89; Ei(OOO)"pO}a 27&]'

Finally, H,r(oo; o) is a ¢ X ¢ block diagonal matrix with typical block of size ¢; X ¢;

i 0% 1n fi[e};(Boc); Qioo)
HTT(QiomQOO) =-F |: agiag; Q00:| :

As a result, if we expand (B29), we end up with

Z11(0)Hii(Poo; P0) 21 (0) + Zist(0)H) (Poo; P0) Zi1,(0) Z1;(0)Hir (oo o)
+Zit(0)His (Dooi P0) Zit (0) + Zist(0) Hss(Poo; P0) Lt (0)  +Zst(0)Hsr (DPooi o) |
;r(gboo; ‘PO)ZEt(e) + ng(¢oov LPO)Zfst(e) OT"'(¢OO; QOO)

which in turn adopt expressions entirely analogous to the ones we have obtained before for the

conditional covariance matrix of the score in Appendix B.3.

B.4.2 Special case: 0 consistently estimated

Again, many of the elements of H(¢..; o) will also simplify considerably if 7 and
are consistently estimated. Specifically, Amengual et al (2021b) show that H;s(¢e; @) =
His(@oo; Po)Elys where His(doo; o) is a diagonal matrix of order N with typical element

- P 24 (00): 2]
i) =~ | LR 0y .
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Similarly, they show that T' will be a block diagonal matrix of order N? in which each of the

diagonal blocks I';i(¢oo; ) is a diagonal matrix of order N whose non-zero elements are

. 2 nf:le* .5
1 i o) =~ { T LS Bel  k 24y ana

b (T 2 nJi >S<t ;_ioo * . .
(Do) = - { S el g | (G =)

Finally, they prove that He(o;®o) = EnHer(do; @o), Where Hy, (80, 845 o) another
block diagonal matrix of order N x ¢ with typical block of size 1 X ¢;

i 821 7 (0 ;_ioo *
Hsr(gboo;SOO):E{ nf[gi?ég(z) o ]52(90)‘900}

B.5 Asymptotic distribution
B.5.1 Robust standard errors for the PMLESs

For simplicity, we assume henceforth that there are no unit roots in the autoregressive
polynomial, so that the SVAR model (1) generates a covariance stationary process in which
rank(In — Ay — ... — Ap) = N. If the autoregressive polynomial (Iy — AL — ... — A,LP)
had some unit roots, then y; would be a (co-) integrated process, and the estimators of the
conditional mean parameters would have non-standard asymptotic distributions, as some (linear
combinations) of them would converge at the faster rate 7. In contrast, the distribution of the
ML estimators of the conditional variance parameters would remain standard (see, e.g., Phillips
and Durlauf (1986)).

We also assume that the regularity conditions A1-A6 in White (1982) are satisfied. These
conditions are only slightly stronger than those in Crowder (1976), which guarantee that MLEs
will be consistent and asymptotically normally distributed under correct specification. In par-
ticular, Crowder (1976) requires: (i) ¢, is locally identified and belongs to the interior of the
admissible parameter space, which is a compact subset of RI™(®). (ii) the Hessian matrix is
non-singular and continuous throughout some neighbourhood of ¢y; (iii) there is uniform con-
vergence to the integrals involved in the computation of the mean vector and covariance matrix
of s¢(¢); and (iv) —E~1 [-T713, hy(9)] T 3, hi(p) = Lig, where E-1 [-T1 3, hy(9)]
is positive definite on a neighbourhood of ¢y.

We can use the law of iterated expectations to compute

‘A(¢007 900) = E[_h¢¢t(¢oo)|007 900] =F [‘At(d)ooa 900)]

and
V[S¢t(¢oo)|¢0] = B(¢oov ‘PO) =F [Bt(¢00’ (P)] .

In this context, the asymptotic distribution of the PMLESs of ¢ under the regularity conditions
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A1-A6 in White (1982) will be given by

\/T((,i) - d)oo) - N[Ov Ail((nbooa ‘PO)B(¢OO’ ‘100)"’471((;[)007 ‘PO)]

As we explained before, analogous expressions apply mutatis mutandi to a restricted PML
estimator of @ that fixes o some a priori chosen value to p. In that case, we would simply
need to replace 0 by O.(2) and eliminate the rows and columns corresponding to the shape

parameters g from the A and B matrices.

B.5.2 The information matrix under correct distributional specification

If the distribution of the shocks were correctly specified, then p,, = @ and the information
matrix equality holds, so that H(pg; pg) = O(®o; po) = M(0y) and Ai(dg, po) = Bi(dg, po) =
Z:(¢pg) (see Proposition D.2 in Fiorentini and Sentana (2021b)).

In this context, we can see more clearly the structure of M(g) by appropriately re-arranging

the elements of eg(¢). Expression (A5) allows us to conveniently re-write

ext(d)=( Ex An) [ i%\fv(:i(((g)) ] 7

where

ol 0 14+ 8lﬂf1%zt{(9)991}89{t(0)
+ nf[et( )7Q]€*l(9)}__ .

Elveq(¢) = —vecd {IN ppe :

14 alan[gZ\%(e)?QN]E}«Vt(e)

and

Oln *.(0); %
fl[gégf( )91]5“(0)

Oln A é; *
ol o fN[gé\%\t]( )QN}EU(G)
Ayeu(8) = —veco {1y + PLELONL g} .

Oln *(0); %
IAELOsel .y ()

o fuleiy @enl + ()

=
\ deyy y,

This vector is such that

(Ex Ay ) [ Elves(¢) } — —vec [dg{IN + ‘WWE;'(G)H

vee | {1 + PRLETER epo | - ag {ay 1 LSOk ).

where dg is the operator which transforms a square matrix into a diagonal one by setting its

off-diagonal elements to zero.
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Then, we can use Propositions 6 and 7 in Magnus and Sentana (2020) to prove that

v[ R = (R ) Viewn (By av)=( B¢ )ocwy 1) (B av)

_ E’N(KNN—FT)EN E/]V(KNN—‘v-T)AN _ Mg, 0
AG(Kyy + T)Ey ANVKyn +Y)AN 0 AGKyy+TY)Ay |’

where My, = (Iy + E)yYEy) is a diagonal matrix of order N with typical element Mg4(g;).

Hence,
B ’;("b()d,) P cu(do) ] (Iv 0 0 0
1% N&st = N V| est(dp) 0 Ex Ay O
Anes(®) 0 Ay 0 ere(do) 0 0 0 I
eri(P) 0 0 I, Yo 7
[ My My, 0 My
Mls Mss 0 MST‘
— . B30
0 0 AyKyy+Y)Ay 0 (B30)
. ;7‘ M{S’/’ 0 M’f"f

Therefore, A'yeq(¢) is orthogonal to all the other elements of the score.
Importantly, when any of the N distributions is symmetric, it is easy to see that bot M (g;)

and My, (g;) will be equal to 0, so (B30) simplifies even further.

B.6 Reparametrisations

A convenient property of the expressions for s;(¢.,), Ai(Ps, ¥o) and Bi(d.., @) above is
that reparametrisations only have an effect on the Z;; and Zg matrices, which only involve first

derivatives of the conditional mean vector and covariance matrix functions.

B.6.1 Unconditional mean

The first reparametrisation that we will consider involves rewriting the drift 7 as (Iy — A —
...—A,)p, which we can always do under our maintained assumption of covariance stationarity.

The Jacobian from one vector of parameters to the other is

P T IN—Al—...—Ap —[,L/(X)IN —p/@IN
a) 0 | P 0
o(w',a’) : s - :
0 0 Iy

Consequently, Z;(0) for (', a’, c’) becomes
i (IN—Al—...—Ap)C_I, i
(Yio1—p)@C™Y

(Yep —p) @ C7V
On2xy
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Given that E(y;) = p Vt, and that the rest of the elements of Zj; and Zs are constant
over time, it is clear from (B26) and (B28) that both A(¢.., @) and B(¢p.., pg) will become
block-diagonal between the elements of a and the rest. In addition, it is also easy to see from

the same expressions that

Aup = (In—A1— ... — A)C "Hy(doo; p0)C HIn — A1 — ... — A},
ro ... T(p—1)
Aaa = : : ® CTVHy(¢oo; o) C 7,
'(p—1) ... T(0)

where T'(j) is the j*" autocovariance matrix of y;, with analogous expressions for By and Baa.

Consequently, the asymptotic variances of the restricted and unrestricted ML estimators of a
will be given by

I'(0) ... T(p—-1)

: : ® CHy M (boo; £0)Ot(Dooi P0) Hyy (Pooi 0)C.

'p-—1) ... I'(0)

But since the PML estimators of a are the same regardless of whether we estimate the model

in terms of 7 or u, the asymptotic variance of a above is valid under covariance stationarity.

B.6.2 Standard deviations of shocks

Another reparametrisation that is very relevant in this paper is the one that expresses

C = JW¥. In this case, the parameters of interest become
j = veco(J — IN) = (021/011, ...,CNl/CH, n-,clN/CNNa ceey CN—lN/CNN)la

¢ = UGCd(‘I’) = (611, ...,CNN),.
The product rule for differentials dC = (dJ)¥ + J(d¥) immediately implies that
dvec(C) = (¥ @ In)Andveco(J) + (Ixy @ J)Endveco(P).

Therefore, the Jacobian will be

Ovec(C)

o, )
where we have used that YAy = An(AyTAy) for any diagonal matrix Y and A\ (¥ ®
In)Any = (¥ ®In_1) (see Proposition 6 in Magnus and Sentana (2020)).

= (TeIn)Ay (IN@JEy |=[ An(T@Iyv-1) (INn®@J)Ey ],  (B31)
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As a result, the chain rule for derivatives leads to

0 = (s ) seto)

— _ |: (‘I’ ®IN71)A/N :| (IN ®J—1l)(IN ® \I’_l)’UCC{IN + 81nf[€2‘(9), Q] EI/(G)}

E\(Iy®J) i
_ [ (¥ IN_l)Aﬁvgj_Vliiu)(IN & U 1) } vec {IN N MJC[;;@ME:,(Q)}
— [ AvB eI ¥ | fr, | OO g

—veco Jfllq,flalnfg?*(e)ig}E;kl(g)‘];,+J71/}

o (B32)
—Ulyecd {781 f[;;*(e)’g] e’'(0) + IN}

where we have used the fact that A’yvec(A) = veco(A) and Elyvec(A) = vecd(A) for any
square matrix A of order N.

In particular,

1 {8111,}0[22;50);91‘}6;(9)_’_1} (i:l,...,N). (B33)

)

Once again, we can use (B31) to transform A(¢, o) and B¢, ¢y) appropriately.

B.6.3 Unconditional means of the shocks

A third possible parametrisation associated to the previous one would replace T by wv,
where 7 = Juv. This is slightly more involved than before because it combines mean and
variance parameters. The steps, though, are otherwise standard. In particular, given that

dT = (dJ)v + Jdv, we will have that after vectorising
dr = (v @ In)Andveco(J) + Jdv,

whence

5o =L EIIAY T (B34)

20



Hence, if we combine this expression with the Jacobian in (B31) we will have

sjt(®) otr'/0j oc'/0j
svt(@) | = | 97'/ov 0 [ Ssrt(((f)) ]
Syt (@) 0 ac/op c
Awlv 8ln) Lx(% & 1Lv) J-ig-1 20 flei @)el
= JI 0 e* s .
0 E\y(Iy®J) (IN®J*1/)(IN®\II*1)vec{IN_1_%8;/(0)} ]

A RIN)I Vet ATy @I V) (T e Pl [ 91n f[e7(0);0] ]

= ol 0 o1n fle: (0):e]
n ;
0 UIE) vee {IN t e 52"(9)}

Al (v @ Ty)I i1l Oe] o f 5110/l O)e] v (g) g 4 J—l'}
_ g—19In fle;(6):e]

Oe
U 1lyecd {7611”0([;5*(9);9] e/'(0) + IN}

This expression makes immediately clear that v and ¥ mop up any potential biases in the

MLESs based on a misspecified distribution, as we saw in Proposition 1.

B.6.4 Non-standardised shocks

So far, we have maintained the identifying assumption that the distribution for the shocks
used for estimation purposes is such that they all have 0 mean and unit variance by construc-
tion. However, this restriction might be cumbersome to impose with certain distributions. For
example, while in Appendix H.1 we explain how to recursively standardise a discrete mixture of
normals with K components, the expressions become tedious for K > 3.

For that reason, it may sometimes be preferable to work with non-standardised distributions.
For identification purposes, though, one would need to eliminate v (or 7) and ) from the
set of parameters to estimate, leaving only a and j plus an extended set of shape parameters
p=(p,...,ply) that implicitly capture the mean and variance of the structural shocks. In the

case of a finite Gaussian mixture with K; components, those extended set parameters would be

o1y L2 2 .y, . !
P; = ([J;“O',“Al) = (/’Li17 sy MK 01y - - 70-@'Ki7>\7,17 .. '7)\ZKZ'—1)

if we impose the adding up constraint on the mixing probabilities by making Ak, =1 — A\j1 —
cee— iK1

In this context, it is easy to see that the expressions for the covariance matrix of the score and
the expected value of the Hessian that we derived in this appendix continue to hold if we define
the estimated pseudo-standardised shocks as €}(0,a,j,(n) = J Ly — A1yi1— .. — Apyip),
so that in this respect it is as if 7 = 0 and ¥ = £5. Nevertheless, it is important to remember
that the consistency of the PMLESs of a and j hinges on the shape parameters effectively being
estimated to mop up the biases in the estimation of the mean and variance of the shocks.

Having estimated the parameters in this way, it would be straightforward to go back to the
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standardised parametrisation by means of the delta method if we express the mean and variance
of each shock as a function of its extended set of shape parameters p;. For example, in the case

of finite mixtures of normals,

V; = )\iliu’il + ...+ )\iKi—LU”L'Ki—l + (1 - )\il T T )\lKl_l)MZKZ
SO
Ov;
alj} = ( )\il )\qu',—l 1_)\’i1_"'_)\iKi_1 )
%
while
Ovi ( pi1 — p 1% pix; )
7 T ) R iKi—1 — MiK; )
ON, e Z Z

Similarly, given that

wi: \/)\11(///@21 +0121)+ . '+)‘i7Ki_1(M12,Ki71 +0'12K271)+(1_>\’51_ . '_)\iKi_1>('u'742,K¢+012,Ki)_vlzi7

we will have that 0v,;/dp, = .5, - O, /0pl, where

a3 o
du, 20 Apiy e M-t (D= A== i)t ] - 2%07#-
= 2[ Xia(pa —vi) o Agi—1(ig,—1 —vi) (L= — oo = Nik—1) (B g, — Vi)
o3
82', =(Air o Ak T=da— =ik ),
and
oy? -
T = |+ oh) = G, +0%) - (e, 1+ 0B ) = (i, +0fi) 1= 2055

[y + 1ixe, — 203y — pire) + 05 — U?Ki) oo Wi —1 T ik, — 20k, —1 — k) (U?Ki—l - U?K) ].
C The FS consistent estimators

In Fiorentini and Sentana (2007) we proposed consistent estimators for the mean and variance
parameters of conditionally heteroskedastic dynamic regression models that are inconsistently
estimated by a distributionally misspecified log-likelihood function. An important advantage
of these estimators is that they can be written in closed-form as simple means, variances and
covariances of residuals, which make them very easy to code. In turn, in Fiorentini and Sentana
(2019) we studied in detail their statistical properties. The purpose of this appendix is to derive
analogous estimators in the context of the structural vector autoregression in (1) when its shocks

are cross-sectionally independent.

C.1 The estimators

There are in fact two types of consistent F'S estimators. The first one assumes that the true

distribution of the shocks is symmetric, and exploits the fact that the Gaussian pseudo score for
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P is
syt(0;0) = T Lvecd[e} (0)e](0) — 1Iy] (C35)

to propose

~2 N N R .
v, = (F,4,7), i=1,...,N,

as in (3), but using the consistent PMLEs of 7, a and j to compute €} (7,4,],{n) = /J\*l(yt -
? — AIthl — .. Apyt,p).
Let ¥ = diag({bl, 1 ~) denote the symmetric F'S estimators obtained in this manner.

Then the FS consistent estimator of C is obtained as

C=J0. (C36)

In turn, the asymmetric F'S estimators exploit the fact that the sample mean of the Gaussian

pseudo scores for 7, which are given by
s+¢(0;0) = I V&~ 15 (0), (C37)

will be 0 if and only if the sample average of (7, a) is 0 too. This yields

Ti:Ti(ﬁ), izl,...,N,

as in (2), but using the consistent PMLEs of a to compute €,(0,4) = (yt—Alyt_l —.. .—Apyt_p).

Naturally, if we parametrise the model in terms of v instead, then
1 X
rDi - T tz_;grt(ouémiffv)?

while we would use (I—A; —... —A,)"'F = (I- A, —... — A,)~1J% if we focused on p.

As for the standard deviations, in the asymmetric case the estimator of ¥ would be
~ 2 _— o o~ .
¢i:¢it(7—7aa])7 Z:17"‘7N7

with e} (7,4,7,(n) = J Yy, —F—Ayy1—...— Apyt,p), while the estimator of ¢ would again
be given by (C36).

In both cases, the fact that the first step estimators of j are based on a non-Gaussian log-
likelihood function allows the use of the Gaussian scores for 7 and 1 despite the fact that the

Gaussian log-likelihood function is unable to point identify j.

C.2 The asymptotic covariance matrix

To obtain the asymptotic covariance matrices, we can follow Proposition 13 of the supple-

mental appendix of Fiorentini and Sentana (2019) and treat the sequential estimators as exactly
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identified GMM estimators based on the extended set of moment conditions:

STt(TJa7j71;Z)7Q) 1
satl(T,,, 9, 0)
Sjt T7a7j7¢7 Q)
S'L,bt(T’ aaj? '(rba Q) ) (038)
sgt(T,a,j,zf,g)
S;—t(?,a,j,’lé),())
L Sq_pt(?7a7ja,¢)70) n

where we have introduced 7 and 1) to denote the parameters that are consistently estimated in
the second step, which differ from their namesakes in the first stage, whose pseudo true values
are Too and ¥ .. In this respect, it is also convenient to distinguish between the shocks estimated

with the first step estimators, (7, a,j, %), and the FS standardised shocks

p
Et(?v a7j7 170) = lil_lJ_l Yt — T— Z Ajyt—j ) (039)
i=1

Appendices B.3 and B.4 give us the covariance matrix and expected Jacobian of the first five
components of the influence functions in (C38), which we combined to obtain the asymptotic
covariance matrix of the first step estimators. To obtain the joint distribution of the first- and
second-step estimators, we need all the remaining elements. In this respect, it is worth mention-
ing that quite a few other blocks of the Jacobian will be identically 0 because sz;(7,a, j, 1, 0)
and S’lj}t("—-’ a,j, 1, 0) do not depend on g or the inconsistent first-step estimators of 7 and ).

As for the remaining blocks of the expected Jacobian, (C37) leads to

ds+(7,a,j,%,0) =d(I V) - ley(F,a,§,9) + IV - d(®1)  g(F,a,j,9)
+I VO de (7 a,j,¢) = =TV dY - IV ey (F,a,§, )
IVt a0 O ey (7 a§,¢) + TV O ey (7, a, ), 1)
= —[sg(‘?,a,j,t_b)\i'_lJ_ll ®J_1’]dvec(J') — [sg(‘?,a,j,i_b)\i'_l ® J_l'\i'_l]dvec(\il)
+I V0 lde (7, a,,9) = —[e}(F,a,§, )T 1TV @ T VK yndvec(d)
—[el(F,a,j, )P @ VO Eydvecd(®) + I V8 ldey(7,a,j, )
= (I V®e(F,a,jP) P LIV Andveco(T)
—[eh(F,a,j,9) ¥ @ ITV®HE ydvecd(®) + I V8 Lde (7, a,j, ).
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Given that (C39) implies that

P P
dey(7,a,j,)=d(¥ ) - I [y — 7 — Z Ajyi—j +o 1 dIY |y -7 - ZAth—j
j=1 j=1

p p
IR - BTN (dA)) oy =T d® T [y - T - Ay
j=1 J=1

p
—o AT I -7 =D Ay | -8 ar
j=1

p
Iy (dA)) yr =~ AW g(FLa,5,) - BT dT - Wey(Fa, ], )
j=1

p
I dr I (dA)) -y = —[el(Fa,§, %) @ U dvee(B)
j=1

P

_[62(7_-) aaju 11_0)@ X ‘i’ilJil]d’UGC(J) — ‘I’il.]ild? — Z(yli*] ® \I,*lJfl)dvec(Aj)
j=1
= — [e}(T,a,j,%) ® ¥ Eydvecd(P)
P
—[el(F,a,j,%)¥ @ LI Aydveco(T) — 1T Hdr — Z(yvlffj ® ‘i’flJfl)dvec(Aj),
j=1

if we take into account that E[e;(To, a0, jo, ¥o)|®o] = 0, then we are only left with the following

non-zero blocks for the expected Jacobian of sz:(7, a, j, 4, 0):

Dsr (T 0, %, 0 - -
E 87(7'075;(;;]071:[)07 ) 900] _ 7‘]61/‘1,61(}’1,5—]' ® ‘I,alJal)
J
0s T-OvaOaj0711—b 50 1A —2 94—
E |: T( 87_-/ 0 ) (’00 — _JO 1/lI’02J01.

Similarly, we have from (C35) that

2€it(’7_-la’j7’(7))d5't(’7' aj ’l,_b)
1/]2' i s Ay dy .

As a result, the expected value of the Jacobian of S (7,a,j,1,0) with respect to 7 and a

ds%(?,a,j,'q_b,ﬂ) = _'(Z?[e?t(%,a,j,'l,_b) - 1]d717)1 +

evaluated at the true parameter values will be 0. In addition,

dS—.('T-vaaja'l:_b’O) = _ . 7 2Ei 7_-737.7_ 2
SO i 0y A

7

so that B
8sﬂ;t(7_-07 aOuij ’d)[)v 0)

o'

Pol| = —2@72.
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Finally,

ds’l_p(?? a?j? "Z? 0)
dj’

d€t<7_-7a7j7¢)
dj’
- _2diag[‘i’alst<‘?7 a?ja &)][52(7_-? a7j7 17))@ & \i’_lJ_l}AN

= 2diag[‘i’al€t (‘7-7 a, j, '(Z)}

so that

dsz(7,a,j,1,0 _
E[ 3 dj,‘] ks )] — —2diagy (T137Y),

where diagy is the N block-diagonalisation operator in Yang (2000), which is such that
N
diagy (C™') =) eejC'H;
i=1

when the blocks are of dimension 1 x N, with e; being the ith canonical vector and H; =
N, Ony(nv2—n)ls H2 = [Onwn, IN, Ony(v2—am)]s -+ s Hv = [Onx(v2—nys In]-

Some of the expressions for the expected Jacobian would be different if in the first-step one
estimates the model in terms of c¢ rather than j and 1. Nevertheless, the relevant terms can be
easily obtained from the ones above by using the chain rule for first-derivatives

dsg(T,a,5,9,0) _dsy(7,a,],,0) d(j',3')
dc’ d(j’, ") de/ 7’

with the last term computed from the inverse of (B31).
Let us now turn to the covariance matrix of the influence functions. The covariance between
s=¢(7,a,j,1,0) and s;pt(?,a,j,z_ﬁ,O) is straightforward in view of (C35) and (C37) and the

cross-sectional independence of the shocks. Specifically,

Vi[s7:(600;0)[p] = I ®5235",
cov[sr¢(00;0),84:(600;0)] = J_I’\TIJQKZS

and
Vsy:(80;0)lpg] = 5K s,
where K;; and K, are the diagonal matrices of order N with typical element ¢(g;) and k(g;) —1
defined in the proof of Proposition 5.
To compute the blocks of the covariance matrix of sz¢(7, a, j, ¥, 0) and sgi(Tha,j, 1, 0) with
the non-Gaussian scores with respect to all the other parameters, we must take into account that

the latter scores will be evaluated at inconsistent parameter estimators for 7 and 1. Specifically,

E {S‘T't(%(]va()aj()a{b()ao) [ S;t(vaaOaj()a'ltboov Qoo) S:it(TOO)aO7j07¢oovgoo) :H()OO}
= Jo ¥ Du(d; 00)¥o ' Iot (In py@Iy ... py@Iy ),

26



where

Du(ipn) = 5 | efon) L EL O el

86*/

is a diagonal matrix with typical element

7 * 811’1']01 5: aoo 3 Qo
D) (@Poipo) = —E {git<00) [ g( . ) . ‘ ‘Po} # -1
&
thanks to the cross-sectional independence of both the true and pseudo-standardised shocks
(B17).
Similarly,
E{S?t(?ﬂa aO,jO; ’(7)07 O) [ Sgt(TOO7a07j07¢ooa Qoo) S;pt(Twa a07j0)¢ooa Qoo) ] } ()00}
= IO Di(bos o) [ ENTL (Poo @ O (In @ Jg)AN |,
where
. Oln fle; (00); Ooo)
Dis(pipo) = —E [Et (HO)Uecl{IN+ /| ta(s* s ]st/(em)}’¢0:|

and D! (dso; Po) is a diagonal matrix of order N whose non-zero elements are

D3 (Pos; P0) Ele(00)| 0] (j # 1) and

. Oln flef,(00); Oino) .
D1 (@rer i) =~ { el T EE= el 0 ) | ()

If in the first-step one estimates the model in terms of ¢ rather than j and %, then the
relevant covariances would change, but once again they could be obtained from the previous
expression by using the chain rule for derivatives.

In addition,

E { S7_'t(7_-07 a07j07 ’li_b07 O)Slgt(TOO7 a07j07 ¢oo7 Qoo)l| 900} = Jil/‘ililplr((poo; 900)7

where

Di(Guciip0) = I | 7(00) P Ol ' @)

00
an N X ¢ block diagonal matrix with typical diagonal block of size 1 X ¢;

O1n file}; (0oo); Qico]

D, (s 0) = E [emeo)

In turn,

E {Sq’_bt(?07a07j07,‘7_b070) [ Sfrt(TOO)a07j07¢oo7Qoo) S,at(T007aOaj071poo7 Qoo) ]“'PO}
= U 'ENDa(dei 00)¥o ' T (In py@In ... piRIy)
= U ' Dy(deei0)¥o ' T (In py@Inv ... pyRIy)
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in view of (A5), where

1 7 (00); 0o
Dauciip0) =~ | vec ef (Bn)ei'(60) ~ Ty) T ELE 5l g | D s(9ucii)

and D g (¢o; ¢o) is a diagonal matrix of order N whose diagonal elements are

i * alnfé‘;k 0 3 Qjco
D51(Qioos o) = —E {%2(90) [ ta(ﬁ ) ]‘cpo} :

Moreover,

E {S{bt(?07a0;j07{00; O) [ Sjt(TOO7a07j07 /lpooa Qoo) sflpt(TOO7a07j07 ,lpoo7 Qoo) :| ’ (PO}
= ‘iJ_lE/N,DSS<¢oo; QOO) [ :EN\I’;Q1 (\IlOO X ‘Il(;ol)(IN ®J61)AN ] )

where
Durlbipr) = —E [veclei(00)ei(00) ~ IyJvee {1 + DLELO el )
’Disl(%o;soo) o Dil(daoitpo) - DlN(¢oo7<Po) ]
= D“(qboo,soo) D“(‘f’;xn‘Po) DZN(%O,%)
| DY i) o DX (i) o DY (i)

Although this matrix contains many 0’s, its pattern is a bit more complex than in Appendix
B.4. For example, the elements of this matrix that correspond to the off-diagonal 1’s in Ky

are no longer 1. Specifically, they will be

{ (60 (00)8111 f[s;g(goo);am]ga 6.0)
J

%} 0] (bt ) EIE5 (002500 )
because
E[Et(eo)&‘:/(goo)‘@o] — E{E:[(Ué) —_ Uﬁ)o) —+ E:/‘I’O]‘I’gol‘goo} = ‘I’O‘I’gol 7é IN

But all the remaining elements of D?s'(qboo; ©o) (j # 1) are 0 except its i" diagonal element,

which will be given by
Dil(in <P0)E[5§t(9c>o)’900]7

while DY (. ; o) is another diagonal matrix of the same size whose non-zero elements are

D} (Pooi P0) ElE}(00)€5(000) o] (5 # i) and

Dla(biin) =~ eito0) IOl 0, g0} 1 (=)

Nevertheless, since the scores for 1 only involve vecd[e} (0¢)e}’ (60) —In], the calculation of some

of the above elements is unnecessary.
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Finally,
E { qu;t(?(]v aOujOa {bOu O)S/Qt(TOO7 aOujOv 111)007 Qoo)/‘ ‘PO} :‘iilE?VDST(qboo; SDO) = ‘iJ?lDST(q')oo; ‘)00)7

where

dln fle; (0); 0]
00’

Dor (G 00) = F [vec[s:<eo>s:’<eo> Iyl \ soo] Do ($oni 00).

and D, (¢; ¢o) is another block diagonal matrix of order N x ¢ with typical block of size 1 x g;

Oln fi[e},(00); Qisc) »
do; of

Dsr(¢oo; 900) =FE {S?t*(eo)

Once again, sample versions of the previous expressions will consistently estimate their pop-
ulation counterparts under standard regularity conditions as long as we replace O, by the
first-step estimator and @y by the FS one in evaluating €},(0) and €,(0p), respectively.

We can use the delta method to obtain the covariance matrix of the FS estimator of ¢ in

(C36). Specifically, if we define

it immediately follows that
dC=dC- ¥ 'O +C-d(T ) T4+ C¥ 1. d¥ =dC- ¥ - CT ! q¥. T+ CT .40,
which after vectorising yields

de = (U ' @Iy)de — (B ' ® C¥ )Endp + (Iy ® C¥)Eydap,

and hence
- @ lely),
88;, = — (¥ '@ CT HEy,
8‘91_2, — (Iy®C¥ )Ey.

But since ¥ = vecd(C),
dc = ] = - —1 -1 /

D Semiparametric estimators with cross-sectionally indepen-
dent shocks

In this appendix, we initially provide a new characterisation of the unrestricted ML para-
metric estimators under correct specification, which we then exploit to derive SP estimators that

impose the cross-sectional independence of shocks, first in general and then under symmetry.
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D.1 The parametric efficient score

Let

Zoo(®) Zoo(®) ] [ E[Zy#(0)Mai(0)Zy,(0)]  Za($)May(0)
I(¢) = E[Li(¢)] = = di | ,
(@)= PION=| 7 () Top(0) W (QZ(9) Mo ()
with Z4(¢) defined in (B18), denote the unconditional information matrix. The residual from
the unconditional theoretical regression of the score corresponding to 6, sg;(¢y), on the score

corresponding to @, syt(@), namely

SBIQt(90790> = Set(eoago)—Ieg(ﬂbo)zgg(%)sgt(eoaQo)
= Za(0)ea(d) — Za(p) Mar ()M, (@)er(9), (D40)

is sometimes called the unrestricted parametric efficient score of @, and its covariance matrix,
P(¢o) = [Z9(¢y)] ™", the marginal information matrix of @, or the unrestricted parametric
efficiency bound.

We can interpret the second summand of (D40) as Z;(¢) times the theoretical least squares
projection of ey (¢y) on (the linear span of) e,(¢y), which is conditionally orthogonal to
eqt(00,0) from Proposition 3 in Fiorentini and Sentana (2007). In this respect, it is impor-
tant to note that the different e, (¢) in (B10) are orthogonal to each other, so the projection of
eqt(g) on the linear span of e,4(¢,) coincides with the sum of the projections of ey (¢y) onto
the linear spans of dln f(e}; 0;)/00; (i =1,...,N). In fact, the special structure of M., M,
and M,.. discussed in Appendices B.3.2 and B.5.2 implies that we simply need to project each

o dln fi(e},; 040)/0€;
eq;t(Pg) = [1+¢ef0n fi(el; 0:0)/0e]]

onto the linear span of d1n f(e};; 0;)/00;. Thus, we will end up with the following projections

_Oln f(ej; 0i) dln f(e}; @)

(962( er(gi)Mr_rl(Qi) 8Qz‘ )
O0ln f(5>'kt; ;) -1 Oln f(e}; 0;)
(14 RS Ei 8i) (0 )BT i @)
( =+ agr gzt) M (Qz)MrT’ (Qz) 891‘
where
, 81nf(5ft§ ;) 6lnf(€;‘t; ;)
MlT(Qi) COU|: 85;‘ ) aQZ Qi
Oln f(e};0) .« 9l f(ef; 0:)
Msr(gi) COU|: 852‘ Eits 892‘ Qi
and

[ 0lnf(eh; 0:)
Mw@D—V[ag

o

In contrast, the projection of the off-diagonal terms 5;%3 In f(e};; 0;)/0c; onto the linear span

of 0ln f(e},; 01)/ 00y is 0 for all possible combinations of ¢, j and k with i # j.
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We can compactly re-write these expressions in matrix form by working with the rearranged

version of ez (). Specifically, we can use (B30) to write he parametric efficient score as

e ()
SB|gt(¢) = Vau(o) [ E§Vest(¢) - V4(0) < /1\\/?” >Mr_r1ert(¢)
Alvest(9) *

[ C_ll[elt(¢) - erMvTrlert(ﬁb)]
(yi-1 @ IN)C Vey(¢) — (k@ IN)CV MM e ()

Veep ® IN)C Ve (@) — (1 In)CV My Mzl ere()

| (In @ C"Y)En[Elyes (@) — MM e (@) + (In @ CY)AyAlyes (o) |

where My, Mg, and M, are block-diagonal matrices with typical blocks M;.(g;), Mg, (0;) and

M, (@;), respectively,

cv OnxN OnxN(N-1)
v o0 o (yi-1®Iy)C™Y On2x On2y N (N-1)
Vi () =Z4(0) < (])V Ex Ay ) = : : :
(yi—p@In)C™V Onzxn On2x N(N-1)
On2xn (Iy@C V")Ex (In®C")Ayx
and ) " Onn )
(peIy)CY On2x N
Iy O ) .
Vi) -20) (5 ) - ; ,
(p®Iy)CV UNENSN
On2x (Iy®CV)Ey |

The covariance matrix of this score then becomes

V{so0t(®)} = E [Zar(0)ear(d)ey; (¢)Zar(0)|H]

e ()
-F {th(a) E/Nest(q')) ] e;'t(gb) ( ;r M;r )V,d(¢) ¢’}
Alyest(9)
~E{Val0) (4 ) Melen(9) [ €i(@) cLl@lBN el(@)An | Va(6) o)
+E {Vd(¢) < /h\/;lsl: > M;rleTt(qb)e/Tt(qﬁ)Mr_rl ( ET M;r )Vél(¢)‘ ¢}
= Zao6) - Val@) | ( 47 ) M (MG, M )| Vido) = ool
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If we then re-write this expression as

[ cv OnxN 1
(p® IN)C_ll Oz
Too(6) — Poo(¢) — - n My MEIM, - My MM,
00 60 - . ) : Mer;rlM;T Mer;rlM;T
(p@Iy)CY UNENSN
| Onexw (Iy®CV)Ey |
c! C_l(p/®IN) C_l(u/@)IN) 0 :|
Onx N 0N><N2 0N><N2 EI]V(IN®Cil)
CillMl?”M;rlM;rcil Cil/MlTM;rlMErcil(u’l ® IN)

(L@ IN)C VM MM .CH o (@ In)C Y My MM CH (i @ Ty)

(1@ IN)C VMMM, C (@ Iy)C Y M MM, C Y (i @ Ly)
(In ® C"V)ExMy MM} C™1 (Iy ® CTY)ExyMy M M), C™H (1 @ Iy)
C Y My MM, C (1 © Ty) C~Y My, MM, Bl (Iy © C-)
(L@ IN)CTV M MM CTH (W @ 1y) (k@ In)CTY MMM ER (Iy @ C1)

(/J' & IN)CillMlTMrfrlM;rcil(“/ ® IN) (H ® IN)CillMlTM;rlMlerkKIN X Cil)
(In ® CTY)ExMy MM, CHp' @ Iy)  (In ® CTV)EnM o M, "M Ey(Iy ® CT1) |

we can easily see that there will be some functions of the original parameters @ which can be
estimated equally efficiently by the restricted and unrestricted parametric estimators because
this matrix has less than full rank. Specifically, given that V;(€) has column rank 2V, and that
( My Moy M, Mip My M, )
M Mt M, Mg MM, )

whose four blocks are diagonal matrices of order N, has rank g at most, the rank of the differ-
ence between Zgg(¢) and Pgg(¢p) will be min(2N, q). Therefore, a relevant question is which
transformations of parameters this rank deficiency suggests. Proposition 5 implies that the un-
restricted and restricted MLEs of a and j will be equally efficient both when ¢ > 2N and when
g < 2N. In this last case, which arises when some of the shocks follow for instance skew-normal
distributions, whose standardised densities depend on a single parameter, or when they follow a
distribution like the Laplace that contains no shape parameters, there will be other functions of
0 for which unrestricted and restricted MLEs are equally efficient, the extreme example being
qg=0.

The analysis of the rank of the difference between Zgg(¢) and Pge(¢) changes when the

distributions of the shocks are symmetric, such as a Student t. The reason is because M. =0
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in that case, which means that

Zog(@) — Poo(d)
OnxnN
On2y N
- : Mg M "ML [ Onxn Onynz ... Oyynz EN(IN®CTY) ],

On2x v
| In® CV)EN |

whose only non-zero block, which appears in the last position, is
(Iy ® CYEyM M, "M, Ey(Ixy @ C1),

a matrix of rank min(NV, ¢). Once again, this rank deficiency implies there will be some additional
combinations of the original parameters @ which can be estimated equally efficiently by the
restricted and unrestricted parametric estimators. Proposition 6 shows that the additional
parameters will be 7 both when ¢ > N and when ¢ < N, as explained in Proposition 14 in
Fiorentini and Sentana (2021b).

Finally, a closer inspection of the information matrix Zgg(¢) indicates that in this symmetric
case the unrestricted estimators of the mean parameters T and a are asymptotically orthogonal

to the corresponding estimators for ¢ and g precisely because M;,. = 0.

D.2 The cross-sectionally independent SP efficient score

The interpretation of the difference between sg;(¢) and sg|4:(0, @) in terms of projections
that we derived above allows us to replace the parametric assumption on the shape of each of
the distributions of the standardised innovations in €; by a non-parametric alternative. Specifi-
cally, we can replace the linear span of d1n f(e};; 0;)/00; by the so-called marginal unrestricted
tangent set, which is the Hilbert space generated by all time-invariant functions of &, with
bounded second moments that have zero conditional means and are conditionally orthogonal to
e (00,0) = (¢}, €7 —1). Moreover, since the different shocks are stochastically independent of
each other, we can continue to compute the multivariate projection as the sum of the univariate
projections, as explained by Chen and Bickel (2006). The main difference with their approach
is that they normalised the scale of the shocks so that med][|e};|] = 1 while we use E(e}?) = 1, so
their tangent set differs from ours in that respect (see Appendix D.2.1 below for further details).

In practice, we simply need to theoretically regress eq.:(¢) onto e4,(0,0) and retain the
projection error because the projection of egy,;:(¢y) onto eq,+(6o,0) for k # i will be 0 under
independence. In this respect, please note that we do need to regress the off-diagonal elements
of eq(¢y) onto any eg,+(6o,0) because the projection of €7,01n f(e};; 0;)/0e; onto the linear
span of eg,+(6o,0) is also 0 for all possible combinations of 7,5 and k with ¢ # j thanks to

independence.
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We also need
€ 1 ¢i(0;)

Vieq.(00,0)] =V it ):( i\@; — Kiio), D42

| at(60 ) ( 5@7:2 -1 #i(0;) ri(o;) —1 ”(QZ) ( )

where ¢(0;) = E(c}|0;) and ri;(0;) = E(e}}|0;) are the usual coefficients of skewness and

kurtosis of €. In the Student ¢ case, ¢(g;) = 0 and k;;(0;) = 3(v; — 2)/(v; — 4), while under
normality ¢(0) = k;(0) = 0.
It is then easy to see that

-1 _ 1 ki) — 1 —¢;(e;)
Ki(e) = ri(0;) — 1 — ¢?(0;) ( —¢;(0;) 1 )

is generally well defined because the Cauchy-Schwarz inequality implies that x;(g;) > 1+ ¢?(0;)

for all distributions, with equality when €}, is a centred and standardised Bernoulli. The gener-
alised hyperbolic family of distributions can also reach the skewness-kurtosis bound, but it does
so in limiting cases in which its standardised members approach a centred and standardised
Bernoulli.

We can also use the generalised information matrix equality to show that

—Elei0In fi(eiy; 03)/057] = E(0e/0¢i) =
~B (7 — 1)0n fi(ef; 0,)/0¢]] = E[0(ef —1)/0€]] =
—Blej[l + €0 i) 0,) /0251y = E(0ei?/0e}) =
—B{(e;f = DL + €0 fi(ef; 0,) /0]y = —1-E|[eji alnf%( mez)/&E ]
= —1+ FE(0e}?)0e)) =

so that
Eleq,i(¢g)ey.(80,0)] = Kii(0).

On this basis, we can easily find the required projections

O f(efse) 0 [miley) — e — ¢@-(Q¢)(€§‘f -1
Oe; ' ri(e:) —1 - ¢7(e:) ’
(¥ 81nf( Eit> Qz)g ) —2¢; (Qz)fzt + 2( )
e} " rki(g) —1— d’zz(Qi)

To express these in matrix notation it is convenient to remember that under cross-sectional

independence of the shocks

K(e) = Ve (0,0)|I;_1; @]

In Elefved (efey’ —1In)| ] Iy KZSE/]V
Elvec(ejey’—In)el'| @] Elvec(efey —In)ved (efel’ —1In)| @] EnK;s Kynv+A

where K4 is the diagonal matrix of order N with typical element ¢(g;) defined in the proof of
Proposition 5 and A is a block diagonal matrix of order N2 in which each of the N blocks is
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diagonal matrix of size IV with the following structure:

1 0 0 0 0 0 0
0 . 0 0 0 0 0
0 0 1 0 0 0 0
Ai=10 0 0 ri(g)—2 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 . 0
(0 0 0 0 0 0 1

In addition, it is also well known that he covariance between ey (¢) and ey (8, 0) is given by

[ Iy 0
}C(O)_[ 0 KNN‘FINQ].

As usual, the off-diagonal elements of Ky in these two covariance matrices simply reflect the
fact that
p[httie,

* x| * Kk ok kN
pE: 5jt5kt5lt] = E(epeiicren) =1
1

when ¢ = k and j = [ despite the fact that ¢ # j.
It is then easy to see that the covariance matrix of the rearranged vector of Gaussian scores

will be given by

€ 0,0 IN 0
ol oo | = (0 m ) [p5 EE(522)
A;vest(070) 0 Af]\/ NIxs NN N N
Iy Ky 0
= Kis Kss 0 ’ (D43)

0 0 A/NKNNAN"FIN(Nfl)

where Ky = Iy + EyAEy is the diagonal matrix with typical element x;;(g;) —1 defined in the
proof of Proposition 5. Notice that this matrix contains the same information as the ICii(gi)’s,
but in arranged in different order. Notice also that even though A?VK NNAN is a symmetric
orthogonal matrix (see Proposition 5 in Magnus and Sentana (2020)), AYKyNAN+Iyv_1) =
A (Kyn +Iy2)Ay is a singular matrix because (Kyn + Iy2) is singular of rank N(N +1)/2
(see Theorem 3.11 in Magnus and Neudecker (2019)). Intuitively, A'yes(6,0) only contains

N(N —1)/2 non-duplicated elements, so its covariance matrix must necessarily be singular.
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Similarly,

e ()
E Nest( ) [elt(aao) e;t(070)EN e,st(evo)AN ]
Alyest(9)
(Y <1N 0 >(1N 0 0)
0 A]/]VV 0 Knyny+Iye 0 Ey Ay
In O 0
= o 21y 0 . (D44)

0 0 AINKNNAN—FINQ

Thus, the projections of e;(¢) and Eyes () onto the linear span of e;(¢) and E\ es ()

can be written in matrix notation as

Iy O Iy Ki \ '[ ew®,0)

0 QIN Kls KSS Egvest(o, 0)
_ Kos(Kes —K72)™t —Kis(Kgs —K2) 7! e;(6,0)
B — 2K (Kss — Klzs)il 2(Kss — Klzs)il ElNest(e, 0)

because

In Ky - _ Iy + Kls(Kss - Klzs)ilKls _Kls(Kss - K%s)il
Kis Kss _KZS(KSS - K%s)_l (Kss - K%s)_l

by virtue of the partitioned inverse formula and IN—i—KlS(KSS—KlQS)*lKZS :KSé,,(KSS—KlQS)*1
view of the diagonality of all the matrices involved.

Consequently, the cross-sectionally independent SP efficient score will be

e ()
S'o(P) = Va(¢) | Eyes(o)
Alye (o)

-V (9) elt(¢) _ KSS(KSS - K%s)_l _Kls(Kss - K?S)_l elt(ea 0)
d ElNest(d)) _2KZS(KSS - K?S)il 2(Kss - K?s)il ElNest(0> 0)
( Cill[Kss(Kss - Klzs)ilelt(ay O) - Kls(Kss - K%s)ilElNest(ea 0)] )

[(yt—1—p)RIN]C Vey ()
"'(,UJ X IN)Cill[Kss(Kss _Kl25>7lelt(07 O) _KZS(KSS _Kl25>71ElNest(9> 0)]

= : . (D45)
(yi-p—ne )®1N] e ()
Hp @ In)CY[Kos(Kos —K7) e (6,0) - Kzs( K7,) ' Elyes(6,0)]
(In@C Y EN[—2Ks(Kss—K2) ™ lelt(B,O)
+2(Kss—K7) " Elyeq(0,0)]+(In0C™ ") AnAlyes ()

To see why, we can make use of the fact that
E |:{ |:|: elt(¢> :| . |: KSS(KSS - Kl23)71 _KZS(KSS - Kl25)71 :| < elt(ea 0) >:| }
Eyes (o) —2K5(Kos — K7) ™ 2(Kss — K7™ Eyves(0,0)

e;(6,0) . —
[ et || 16 =0
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for any distribution because the projection errors are orthogonal to the regressors by construc-
tion.
In addition, we also know that

E{ [ elt((:b) :|_|: Kss(Kss*Klzs)_l *Kls(Kss*Kle)_l :| ( elt(e,o) >
E?\f’st(d)) _QKZS(KSS_K?S)il Q(Kss_Kli)il E/Nest(eao)

It—1;¢}:0

because both ey (¢) and ey (0, 0) are martingale difference sequences. Hence, the second sum-
mand of (D45), which can be interpreted as V (¢y) times the residual from the theoretical
regression of e (¢) and E\es(¢) (and 0) on the linear span generated by a constant, e;(6,0)
and E'yey(0,0), belongs to the cross-sectionally independent tangent set, which is the orthog-
onal sum for ¢ = 1,..., N of the marginal unrestricted tangent sets defined above. Importantly,
note that e,(¢) trivially belongs to this cross-sectionally independent tangent set because it is
conditionally orthogonal to all the elements of e4(6g,0) from Proposition 3 in Fiorentini and
Sentana (2007).

The expression for the cross-sectionally independent SP efficiency bound will then become

V{§0:(¢)} = E [Zar(0)ear (e (D) Zar(0)|9]

[ elt(¢) ]
Va(0) | Eyes (o)
—E Alves (o) "
[ e (¢) € (®)En | — [ €,(6,0) €,(0,0)Ey |
X Kes(Kss —K2Z)™1 —2K(Kgs — KZ)7! V()
L 8 |: _KlS(KSS - KlZS)_l 2(K55 - KZQS)_l :| |
[ ( [ elt(¢) ] 1
Eye, (¢)
_E Vd(d)) Kss(Kss - K%S)_l _K]\lfs(f{ss - K%s)_l elt(ga 0) ¢
\ B |: _2KZS(KSS - Kl25)71 Q(KSS - K%s)il :| ( E,NeSt(a’ 0) )
i x [ e () ey(P)En ey(p)An | Vi,(0) |
[ ( [ et () ] i
E'ye, (¢)
VAR KK K2 Ki(Ke K] el0,0)
+E - [ —2K;s(Kes —K7) ™' 2(Kg —K7)™! ] ( Eyes(0,0) ) é

[ e(¢) e(P)En | — [ €},(6,0) €,(6,0)Ey |
X Kss(Kss - KlQS)_l _2Kls(Kss - KlQS)_l V/d(¢)
% _Kls(Kss - Kl25)_1 Q(KSS - Kl28)_1

= Zoo(9)

Mll Mls KSS(KSS - Kl25)_1 _2Kls(Kss - K%S)_l /
_Vd((:b) {( Mgs M s ) - |: _2Kls(Kss _ K?s)fl 4(Kss _ KIQS)fl Vd(¢)

= So0(¢)-

where we have exploited the fact that Ay e (¢) is orthogonal both to e;(¢) and Elyes(¢) and
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to e;(0,0) and Elyey(0,0). Importantly,

Mll Mlg o Kss(Kss - Klgs)_l _2K18(KSS - KIQS)_l
/ Mss _QKZS(KSS - KlZS)_l 4(K58 - Kl28)_1

ls

is the residual covariance matrix in the projection of e;(¢) and E'yes(¢) onto the linear span
of €;,(0,0) and E'yes(0,0) because

Iy 0 Iy Ko\ '(Iy O
0 2Iy Ko Kgs 0 2Iy
_ Kss<Kss - Kl25>_1 _QKZS(KSS - Kl25)_1
- _QKZS(KSS - Klzs)_l 4(K55 - KIQS)_l .

D.2.1 The Chen and Bickel (2006) approach

Chen and Bickel (2006) consider a model in which the mean is correctly specified to be 0 so
that the only parameters of interest are the elements of the so-called unmixing matrix W = C™1,
which we denote by w = vec(W).

Given that dC = —W}(dW)W ™! we will have that dvec(C) = —(W Y @ W~1)dvec(W)
so that dc/Ow’ = —(W~ Y @ W™1). But since su(c) = (Iy @ C )eg(¢), the chain rule

immediately implies that

swi(W) = g:;sct(C) = —(W oW )(Iy © Wes(¢)

91n fle;(6); o]

= —(WlelIyeyu(o)=vec H de*

e/ (0) + IN} Wl} :

They also normalise the shocks so that med(|e}|) = 1, which is equivalent to P(|e}| < 1) = ,

which is in turn equivalent to
1
2 [ et =1
-1

which they finally re-write in terms of the following equivalent moment condition

ERI(|| < 1) - 1] = Eld(e})] = 0. (D16)

(2
*

Thus, Chen and Bickel (2006) impose three restrictions on the density of ¢}

f: a) it must
integrate to 1; b) it must have 0 mean, and c) it must be such that (D46) holds.

They obtain the efficient score for w by projecting the entries of sw¢(w) corresponding to

the diagonal elements onto the linear span of 1, €} and d(e}) and retaining the projection errors.

Let )
H (o7 v
Al =00 )
because [21(|e¥| < 1) — 1]* = 4I%(|ef| < 1) 4+ 1 — 4I(|ef| < 1) = 1 regardless of the distribution

*
of 7.
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Similarly, let
o fieh) [ e J\_( ©
p{- [ 25 L [} - ().

B Oln fi(ef)
oe*

]

with

wi:E[ 52‘2[(|5ﬂ§1)},

because
E [(;701n fi(e}; 0;)/02f] = E[02]7/9ef] = 0

by the generalised information matrix equality.
Hence, the coefficients of the projection of —[1 + &2d1n fi(e}; 0;)/de}] onto the linear span

of 1, ¢ and d(g}) will be given by

so the projection error will be

Oln fi(e}) (wi — Dv; (w; — 1)(7i2
* x _ d(e*).
Oe? S|t o2 —v? % o2 —v? ()

s

On this basis, the efficient score finally becomes —(W~™! ® Iy) times the vec of a square

matrix of order N which has

Ol fi(@*) * 91n fi(@*) * (w’i — l)vl * (wi - 1)0'2 *

[ + der &; + e i + T o2 €5 g d(e})
(wi —Dv; ,  (wi—1)o?
- gg_vzz ? Z2_U2 d( z)

as diagonal elements and

as off-diagonal ones.

D.3 The unrestricted SP efficient score

The procedure described in Appendix D.2 is different from the unrestricted efficient SP
procedure described in Appendix D.4 of Fiorentini and Sentana (2021b) even if one makes use
of the cross-sectional independence of the shocks in computing the different expressions. The
reason is that the unrestricted tangent space is the Hilbert space generated by all the time-
invariant functions of €} with bounded second moments that have zero conditional means and
are conditional orthogonal to e4(6,0). This means that they must be orthogonal not only to
e, and (g2 — 1) for i = 1,..., N, but also to cross-product terms of the form En€y with @ # .
The addition of these cross-products has two effects. First, the covariance matrix of e;(6,0),

E'yes(0,0) and Alyes(0,0) in (D43) is an augmented version of the covariance matrix of the

first two elements, which an additional singular block diagonal term because of the duplicated
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cross-product terms. Similarly, the covariance matrix of e;(¢), Elyes(¢) and Alyey(¢p) with
€,(0,0), Ey ey (0,0) and Alyes(0,0) in (D44) is also an augmented version of the covariance
matrix between the first two blocks of each vector, which exactly the same additional singular
block. As a result, we must take into account the projections of A'yes(¢) onto the linear span
of the Gaussian scores Alyeq(0,0).

Using the same notation as in the previous sections of this appendix, the unrestricted SP

efficient score will be given by:

80:(0) = s0:(¢) — Za(¢) [ear(¢p) — K (0) KT (p)ea(8,0)] . (D47)

while the unrestricted SP efficiency bound is

Soo(9) = Toa(¢) — Za(d) [Maa(e) — K (0) KT (p)K (0)] Zy(¢), (D48)

where + denotes Moore-Penrose inverses.

The fact that the residual variance of a multivariate regression cannot increase as we increase
the number of regressors immediately implies that S gg(¢) is at least as large (in the positive
semidefinite matrix sense) as S;ge(d)()), reflecting the fact that the relevant tangent sets become

increasing larger.

D.4 The cross-sectionally independent symmetric SP efficient score

Assuming that each shock is symmetrically distributed, we can also consider another SP
estimator which exploits not only the cross-sectional independence of the structural shocks, but
also their symmetry. This estimator is different from the spherically symmetric SP estimator
discussed in Appendix C.5 of Fiorentini and Sentana (2021b), which would in fact be inconsistent
in this case since the joint distribution of the shocks is not spherically symmetric unless all shocks
are Gaussian even though all their marginal distributions are symmetric.

To derive this score, we need to define the marginal spherically symmetric tangent sets, which
are the Hilbert spaces generated all time-invariant functions of 5}}2 with bounded second moments
that have zero conditional means and are conditionally orthogonal to (E;‘f —1). Once again,
given that the different shocks are stochastically independent of each other, we can continue to
compute the multivariate projection as the sum of the univariate projections.

To obtain the cross-sectionally independent symmetric SP efficient score, the first thing
we need to note is that we only need to correct E'yes(¢p) as both ey(¢p) and Alyeq(p) are
orthogonal to E’yeq(0,0) under the assumption that the shocks are not only cross-sectionally
independent but also symmetric.

Note also that in this case
L OmfiEiie)

-1 ;
Oe i

= —[1+ (5 el
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with 0[e32(0); o;] defined in (A3), is a function of the shocks through &2 only. As a result, the

projections are trivial to find. Given that we have proved before that
—B{(e;f = D[ +€,0n file; 0,)/92;]} = 2

and that V(}2) = r(g;) — 1, each projection will be given by 2[k(g;) — 1]~ 1e}2.
Once again, we can use matrix notation to write the cross-sectionally independent symmetric

SP efficient score in compact form.

Let _ .
On N2
0 Opn2y 2
Ui -20)( 5 )=|
Opn2 5 2
| IyeCY) |
Then
elt(¢’)
So() = Vale) | Eyew(o) | — Uq(8) [Eyes(o) — 2K ' Eyey(6,0)]
Alyes ()
C_llelt(ﬁb)

(yi-1 @ In)C Vey (o)
— : . (D49)

(Yi-p @ IN)C Ve (o)
(In ® C"VEN2K'Ees(0,0) + (Iy @ CTV)AyAlyeq (o)
Analogous derivations to the ones in previous sections of this appendix show that the asso-

ciated efficiency bound will be

V[$6:(¢)] = Too(¢) — Ua(¢)(Mss — 4K NUG(9) = Soa(9)-

The fact that the residual variance of a multivariate regression cannot increase as we increase
the number of regressors immediately implies that Sgg(¢p) is at least as large (in the positive
semidefinite matrix sense) as S gg(¢), reflecting the fact that the relevant tangent sets become
increasing larger.

Therefore, we will have the following ranking of efficiency bounds

Too(d) > Poo(P) > Seo(P) > S'ea(d) > Sea(dy)-

In fact, one can show that the corresponding estimators have the Matryoshka doll covariance
structure discussed by Fiorentini and Sentana (2021b). The only difference is that here we do

not consider the Gaussian PMLE because it fails to point identify the parameters of the matrix
J.
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E Mittnik and Zadrozny (1993) standard errors for IRFs and
FEVDs

As is well known, assuming covariance stationarity, we can re-write (1) as
yi=p+ Iy —A;L—...—A,L)"'Cef = Iy + B1 L+ ByL? +...)Ce},

where

(In+BiL+BoL?+..)(In— AL —...— AL) =1y.

Hence, the impulse response function (IRF) of the structural shocks in model (1) is given by
B,C = B,JU.

Mittnik and Zadrozny (1993) explain how to use the delta method to compute asymptotically
valid standard errors for these expressions once we know the asymptotic distribution of the
estimators of the SVAR parameters.

For simplicity of exposition, let us consider the simplest possible case in which p = 1. Then
we know that the MA coefficient matrices satisfy the recursion By = A1B;_1 = A’f with initial
condition By = Iy. Following Magnus et al (2021), we can use the product rule for differentials
to show that

dBj = d(A1By_1) = (dA1)Bi_1 + A1(dBg_1)

and

dvec(Bg) = (B)_; @ In)a; + (In @ Aq)dvec(By_1),
so that

aaf Y (Bl @ ) + (1 © A 2B,

with initial condition dvec(B1)/da) = Iz, which leads to

k
Ovec(By)

A/ k—j AJ
8a1 ; @ Aq]

For example,

QuecBa) - _ (AL o Ty)+ (Iy @ Ay),
oa)
1

The product rule for differentials also implies that

d(BkC) = (dBk)C + Bk(dC),
d(BJT) = (dBy)J¥ + By(d))¥ + B,J(d¥),
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so that

aveca((];kC) = (C® IN)an;g?’“) +(Iy ® Bk)avgf;/C)
Ovec(BpJ W) , Ovec(By) ovec(J) Ovec(W)
ST (®J ®IN)87¢,+(‘I/®B]€) 00 +(IN®B]§J)T¢,.

As expected, the delta method may lead to a singular covariance matrix if we simultaneously
consider multiple values of k. Specifically, a singularity will arise when k£ > 3 because B; and
B, already contain as many elements as A; and C.

Entirely analogous calculations apply to the forecast error variance decomposition of those
shocks, which are given by

B.CB), = B,J¥2)'B}.

F Discrete mixture of normals
F.1 General mixtures and their ML estimators

Let s = (s1,...,8k,...,SK) denote a categorical random variable of dimension K, which
is nothing other than a collection of K mutually exclusive Bernoulli random variables with

P(sy = 1) = A such that S5 | Ay = 1. If z|s is N(0,Iy), then

x =YK si(uy+ 2 %2), (F50)

is a K-component mixture of normals, whose first two unconditional moments are

m=E(x)= Y1, Aoy, = E[E(x[s)], and (F51)

Q=V(x)= 20y Ml(bb) + 2l = (S Mot (Chy Arpsy) = E[V (x[s)]+ V[E(x[s)]. (F52)

The model parameters are A = (A1,..., Ak, ..., k), subject to the unit simplex restrictions
Ax > 0 Vk and Ele)\k =1L p= (... p1),...,p0g) and o = (o,...,0,...,0%), where
o, = vech(Xyg). The representation in (F50) is very general, and may give rise to substantially
deviations from multivariate normality through higher order moments. In particular, it nests
random vectors consisting of N independent univariate mixtures with K; components each, in
which case K = Hf\il K;, which play an important role in our analysis of SVARs with cross-
sectional independent structural shocks in section 2. Third- and fourth-order raw moments,
defined as Flvec(xx')x'] and E[vec(xx')vec(xx’)] respectively, can be readily obtained as con-
vex combinations of the third- and fourth-order raw moments of the K underlying Gaussian
components using the law of iterated expectations. Subtracting the corresponding moments for
a N(m, Q) random vectors yields the third- and fourth-order cumulants.

If we observe a random sample of size T' on x, ML estimation of the model parameters by
numerical methods is conceptually straightforward. Nevertheless, the log-likelihood function of

a finite normal mixture has a pole for each observation. Specifically, it will go to infinity if we
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set fi; = x; and let [21] and A; go to 0 and 1/T, respectively. As a result, the ML estimator
must be defined as the consistent root of the first order conditions (see Kiefer (1978)). In
practice, one may deal with this issue by starting the numerical algorithm from many different
values. In addition, there is a trivial identification issue that arises by exchanging the labels
of the components, but this is also easy to fix. Boldea and Magnus (2009) provide analytical
expressions for the score and Hessian matrix, and compare several numerical algorithms and
asymptotic covariance matrix estimators, while Amengual et al (2021c) exploit the EM principle
to compute the score and the expected value of the Hessian in an intuitive and fast way.
However, it is usually convenient to start the recursions from sensibly chosen values. In this
respect, the EM algorithm discussed by Dempster et al (1977) allows us to obtain initial values

as close to the MLEs as desired. In the unrestricted case, the recursions are as follows:

T
w11 -
A= g 2o k(e o, (F53a)
)\k t=1
1 1 &
~ (n n— ~(n ~(n/
;ﬁ :Ffzwk(xmo( Yxex) — f g (F53Db)
k t=1
(n . 1 T (-1
Ay = thzl’wk(xtﬂp ) (F53c)

where 12
el Sl N 2o N[5 (%0 — pg)]

—1/2
S IS V2N (30— )]

is the posterior probability that observation ¢ comes from the k' component, and ¢y/(.) the

wg(x¢;9) = P(sge = 1|x¢) = (F54)

spherical normal density of dimension N. These recursions had been proposed by several authors
without appealing to the EM principle. For example, Hassenblad (1966) shows that they coincide
with the steepest descent recursions, which confirms that they always lead to improvements in
the log-likelihood function (see also Wolfe (1970) and Peters and Walker (1978)).

The EM algorithm might get stuck in at least two situations. First, if one starts up the
recursions with /120 = p© and f]g) = 2O for all k, then wk(xt;go(o) = )\540 and the parameter
values do not get updated because priors and posteriors coincide. The second undesirable
situation may arise when the mean of one component equals x; for some ¢. In this case, the
algorithm may be irresistibly attracted to one of the log-likelihood poles mentioned before.

The following proposition, which generalises the univariate result in Behboodian (1970), is

instrumental for our consistency results:

Proposition F1 The (pseudo) mazximum likelihood estimators of the unconditional mean vec-
tor (F51) and covariance matriz (F52) of the discrete unrestricted mizture of K multivariate
normals in (F50) are given by the sample mean vector and covariance matrixz (with denominator
T) of x4, respectively.
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Proof. It is easy to check that the EM recursions (F53a)-(F53c) imply that
. K A(ni(n 1 T
& = D ket :“l(cn)‘k T thl Xt
!/
A ( _ K /a(na(nt &(n A(”_A( A(/_l T - 1 T l T
o = Zk:l(p‘k Ky, + Zk ))\k RNAEN = T Zt:l XXt T Zt:l Xt T Zt:l Xt ) s

for all T regardless of the values of (=1, Since the ML estimators constitute the fixed point
of the EM recursions, (i.e. ¢ = (), it follows that #(™ and Q" coincide with the Gaussian
PML estimators. g

As a result, if we reparametrise the model as x; = 7w + Q/2¢}, where e is a standardised
discrete mixture of normals, then we can maximise the log-likelihood function with respect to
A and the free elements of this distribution keeping # and Q) fixed at their Gaussian pseudo
ML values. Interestingly, this somewhat surprising result will continue to be true even in a
complete log-likelihood situation in which we would observe not only x; but also s;. Appendix
H.2 first explains how to parametrise the distribution of €} so as to ensure that E(ef) = 0 and
V(e;) = In when K = 2 as a function of N mean difference parameters §, N(N + 1)/2 relative
variance parameters K and a single probability parameter A, and then generalises this procedure
for any K.

Given that Proposition F1 is a numerical result that holds for any sample size T" and does not
depend in any way on the true distribution of the data, the discrete mixture of normals PMLESs of

7 and € will continue to be consistent for E(x) and V' (x) under distributional misspecification.

F.2 Scale mixtures and their ML estimators

Given that they are rather popular in empirical research, for completeness we also analyse
scale mixtures of normals, which as we will see below, inherit the consistency properties of
general mixtures under distributional misspecifications that preserve ellipticity.

The random vector x = p + »1/2 \/su, where u is uniform on the unit sphere surface in RN,

is distributed as a discrete scale mixture of normals (DSMN) if
S = iy sy s, (F55)

where ¢°|s is x%,. This is a special case of (F50) in which p;, = p and ¥y, = kX Vk. Therefore,
its unconditional mean is p while its unconditional variance will be

Q = V(x)=wX = E[V(x]s)],

@ = E(s/N) =31 Metire (F56)
As a result, we can easily standardise x by assuming that p =0, 3 = Iy and defining the

relative variance parameters

Ky =ki/w, k=1,..., K.
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DSMNs with 4 =0 and ¥ = Iy are a particular case of spherically symmetric random
vectors. Therefore, all their odd central moments will be 0, while their fourth-order moments,
which exceed those of the multivariate normal, depend on a single parameter known as the
multivariate coefficient of excess kurtosis, which is given by E(¢?)/N(N + 1) — 1.

DSMNSs approach the multivariate normal when s}, — 1 for all k, or when any \; — 1.
Near the limit, though, the distributions can be radically different. For instance, given that we
can choose k2/k1 € (0,1] when K = 2 without loss of generality, when A — 0T there are very
few observations with very large variance (“outliers case”), while when A — 1~ the opposite
happens, very few observations with very small variance (“inliers case”) (see Amengual and
Sentana (2011) for further details).

It is also possible to apply the EM algorithm to DSMNs but the recursions are different.
Specifically, they become:

D > R NC -1><m2”>-1x

. (F57a)
TR et ()
s _ T wnxi e ") ( ”3<x Ay (F57D)
Zt 12] 1w (Xe; )( )~
i = jTlN Zwk<xt; P ) (o — pY (50 7 (x — ) (F57c)
k t=1

with 5\,(: and wg(x¢; ) still given by (F53c) and (F54), respectively. Some overall scale nor-
malisation is obviously required. For example, we could fix one k1 to 1, work with the relative
variance parameters s, subject to the restriction Zi{:l Mgk =1 or fix || = 1, as explained
in appendix B of Fiorentini and Sentana (2019). In the first case, the recursions (F57a)-(F57¢)
continue to be valid after excluding the relevant element. Given the invariance properties of ML
estimators, we recommend the first normalisation, which can be changed after convergence has
been achieved.

But if we keep p and X fixed, then the recursions for the N's and x’s simplify considerably.
To understand why, it is convenient to work with the log-likelihood function of ¢, which is a
discrete mixture of K gamma random variables with common shape parameter N/2 and scale
parameters 2k, so that their means are Nky.

Let
N/2—1
St

2N/2T(N/2)

denote the marginal density of ¢, where 7 contains the free elements of A and . In this context,

he(se;m) = S Ay V2 exp(— 5k )
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the EM recursions are given by

T
(n 1 1 (e
o _Fﬁzwk(ct,n( Y, (F58a)
k t=1
~(n 1 T _
A= 7Dy we(sn ™ (F58D)
where N2

exp(—.5r; <)
—N _
ij-il Ajk; /2 exp(—.5k; 1)

)\klﬁk

wi(se; p) = Plsge = 1lst) = (F59)

is the posterior probability that observation ¢ comes from the k** component. Not surprisingly,
(F58a) and (F59) coincide with (F57¢) and (F54), respectively, when

(B, 60 = (5 = B (2 (o = ).

The following proposition, which is the counterpart to Proposition F1, is also instrumental

for our consistency results in the spherically symmetric case:

Proposition F2 The (pseudo) maximum likelihood estimators of the unconditional mean (F56)
of the discrete unrestricted mizture of K gammas with common shape parameter N/2 and scale
parameters 2k, in (F55) is given by the sample mean of .

Proof. It is easy to check that the EM recursions (F58a)-(F58b) imply that
~(n L (ni(n 1 T
& = Zi(:l ’i/(g A = T thl St

for all T regardless of the values of n("~!. Since the ML estimators constitute the fixed point of
the EM recursions, (i.e. 9 = n(>), it follows that & coincides with the sample mean of ¢;. [

Given that Proposition F2 is a numerical result that holds for any sample size T" and does not
depend in any way on the true distribution of the data, the discrete scale mixture of normals
PMLE of w will continue to be consistent for E(s/N) under distributional misspecification
for any spherically symmetric distribution. Once again, this somewhat surprising result will
continue to be true even in a complete log-likelihood situation in which we would observe not

only ¢; but also sy.

G Multivariate dynamic regression models with time-varying
variances and covariances

G.1 Model specification

In a multivariate dynamic regression model with time-varying variances and covariances, the

vector of N observed variables, yy, is typically assumed to be generated as:

ye = 11,(0) + =% (0)e},
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where p,(0) = p(l—1;0), 34(0) = 3(li—1;0), p() and vech [E()] are N x 1 and N(N +
1)/2 x 1 vector functions describing the conditional mean vector and covariance matrix known
up to the p x 1 vector of parameters @, I,_; denotes the information set available at ¢t — 1,
which contains past values of y; and possibly some contemporaneous conditioning variables, and
E;/Q(G) is some particular “square root” matrix such that 2;/2(0)2%1/2/(0) = 3,(0). To focus
on the effect of distributional misspecification, we maintain the assumption that the conditional
mean and variance are correctly specified, in the sense that there is a true value of 8, say
0o, such that E(y¢|I;—1) = p(0o) and V(y¢|l;—1) = 2(60p). We also maintain the high level
regularity conditions in Bollerslev and Wooldridge (1992) because we want to leave unspecified
the conditional mean vector and covariance matrix in order to achieve full generality. Primitive
conditions for specific multivariate models can be found for example in Ling and McAleer (2003).

To complete the model, a researcher needs to specify the conditional distribution of e;. For
the sake of generality, we initially consider a situation in which she makes the assumption that,
conditional on I;_;, the distribution of €} is independent and identically distributed with mean
vector equal to 0 and covariance matrix equal to the identity. Nevertheless, we can obtain
stronger results below by assuming that that this vector follows some particular member of
the spherical family with a well defined density, or €}|[;—1;0,n ~ i.i.d. s(0,Ix,n) for short,
where 11 denotes g additional shape parameters which effectively characterise the distribution of
¢t = €;'ef. Asis well known, spherical symmetry reduces to ordinary symmetry in the univariate
case (N =1).

In the general case, we follow Fiorentini and Sentana (2019) in assuming that it is possible

to rewrite the model in this form:

Reparametrisation 1 A homeomorphic transformation r4(.) = [rc(.), ¥y, (1), ry;.()]" of the
mean-variance parameters 0 into an alternative set ¢ = (@, ..., dk.,), where ¢p;,, is N x 1,
;. = vech(®;c), ®ic is an unrestricted positive definite symmetric matric of order N and ry(6)
18 twice continuously differentiable in a neighbourhood of 6y with rank [81"9 (60) /30] = p, such

that
w(8) = pt () + 3720 i
5.(0) = =% (¢.) i 2 (o) ve. (G60)

This parametrisations simply requires the pseudo-standardised residuals

e (¢.) = =0 Py — 15(B0)] (G61)

to be 7.i.d. with mean vector ¢,,, and covariance matrix ®;..
In the spherically case, in contrast, we are able to consider the existence of a less restricted

reparametrisation.

Reparametrisation 2 A homeomorphic transformation rs(.) = [ri.(.),7%,(.)]" of the mean-
variance parameters @ into an alternative set 9 = (9.,9,)', where 9; is a positive scalar, and

rs(0) is twice continuously differentiable with rank [0, (0) /06] = p in a neighbourhood of 6y,

such that (60) = 1, (9.)
2’:20) - 19’335 (i‘fc) } Vi. (G62)
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Expression (G62) simply requires that one can construct pseudo-standardised residuals
o o—1/2 e}
e () = 590y — 1 (90) (G63)
which are i.i.d. s(0,9;Iy,m), where ¥; is a global scale parameter, a condition satisfied by most

static and dynamic models.

G.2 Consistency of discrete mixtures of normals ML estimators

Proposition 1 in Fiorentini and Sentana (2019) states that if (G62) holds, and €} |I;_1; w00, is
i.i.d. s(0,Iy), where = includes 9 and the true shape parameters, but the spherical distribution
assumed for estimation purposes does not necessarily nest the true density, then the pseudo true
value of the joint ML estimator of ¢ = (9%, 9;,1)’, ¢, is such that V. is equal to the true value

¥co. In this context, in Fiorentini and Sentana (2007) we proposed to estimate ¢; by ¥ (Fer),

where

11
192T(T95) = NT C?(’ﬁ() (G64)
t=1

The rationale for this estimator comes from the fact that under normality the score for ¥J;

simplifies to:
1

29
whose expected value when evaluated at ¥y is 0 because the expected value of ¢7(¥.) =
ey (9.)eg (9.) in (G63) is precisely Nvig.

However, it turns out that Proposition F2 above implies that (G64) numerically coincides

s9,¢(9,0) = [se(9) — N, (G65)

the MLE of 1J; when the assumed spherical distribution is a discrete scale mixture of normals, so
it is irrelevant whether we replace it or not. As a result, the ML estimators based on a discrete
scale mixture of normals are consistent for all the parameters when the true distribution is
spherical. In addition, (G64) also gives us the elliptically symmetric, SP estimator of ©; when
1. is replaced by its iterated, elliptically symmetric, SP estimator.

In turn, Proposition 2 in Fiorentini and Sentana (2019) states that if (G60) holds, and
ef|li—1; w0 is i.i.d. (0,1y), where o includes ¢ and the true shape parameters, but the dis-
tribution assumed for estimation purposes does not necessarily nest the true density, then the
pseudo true value of the joint ML estimator of ¢ = (.., @., 0), ¢, is such that ¢, is equal

to the true value ¢. In this context, in Fiorentini and Sentana (2007) we proposed to estimate
Gim and @;. as @y (Per) and @ir(d.r), respectively, where

T

¢imT(¢c) - %28?(¢c)7 (G66)
t=1

T
¢icT(¢c) = wvech {11—: Z [E;&)(d)c) - ¢imT(¢C)] [eg((ﬁc) - ¢zmT(¢C)]/} : (G67)

t=1

Once again, the rationale for these estimators comes from the fact that under normality the
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scores for ¢, and ¢;. simplify to:

1 - *
Sd)hnt(d)’ 0) = §¢icl/2,€t (¢)’
1 _ _
Sut($,0) = D@ @8 e {e(9)ei'(¢)-In} |

where Dy is the duplication matrix (see Magnus and Neudecker (2019)), whose expected values

at @ are 0 because the expected value of
* _a—l/2 —1/251/2 &
& (Peos i) = ®i0 " (Dirmo — Dim) + Ry TR g E;

is 0 and the expected value of €} (¢, @; )€l (Dog, @;) is Iy when ¢; = ¢;q.

However, it turns out that Proposition F1 above implies that (G66) and (G67) numerically
coincide with the MLEs of ¢,,,, and ¢;, when the assumed distribution is an unrestricted discrete
mixture of normals, so once again, it is irrelevant whether we replace them or not. As a result,
the ML estimators based on an unrestricted discrete mixture of normals are consistent for all
the parameters regardless of the true distribution. Moreover, (G66) and (G67) also give us the
SP estimators of ¢,,, and ¢;. when ¢, is replaced by its iterated SP estimator. In this respect,
the results in this appendix provide an alternative justification for the model-specific consistency
results in Lee and Lee (2009) and Ha and Lee (2011).

H Standardised random variables

H.1 Univariate discrete location scale mixtures of normals

Let s; denote an i.i.d. Bernoulli variate with P(s; = 1) = A. If zs; is 4.i.d. N(0,1), then

st + (1= sV
A (A- MR

1
S lé(st —A\)+
L4+ A1 — \)6?

I

where 6 € R and x > 0, is a two component mixture of normals whose first two unconditional
moments are 0 and 1, respectively. The intuition is as follows. First, note that d(s; — \) is a

shifted and scaled Bernoulli random variable with 0 mean and variance A(1 — )62, But since

se+ (1 —s)vk
(- MR

is a discrete scale mixture of normals with 0 unconditional mean and unit unconditional variance
that is orthogonal to d(s; — A), the sum of the two random variables will have variance 1+ A(1—
A)62, which explains the scaling factor.

An equivalent way to define and simulate the same standardised random variable is as follows

o N[pi(e),032(0)] with probability A (H1)
71 N[ui(0),032(0)] with probability 1 — A
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where o = (9, k, )" and

p(e) = )
L+ A(1— N6
o) = e =~ o)
14+ A1 —A)6?
e = s w}] A+ (=2
o3(e) = : = rot’(e).

[T+ X1 = NN+ (1 — N)&]
Therefore, we can immediately interpret x as the ratio of the two variances. Similarly, since

_ pi(e) — ps(e)
VAoi(e) + (1= NaiZ(e)’

we can also interpret § as the parameter that regulates the distance between the means of the

two underlying components relative to the mean of the two conditional variances.
Finally, note that we can also use the above expressions to generate a two component mixture

of normals with mean 7 and variance w? as

[ N(py,0%) with probability A
Y7 N(pg, 02) with probability 1 — A
with
p =7+ wpi(e), pp=m+wus(e), of =woil(e), o5 =wo5(e).

Interestingly, the expressions for £ and ¢ above continue to be valid if we replace pi (@), p5(0),
o12(@) and 05%(0) by 1y, g, 07 and 03

We can trivially extend this procedure to define and simulate standardised mixtures with
three or more components. Specifically, if we replace the normal random variable in the first
branch of (H1) by a (K — 1)-component normal mixture with mean and variance given by u3 ()
and 0}2(g), respectively, then the resulting random variable will be a K-component Gaussian

mixture with zero mean and unit variance.

H.2 Standardised multivariate discrete location scale mixtures of normals
Consider the following mixture of two multivariate normals

&) ~ { N(py,%1)  with probability A, (H2)

N(py,¥2)  with probability 1 — A.

Let s; denote a Bernoulli variable which takes the value 1 with probability A and 0 with

probability 1 — A. As is well known, the unconditional mean vector and covariance matrix of

o1



the observed variables are:

E(e) = E[E(edst)] = Ay + (1 = Ao,
Vier) = VI[E(eds)] + E[V(erlse)] = M1 = M) (kg — po) (11 — p12)" + 281 + (1 — A) 2o,

Therefore, this random vector will be standardised if and only if

)\lJ’l + (]' - )\)”2 = 07
AL =N (py = p2) (1 — ) +AE1 +(1- M) = L

Let us initially assume that p; = py = 0 but that the mixture is not degenerate, so that
A # 0,1. Let 1%, and X5;3,; denote the Cholesky decompositions of the covariance

matrices of the two components. Then, we can write
AT+ (1= N =S My + (1 - NE 2035, 2130 = S (v + K K72,

where Kj = \/ﬁZILlEQL remains a lower triangular matrix. Given that Iy = eje; +
...+ eney, where e; is the i*" vector of the canonical basis, the Cholesky decomposition of
My + KK, say GG’ , can be computed by means of N rank-one updates that sequentially
add ﬁeiﬁeg for : = 1,..., N. The special form of those vectors can be efficiently combined
with the usual rank-one update algorithms to speed up this process (see e.g. Sentana (1999) and
the references therein). In any case, the elements of G, will be functions of A and the N(N+1)/2
elements in K. If we then choose X1, = Gzl, we will guarantee that AX; + (1 — A)39 = Iy.
Therefore, we can achieve a standardised two-component mixture of two multivariate normals
with 0 means by drawing with probability A one random variable from a distribution with
covariance matrix Gzllel, and with probability 1— X from another distribution with covariance
matrix (1 — \) 1K K.

Let us now turn to the case in which the means of the components are no longer 0. The
zero unconditional mean condition is equivalent to p; = (1 — A\)d and py = —A\J, so that §
measures the difference between the two means. Thus, the unconditional covariance matrix will
be A\(1 — \)8d’ + Iy after imposing the restrictions on ¥; and X9 in the previous paragraph.
Once again, the Cholesky decomposition of this matrix is very easy to obtain because it can be
regarded as a positive rank-one update of the identity matrix, whose decomposition is trivial.

Thus, we can parametrise a standardised mixture of two multivariate normals, which usually
involves 2N mean parameters, 2N (N +1)/2 covariance parameters and one mixing parameter, in
terms of the N mean difference parameters in 8, the V(N 4 1)/2 relative variance parameters in
K and the mixing parameter A, the remaining N mean parameters and N (N +1)/2 covariance
ones freed up to target any unconditional mean vector and covariance matrix.

Mencia and Sentana (2009) explain how to standardise Bernoulli location-scale mixtures of

normals, which are a special case of the two component mixtures we have just discussed in which
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39 = kX. Straightforward algebra confirms that the standardisation procedure described above
simplifies to the one they provide in their Proposition 1.

As in the univariate case, we can trivially extend this procedure to define and simulate
standardised mixtures with three or more components. Specifically, if we replace the normal
random variable in the first branch of (H2) by a (K — 1)-component normal mixture with mean
and variance given by pi (@) and X7 (@), respectively, then the resulting random variable will be

a K-component Gaussian mixture with zero mean and unit variance.
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