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Abstract

Testing normality against discrete normal mixtures is complex because some parameters

turn increasingly underidenti�ed along alternative ways of approaching the null, others are

inequality constrained, and several higher-order derivatives become identically 0. These

problems make the maximum of the alternative model log-likelihood function numerically

unreliable. We propose score-type tests asymptotically equivalent to the likelihood ratio

as the largest of two simple intuitive statistics that only require estimation under the null.

One novelty of our approach is that we treat symmetrically both ways of writing the null

hypothesis without excluding any region of the parameter space. We derive the asymptotic

distribution of our tests under the null and sequences of local alternatives. We also show that

their asymptotic distribution is the same whether applied to observations or standardized

residuals from heteroskedastic regression models. Finally, we study their power in simulations

and apply them to the residuals of Mincer earnings functions.
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1 Introduction

Finite mixture distributions arise naturally when an observed population contains two or

more underlying subpopulations. Starting with the famous Naples bay crab data that Pearson

(1894) analyzed, they are often used to model unobserved heterogeneity in many disciplines.

Economics examples include duration analysis (Heckman and Singer, 1984), measurement errors

(Horowitz and Manski, 1995), schooling and career choice (Keane and Wolpin, 1997), industrial

organization (Berry, Carnall and Spiller, 2006), and multiple equilibria in discrete games (Berry

and Tamer, 2006); see Compiani and Kitamura (2016) for a more thorough list of references.

They have also been used in other �elds, such as �nance, where the objective is to capture the

observed skewness and kurtosis of asset returns that may result from di¤erent market conditions,

as well as for identifying �convergence clubs�of countries based on per capita GDP, and within-

country clustering in household income and wealth.

In this paper, we focus on �nite Gaussian mixtures, which are the most popular, with the

seemingly modest objective of testing a normal distribution against a mixture of two normals

using i:i:d: data. Speci�cally, suppose that individual observations yi (i = 1; : : : ; n) can be of two

types, each following a normal distribution with mean �j and variance �
2
j , j = 1; 2. Crucially,

these types are not observed by the econometrician, so from her perspective the probability

density function (pdf) of an observation is given by the following linear combination of the pdfs

of the two types

��

�
yi � �1
�1

�
+ (1� �)�

�
yi � �2
�2

�
;

where � denotes the standard normal pdf.

Studying classical tests of normality against a mixture of two normals is a devilish problem.

First, the null hypothesis can be written in two ways: either as H0 : �1 = �2 and �
2
1 = �22, or

as H0 : � (1� �) = 0. Many papers focus only on one of these two null hypotheses but we treat

both together. Another di¢ culty is linked to the fact that some parameters are not identi�ed

under normality, although their identity depends on the path along which one approaches the

null. Moreover, when testing H0 : � (1� �) = 0, � is on the boundary of the parameter space, so

standard asymptotic theory no longer applies (see Andrews (2001)). Finally, some parameters

are only identi�ed � if at all � through higher-order derivatives (cf. Dovonon and Renault

(2013)), which means that studying the properties of the likelihood ratio (LR) tests requires

up to an eighth-order expansion. All these aspects make likelihood-based testing for normal

mixtures highly nonstandard.

Previous papers investigating the properties of the LR tests in this context include Ghosh
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and Sen (1985), Hathaway (1985), Chen and Chen (2001), Chen, Chen and Kalb�eisch (2004),

Azaïs, Gassiat and Mercadier (2006), and Chen, Ponomareva and Tamer (2014). The closest

papers to ours are Chen and Li (2009) and Kasahara and Shimotsu (2015). The main di¤erence

is that they only focus on the null H0 : �1 = �2 and �
2
1 = �22, while we simultaneously deal with

the second null hypothesis H0 : � (1� �) = 0. Our work is also closely related to Cho and White

(2007), who consider both null hypotheses but exclude some corner regions of the parameter

space. In this respect, one important contribution of our paper is that we explicitly consider all

possible values of the parameters thanks to a novel convenient bijective reparametrization.

To circumvent the unusual features of the LR test, which not only make inference complex

but also render the maximum of the log-likelihood function of the alternative model numerically

unreliable when the null is true, some authors have proposed moment-based tests. Such an

approach goes back to the smooth tests in Neyman (1937). In particular, Quandt and Ramsey

(1978) use in�uence functions derived from the moment generating function, while others com-

pare the empirical characteristic function to the theoretical one under normality (see Amengual,

Carrasco and Sentana (2020)), or simply a handful of higher-order moments of the normal dis-

tribution, as in Jarque and Bera (1980), Bai and Ng (2005), and Bontemps and Meddahi (2005),

who, like Kiefer and Salmon (1983), look at the expected values of Hermite polynomials rather

than simple powers.1

In this paper, we propose score-type tests based on expansions of the log-likelihood function

for three null hypotheses: equality of means and variances, equality of means only, and equality

of variances only. In all three cases, we derive their limiting distributions and show that they

are asymptotically equivalent to the corresponding LR tests under the null and sequences of

local alternatives. At the same time, our statistics are much simpler to compute because they

do not require the estimation of the full model under the alternative, with the unknown mean

and variance parameters simply replaced by their sample analogs under the null hypothesis.

Moreover, they do not require any tuning parameters, unlike the EM tests of Chen and Li

(2009) and Kasahara and Shimotsu (2015). Interestingly, when testing for the equality of means

and variances, our test statistic coincides with the popular Jarque and Bera�s formula involving

the sample skewness and kurtosis coe¢ cients, which implies that their moment test is equivalent

to the LR test in that context. However, when we look at the global LR test, which explicitly

considers the two di¤erent ways of writing the null hypothesis, the equivalence disappears.

Empirical researchers in economics and �nance, though, are often interested in testing the

1Bai and Ng (2001) propose a test for conditional symmetry in time series contexts based on the empirical
distribution function that can be used to test the null of normality too; see also Dufour et al (1998) for a comparison
of the small-sample properties of various normality tests.
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normality of the standardized residuals of an econometric model. For that reason, we investigate

if our testing procedure is robust to parameter uncertainty. Importantly, we show that when the

mean and variance of the observed variable given some conditioning variables are parametric

functions of those variables, replacing the unknown parameters by a Gaussian maximum like-

lihood estimator obtained under the null does not alter the expressions for our proposed test

statistics or their asymptotic properties.

The rest of the paper is organized as follows. In Section 2, we introduce the model and the

three null hypotheses. Then, we derive the test statistics and their distributions under both the

null and suitable sequences of local alternatives in Section 3, and establish their robustness to

parameter uncertainty in Section 4. Next, we discuss the results of our simulation experiments in

Section 5, and present an empirical application to Mincer earnings functions in Section 6. Finally,

Section 7 concludes, with the proofs collected in the Appendix. Moreover, a supplemental

appendix includes extra details for some of those proofs together with other auxiliary results.

2 Model, hypotheses, and overview of the test

We consider the model

y = � (x; �) + � (x; �) "; (1)

where � and � are known functions of x and a �nite-dimensional vector of unknown parameters

�, and " conditional on x is i:i:d: with zero mean and unit variance. Observations are given by

(xi; yi), i = 1; 2; : : : ; n, where xi could be the lagged value of yi in time-series models, in which

case we would assume that "i conditional on the past is i:i:d:We want to test " is standard normal

against the alternative that it follows a standardized mixture of two normals. It is crucial to

impose that " maintains the same mean and variance in both the null and alternative hypotheses

to ensure that the test�s power is focused on discerning a mixture from a standard normal. This

requires a reparametrization, but as we will show in Section 4, it has the advantage of making

the test robust to the sampling uncertainty in the parameter estimators of �. Consequently, for

the time being we assume � is known and focus on the case without conditioning variables.

Assuming without loss of generality that � (xi; �) = 0 and � (xi; �) = 1, we want to test:

H0 : y has density � (y) against

H1 : y has density ��
�
y���1
��1

�
+ (1� �)�

�
y���2
��2

�
, where

��1 =
�(1� �)q

1 + �(1� �)�2
; ��2 = �

�

1� ��
�
1;
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��21 =
1�

1 + �(1� �)�2
�
[�+ (1� �) exp({)]

and ��22 = exp({)��21 ; (2)

with �, {, and � becoming the unknown shape parameters. This parametrization guarantees

that the marginal distribution of y has zero-mean and unit-variance both under the null and the

alternative.2 As the labels of the two regimes are not identi�ed, we set � � 1=2 henceforth.3

Let # = (�;{; �), with # 2 [���; ��] � [�{;{] � [1=2; 1], with { < ln 2 for reasons that will

become clearer in section 3.2.1.4 We consider three di¤erent parameter spaces

�01 = [���; ��]� [��{; �{]� [1=2; 1] ,

�02 = [���; ��]� f0g � [1=2; 1] and

�03 = f0g � [��{; �{]� [1=2; 1] .

�01 corresponds to the case where �, {, and � are free to take any values within their respective

intervals. In turn, �02 corresponds to the case where { is constrained to be equal to zero,

which is relevant when the econometrician knows that the variance is the same in both regimes.

Finally, �03 corresponds to the case where � is constrained to be equal to zero, which captures

the knowledge that the means are zero in both regimes.

As we mentioned in the introduction, normality can be achieved within �01 with � = { = 0

or with � = 1. When � = { = 0, � is not identi�ed. In turn, when � = 1, � and { are not

identi�ed. The existing literature circumvents these problems by testing either H01 : (�;{) = 0

for � � 1�" < 1, or H02 : � = 1 with minfj�j; j{jg � " > 0 (see, e.g., Cho and White (2007), and

Kasahara and Shimotsu (2015), among others), which e¤ectively excludes the regions depicted

in Figures 1a and 1b, respectively, from the parameter space. However, the �corner case�

f(�; �; �) : minfj�j; j�jg < "; � > 1� "g in Figure 1c will remain o¤-limits even after combining

the admissible parameters in Figures 1a and 1b, and it is not obvious that a test statistic that

excludes that cube is asymptotically equivalent to the unrestricted LR test.

Moreover, it is well known that the information matrix of the maximum likelihood estimators

of (�;{) is singular underH0 regardless of the value of �. To con�ne those singularities to speci�c

parameters whose �rst-order derivatives become exactly equal to zero under the null, we use a

trick analogous to Kasahara and Shimotsu (2015) and replace { with

� = { + (2�� 1)�2=3; (3)

2The fact that (2) restricts the range of values that ��1, �
�
2; �

�2
1 and ��22 may take to ensure that the uncondi-

tional variance of y is 1 is inconsequential for our inference procedures because the new parameters � and { are
unrestricted.

3We could label the two components for � = 1=2 based on the sign of �, and if that also failed, we could
eventually rely on the sign of �.

4Note that the values of ��21 and ��22 are bounded away from zero by the de�nition of the parameter spaces
�0j , j = 1; 2; 3, which rules out poles in the likelihood when the values of �

�2
1 or ��22 go to zero.
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so that the parameter vector becomes � = (�; �; �). The most general version of the null

hypothesis H0 can thus be written as either � = 1 or (�; �) = 0. Let

�j = f(�; �; �) : (�; �� (2�� 1)�2=3; �) 2 �0jg, j = 1; 2; 3: (4)

Figures 2a-2d describe �1, as well as the parameter combinations that lead to Gaussianity.

In this context, the goal of our paper is to construct a score-type test for each of the three

hypotheses mentioned above that is asymptotically equivalent to the analogous LR statistic

LRj = 2

"
sup
�2�j

Ln(�; �; �)� Ln(0; 0; 1)
#
with Ln(�; �; �) =

nX
i=1

li(�; �; �); (5)

where li is the log-likelihood of yi given �, � = 0 and �2 = 1.5

To avoid excluding any region of the relevant parameter spaces, we partition them as follows,

Pa;j = f(�; �; �) 2 �j : maxfj�j; j�jg � 1� �g and Pb;j = f(�; �; �) 2 �j : maxfj�j; j�jg � 1� �g

for j = 1; 2; 3. Testing H0a;j : � = � = 0 with � 2 Pa;j tests whether one or both of the �rst two

moments of the regimes coincide. In turn, testing H0b;j : � = 1 with � 2 Pb;j checks that all the

observations come from a single regime. We can thus associate each of the two ways of writing

the null hypothesis to one and only one of these parameter subspaces, as illustrated in Figures

2e-2g. To the best of our knowledge, this has never been done before.

3 Test statistics

In this section, we �rst treat H0a;j and H0b;j separately and develop the corresponding test

statistics, which we then combine by taking the largest of the two.

3.1 Inside the pyramid: testing H0a

As we mentioned above, testing H0a;1 : � = � = 0 with � 2 Pa;1 assesses whether the

mean and variance are the same in both regimes. Similarly, testing H0a;2 : � = 0 with � 2 Pa;2
implicitly assumes that the variances are known ex-ante to be the same in both regimes and

one simply wants to test whether the mean is also the same. Finally, testing H0a;3 : � = 0 with

� 2 Pa;3 maintains that the means of the two regimes are known ex-ante to be 0 and one only

wants to check that the variances coincide too.

Let LRa;j be the LR statistics for testing H0a;j with � 2 Pa;j , as in Figure 2f, which is given
5For notational simplicity, we systematically use Ln(0; 0; 1) to denote the log-likelihood function under H0 even

though it coincides with both Ln(�; �; 1) and Ln(0; 0; �), avoiding the dependence on � and �2 if unnecessary.
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by

LRa;j = 2

"
sup
�2Pa;j

Ln(�)� Ln(0; 0; 1)
#
:

Our reparametrization allows us to write the derivatives of the log-likelihood with respect to �

and � at the point (0; 0; �) using the Hermite polynomials h3 = y3 � 3y and h4 = y4 � 6y2 + 3

as:
@li
@�

= 0,
@li
@�

= 0,

@2li

@�2
= 0,

@2li
@�@�

= �1
2
�(1� �)h3i,

@2li
@�2

=
1

4
�(1� �)h4i,

@3li

@�3
= 0 and

@4li

@�4
= �2

3
�(1� �)(1� �+ �2)h4i:

Hence, an eighth-order expansion of the log-likelihood function immediately implies that our

score-type tests will depend on

H3;n =

nX
i=1

h3i =

nX
i=1

yi(y
2
i � 3); V3 = var (h3;i) = 6;

H4;n =

nX
i=1

h4i =

nX
i=1

(3� 6y2i + y4i ) and V4 = var (h4;i) = 24:

More formally, the score-type test statistics corresponding to the three null hypotheses and their

asymptotic distributions are given by the following result:

Proposition 1 Let

LMa;1 =
H2
3;n

nV3
+
H2
4;n

nV4
, LMa;2 =

H2
3;n

nV3
+
H2
4;n

nV4
1 [H4;n < 0] and LMa;3 =

H2
4;n

nV4
1 [H4;n > 0]

denote the score-type test statistics corresponding to the three null hypotheses, where 1[A] denotes
the indicator function for event A. Then:
a) For j = 1; 2; 3, LRa;j = LMa;j + op (1) under H0a;j.
b) In addition, under H0;

LMa;1
d! �22, LMa;2

d! �21 +max(0; Z)
2 and LMa;3

d! max(0; Z)2;

where �2j denotes a chi-square random variable with j degrees of freedom and Z is a standard
normal independent of �21.

In LMa;1 we recognize Jarque and Bera�s (1980) test statistic, which exploits both the skew-

ness and kurtosis of the data. Not surprisingly, its asymptotic distribution, as well as that of

LRa;1 by virtue of the asymptotic equivalence in Proposition 1.a, is �22 under H0. In contrast,

LMa;3 exploits the data�s potential lepkurtosis only, while LMa;2 both its potential skewness

and platykurtosis, which explains their partially one-sided nature. Intuitively, unrestricted two-

component Gaussian mixtures, such as the one in Figure 3a, can generate the entire admissible
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range of skewness-kurtosis coe¢ cients. In contrast, two-component mixtures with a common

variance can have either positive or negative skewness but they can only be platykurtic in the

vicinity of the null, as illustrated in Figure 3b. Finally, scale mixtures of two Gaussians are

symmetric and necessarily leptokurtic, as con�rmed by Figure 3c.

3.2 Outside the pyramid: testing H0b

We are now concerned with testing H0b;j : � = 1 with � 2 Pb;j , as in Figure 2g. As usual,

H0b;1 corresponds to the case where both the mean and variance can be di¤erent across regimes

under the alternative, H0b;2 to the case where only the mean may di¤er across regimes, and

H0b;3 to the case where only the variance is allowed to change. Importantly, we are in the rather

unusual setting where the parameter � is on the boundary of its range [1=2; 1] and the �nuisance�

parameters (�; �) are not identi�ed under H0.

The score with respect to � at the point (�; �; 1) is given by

@li
@�

=
1

2

�
3� e��

�2

3

�
� 1q

e��
�2

3

exp

�
1

2

�
y2i�(yi + �)2e

�
�
�� �2

3

���
(6)

��yi �
�
1� e��

�2

3

�
y2i
2
+
�2

2
(y2i � 1):

As we explained before, @li=@� equals zero when � and � are simultaneously 0. For that

reason, we �rst focus on a region where (�; �) is kept away from (0; 0), leaving the discussion of

the general case for later.

3.2.1 Outside the pyramidion

Let B = f(�; �; �) 2 Pb;1 :
p
�2 + �2 � �g for some � > 0. Henceforth, we refer to the

complement of this subset over Pb;1 represented in Figure 2h as the �pyramidion�.6

For a given (�; �), let

LMb (�; �) =

$
Gn(�; �)p
V (�; �)

%2
�

; (7)

where b�c� = min(0; �); Gn(�; �) = 1p
n

Pn
i=1

@li
@� ; and V (�; �) = g

�
�; �� �2=3; �; �� �2=3

�
, with

g (�1; k1; �2; k2) =

exp

�
�(�

2
2e
k1+�21e

k2)
2ek1+k2

�
p
ek1 + ek2 � ek1+k2

exp

"
�

�
�2e

k1 + �1e
k2
�2

2ek1+k2 (ek1+k2 � ek1 � ek2)

#
�1
2

h
3 + 2�1�2 + (�1�2)

2 + �21(e
�2 � 1) + �22(e�1 � 1)� e�1 � e�2 + e�1+�2

i
: (8)

6A pyramidion is the capstone of an Egyptian pyramid, and therefore pyramidal itself. By relying on Euclidean
distances, though, ours is cylindric instead.
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The one-sided nature of (7) re�ects the fact that expected value of (6) is negative for alternatives

with � strictly less than 1 and � and � not simultaneously 0. Importantly, the fact that V (�; �),

which is the variance of (6) under the null, becomes unbounded when exp
�
�� �2=3

�
� 2 is

inconsequential because of our assumption that �{ < ln 2. In this context, we de�ne our score

test statistic as

LMB
b;1 = sup

(�;�;1)2Pb;1\B
LMb (�; �) (9)

and the corresponding LR test statistic by

LRBb;1 = 2

"
sup

�2Pb;1\B
Ln(�)� Ln(0; 0; 1)

#
: (10)

We can then show that:

Proposition 2 1) Under H0, we have that

Gn(�; �) �
1p
n

nX
i=1

@li
@�

) G (�; �)

over Pb;1 \B, where G (�; �) is a Gaussian process indexed by (�; �) with E[G (�; �)] = 0 and

cov[G (�1; �1) ; G (�2; �2)] = g

�
�1; �1 �

�21
3
; �2; �2 �

�22
3

�
:

2) In addition,

(a) LMb (�; �))
$

G(�; �)p
V (�; �)

%2
�

for (�; �; 1) 2 Pb;1 \B;

(b) LMB
b;1

d! sup
(�;�;1)2Pb;1\B

$
G(�; �)p
V (�; �)

%2
�

and

(c) LRBb;1 = LMB
b;1 + op (1) :

Proposition 2 determines the limits of the empirical processes Gn(�; �) (score) and LMb (�; �)

(test) under H0, whence one can obtain the asymptotic null distribution of the equivalent sta-

tistics LRBb;1 and LM
B
b;1.

3.2.2 Inside the pyramidion

In the previous subsection, we restricted (�; �) away from 0. Therefore, we still need to

obtain a test statistic that remains valid inside the pyramidion when (�; �) ! 0, in which case

both (6) and Gn(�; �) also go to zero for any given sample. The problem is that

(
Gn(�; �)p
V (�; �)

: (�; �; 1) 2 �1n f0; 0; 1g
)
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is not stochastically equicontinuous7 because for any given sample of size n we can �nd sequences

(�1m; �1m)! 0 and (�2m; �2m)! 0 such that

lim
m!1

Gn (�1m; �1m)p
V (�1m; �1m)

6= lim
m!1

Gn (�2m; �2m)p
V (�2m; �2m)

:

Consequently, we cannot directly rely on the functional central limit theorem underlying Propo-

sition 2.

To deal with this problem, we perform yet another one-to-one reparametrization over Pb;1
from (�; �; �) to (� ; '; �) such that � ! 0 if and only if (�; �)! 0 (see equations (18)-(20) in the

proof of Proposition 3 for details). Drawing inspiration from Lee and Chesher (1986), we then

de�ne

G0n(� ; ') =
1

�
Gn[�(� ; '); �(� ; ')]

and

V
0
(� ; ') =

1

�2
V [�(� ; '); �(� ; ')]:

This simple trick guarantees that lim�!0 G
0
n(� ; ') is well de�ned, so that we can show that the

empirical process fG0n(� ; ')g converges weakly to a well de�ned Gaussian limit (see again the

proof of Proposition 3 for details). But since

G0n(� ; ')p
V 0(� ; ')

=
Gn[�(� ; '); �(� ; ')]p
V [�(� ; '); �(� ; ')]

(11)

for any � 6= 0, the one-to-one mapping from (�; �; �) to (� ; '; �) over the whole of Pb;1, and

therefore over both Pb;1 \ B and its complement, implies that we can work with G
0
n(� ; ') over

the entire Pb;1 regardless of the partition. Thus, we can de�ne the score-type tests corresponding

to H0b;j , with j = 1; 2; 3, as:

LMb;1 = sup
(�;�):(�;�;1)2�1nf0;0;1g

$
Gn(�; �)p
V (�; �)

%2
�

;

LMb;2 = sup
0<j�j���

666664 Gn(�; �
2

3 )r
V
�
�; �

2

3

�
777775
2

�

and

LMb;3 = sup
0<j�j�{

$
Gn(0; �)p
V (0; �)

%2
�

;

where we have excluded the element f0; 0; 1g because at this point both Gn(0; 0) and V (0; 0) = 0,
7See Andrews (1994) for the de�nitions of stochastic equicontinuity and weak convergence. An example of

failure of equicontinuity is given in Supplemental Appendix B.

9



although it is easy to see that the avoidable discontinuity of (11) at � = 0 could be easily removed

by replacing the ratio by 0.

Let us explain the choice of the spaces over which the supremum is taken. When � = 1,

(�; �; 1) 2 �1 is equivalent to
�
(�; �) : j�j � ��; j�� �2=3j � �{

	
in view of (4), so that

sup
(�;�;1)2�1nf0;0;1g

$
Gn(�; �)p
V (�; �)

%2
�

= sup
j�j���;j���2=3j��{;j�j+j�j>0

$
Gn(�; �)p
V (�; �)

%2
�

:

Similarly, (�; �; 1) 2 �2 is equivalent to
�
(�; �) : j�j � ��; � = �2=3

	
, while (�; �; 1) 2 �3 is equiv-

alent to f(�; �) : � = 0; j�j � �{g.

In this context, the following proposition establishes the equivalence between the LR test

and our proposed one:

Proposition 3 (a) Under H0, we have

LMb;1
d! sup
j�j���;j���2=3j��{;j�j+j�j>0

$
G(�; �)p
V (�; �)]

%2
�

;

LMb;2
d! sup
0<j�j���

6664 G(�; �
2

3 )q
V (�; �

2

3 )

77752
�

and

LMb;3
d! sup
0<j�j�{

$
G(0; �)p
V (0; �)

%2
�

:

(b) Moreover,
LRb;j = LMb;j + op (1) ;

where

LRb;j = 2

"
sup
�2Pb;j

Ln(�)� Ln(0; 0; 1)
#
:

Importantly, the results of Proposition 3, which allow one to obtain the common asymptotic

distributions of LMb;j and LRb;j under the relevant null hypothesis, are novel because they hold

for the whole space Pb, without the need to exclude the corner case in Figure 1c in which the

pyramidion lies.

3.3 Combined test of H0

In the previous two subsections, we have derived the relevant tests statistics over either

Pa;j or Pb;j , but we really want to test the null of normality of the entire parameter spaces

�j , j = 1; 2; 3. Given that �j = Pa;j [ Pb;j , and that the LR test statistic is such that

LRj = max(LRa;j ; LRb;j), we de�ne LMj = max(LMa;j ; LMb;j). Using the asymptotically

equivalent results in Propositions 1 and 3, it immediately follows that LRj = LMj + op (1).
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Interestingly, we can show that the test statistic in Pa is no larger than the one in Pb with

probability 1 for �1 and �3, which implies that the corresponding tests can be simpli�ed as

follows:

Proposition 4 Under H0 and H1; we have

max (LMa;j ; LMb;j) = LMb;j for j = 1 and 3. (12)

Therefore, under H0, we have

LR1 = sup
j�j���;j���2=3j��{;j�j+j�j>0

$
Gn(�; �)p
V (�; �)

%2
�

+ op(1) (13)

and

LR3 = sup
0<j�j��{

$
Gn(0; �)p
V (0; �)

%2
�

+ op(1): (14)

In contrast, the test statistic in Pb;2 may be either smaller or larger than that in Pa;2
with positive probability asymptotically (see Figure 3e in comparison to Figures 3d and 3f).

Consequently, our score-type statistic for testing normality against a �nite normal mixture with

� 2 �2 will be

LM2 = max(LMa;2; LMb;2):

3.4 Distribution under local alternatives

Given that there are two ways of expressing the null, there are two natural local alternatives

to H0 : yi � N (0; 1), depending on whether (�; �)! (0; 0) or � goes to 1.

First, we consider local alternatives in which � is kept �xed somewhere in the range [1=2; 1��]

while (�; �) approaches (0; 0). Let P0 be the distribution of y1; : : : ; yn under the null hypothesis

and P�n be the distribution of y1; : : : ; yn under local alternatives such that limn!1 (w1n; w2n) =

(w1; w2) 2 R2, where

w1n = �1
2

p
n�n�n and

w2n =
p
n

�
1

8
�2n �

1� �+ �2

36
�4n

�
:

We will denote the corresponding local alternatives as

H1n :
n
(w1n; w2n) such that lim

n!1
(w1n; w2n) = (w1; w2) 2 R2

o
:

Somewhat unusually, we can have w1n = O (1) and w2n = O (1) in two di¤erent cases:

(a) when
p
n�n�n = O (1) and

p
n�2n = O(1), or

(b) when
p
n�n�n = O (1) and

p
n�4n = O(1).
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Second, we also consider local alternatives in which � and � are �xed and not simultaneously

0 while � goes to 1 at the usual
p
n rate. We will denote these other local alternatives as

H2n : �n = 1�
�p
n
;

where � is some positive constant.

Let P�;�n , with � = (�; �), denote the probability measure of y1; : : : ; yn corresponding to

H2n. In addition, let �2k (�) denote a non-central chi-square random variable with k degrees of

freedom and non-centrality parameter �. We can then show that:

Proposition 5 (a) P�n is contiguous with respect to P0.
(b) For any (�; 1) 2 B, P�;�n is contiguous with respect to P0.
(c) Under the relevant local alternatives, we have

LMa;1 =
H2
3;n

nV3
+
H2
4;n

nV4

d!
(
�22
�
V3w

2
1 + V4w

2
2

�
under H1n;

�22

�
c23�

2

V3
+

c24�
2

V4

�
under H2n;

LMB
b;1 = sup

(�;1)2Pb;1\B
LMn (�)

d!

8>>><>>>:
sup

(�;1)2Pb;1\B
min

�
0; G(�)+c3w1+c4w2p

V (�)

�2
under H1n;

sup
(�;1)2Pb;1\B

min
n
0;
p
V (�)

�
G(�)
V (�) � �

�o2
under H2n;

where G (�) and V (�) are de�ned at the beginning of section 3.2.1, and

c3 = cov

�
h3i;

@li
@�

�
= �3 + 3�

�
e��

�2

3 � 1
�

and

c4 = cov

�
h4i;

@li
@�

�
= 6�2

�
1� e��

�2

3

�
� �4 � 3

�
1� e��

�2

3

�2
:

(d) Moreover, LMa;j and LRa;j are asymptotically equivalent under H1n while LMB
b;j and LR

B
b;j,

which are de�ned in (9) and (10), respectively, are asymptotically equivalent under H2n.

The following remarks are in order:

Remark 1 An interesting implication of Proposition 5(c) in terms of power under H1n is

the following. We have

c3w1 =

�
�3 + 3�

�
e��

�2

3 � 1
��

w1 � 0;

while the sign of

c4w2 =

"
6�2
�
1� e��

�2

3

�
� �4 � 3

�
1� e��

�2

3

�2#
w2

depends on both the type of local alternative (either
p
n�2n = O (1) or

p
n�4n = O (1)) and the

values taken by � and �. Since we take a minimum over � and �, we can always �nd values of

these parameters such that c4w2 � 0. Consequently, the expectation of @li=@� is negative and
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the test LMB
b;j will have nontrivial power against P�n . However, if �n and �n go to zero too fast,

so that w1 = op (1) and w2 = op (1), then the tests LMa;1 and LMB
b;j will have trivial power.

Remark 2 The LMB
b;j test has nontrivial power against the local alternatives H2n.

Remark 3 It follows from Proposition 5 that the LMa;1 test has non trivial power against

H2n provided either � 6= 0 or � 6= 0. On the other hand, if � were to go to zero faster than

1/
p
n, then LMa;1 would not have power even if � 6= 0 and � 6= 0.

Remark 4 The asymptotic distribution of max(LMa;1; LM
B
b;j) under H1n and H2n could

in principle be deduced from Proposition 5(c), although there is no simple expression for it.

Remark 5 Proposition 5(d) implies that the asymptotic distribution of LRa;j is the same

as that of LMa;j under local alternatives H1n, and the asymptotic distribution of LRBb;j is the

same as that of LMB
b;j under local alternatives H2n.

We would like to emphasize that Proposition 5 implies that our tests are consistent for any

�xed alternative for which � 6= 1 and either � 6= 0 or � 6= 0. Indeed, the di¤erent test statistics

diverge under such �xed alternatives, so their power goes to 1. Consequently, the following

corollary holds:

Corollary 1 Under �xed alternatives for which � 6= 1 and either � 6= 0 or � 6= 0, we have

that

LMa;1 !1 and LMB
b;j !1

as n goes to in�nity.

4 Robustness to parameter uncertainty

In this section, we study the impact of estimating the mean and variance parameters under

the null on the asymptotic properties of our testing procedures. Speci�cally, we consider the case

where the conditional mean and variance of y are parametric functions of another observable

variable x, as in (1). Autoregressive and Garch models are particular examples in which x

contains lagged values of y. In this context, the objective becomes to test whether the standard-

ized innovation " follows a standard normal distribution versus a standardized mixture of two

Gaussian components.

The conditional log-likelihood of the ith observation is given by

k � 1
2
ln�Y (xi; �) + ln

8<: �p
��21

exp

24� 1

2��21

0@yi � �Y (xi; �)q
�2Y (xi; �)

� ��1

1A235
+
1� �p
��22

exp

24� 1

2��22

0@yi � �Y (xi; �)q
�2Y (xi; �)

� ��2

1A2359=; ;

13



where k is the constant of integration and ��1, �
�
2, �

�2
1 and ��22 are de�ned in (2).

Assumption 1 �Y (xi; �) and �Y (xi; �) are eight times continuously di¤erentiable with

respect to �.

Assumption 2 For all k 2 Nd� and �0k = 1; : : : ; 8, it holds that

E

24 @�0k�Y (xi; �)
@�k

!235 <1; E
24 @�0k�2Y (xi; �)

@�k

!235 <1;
where k = (k1; : : : ; kd�),

@�
0k�Y (xi; �)

@�k
=

@�
0k�Y (xi; �)

@�k11 : : : @�
kd�
d�

, and

@�
0k�2Y (xi; �)

@�k
=

@�
0k�2Y (xi; �)

@�k11 : : : @�
kd�
d�

:

Proposition 6 Under Assumptions 1 and 2, replacing � by the restricted maximum likelihood
estimator under H0, �̂, does not alter the expressions of the score-type tests or their asymptotic
distributions.

In practice, yi is simply replaced by ŷi = [yi � �Y (xi; �̂)]=
q
�2Y (xi; �̂) in the expressions for

the di¤erent test statistics discussed in the previous section.

Proposition 6 is reminiscent of Proposition 3 in Fiorentini and Sentana (2007), who proved

that when a researcher estimates a multivariate parametric location-scale model with a para-

metric distribution for the innovations that nests the multivariate normal, including mixtures of

normals as a particular case, the (scaled, average) scores of the mean and variance parameters

are asymptotically independent of the (scaled, average) scores of the shape parameters when the

true distribution is in fact Gaussian. However, their proof assumes a regular model in which the

usual information matrix has full rank.

5 Monte Carlo evidence

In this section, we assess the �nite sample performance of our proposed tests by means of

several extensive Monte Carlo exercises. The composite null hypothesis is a normal distribu-

tion with unknown mean � and variance �2, while the alternative is a mixture of two normal

distributions with either di¤erent means, di¤erent variances, or di¤erent means and variances.

In addition, we compare our tests to the LR test, the EM tests by Chen and Li (2009) and

Kasahara and Shimotsu (2015), whose asymptotic distributions is �22, and some popular non-

parametric procedures based on either the empirical cumulative distribution function (cdf) or

the characteristic function. Speci�cally, we look at the Kolmogorov-Smirnov (KS) test and the

continuum of moments-test proposed in Amengual, Carrasco and Sentana (2020) (ACS).
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In this context, the LR test e¤ectively reduces to

LRj = 2

"
sup
#2�0j

Ln(#; �̂n; �̂2n)� Ln
�
0; 0; 1; �̂n; �̂

2
n

�#
with Ln

�
#; �̂n; �̂

2
n

�
=

nX
i=1

`i
�
#; �̂n; �̂

2
n

�
;

where `i
�
#; �̂n; �̂

2
n

�
is the log-likelihood contribution coming from the ith standardized observa-

tion

ŷi =
yi � �̂n
�̂n

with �̂n =
1

n

nX
i=1

yi and �̂2n =
1

n

nX
i=1

(yi � �̂n)2:

To calculate the maximizers of the unrestricted log-likelihood function, we use the GlobalSearch

Toolbox in Matlab with initial value (0; 0; 1=2), which in turn chooses another 1,000 combinations

of �, { and �. We have also tried the analogous optimization of the reparametrized log-likelihood

function

sup
�2�j

nX
i=1

li(�; �; �; �̂n; �̂
2
n):

Finally, we consider as initial values the maximizers of the eighth-order expansion of the

log-likelihood function too. Speci�cally, for each �j , we use:

� Initial value 1:
�
��n; �

�
n � (2��n � 1)(��n)2=3; ��n

�
, where ��n, �

�
n and �

�
n are de�ned in Step 5

of the proof of Proposition 1.

� Initial value 2: (�b; �b � (2�b � 1)�2b=3; �b), where

(�b; �b) 2 argmax
(�;�;1)2�j ;�2+�2>10�3

�
b@L(�; �; 1)=@�c�

�2
V (�; �)

and

�b = max

�
1 +

1

n

�
1

V (�b; �b)

@L(�b; �b; 1)

@�

�
�
;
1

2

�
:

It turns out, though, that maximizing the original likelihood using GlobalSearch with initial

value (0,0,1/2) yielded the largest criterion function among all these possibilities

As for the other tests that we use for comparison purposes, we proceed as follows. For

Kasahara and Shimotsu (2015), we �x the number of iterations K to 3, the initial value for �

(� in their notation) to 0:5, the penalty term in the penalized likelihood function as in their

expression (22) with an = 0:25, and all tuning parameters to the values suggested in their

paper. As for Chen and Li (2009), we use the code provided by the authors in which the

number of iterations is set to K = 2, the initial values for � (again, � in their notation) to

(0:1; 0:3; 0:5), while the penalty term is the same as in Kasahara and Shimotsu (2015), but with

an = 0:2 + e�1:410209�114:433126=n. In turn, we compute the KS statistic on the basis of the

probability integral transforms of the standardized observations obtained through the standard
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normal cumulative distribution function (cdf). Finally, for the ACS test, we �x the Tikhonov

regularization parameter � to 0:01 and the scale parameter !2 of the Gaussian density used

to de�ne distances and inner products in a suitable L2-type Hilbert space to 1 in view of the

simulation results in Amengual, Carrasco and Sentana (2020).

In all cases, we compute empirical critical values using the following parametric bootstrap

procedure. First, we generate y1; : : : ; yn as iid N(0; 1) and calculate the test statistics based on

the observations standardized with the estimated mean and variance in that sample, restricting

the parameter values over which we compute the supremum to j�j � �� = 2 and j{j � �{ = 1=2.

We then repeat this 10,000 times to estimate the 1 � � quantile of the distribution of our test

statistics in samples of size n, which we then use as �exact�(up to Monte Carlo error) critical

values. In contrast, the use of asymptotic critical values led to substantial size distortions under

the null in simulations available on request.

To assess the size-corrected power of the di¤erent tests, we generate y1; : : : ; yn from a stan-

dardized mixture of two normal distributions with several combinations of �, � and { that include

symmetric mixtures with outliers ({ > 0), as well as asymmetric ones (� 6= 0). Then, for each

sample we standardize the observations and calculate the test statistics as before, repeating this

10,000 times. Finally, we compute the corresponding rejection rates using the empirical critical

values obtained by means of the parametric bootstrap procedure in the previous paragraph.

Rejection rates for sample sizes n = 500 (Panel A) and n = 125 (Panel B) are reported

in Table 1. We include results for LMj (denoted by sup in the table), LMa;j and LMb;j , for

j = 1; 2; 3 (�j in the table), whenever di¤erent. Note that LMa;1 is called JB in the table

because it coincides with Jarque and Bera�s test. Moreover, LMb;1 and LMb;3 are omitted

from the table because they coincide with LM1 and LM3, respectively. The upper subpanels

contain results for di¤erent combinations of � and { when � = 0:975, while the lower ones do

the same but when the mixing probability is 0:75; with the values � and { chosen so that the

skewness and kurtosis in both subpanels coincide. As for the competitors, CL and KaSh refer

to the testing procedures proposed in Chen and Li (2009) and Kasahara and Shimotsu (2015),

respectively, while KS denotes the Kolmogorov-Smirnov test and ACS the CGMM test proposed

in Amengual, Carrasco and Sentana (2020). As a guide, we also include two columns reporting

the third and fourth moments of the alternative DGPs that we consider.

By and large, the results are very encouraging. When focusing on the parameter space

�1, our LM1 test performs similarly to the usual Jarque and Bera�s test. In turn, LM2 clearly

dominates both LMa;2 and LMb;2, while LM3 is better than LMa;3, as expected. In addition, the

relative performance of the tests for di¤erent ��s is in line with the alternative DGPs we consider.
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Regarding the competitors proposed by Chen and Li (2009) and Kasahara and Shimotsu (2015),

our proposal outperforms them for most of the �i�s, particularly for the alternatives with �

close to one, which con�rms the importance of covering the entire parameter space. As for the

consistent tests, the ACS does a decent job, beating both the LR and our score-type tests for

the symmetric alternative hypothesis we consider.

We also assess the asymptotic equivalence between our LM test and the LR test by computing

Gaussian rank correlation coe¢ cients (see Amengual, Tian and Sentana (2022)), which are

robust to the presence of unusually large values. Speci�cally, when n = 125 (500) we obtain .90,

.88 and .86 (.93, .90 and .86) for �1, �2 and �3, respectively.

Finally, we can con�rm that computing times for the score-tests are signi�cantly smaller than

for the LR tests, taking 0.59, 0.62 and 0.27 seconds per simulation when n = 500 versus 1.57,

1.20 and 1.53 seconds for �1, �2 and �3, respectively. Nevertheless, these �gures underestimate

the numerical advantages of our proposed tests in practice for two di¤erent reasons. First, the

location-scale model that we have considered in this section only contains two parameters, unlike

more realistic empirical models such as the one considered in the next section, which typically

contain many more parameters that will have to be estimated under the alternative too. Second,

supplemental appendix E7 of Fiorentini and Sentana (2021) shows that the ML estimators of the

unconditional mean and variance parameters � and �2 in a given sample numerically coincide

with the sample mean and variance (with denominator n) of the observations. As a result, the

criterion function maximized with respect to the shape parameters �, � and � keeping � and �2

�xed at those restricted ML estimators coincides with the criterion function maximized over all

�ve parameters.

6 Empirical application to wage determinants

As is well known, the popular Mincer (1974) regression equation explains individual workers�

(log) earnings of as a function of their education, measured by the number of years of schooling,

and their experience, usually captured by a quadratic polynomial to re�ect skill depreciation.

The rationale for these variables is that labor earnings may be regarded as the returns to human

capital, with education and on the job-training two di¤erent forms of investment in it.

But a simple Mincer equation fails to capture cross-sectional heterogeneity in the earnings

of workers with identical schooling and experience. For example, female MBAs might earn

noticeably less than male MBAs with the same number of years of experience. For that reason,

empirical Mincer earnings functions often include several dummy variables, like gender or race,

aimed to capture part of that heterogeneity. Formally, the gender dummy regression coe¢ cient
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can be understood as the proportional decrease in labor earnings for a woman relative to a

man with the same schooling and experience pro�le. Not surprisingly, earnings discrimination

analysis often focuses precisely on the statistical signi�cance of this regression coe¢ cient.

But another crucial determinant of earnings is innate ability, for which data is regrettably

inexistent in most labor surveys.8 Given the dummy representation of a discrete mixture that

we have exploited in our tests, a mixture model for the residuals of the Mincer equation seems

very adequate to capture the possible existence of di¤erent underlying groups (or categories) of

workers with noticeably di¤erent ability characteristics.9

Chapter 5 of Berndt (1991) contains not only a detailed analysis of the issues that arise in

estimating the determinants of labor earnings, but also a random sample of 534 observations

from the May 1985 issue of the Current Population Survey compiled by the US Bureau of

Census. Given the illustrative nature of our analysis, we estimate by OLS the following baseline

speci�cation with all the observations in this dataset:

lnw = �C + �FFE + �OOTHERS + ";

where w is earnings, FE the female dummy variable, and OTHERS includes dummy variables

for union status, blacks, Hispanics, years of education, years of experience, its square and an

interaction term between schooling and experience. In addition, we estimate the same regression

speci�cation using exclusively female and male subsamples separately after dropping FE to avoid

collinearity. For each of those three empirical speci�cations, we test whether the residual follows

a normal distribution with 0 mean and unknown variance �2.

Unfortunately, we cannot use the parametric bootstrap to compute the critical values as we

did in our Monte Carlo simulations because of the presence of regressors. For that reason, we

use the following semiparametric bootstrap procedure:

1. Regress Y (= lnw) on the explanatory variables (X) and obtain the ordinary least-squares

estimates �̂, �̂2, and the OLS residual "̂.

2. Calculate the test statistic (denoted bT for simplicity) using "̂.
3. Using random sampling with replacement to nonparametrically bootstrap the regressors,

Xb, and then construct Yb = Xb�̂+ �̂"b, where "bj(Y;X) � iid N(0; 1).

4. Regress Yb on Xb and get �̂b and "̂b.

5. Calculate the test statistic Tb with input "̂b.

8Griliches and Mason (1972) constitute an important exception, as they had data on both earnings and IQ
scores for the individuals in their sample. Somewhat surprisingly, though, they found that their ability measures
were essentially uncorrelated with schooling, which means that the omitted variable bias in measuring the returns
to education was negligible.

9See Bonhomme and Manresa (2015) for a closely related approach in panel data.
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6. Repeat 10,000 times steps 2 to 5 and compute the bootstrap p-value as 1
B

PB
b=1 1[Tb > T̂ ].

The results of the empirical application are displayed in Table 3. The �rst column includes

results for the full sample, and the second and third ones for men and women separately. On

the basis of the p-values, we can see that the distribution of wages for the entire sample, condi-

tional on the regressors, is leptokurtic but apparently symmetric. However, when we distinguish

between males and females, some asymmetry appears, with positive skewness for men and nega-

tive skewness for women. Moreover, our tests reject the null hypothesis of normality against the

normal mixture, which suggests that some unobserved heterogeneity remains in both samples.

7 Conclusions and directions for further research

This paper presents score-type tests for normality against normal mixtures with di¤erent

means or variances. Our tests, which are robust to the sampling uncertainty resulting from

the estimation of the conditional mean and variance parameters used to construct standardized

residuals, are asymptotically equivalent to the LR test.

For illustrative purposes, we focus on mixtures of two normal distributions. Considering more

than two categories would represent an interesting extension. We could also explore procedures

to determine the number of components in normal mixture models, as in Kasahara and Shimotsu

(2015). We have restricted ourselves to serially independent observations, but the underlying

regimes may be somewhat persistent in many macroeconomic and �nancial applications. An

extension of our work to the Markov-switching models studied by Carrasco, Hu and Ploberger

(2014) and Qu and Fan (2021) provides another promising route for future research. Similarly,

it would also be worthwhile to consider models in which y is a latent variable, as in Almuzara,

Amengual and Sentana (2019).

It would also be interesting to consider other distributions besides the normal. In fact, the

normal distribution is very special and some of the di¢ culties we have dealt with, such as the

singularity of the information matrix, may not arise with other mixtures. On the other hand,

scale mixtures of univariate normals give rise to mixtures of chi-square distributions with 1

degree of freedom for the squares, and the same happens in the multivariate case if we consider

the exponents of the multivariate normal density, except that the degrees of freedom of the chi-

squares will coincide with the dimension of the random vectors. Therefore, it should be possible

to test for mixtures of two chi-squares using our existing results. We are currently exploring

some of these interesting research avenues.
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Appendix: Proofs

The proofs of our main theorems use some lemmas which we present and prove in the

Supplemental Appendix D. We will also make extensive use of the following notation:

1. the stochastic sequence an is �bounded in probability�, or Op(1), when 8� > 0, there

exists M such that Pr(janj < M) � 1� � for all n;

2. the sequence of events An holds �in�nitely often� (i.o.) when the cardinality of the set

fn : An holdsg is in�nite; and

3. An holds ultimately (all but �nite) when there exists N such that fn : An holdsg = fn :

n � Ng, with N <1. �ultimately�is denoted �ult.�in the sequel.

Overview of the proof of Proposition 1

We �nd the score-type test statistic that is asymptotically equivalent to

2

�
sup
�2Pa

Ln(�)� Ln(0; 0; 1)
�
;

where Pa satis�es that (0; 0; 1) 2 Pa � �1. Notice that in the proof, we use Pa as the parameter

space, but we could, when required, change from Pa to Pa;j for j = 1; 2; 3. With a slight abuse

of notation, we also de�ne

LRn(�) = 2 [Ln(�)� Ln(0; 0; �)] and

LMa
n(�) = 2

H3;np
n
w1 � V3w21 + 2

H4;np
n
w2 � V4w22; (15)

where

w1 = �
�

2

p
n(1� �)�� and w2 = �

�(1� �+ �2)
36

p
n(1� �)�4 + �

8

p
n(1� �)�2:

Moreover, note that Ln(�; �; 1) = Ln(0; 0; �):

There are �ve steps in the proof:

1. For all sequences of �n 2 � with (�n; �n)
p�! 0, we have that

LRn(�n) = LMa
n(�n) + op[hn(�n)];

where hn(�n) = max
�
1; n(1� �n)2�8n; n(1� �n)2�2n�2n; n(1� �n)2�4n

	
.

2. De�ning �LMn = (�LMn ; �LMn ; �LMn ) 2 argmax�2�LMa
n(�), we show that (�

LM
n ; �LMn )

p�! 0

and hn(�LMn ) = Op(1).

3. De�ning �LRn = (�LRn ; �LRn ; �LRn ) 2 argmax�2�LRn(�), we also show that (�LRn ; �LRn )
p�! 0

and hn(�LRn ) = Op(1).
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4. We then prove that LRn(�LRn ) = LMa
n(�

LM
n ) + op(1).

5. We �nally simplify LMa
n(�

LM
n ) to LMa1 (respectively, LMa2 and LMa3) in Pa1 (respec-

tively, Pa2 and Pa3).

The detailed steps can be found in Supplemental Appendix A. �

Proof of Proposition 2

Regarding part (1), by Theorem 10.2 of Pollard (1990) (see also Andrews (2001)),

1p
n

X
i

@li
@�
(:; 1)) G (:)

if (i) B (the set within which the index lies) is totally bounded, (ii) the �nite dimensional

distributions of 1p
n

P
i
@li
@� (:; 1) converge to those of G(.), (iii)

n
1p
n

Pn
i=1

@li
@� (:; 1) : n � 1

o
is

stochastically equicontinuous.

(i) is satis�ed because � � (�; �) 2 B =
n
(�; �) : (�; �; 1) 2 Pb;1 and

p
�2 + �2 � �

o
and B

is compact.

(ii) The process @li@� (:; 1) is iid with mean 0. Moreover,

E sup
�2B

���� @l@� (�; 1)
���� <1: (16)

Indeed, the absolute value of the score involves a constant, a linear combination of jyij and y2i ,

and �nally an exponential term. By the de�nition of B, we cannot have � = 0 and � = 0

simultaneously. Below, we use the notation y for yi while { denotes ���2=3. As � and � belong

to compact sets, so does {. Hence, we can write { 2 [�{;{]. Moreover, 1� e�{ � 1� e�{ < 1

and

1p
e{
exp

�
1

2

�
y2� [y + �]

2

e{

��
= e�{=2 exp

�
�1
2

(1� e{)
e{

y2
�
exp

�
�y�
e{

�
exp

�
� �2

2e{

�
= e�{=2 exp

�
1

2

�
1� e�{

�
y2
�
exp

�
�y�
e{

�
exp

�
� �2

2e{

�
� exp

�
1

2

�
1� e�{

�
y2
�
exp

�
jyj j�j
e{

�
� exp

�
1

2

�
1� e�{

�
y2
�
exp

�
jyj e{

������
� g� (y) : (17)

Note that E[g� (y)] is �nite because 1 � e�{ < 1. So we can major
���@li@� (�; 1)��� by terms which

do not depend on � and have �nite expectations.

By (16), the martingale di¤erence central limit theorem of Billingsley (1968, Theorem 3.1)
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implies that each of the �nite dimensional distributions of 1p
n

P
i
@li
@� (:; 1) converges in distrib-

ution to a multivariate normal distribution whose covariance matrix is characterized by (8).

(iii) Let �n (�) = 1p
n

P
i
@li
@� (�; 1). A process �n (�) is stochastically equicontinuous if for all

" > 0, there exists c > 0 such that

limn!1P

"
sup

k�1��2k�c
j�n (�1)� �n (�2)j > "

#
< ":

To establish that the process �n (�) is stochastically equicontinuous, we use Theorem 1 of An-

drews (1994). First, we use the notation f for �n (�) = 1p
n

P
i f (yi; �) and show that f belongs

to the type II class of functions de�ned in Andrews (1994, p.2270). This is the class of Lipschitz

functions in �, which is such that

jf (:; �1)� f (:; �2)j �M (:) k�1 � �2k , for all �1; �2 2 B:

But

f (y; �1)� f (y; �2) =
e{2 � e{1

2
� e�{1=2 exp

�
1

2
[y2 � (y + �1)2e�{1 ]

�
+e�{2=2 exp

�
1

2
[y2 � (y + �2)2e�{2 ]

�
+ (�2 � �1) y

+(e{1 � e{2) y
2

2
+

�
�21 � �22

�
2

(y2 � 1):

Using the mean-value theorem, we have

e{2 � e{1 = e~{ ({2 � {1) ;

where ~{ lies between {1 and {2. Hence, je{2 � e{1 j = e~{ j{2 � {1j � e{ j{2 � {1j. Let

g (y; �) = �e�{=2 exp
�
1

2
[y2� (y + �)2 e�{]

�
:

The mean-value theorem gives

g (y; �1)� g (y; �2) =
1

2

h
e�~{(y + ~�)2 � 1

i
g(y; e�) ({1 � {2)� (y + ~�)e�~{g(y; e�) (�1 � �2)

jg (y; �1)� g (y; �2)j � 1

2
[e~{(y2 + 2 jyj

�����+ �����2) + 1]g� (y) j{1 � {2j
+(jyj+

�����)e~{g� (y) j�1 � �2j ;
where e� = (~�; ~�), ~� is between �1 and �2, and g� is de�ned in (17). Note that j�1 � �2j �

k�1 � �2k and j{1 � {2j � k�1 � �2k. Hence, f is Lipschitz with M (y) = c0 + c1y + c2y
2 +

c3 jyj g� (y) + c4y
2g� (y) for some constants c0, c1, c2, c3 and c4. Now, to apply Theorem 1 of

Andrews (1994), we need to check his Assumptions A, B, and C. Speci�cally, Assumption A: the
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class of functions f satis�es Pollard�s entropy condition with some envelope �M . This is satis�ed

with �M = 1_ sup jf j _M(.) by Theorem 2 of Andrews (1994) because f is Lipschitz. Similarly,

Assumption B:

lim
n!1

1

n

nX
i

E �M2+� (yi) <1 for some � > 0:

This condition is also satis�ed because yi is a standard normal random variable (r.v.). In turn,

Assumption C: fyig is anm-dependent triangular array of r.v�s holds because fyig is iid. Finally,

stochastic equicontinuity follows from Theorem 1 in Andrews (1994).

As for part (2) of the proposition, expressions (a) and (b) are direct consequences of part

(1) and the continuous mapping theorem. In turn, expression (c) follows from Andrews (2001).

To see this, we need to check the assumptions in Andrews (2001), whose notation is such

that � is our � and � is our (�; �). Let li denote the log-likelihood of yi. Note that � +

(1� �) exp ({) � 1 + exp ({) and 1 + � (1� �) �2 � 1 + �2=4 � 1 + �
2
. As a consequence,

��1 � [(1 + �
2
) (1 + exp ({))]�1 > 0 and ��2 � exp (�{) [(1 + �

2
) (1 + exp ({))]�1 > 0.

To verify Assumption 1*(a), it su¢ ces to apply the uniform law of large numbers (see Lemma

2.4 of Newey and McFadden (1994)), which holds because flig is iid, continuous in both � and

� � (�; �) with probability one, and

E sup
�2[0;1];�2B

jli (�; �)j � sup
�2[0;1];�2B

ln

(
1p
2���1

+
1p
2���2

)
<1:

Moreover, the limit
P
i li (�; �) =n is E[li (�; �)] � l (�; �), which does not depend on � when

� = 1.

To verify Assumption 1*(b), we need to show that l (�; �) is maximized over [0; 1] at �0 = 1

for each � 2 B. By the properties of maximum likelihood estimators (see Theorem 2.5 of Newey

and McFadden (1994)), it su¢ ces to check that P [li (�; �) 6= li (�0; �0)] > 0 for any � 6= �0 and

� 6= �0 = 1, which is true here.

Assumption 22
�
(a) is clearly satis�ed for �+ = (1� "; 1).

As for Assumption 22
�
(b), it is easy to check that li (�; �) has left and right partial derivatives

with respect to � on �+, 8� 2 B.

Regarding Assumption 22
�
(c), we can show that for all 
n ! 0,

sup
�2[0;1]:k��1k�
n






 1n
nX
i=1

�
@2

@�2
li (�; �)�

@2

@�2
li (�; 1)

�




 = op� (1)

where Xn� = op� (1), implies that sup�2B kXn�k = op (1). This condition is tedious to check

but does not raise any special di¢ culty, so the details are omitted.

Assumption 3� holds by of part (A) of Proposition 2. Assumption 5 is satis�ed for Bn =
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bn =
p
n and � = R�. Assumption 6 holds because R� is convex.

Assumptions 7 and 8 hold with �� = R� and with the fact that � in Andrews (2001)�s

notation corresponds to our �, while his (�;  ) are absent in our setting.

Assumptions 9 and 10 are satis�ed. Assumptions 1o and 4o hold trivially because the

restricted estimator is � = 1 and therefore not random.

By Theorem 4 and the remark at the bottom of p. 719 of Andrews (2001), it follows that

LRBb;1 = LMB
b;1 + op (1). �

Overview of the proof of Proposition 3

Part (a) follows from the results of Proposition 2 and the continuous mapping theorem.

In part (b), we look for the score-type test statistic that is asymptotically equivalent to

2

"
sup
�2Pb

Ln(�)� Ln(0; 0; 1)
#

where Pb satis�es that (0; 0; 1) 2 Pb � �1. Notice that in the following proof we use Pb as the

parameter space, but we could, if necessary, replace Pb with Pb;k for k = 1; 2; 3. For � 2 Pb,

de�ne

LRn(�) = 2 [Ln(�)� Ln(0; 0; 1)]

and for � 2 Pbnf(0; 0; 1)g, let

LM b
n(�) =

2p
n

@Ln(�; �; 1)

@�

p
n(�� 1)� V (�; �)n(�� 1)2 and

Vb(�; �) = E

"�
@l(�; �; 1)

@�

�2#
:

We will show that the LR test statistic is asymptotically equivalent to the following score-type

statistic:

sup
�2Pb

LRn(�) =
1

n
sup

�;�:(�;�;1)2Pbn(0;0;1)

(min f@Ln(�; �; 1)=@�; 0g)2

V (�; �)
+ op(1):

The LM statistic is usually constructed based on the �rst two terms of the Taylor expansion.

A third-order Taylor expansion of l(�) gives

l(�; �; �)� l(�; �; 1) = @l(�; �; 1)

@�
(�� 1) + 1

2

@2l(�; �; 1)

@�2
(�� 1)2 + 1

3!

@3l(�; �; ~�)

@�3
(�� 1)3:

It is then easy to verify that @l(�; �; 1)=@� = 0 at (�; �) = 0, which con�rms the singular

information matrix problem. Moreover, the limit

lim
(�;�)!0

1p
V (�; �)

@l(�; �; 1)

@�
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does not exist because its value depends on the direction of (�; �) (see Supplemental Appendix

B for an example). One way to circumvent this problem is to normalize @l(�; �; 1)=@� by a

function of (�; �) and further reparametrize the model. To be more speci�c, for �2 + �2 > 0, let

� = max

����� 136�4 � 18�2
���� ; ����12��

����� ; (18)

' =
min

��� 1
36�

4 � 1
8�
2
�� ; ��12����	

max
��� 1
36�

4 � 1
8�
2
�� ; ��12����	 and (19)

� = max

����� 136�4 � 18�2
���� ; ����12��

����� (1� �): (20)

Note that � > 0 if and only if �2 + �2 > 0. Additionally, we can normalize the score by � as

follows: if
�� 1
36�

4 � 1
8�
2
�� � ��12����,

lim
�!0

��1
@l(�; �; 1)

@�
= sign

�
1

36
�4 � 1

8
�2
�
h4 + sign

�
1

2
��

�
h3';

and if
�� 1
36�

4 � 1
8�
2
�� � ��12����,
lim
�!0

��1
@l(�; �; 1)

@�
= sign

�
1

36
�4 � 1

8
�2
�
h4'+ sign

�
1

2
��

�
h3:

To further simplify the notation, we also reparametrize from � to d = (�; � ; ').

To guarantee that there is a one to one mapping from � to d, we further partition the

parameter space into the following sets. Let

A10 =

�
(�; �; �) 2 Pb :

����12��
���� � ���� 136�4 � 18�2

���� ; �2 + �2 > 0� ;
A20 =

�
(�; �; �) 2 Pb :

1

36
�4 � 1

8
�2 � 0; �2 + �2 > 0

�
;

A30 =
�
(�; �; �) 2 Pb : � � 0; �2 + �2 > 0

	
and

A40 =
�
(�; �; �) 2 Pb : � � 0; �2 + �2 > 0

	
;

De�ne Ai1 = Pbn (Ai0 [ f(0; 0; 1)g) and let�
A1; : : : ; A16

	
=
�
\4i=1Aiji : (j1; : : : ; j4) 2 f0; 1g4

	
:

It is easy to see that

sup
�2Pb

LRn(�) = max
k�16

sup
�2Ak

LRn(�) and sup
�2Pb

LM b
n(�) = max

k�16
sup
�2Ak

LM b
n(�):

As a consequence, it su¢ ces to consider the asymptotic equivalence between sup�2Ak LRn(�)

and sup�2Ak LMn(�) for each Ak. Let

Dk =
n
d = (�; � ; ') : there exists � 2 Ak such that (20)-(19) holds

o
:

25



By Lemma 4, there is a one-to-one mapping between � 2 Ak and d 2 Dk.

Similarly, let

Ak�� = f(�; �) : there exists � such that (�; �; �) 2 Akg and

Dk
�' = f(� ; ') : there exists � such that (�; � ; ') 2 Dkg:

We will show below the asymptotic equivalence of sup�2A1 LRn(�) and sup�2A1 LMn(�) for

A1 = \4i=1Ai0. The proofs for the remaining 15 sets are very similar, so we omit them in the

interest of space. With a slight abuse of notation, let �(� ; '); �(� ; '); �(�; � ; ') denote the value

of �; �; � for given (�; � ; '), and let �(�; �; �); �(�; �); '(�; �) denote the value of (�; � ; ') for given

(�; �).

For (� ; ') 2 D1
�', let

Gdn(� ; ') =
1p
n
��1

@Ln(�(� ; '); �(� ; '); 1)

@�
;

so that

lim
�!0

Gdn(� ; ') =
1p
n
(H4 + 'H3):

Finally, let

LMd
n(�; � ; ') = 2Gdn(� ; ')

p
n� � V (� ; ')n�2 and

LRdn(�; � ; ') = LRn[�(� ; '); �(� ; '); �(�; � ; ')];

There will be four steps in the proof:

1. For all sequences of (�n; �n; 'n) 2 D1 and �n
p�! 0, we have that

LRdn(�n; �n; 'n)� LMd
n(�n; �n; 'n) = op(n�

2
n):

2. Weak convergence of the process fGdn(� ; ') : (� ; ') 2 D1
�'g.

3. We prove that

sup
d2D1

LRdn(d) = sup
d2D1

LMd
n(d) + op(1) = sup

(�;')2D1
�'

�
min

�
Gdn(� ; '); 0

	�2
V (�; �)

+ op(1):

4. Main theorem: We combine results for the 16 sets and go back to the (�;{) space

sup
#2�0

2 (Ln(#)� Ln(0; 0; 1)) =
1

n
sup
#2�0

(min f@Ln(�;{; 1)=@�; 0g)2

V (�;{)
+ op(1):

The detailed steps can be found in Supplemental Appendix B. �
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Proof of Proposition 4

To show (12) for j = 1, note that for k1 2 R,

lim
"!0

$
Gn("; k1")p
V ("; k1")

%2
�

=
1

n

�
4k1H3;n � k21H4;n

�2
�

16k21V3 + k
4
1V4

: (21)

In addition, let k1 = �4H4;nV3H3;nV4
, which is well de�ned with probability one. Then, we can write

(21) =
1

n

�
4k1H3;n � k21H4;n

�2
�

16k21V3 + k
4
1V4

=
1

n

�
�16H4;nV

2
3

H2
3;nV4

�
H2
3;n

V3
+

H2
4;n

V4

��2
�

162
H2
4;nV

4
3

H4
3;nV

2
4

�
H2
3;n

V3
+

H2
4;n

V4

�
=

1

n

 
H2
3;n

V3
+
H2
4;n

V4

!
1 [H4;n � 0] :

On the other hand, for k2 2 R,

lim
"!0

6664 Gn("; k218"3)q
V ("; k218"

3)

77752
�

=
1

n

bH4;n + k2H3;nc2�
V4 + k22V3

: (22)

Letting k2 =
H3;nV4
H4;nV3

, we can write

(22) =
1

n

bH4;n + k2H3;nc2�
V4 + k22V3

=
1

n

j
H4;n +

H3;nV4
H4;nV3

H3;n

k2
�

V4 +
H2
3;nV

2
4

H2
4;nV

2
3
V3

=
1

n

�
V4
H4;n

�
H2
4;n

V4
+

H2
3;n

V3

��2
�

V 24
H2
4;n

�
H2
4;n

V4
+

H2
3;n

V3

�
=

1

n

 
H2
3;n

V3
+
H2
4;n

V4

!
1 [H4;n < 0] :

Then, it is easy to show that with probability 1,

sup
j�j���;j���2=3j��{;j�j;j�j>0

$
Gn(�;{)p
V (�;{)

%2
�

� max

8><>:lim"!0
$
Gn("; k1")p
V ("; k1")

%2
�

; lim
"!0

6664 Gn("; k218"3)q
V ("; k218"

3)

77752
�

9>=>;
=
1

n

 
H2
3;n

V3
+
H2
4;n

V4

!
:

In turn, to show (12) for j = 3, note that

Gn(0; �) =
1p
n

nX
i=1

1

2

h
(e� � 1)(y2i � 1) + 2� 2e

1
2((1�e

��)y2i��)
i
and

V (0; �) =
1

2

 
�2
p
2e�� � 1
e� � 2 + 2e� � e2� � 3

!
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with

lim
�!0

Gn(0; �)p
V (0; �)

=
�H4;np
n
p
V4
:

As a consequence,

sup
j�j��{;j�j>0

$
Gn(0; �)p
V (0; �)

%2
�

�
�
�H4;np
n
p
V4

�2
�
=
H2
4;n

nV4
1 [H4;n > 0] ;

as desired. Results (13) and (14) follow from Propositions 2 and 3. �

Proof of Proposition 5

We show the results for H2n �rst.

Contiguity. By Le Cam�s �rst lemma (see Lemma 6.4 of van der Vaart (1998)), contiguity

holds if dP�;�n=dP0
d! U under P0 with E (U) = 1. Let Ln (�; �) denote the joint likelihood of

y1; : : : ; yn for a given � and �. By the mean value theorem, we have

Ln (�; �) = Ln (�; �0) +
@Ln (�; �0)

@�
(�n � �0) +

1

2

@2Ln(�; ~�)

@�2
(�n � �0)2 ;

where ~� is between �0 and �n. Replacing �0 by 1 and using Andrews (2001), we have

Ln (�; �n) = Ln (�; 1)�
@Ln (�; 1)

@�

�p
n
� 1
2

@2Ln(�; ~�)

@�2
�2

n

= Ln (�; 1)�
1p
n

@Ln (�; 1)

@�
�� 1

2
var[G (�)]�2 + op� (1) :

Therefore, under H0;

dP�;�n
dP0

= exp

�
� 1p

n

@Ln (�; 1)

@�
�� 1

2
var[G (�)]�2

�
+ op� (1)

d! U = exp

�
�G (�) �� 1

2
var[G (�)]�2

�
:

Using the expression of the moment generating function of a normal distribution, we have

E (U) = 1 and hence (b) holds.

Asymptotic distribution. Using the results from (b), the joint distribution of�
H3;np
n
;
H4;np
n
;
1p
n

@Ln (�; 1)

@�
; ln

�
dP�;�n
dP0

��0
converges under H0 to a Gaussian process such that

N

266664
0BBBB@

0

0

0

�1
2var[G (�)]�

2

1CCCCA ;

0BBBB@
V3 0 c3 �c3�
0 V4 c4 �c4�
c3 c4 var[G (�)] �var[G (�)]�
�c3� �c4� �var[G (�)]� var[G (�)]�2

1CCCCA
377775 : (23)
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Let ! = �� �2=3 and consider

c3 = cov[h3i; @li (�; 1) =@�] = E[h3i@li (�; 1) =@�]

= � 1p
e!
E

��
y3i � 3yi

�
exp

�
1

2

�
y2i�

(yi + �)
2

e!

���
;

which follows because h3i is orthogonal to both h1i = yi and h2i = y2i�1. UnderH0; yi � N (0; 1),

it follows that

E

��
y3i � 3yi

�
exp

�
1

2

�
y2i�

(yi + �)
2

e!

���
=

1p
2�

Z �
y3 � 3y

� 1p
2�
exp

�
�(y + �)

2

2e!

�
dy

=
p
e!
Z ��p

e!u� �
�3
� 3

�p
e!u� �

�� 1p
2�
e�

u2

2 du

=
p
e!
�
��3 � 3�e! + 3�

�
if we use the change of variable u = (y + �) =

p
e!.

Hence, we have cov[h3i; @li (�; 1) =@�] = �3 + 3� (e! � 1), and also

cov [h4i; @li (�; 1) =@�] = E[h4i@li (�; 1) =@�]

= � 1p
e!
E

��
y4i � 6y2i + 3

�
exp

�
1

2

�
y2i�

(yi + �)
2

e!

���
= �

�
3e2! + 6e!�2 + �4 � 6

�
e! + �2

�
+ 3
�

= 6�2 (1� e!)� �4 � 3 (1� e!)2

by the orthogonality of the Hermite polynomials and the same change of variable as before.

Then, if we denote by (T; ln(U)) the limiting joint distribution given in (23), it follows from

Le Cam�s third Lemma (see van der Vaart (1998)) that

Tn =

�
H3;np
n
;
H4;np
n
;
1p
n

@Ln (�; 1)

@�

�
converges in distribution under H2n to a normal distribution with mean E(T ) + cov[T; ln(U)]

and the same variance V (T ) as under H0, which proves the following result:

Under H2n,0BB@
H3;np
n

H4;np
n

1p
n

P
i
@li
@�

1CCA d! N

264
0B@ �c3�

�c4�
�var[G (�)]�

1CA ;

0B@ V3 0 c3

0 V4 c4

c3 c4 var[G (�)]

1CA
375 :

The limiting distribution of LMa;1 underH2n follows from the joint distribution of
�
H3;np
n
,H4;np

n

�
under the same sequence of local alternatives derived above.

Finally, the limiting distribution of LMB
b;1 test follows from the distribution of

1p
n

P
i
@li
@� and

the continuous mapping theorem.
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Next, we show the results for H1n.

Contiguity. To establish the result, we need �rst to look at the joint distribution of H3;np
n
;

H4;np
n
, 1p

n
@Ln(�;1)

@� and ln dP�ndP0
under P0. It follows from the proof of Proposition 1 that

0BBBB@
H3;np
n

H4;np
n

1p
n
@Ln(�;1)

@�

ln
dP�n
dP0

1CCCCA d! N

266664
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0

0

0

�V3w21
2 � V4w22

2

1CCCCA ;

0BBBB@
V3 0 c3 V3w1

0 V4 c4 V4w2

c3 c4 var[G (�)] c3w1 + c4w2

V3w1 V4w2 c3w1 + c4w2 V3w
2
1 + V4w

2
2

1CCCCA
377775

under P0. Contiguity is established using Le Cam�s �rst lemma as above.

Asymptotic distribution. It follows from Le Cam�s third lemma that0BB@
H3;np
n

H4;np
n

1p
n
@Ln(�;1)

@�

1CCA d! N

264
0B@ V3w1

V4w2

c3w1 + c4w2

1CA ;

0B@ V3 0 c3

0 V4 c4

c3 c4 var[G (�)]

1CA
375

under H1n. Therefore,

LMa;1 =
H2
3;n

nV3
+
H2
4;n

nV4

d! �22
�
V3w

2
1 + V4w

2
2

�
:

Again, the continuous mapping theorem establishes the asymptotic distribution of LMB
b;1:

Finally, we turn our attention to (d). Given any " > 0, consider the sets fjLRn � LMnj > "g

where LRn, LMn correspond to either the pair LRa;j ; LMa;j or the pair LRBb;j , LM
B
b;j . Proposi-

tion 1 states the asymptotic equivalence of LRa;j and LMa;j under the null, while Proposition 2

establishes the analogous asymptotic equivalence of LRBb;jand LM
B
b;j . Hence, we will have that

P0 (fjLRn � LMnj > "g) ! 0 as n ! 1. Then, the de�nition of contiguity implies that the

same probabilities go to zero under contiguous alternatives. Thus, result (d) is a consequence

of the fact that P�n is contiguous with respect to P0 and P�;�n with respect to P0, as shown in

(a) and (b). �

Proof of Proposition 6

The detailed steps are analogous to the ones in Proposition 1 and can be found in Supple-

mental Appendix C. �
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Table 2: Application to Mincer equations

Speci�cation Men & women Men only Women only

n 534 245 289
Skewness -0.08 0.49 -0.56
Kurtosis 4.72 4.68 4.70

Testing procedures
statistic p-value statistic p-value statistic p-value

�1 LM1 751.0 .00 522.3 .00 1,234.5 .00
JB 61.9 .00 34.2 .00 45.0 .00
LR1 10.7 .01 10.0 .01 11.1 .01

�2 LM2 534.1 .00 468.9 .00 963.8 .00
LMa;2 0.6 .62 8.8 .00 13.7 .00
LMb;2 534.1 .00 468.9 .00 963.8 .00
LR2 5.2 .07 6.2 .05 7.1 .03

�3 LM3 714.1 .00 207.9 .00 464.1 .00
LMa;3 61.3 .00 25.5 .00 31.3 .00
LR3 10.6 .00 5.0 .00 5.4 .00

JB skew 0.6 .44 8.8 .00 13.7 .00
JB kurt 61.3 .00 25.5 .00 31.3 .00

Notes: CPS85 dataset provided by the Berndt (1991). For both, the score-type tests and the likelihood
ratio test, the three di¤erent parameter spaces are

�01 = [���; ��]� [��{; �{]� [1=2; 1] ; �02 = [���; ��]� f0g � [1=2; 1] ; and �03 = f0g � [��{; �{]� [1=2; 1] :

LM�s and LR�s are de�ned in Section 3. JB skew (JB kurt) refers to the Jarque-Bera skewness (kurtosis)
component of the Jarque-Bera (1980) test.
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Figure 1: Exclusion zones of the parameter space

Figure 1a: H01 : (�;{) = 0 with � � 1� " < 1

Figure 1b: H02 : � = 1 with minfj�j; j{jg � � > 0

Figure 1c: Corner case, minfj�j; j{jg < �, � > 1� �
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Figure 2: Reparametrization, null hypotheses and parameter space partition

Figure 2a: Transformed parameter space Figure 2e: Partition of the parameter space

Figure 2b: The null hypothesis H0 : (�; �) = 0 Figure 2f: The null hypothesis H0 : (�; �) = 0

Figure 2c: The null hypothesis H0 : � = 1 Figure 2g: The null hypothesis H0 : � = 1

Figure 2d: The joint null hypothesis Figure 2h: The (cylindric) pyramidion
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Figure 3: Unrestricted and restricted alternatives

Figure 3a: � = 3, { = �3 and � = 0:5 Figure 3d: LMb;1 vs LMa;1
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Figure 3b: � = 2, { = 0 and � = 0:6 Figure 3d: LMb;1 vs LMa;1
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Figure 3c: � = 0, { = 3=2 and � = 0:5 Figure 3f: LMb;3 vs LMa;3
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Notes: (a)-(c) The dashed (black) line represents the pdf of a standard normal distribution. The
continuous (red) line represents the density of the standardized Gaussian mixture described in Section 2,
while the dotted (blue) lines the probability weighted densities of its components; (d)-(f) Scatter plots of
the two test statistics for the three possible null hypotheses based on 10,000 replications under normality.
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Figure 4: Distributions under di¤erent alternatives

Figure 4a: � = 3, { = �3 and � = 0:975 Figure 4d: � = 3, { = �3 and � = 0:75

Figure 4b: � = 2, { = 0 and � = 0:975 Figure 4e: � = 2, { = 0 and � = 0:75

Figure 4c: � = 0, { = 3=2 and � = 0:975 Figure 4f: � = 0, { = 3=2 and � = 0:75

Notes: The dashed (black) line represents the pdf of a standard normal distribution. The continuous
(red) line represents the density of the standardized Gaussian mixture described in Section 2, while the
dotted (blue) lines represent the probability weighted densities of its components.
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A Detailed proof of Proposition 1

We follow the steps outlined in the appendix of the paper.

Step 1

We want to show that for all sequences �n = (�n; �n; �n) 2 � with (�n; �n)
p�! 0, we have

LRn(�n) = LMa
n(�n) + op[hn(�n)]; (A1)

where hn(�) = max
�
1; n(1� �n)2�8n; n(1� �n)2�2n�2n; n(1� �n)2�4n

	
.

Let l denote the log likelihood of the observable y, h3 = y(y2 � 3) and h4 = y4 � 6y2 + 3.
The scores and relevant higher-order derivatives with respect to � and � at the point (0; 0; �n)

are
@l

@�
= 0,

@l

@�
= 0,

@2l

@�2
= 0,

@2l

@�@�
= �1

2
(1� �n)�nh3,

@2l

@�2
=
1

4
(1� �n)�nh4,

@3l

@�3
= 0 and

@4l

@�4
= �2

3
(1� �n)�n(1� �n + �2n)h4:

Let

L[k1;k2]n =
1

k1!k2!

@k1+k2Ln(�)

@�k1@�k2

����
(0;0;�n)

and

4[k1;k2]
n =

1

k1!k2!

@k1+k2Ln(�)

@�k1@�k2

����
(~�n;~�n;�n)

with (~�n; ~�n) between 0 and (�n; �n). Then, taking an eighth-order Taylor expansion we get

1

2
LRn(�n) =Ln(�n)� Ln(0; 0; �n)

=
p
n�4n

�
A1n + �nA2n +

p
n�4nA3n

�
+
p
n�2n

�
A4n + �nA5n +

p
n�2n (A6n + �nA7n)

�
+
p
n�n�n

�
A8n + �n

�
A9n +

p
n�4nA10n

�
+ �n

�
A11n +

p
n�2nA12n

��
+ n�2n�

2
n (A13n +A14n) +

X
j+k=9

1

n
�[j;k]n�jn�

k
n; (A2)

where

A1n =

�
1p
n
L[4;0]n

�
, A2n =

7X
j=5

�
1p
n
L[j;0]n

�
�i�5n , A3n =

�
1

n
L[8;0]n

�
, A4n =

�
1p
n
L[0;2]n

�
,

A5n =

�
1p
n
L[0;3]n

�
, A6n =

1

n
L[0;4]n , A7n =

8X
j=5

�
1

n
L[0;j]n

�
�j�5n , A8n =

�
1p
n
L[1;1]n

�
,

1



A9n =

5X
j=2

�
1p
n
L[j;1]n

�
�j�2n , A10n =

7X
j=6

�
1

n
L[j;1]n

�
�j�6n , A11n =

3X
j=2

�
1p
n
L[1;j]n

�
�j�2n ,

A12n =
7X
j=4

�
1

n
L[1;j]n

�
�j�4n ; A13n =

1

n
L[2;2]n and A14n =

X
8�j+k�5
j�2;k�2

�
1

n
L[j;k]n

�
�j�2n �k�2n :

Next, we have to show that X
j+k=9

�[j;k]�jn�
k
n = op[hn(�n)]: (A3)

To do so, it is worth noticing that for j + k = 9,���� 1n�[j;k]n

���� �
����� 1n 1

j!k!

@j+kLn(�)

@�j@�k

����
(0;0;�n)

�����+
����� 1n 1

j!k!

@j+k+1Ln(�)

@�j+1@�k

����
(��n;��n;�n)

����� ���~�n��� (A4)

+

����� 1n 1

j!k!

@j+k+1Ln(�)

@�j@�k+1

����
(��n;��n;�n)

����� j~�nj
�
����� 1j!k!

"
E
@j+kl(�)

@�j@�k

����
(0;0;�n)

#
+Op

�
1p
n

������ (A5)

+ (1� �n)
1

j!k!

�
(�����E

"
@j+k+1l(�)

@�j+1@�k

����
(0;0;�n)

#�����+
�����
"
E
@j+k+1Ln(�)

@�j@�k+1

����
(0;0;�n)

#�����+ op(1)
)

=O
�
(1� �n)2

�
+Op

�
1p
n

�
+ op(1� �n); (A6)

where (A4) comes from the mean-value theorem, (A5) follows from the central limit theorem

and

maxf
���~�n��� ; j~�njg � maxfj�nj ; j�njg � (1� �n);

while (A6) follows from

E

24 @j0+k0 l(�)
@�j

0
@�k0

�����
(0;0;�n)

35 = O[(1� �n)2];

for j0 + k0 = 9 and j0 + k0 = 10, which can be easily checked by hand. Then,X
j+k=9

�[j;k]�jn�
k
n =

X
j+k=9

�
O
�
(1� �n)2

�
+Op

�
1p
n

�
+ op [(1� �n)]

�
n�jn�

k
n

=
X
j+k=9

O
�
(1� �n)2

�
n�jn�

k
n +

X
j+k=9

Op(
p
n�jn�

k
n) +

X
j+k=9

op [(1� �n)]n�jn�kn

= op [hn(�n)] ;

which follows from �n, �n = op(1) and (1� �n) � maxfj�nj; j�njg.
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If we then use (A2) and (A3), we can show that

1

2
LRn(�n) =

p
n�4n

�
A1n +

p
n�4nA3n

�
+
p
n�2n

�
A4n +

p
n�2nA6n

�
+
p
n�n�n

�
A8n +

p
n�n�nA13n

�
+ op[hn(�n)]; (A7)

which follows from the fact that A1n to A13n are Op(1), and A14n = op(1) because the terms in

curly brackets are Op(1). Also,

1

2
LRn(�n) =�

�n(1� �n + �2n)
36

H4;np
n

p
n(1� �n)�4n

� 1
2

�
�n(1� �n + �2n)

36

�2
V4n(1� �n)2�8n

+
�n
8

H4;np
n

p
n(1� �n)�2n �

1

2

�
�n
8

�2
V4n(1� �n)2�4n

� �n
2

H3;np
n

p
n(1� �n)�n�n �

1

2

�
�n
2

�2
V3n(1� �n)2�2n�2n + op[hn(�n)] (A8)

=
H3;np
n
w1n �

1

2
V3w

2
1n +

H4;np
n
w2n �

1

2
V4w

2
2n + op[hn(�n)]; (A9)

with

w1n=�
�n
2

p
n(1��n)�n�n and w2n=�

�n(1��n+�2n)
36

p
n(1��n)�4n+

�n
8

p
n(1��n)�2n; (A10)

where in the �rst step we re-write (A7) as (A8). Then, letting

l[k1;k2] =
1

k1!k2!

@k1+k2 l

@�k1@�k2
;

the result follows from

1

n
L[8;0]n = �1

2
E[(l[4;0])2] +Op(n

� 1
2 ) and

1

n
L[0;4]n = �1

2
E[(l[0;2])2] +Op(n

� 1
2 );

(see Lemma 1 in Rotnitzky et al (2000)), and

1

n
L[2;2]n = �1

2
E[(l[1;1])2] +Op(n

� 1
2 );

which can easily be checked by hand. As for the second step, it is a simple rearrangement

of terms to go from (A8) to (A9). Therefore, the only di¤erence in the leading terms is the

coe¢ cient of V4, namely,

w22n�
�
�n
8

�2
n(1��n)2�4n�

�
�n(1� �n + �2n)

36

�2
n(1��n)2�8n = Op[n(1��n)2�4n�2n] = op[hn(�n)];

as required.
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Step 2

First, we show that hn(�LMn ) = Op(1). By de�nition, we have

LMa
n(�) =2

1p
n
H3;nw1 + 2

1p
n
H4;nw2 � V3w21 � V4w22

=� V3
�
w1 �

1

V3

H3;np
n

�2
+
1

V3

�
H3;np
n

�2
� V4

�
w2 �

1

V4

H4;np
n

�2
+
1

V4

�
H4;np
n

�2
:

Let wLM1n and wLM2n be de�ned as in (A10) with �n = �LMn , �n = �LMn and �n = �LMn . It is

straightforward to see that wLM1n = Op(1) and wLM2n = Op(1) because

n�
1
2H3;n
V3

= Op(1) and
n�

1
2H4;n
V4

= Op(1)

by the central limit theorem. Next, we have that

��pn(1� �LMn )�LMn �LMn
�� = ����2wLM1n�LMn

���� � ��4wLM1n �� = Op(1);

whence
p
n(1� �LMn )�LMn �LMn = Op(1): (A11)

In addition, we also have�����pn(1� �LMn )
�
�LMn

�2 � 2[1� �LMn +
�
�LMn

�2
]

9

p
n(1� �LMn )

�
�LMn

�4����� =
���� 8

�LMn
wLM2n

����
� 16

��wLM2n �� = Op(1):

Then by Lemma 5,
p
n(1� �LMn )

�
�LMn

�2
= Op(1) and

p
n(1� �LMn )

�
�LMn

�4
= Op(1). Together

with (A11), we have hn(�LMn ) = Op(1). Moreover, it holds that �LMn ; �LMn = op(1) because

p
n(j�LMn j)3 �

p
n(�LMn )2(1� �LMn ) = Op(1)

and
p
n(j�LMn j)5 �

p
n(�LMn )4(1� �LMn ) = Op(1);

as desired.

Step 3

Next, we show Step 3.1: (�LRn ; �LRn )
p�! 0, and Step 3.2: hn(�LRn ; �LRn ; �LRn ) = Op(1).

Step 3.1

Let l0(�) = E(0;0;�) [l(�)]. Invoking Lemma 6, we have

sup�2�

���� 1nLn(�)� l0(�)
���� p�! 0 (A12)
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(i.e. uniform convergence). Moreover, for all � > 0, we have that

l0 (0; 0; �) > sup�2+�2>�;�2Pa l0(�) (A13)

(i.e. well separated maximum), which follows from the fact that � = � = 0 is the unique

maximizer (note that (1��) � maxfj�j; j�jg), l0(�) is continuous, and � is compact. Hence, we
have that (�LRn ; �LRn ) = op(1) by virtue of Lemma A1 in Andrews (1993).

Step 3.2

hn(�
LR
n ) = Op(1) follows directly from Step 3.2.1 and Step 3.2.2 below.

Step 3.2.1

We �rst show that n
�
1� �LRn

�2 �
�LRn

�8
= Op(1) and n

�
1� �LRn

�2 �
�LRn

�4
= Op(1). By

contradiction, assume that either n
�
1� �LRn

�2 �
�LRn

�8 6= Op(1) or n
�
1� �LRn

�2 �
�LRn

�4 6= Op(1),

so that there exists � > 0 such that for all M it holds that Pr(An) > � i.o., where

An =

�
1

288
n
1
2
�
1� �LRn

� �
�LRn

�4
> M

�
[
�
1

144
n
1
2
�
1� �LRn

� �
�LRn

�2
> M

�
:

Since H3;n=
p
n and H4;n=

p
n are Op(1), there exists M1 such that Pr(Bn) � 1 � �=4 for all n,

where

Bn =

�����H3;np
n

���� < M1

�
\
�����H4;np

n

���� < M1

�
:

Next, let rn(�) = LRn(�) � LMn(�). Since �LRn , �LRn and rn(�LRn )=h(�LRn ) are op(1), with

positive � < 1=3, we have that Pr (Cn) � 1� �=4 ult., where

Cn =
�
j�LRn j < �; j�LRn j < �

	
\
(���� rn(�LRn )

hn(�
LR
n )

���� < �

�
1

288

�2)
:

Let us de�ne wLR2n in the same way as w2n, but with the parameters �n, �n and �n replaced by

�LRn , �LRn and �LRn , respectively. In addition, let

Dn =

�
jwLR2n j �

1

288
max

h
n
1
2
�
1� �LRn

� �
�LRn

�4
; 2n

1
2
�
1� �LRn

� �
�LRn

�2i�
;

En = fn
1
2
�
�LRn

�4
> 2n

1
2
�
�LRn

�2g and Fn =
�
jwLR2n j < jwLR1n j

	
:

Then, we can show that for all M ,

Pr(An \Bn \ Cn) � Pr(An) + Pr(Bn) + Pr(Cn)� 2 �
�

2
i.o.,

where the �rst inequality follows from Pr(A\B) � Pr(A)+Pr(B)�1, and the second inequality
follows from the lower bounds of Pr(An), Pr(Bn) and Pr(Cn) derived above.

In addition, let M > M1=� and consider An \Bn \Cn \Dn \En. We next use Lemma 7 to
show that An \Bn \ Cn \Dn \ En �

�
LR(�LRn ; �LRn ; �LRn ) < 0

	
= ;. To do so, let us check all

the required conditions. First, notice that jH3;n=
p
nj < M1 and jH4;n=

p
nj < M1 are satis�ed

5



on Bn. Second, we can easily check that

jwLR1n j >
M1

�
and jwLR1n j > jwLR2n j

because

n
�
1� �LRn

�2 �
�LRn �LRn

�2
= n

1
2
�
1� �LRn

� �
�LRn

�2
n
1
2
�
1� �LRn

� �
�LRn

�2
=

�
8wLR2n
�LRn

+
2

9
[1� �LRn +

�
�LRn

�2
]n

1
2 (1� �LRn )

�
�LRn

�4�
(A14)

� n
1
2 (1� �LRn )

�
�LRn

�2
�
�
�16

��wLR2n ��+ 16n 1
2 (1� �LRn )

�
�LRn

�4�
n
1
2 (1� �LRn )

�
�LRn

�2
(A15)

�
�
1

6
� 1

18

�
n
�
1� �LRn

�2 �
�LRn

�6 � n
�
1� �LRn

�2 �
�LRn

�8
9�2

; (A16)

where (A14) follows from the de�nition of wLR2n , (A15) follows from the bound of �LRn , the �rst

inequality of (A16) is a direct consequence of combining Dnwith En, while the second one follows

from the de�nition of Cn.

Then, we have

��wLR1n �� = �LRn
2

���n 1
2 (1� �LRn )�LRn �LRn

��� � 1

4

n
1
2 (1� �LRn )

�
�LRn

�4
3�

(A17)(
� 24M

� > M1
� (i)

> 1
288n

1
2 (1� �LRn )

�
�LRn

�4 � jwLR2n j (ii)
(A18)

where (A17) follows from (A16), (A18i) follows from combining An with En andM1 < M , while

(A18ii) follows from combining Dn with En.

Next, we check that rn(�LRn )=
�
wLR1n

�2
< � thanks to

���n 1
2 (1��LRn )�LRn �LRn

���� n 1
2 (1��LRn )(�LRn )4

3�
�n

1
2 (1��LRn )(�LR)4 (A19)���n 1

2 (1��LRn )�LRn �LRn

���� n 1
2 (1��LRn )(�LRn )4

3�
� 2n

1
2 (1��LRn )(�LR)2

3�
>n

1
2 (1��LRn )(�LR)2; (A20)

where (A19) follows from (A16) and � < 1=3, and (A20) follows from the de�nition of En and

� < 1=3. Thus, hn(�LRn ) = n(1� �LRn )2(�LRn �LRn )2 and, as a result,�����rn(�LRn )�
wLR1n

�2
����� =

����� rn(�LRn )

hn(�
LR
n )

hn(�
LR
n )�

wLR1n
�2
����� =

���� rn(�LRn )

hn(�
LR
n )

����
�����n
�
1� �LRn

�2 �
�LRn �LRn

�2�
wLR1n

�2
�����

< �

�
1

288

�2 4

[�LRn ]2
< �; (A21)

where (A21) follows from the de�nitions of Cn and wLR1n . But then, we have that LR(�
LR
n ) < 0

conditional on An \Bn \Cn \Dn \En by virtue of Lemma 7, and consequently, that An \Bn \

6



Cn \Dn \ En = ;.
Consider now An \Bn \Cn \Dn \Ecn. We can use Lemma 7 again to show that An \Bn \

Cn \Dn \ Ecn �
�
LR(�LRn ) < 0

	
= ;. First, notice that jH3;n=

p
nj < M1 and jH4;n=

p
nj < M1

are satis�ed on Bn. Next, we have to check that jwLR1n j > M1=� and jwLR1n j > jwLR2n j. To do so,
notice that

n
�
1� �LRn

�2 �
�LRn �LRn

�2 � n
1
2
�
�LRn

�2
n
1
2
�
�LRn

�4 1
�2
�
1� �LRn

�2
(A22)

� n
1
2
�
1� �LRn

� �
�LRn

�2 36

(1� �n + �2n)
(A23)

�
�
1

8

p
n
�
1� �LRn

� �
�LRn

�2 � wLR2n
�n

�
1

�2

� n
1
2
�
1� �LRn

� �
�LRn

�2
36 (A24)

�
�
1

8

p
n
�
1� �LRn

� �
�LRn

�2 � 2jwLR2n j� 1
�2

� 4n
�
1� �LRn

�2 �
�LRn

�4 1
�2
; (A25)

where (A22) follows from the de�nition of Cn, (A23) follows from the de�nition of wLR2n , (A24)

follows from the bound of �LRn , and (A25) follows from combining Dn with Ecn.

Then,

��wLR1n ��= ����(1��LRn )�LRn
2

n
1
2�LRn �LRn

����� 14 2n
1
2 (1��LRn )(�LRn )2

�
>
1

72
n
1
2 (1��LRn )(�LRn )2 (A26)(

> M > M1
� (i);

� jwLR2 j (ii);
(A27)

where (A26) follows from (A25), (A27i) follows from combining An with Ecn, and (A27ii) follows

from combining Dn with Ecn.

To check that rn(�LRn )=
�
wLR1n

�2
< �, let us write

���n 1
2 (1� �LRn )�LRn �LRn

��� � 2n
1
2 (1� �LRn )

�
�LRn

�2
�

> n
1
2 (1� �LRn )

�
�LRn

�2
(A28)

���n 1
2 (1� �LRn )�LRn �LRn

��� � 2n
1
2 (1� �LRn )

�
�LRn

�2
�

>
n
1
2 (1� �LRn )

�
�LRn

�4
�

> n
1
2 (1� �LRn )

�
�LRn

�4
; (A29)

where (A28) follows from (A25), and (A29) follows from the de�nition of Ecn. Thus, hn(�
LR
n ) =

n(1� �LRn )2(�LRn �LRn )2 and, consequently,�����rn(�LRn )�
wLR1n

�2
����� =

���� rn(�LRn )

hn(�
LR
n )

����
�����n
�
1� �LRn

�2 �
�LRn �LRn

�2�
wLR1n

�2
����� =

���� rn(�LRn )

hn(�
LR
n )

���� ���� 4

(�LRn )2

���� < �; (A30)

where the last inequality in (A30) follows from the de�nition of Cn. By Lemma 7, we have

LR(�LRn ) < 0 conditional on An \Bn \ Cn \Dn \ Ecn, and thus, An \Bn \ Cn \Dn \ Ecn = ;.
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Consider now the case An \ Bn \ Cn \Dc
n \ Fn. We can use Lemma 7 once again to show

that An \ Bn \ Cn \ Dc
n \ Fn � fLR(�LRn ) < 0g = ;. Noticing that jwLR1n j > M > M1=� is

satis�ed by combining An with Dc
n and Fn, and that jwLR1n j > jwLR2n j is satis�ed by Fn, we have

to check that jrn(�LRn )=
�
wLR1n

�2 j < �. To do so,�����rn(�LRn )�
wLR1n

�2
����� =

���� rn(�LRn )

hn(�
LR
n )

���� (A31)

�

������
max

n
1; n

�
1� �LRn

�2 �
�LRn

�4
; n
�
1� �LRn

�2 �
�LRn

�8
; n
�
1� �LRn

�2 �
�LRn �LRn

�2o�
wLR1n

�2
������

<

���� rn(�LRn )

hn(�
LR
n )

����
������
max

n�
288wLR2n

�2
;
�
2wLR1n =�

LR
n

�2o�
wLR1n

�2
������ (A32)

�
���� rn(�LRn )

hn(�
LR
n )

���� (288)2 � �;

where (A31) to (A32) follow from the de�nitions of Dc
n and w1. By Lemma 7, we have that

LR(�LRn ; �LRn ; �LRn ) < 0;

conditional on An \Bn \ Cn \Dc
n \ Fn, and therefore An \Bn \ Cn \Dc

n \ Fn = ;.
Finally, consider the case An \Bn \ Cn \Dc

n \ F cn, in which

hn(�
LR
n )�

wLR2n
�2 = max

n
n
�
1� �LRn

�2 �
�LRn

�4
; n
�
1� �LRn

�2 �
�LRn

�8
; n
�
1� �LRn

�2 �
�LRn �LRn

�2o�
wLR2n

�2
�
max

n�
288wLR2n

�2
;
�
4wLR1n

�2o�
wLR2n

�2 � 124 � 4; (A33)

where the �rst inequality in (A33) follows from the de�nition of Dc
n and the second one from

the de�nition of F cn. But then,

LRn(�
LR
n )�

wLR2n
�2 = 2

H3;np
n

wLR1n�
wLR2n

�2 + 2H4;np
n

1

wLR2n
� V3

�
wLR1n

�2�
wLR2n

�2 � V4 + rn(�
LR
n )�

wLR2
�2

� 2M1

M
+ 2

M1

M
� V4 +

���� rn(�LRn )

hn(�
LR
n )

����� 124 � 4 (A34)

� 4� � V4 + � < 0; (A35)

where (A34) follows from the combination of An with Bn, Dc
n, F

c
n and (A33), and (A35) follows

from the de�nition of Cn and V4 = 24.

To summarize, we have An \Bn \ Cn = ;, which contradicts

Pr(An \Bn \ Cn) �
�

2
i.o.,

as desired, and thus, n(1� �LRn )2(�LRn )8 = Op(1) and n(1� �LRn )2(�LRn )4 = Op(1).
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Step 3.2.2

Next, we will show that n(1� �LRn )2(�LRn �LRn )2 = Op(1), i.e. that for all � > 0, there exists

M > 1 such that Pr[n(1� �LRn )2�LRn �LR2n > M ] < � ult. To do so, notice that

rn(�
LR
n ) = op[hn(�

LR
n )] = op[maxf1; n

�
1� �LRn

�2 �
�LRn �LRn

�2g]
because n(1� �LRn )2(�LRn )8 = Op(1) and n(1� �LRn )2(�LRn )4 = Op(1). Letting 0 < m < 1

4V3, we

have that

Pr

 ����� 16rn(�
LR
n )

maxf1; n
�
1� �LRn

�2 �
�LRn �LRn

�2g
����� > 2m

!
<
�

2
ult. (A36)

In turn, given that H3;n=
p
n and H4;n=

p
n are Op(1), there exists M > 1 such that for all n,

Pr

�
H3;np
n
�M

�
V3
2
� 2m

��
<
�

4
and Pr

"
1

2V4

�
H4;np
n

�2
> mM2

#
<
�

4
: (A37)

We then have that Pr
���wLR1n �� > M

�
is equal to

=Pr
�
f
��wLR1n �� > Mg \ fLR(�LRn ) � 0g

�
=Pr

�
f
��wLR1n �� > Mg \

�
LMa

n(�
LR
n )

(wLR1n )
2

+
rn(�

LR
n )

(wLR1n )
2
� 0
��

=Pr

�
f
��wLR1n �� > Mg \

�
LMa

n(�
LR
n )

(wLR1n )
2

+
rn(�

LR
n )

(wLR1n )
2
� 0
�
\
�����rn(�LRn )

(wLR1n )
2

���� � 2m��
+ Pr

�
f
��wLR1n �� > Mg \

�
LMa

n(�
LR
n )

(wLR1n )
2

+
rn(�

LR
n )

(wLR1n )
2
� 0
�
\
�����rn(�LRn )

(wLR1n )
2

���� > 2m��

�Pr

264f��wLR1n �� > Mg \

8><>:H3;np
n

1

wLR1n
� V3
2
�
V4

�
wLR2n � 1

V4

H4;np
n

�2
2(wLR1n )

2
+

1
V4

�
H4;np
n

�2
2(wLR1n )

2
+m � 0

9>=>;
375

+ Pr

"�����rn(�LRn )�
wLR1n

�2
����� > 2m

#

�Pr
 
f
��wLR1n �� > Mg \

(
H3;np
n
� wLR1n

"
V3
2
�m�

H2
4;n

2nV4

1�
wLR1n

�2
#)!

+
�

2
(A38)

�Pr
"
H3;np
n
�M

 
V3
2
�m�

H2
4;n

2nV4

1

M2

!#
+
�

2
ult., (A39)
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where (A38) uses (A36). In addition,

(A39) �Pr
"(

H3;np
n
�M

 
V3
2
�m�

H2
4;n

2nV4

1

M2

!)
\
(
H2
4;n

2nV4
� mM2

)#

+ Pr

"(
H3;np
n
�M

 
V3
2
�m�

H2
4;n

2nV4

1

M2

!)
\
(
H2
4;n

2nV4
> mM2

)#
+
�

2

�Pr
�
H3;np
n
�M

�
V3
2
� 2m

��
+ Pr

 
H2
4;n

2nV4
> mM2

!
+
�

2

� �
4
+
�

4
+
�

2
= �; (A40)

where in (A40) we have used (A37).

Step 4

We now show that LRn(�LRn ) = LMa
n(�

LM
n ) + op(1), that is, that for all �1 > 0 and for all

�2 > 0, there exists N such that for all n > N ,

P
���LRn(�LRn )� LMa

n(�
LM
n )

�� < �1
�
> 1� �2:

Letting

Gn =
n
n
1
2
�
1� �LRn

� �
�LRn

�4
; jn

1
2
�
1� �LRn

�
�LRn �LRn j; n

1
2
�
1� �LRn

� �
�LRn

�2
;

n
1
2
�
1� �LRn

� �
�LMn

�4
; jn

1
2
�
1� �LRn

�
�LMn �LMn j; n

1
2
�
1� �LRn

� �
�LMn

�2o
;

we know that max fGng = Op(1), so that for �2 > 0 there exists M such that for all n,

Pr (maxGn �M) > 1� �2
2
: (A41)

Letting A = f� 2 � : n 1
2 (1� �) �4 � M;n

1
2 (1� �)�2 � M; jn 1

2 (1� �) ��j � Mg, we can then
show

sup
�2A

jLRn(�)� LMa
n(�)j = op(1);

i.e. there exists N such that for all n > N , we have that

Pr

�
sup
�2A

jLRn(�)� LMa
n(�)j < �1

�
> 1� �2

2
: (A42)

To show this, let

(�n; �n; �n) 2 arg max
(�;�;�)2A

jLRn(�; �; �)� LMa
n(�; �; �)j :

Given that n
1
2 (1� �n) �4n = Op(1) and n

1
2 (1� �n)�2n = Op(1), we have �n; �n

p�! 0, whence

sup
(�;�;�)2A

jLRn(�; �; �)� LMa
n(�; �; �)j = jLRn(�n; �n; �n)� LMa

n(�n; �n; �n)j = op(1);

10



where the second equality follows from (A1). Therefore, for n > N we have

Pr
���LRn(�LRn )� LMa

n(�
LM
n )

�� < �1
�

�Pr
����LRn(�LRn )� LMa

n(�
LM
n )

�� < �1
	
\
�
�LRn 2 A

	
\
�
�LMn 2 A

	�
�Pr

��
sup
�2A

jLRn(�)� LMa
n(�)j < �1

�
\
�
�LRn 2 A

	
\
�
�LMn 2 A

	�
(A43)

�Pr
�
sup
�2A

jLRn(�)� LMa
n(�)j < �1

�
+ P

��
�LRn 2 A

	
\
�
�LMn 2 A

	�
� 1 (A44)

�1� �2
2
+ 1� �2

2
� 1 = 1� �2; (A45)

where we have used Pr(E1 \ E2) � Pr(E1) + Pr(E2)� 1 to go from (A43) to (A44), and (A41)

and (A42) to go from (A44) to (A45).

Step 5

We consider the di¤erent cases separately in Step 5.1: P = Pa;1, Step 5.2: P = Pa;2 and
Step 5.3: P = Pa;3.

Step 5.1 We have that

LMa
n(�; �; �) = �V3

�
w1n �

1

V3

H3;np
n

�2
+
1

V3

�
H3;np
n

�2
� V4

�
w2n �

1

V4

H4;np
n

�2
+
1

V4

�
H4;np
n

�2
;

where

w1 = �
1

2
(1� �)�

p
n�� and w2 = �(1� �)

p
n

�
1

8
�2 � 1� �+ �

2

36
�4
�
:

Next, let

w21 =
(1� �)�

8

p
n�2 and w22 = �

(1� �)�(1� �+ �2)
36

p
n�4:

We �rst aim to �nd an upper bound for LMa
n(�

LM
n ). In that respect, we can easily show that

LMa
n(�

LM
n ) �

H2
3;n

nV3
+
H2
4;n

nV4
: (A46)

Second, we aim to �nd a lower bound for LMa
n(�

LM
n ). To do so, let ��n = 1=2,

��n =

8><>:2n
� 1
8

�
� 12
V4

H4;np
n

� 1
4

if H4;n � 0;

�n� 1
4

��� 2V3 H3;np
n

���.q 2
V4

H4;np
n

if H4;n > 0;

and

��n =

8><>:�
�
n�

3
8
4
V3

H3;np
n

�.�
� 12
V4

H4;np
n

� 1
4
if H4;n < 0;

4sign(H3;n)n�
1
4

q
2
V4

H4;np
n

if H4;n � 0:

It is then easy to verify that (��n; �
�
n; �

�
n) 2 Pa with probability approaching one, whence

LMa
n

�
�LMn

�
� LMa

n (�
�
n; �

�
n; �

�
n) =

H2
3;n

nV3
+
H2
4;n

nV4
+ op(1): (A47)

11



To verify the second equality of (A47), we can easily check by hand that

w�1 = �
1

2
(1� ��n)��n

p
n��n�

�
n =

1

V3

H3;np
n
;

w�21 =
(1� ��n)��n

8

p
n(��)2 =

8><>:
1
32n

� 1
4

�
4
V3

H3;np
n

�2��
� 12
V4

H4;np
n

� 1
2
= op(1) if H4;n < 0;

1
V4

H4;np
n

if H4;n � 0;

and

w�22 = �
(1� ��n)��n[1� ��n + (��n)2]

36

p
n(��n)

4

=

8<:
1
V4

H4;np
n

if H4;n � 0;

� 1
192n

� 1
2

�
�
��� 2V3 H3;np

n

���.q 2
V4

H4;np
n

�4
= op(1) if H4;n > 0;

with

w�2 = w�21 + w
�
22 =

1

V4

H4;np
n
+ op(1):

But then, (A46) and (A47) imply that

LMa
n

�
�LMn

�
=
H2
3;n

nV3
+
H2
4;n

nV4
+ op(1):

Step 5.2: Recall that �2 = f� : � 2 [1=2; 1]; � 2 [��; ��]; � = (2� � 1)�2=3]g. Then, given
that � = (2�� 1)�2=3, we will have

w1 = �
(1� �)�(2�� 1)

6

p
n�3 and w2 =

(1� �)�
72

�
�1� 2�+ 2�2

�p
n�4:

As before, we �rst aim to �nd an upper bound for LMa
n(�

LM
n ). In that regard, we can notice

that w2 � 0 for � 2 �2 so that

LMa
n(�

LM
n ; �LMn ; �LMn ) � 1

V3

�
H3;np
n

�2
+ sup
w22R�

"
�V4

�
w2 �

1

V4

H4;np
n

�2
+
1

V4

�
H4;np
n

�2#

=
1

V3

�
H3;np
n

�2
+
1

V4

�
H4;np
n

�2
1 [H4;n < 0] :

Second, we aim to �nd a lower bound for LMa
n(�

LM
n ). For that purpose, let �� 2 (1=2; 1),

��n =

8>>><>>>:
�sign(H3;n)2n�

1
8

�
� 12
V4

H4;np
n

� 1
4
if H4;n < 0;

�n� 1
6

 
6
V3

H3;np
n

(1���)��(2���1)

! 1
3

if H4;n � 0;

and

��n =

8><>:
1
2 + n

� 1
8
sign(H3;n) 3V3

H3;np
n

2
�
� 12
V4

H4;np
n

� 3
4

if H4;n < 0;

�� if H4;n � 0:

12



We can then verify that

w�1 = �
(1� ��n)��n(2��n � 1)

6

p
n(��n)

3 =
1

V3

H3;np
n
+ op(1);

w�2 =
(1� ��n)��n

72
[�1� 2��n + 2(��n)2]

p
n(��n)

4

=

8<:
1
V4

H4;np
n
+ op(1) if H4;n < 0;

(1���)��
72 (�1� 2��+ 2��2)n� 1

6

h
1

(1���)��(2���1)
6
V3

H3;;np
n

i 4
3
= op(1) if H4;n � 0:

As a result,

LMa
n(�

LM
n ) � LMa

n(�
�
n; �

�
n; �

�
n) =

H2
3;n

nV3
+
H2
4;n

nV4
1[H4;n < 0] + op(1);

whence

LMa
n(�

LM
n ) =

H2
3;n

nV3
+
H2
4;n

nV4
1[H4;n < 0];

as desired.

Step 5.3: Recall that �03 = f# : � 2 [1=2; 1]; � = 0;{ 2 [��; ��]g and Pa;3 = f(�; �; �) :
(�; �� (2�� 1)�3=3; �) 2 �03;maxfj�j; j�jg � 1� �g. Exploiting the fact that � = 0, we have

w1 = 0 and w2 =
1

8
�(1� �)

p
n�2:

Thus,

LMa
n(�; �; �) = �V4

�
w2 �

1

V4

H4;np
n

�2
+
1

V4

�
H4;np
n

�2
:

Next, we �rst aim to �nd an upper bound for LMa
n(�

LM
n ). It is easy to see that w2 � 0 for

� 2 �3 so that

LMa
n(�

LM
n ; �LMn ; �LMn ) � sup

w22R+

"
�V4

�
w2 �

1

V4

H4;np
n

�2
+
1

V4

�
H4;np
n

�2#

=
1

V4

�
H4;np
n

�2
1 [H4;n > 0] :

Second, to �nd a lower bound for LMa
n(�

LM
n ), let ��n = 1=2 and

��n =

(
0 if H4;n � 0;
4n�

1
4

q
2H4;n
V4
p
n

if H4;n > 0:

As a result, w�2 =
1
V4

H4;np
n
1 [H4;n > 0], whence

LMa
n(�

LM
n ) � LMa

n(0; �
�
n; �

�
n) =

H2
4;n

nV4
1[H4;n � 0];

as desired. �
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B Detailed proof of Proposition 3

Before proceeding with the proof, we start by giving an example of sequences (�m; �1m) ! 0

and (�2m; �2m)! 0 such that

lim
m!1

Gn (�1m; �1m)p
V (�1m; �1m)

6= lim
m!1

Gn (�2m; �2m)p
V (�2m; �2m)

:

Note that for (�; �)! (0; 0), it holds

1p
n

@L

@�

����
(�;�;1)

=
H4np
n

�
1

36
�4 � 1

8
�2
�
+
H3np
n

1

2
��+ op[�(�; �)];

where

�(�; �) = max

����� 136�4 � 18�2
���� ; ����12��

����� :
Let

(�1; �1) =
�p
3�;

p
2�
�
; (�2; �2) = (0; �) :

It is easy to see that with � ! 0, we have j�1 � �2j+ j�1 � �2j ! 0,

lim
�!0

1p
n
@L
@� (�1; �1; 1)q

var
�
@`
@�(�1; �1; 1)

� = H3np
nV3

and lim
�!0

1p
n
@L
@� (�2; �2; 1)q

var
�
@`
@�(�2; �2; 1)

� = H4np
nV4

:

This shows that the process Gn(�;�)p
V (�;�)

is not stochastically equicontinuous.

Next, we follow the steps of the proof outlined in the appendix of the paper.

Step 1

Lemma 1 Let Rdn(�; � ; ') = LRdn(�; � ; ')�LMd
n(�; � ; '). For all sequences of (�n; �n; 'n) 2 D1

and �n
p�! 0, we have that

Rdn(�n; �n; 'n) = op
�
max

�
1; n�2n

	�
:

Proof. Let �n = �(�n; 'n), �n = �(�n; 'n), �n = �(�n; �n; 'n). First we show that 1� �n
p�! 0.

Recall that �n = max
��� 1
36�

4
n � 1

8�
2
n

�� ; ��12�n�n��	 (1� �n), whence either (1� �n) � p�n or
max

����� 136�4n � 18�2n
���� ; ����12�n�n

����� � p�n: (B1)

Under (B1), we have

2�n �
�
1

36
�4n �

1

8
�2n

�2
+
1

4
�2n�

2
n =

�
1

36
�4n

�2
+

�
1

8
�2n

�2
+
1

4
�2n�

2
n

�
1� 1

36
�2n

�
: (B2)

It is then easy to verify that given (B1), 1� 1
36�

2
n � 0 with probability approaching 1. Therefore,

14



(B2) implies that

2�n �
�
1

36
�4n

�2
+

�
1

8
�2n

�2
)j�nj � 25=8

p
3�1=8n ; j�nj � 27=4�1=4n ;

and also, that 1 � �n � maxfj�nj; j�njg � maxf25=8
p
3�
1=8
n ; 27=4�

1=4
n g because of the restriction

on Pb. In sum, it holds that

1� �n � maxf25=8
p
3�1=8n ; 27=4�1=4n ; �1=2n g p�! 0:

Second, a third-order Taylor expansion gives

1

2
LRdn(�n; �n; 'n) = Ldn(�n; �n; 'n)� Ldn(0; �n; 'n)

= Ln(�n; �n; �n)� Ln(�n; �n; 1)

=
@Ln(�n; �n; 1)

@�
(�n � 1) +

1

2

@2Ln(�n; �n; 1)

@�2
(�n � 1)2

+
1

3!

@3Ln(�n; �n; ~�n)

@�3
(�n � 1)3:

The �rst term is

@Ln(�n; �n; 1)

@�
(�n � 1) =

1p
n

1

�n

@Ln(�n; �n; 1)

@�

p
n�n(�n � 1)

= Gdn(�n; 'n)
p
n�n(�n � 1):

In turn, the second term will be

1

2

�
1

n

@2Ln(�n; �n; 1)

@�2

�
n(�n�1)2=

1

2

�
E

�
@2l(�n; �n; 1)

@�2

�
+Op

�
�np
n

��
n(�n�1)2 (B3)

=
1

2
E

�
@2l(�n; �n; 1)

@�2

�
n(�n�1)2+Op[

p
n�n(�n�1)2]

=
1

2
E

�
��2n

@2l(�n; �n; 1)

@�2

�
n�2n(�n�1)2+Op[

p
n�n(�n�1)2] (B4)

=�1
2
V d(�n; 'n)n�

2
n(�n � 1)2 + op[

p
n�n(�n � 1)]; (B5)

where (B3) follows from Lemma 8(8.1), and (B4) to (B5) from the information matrix equality.

Let us now turn to the third term. In view of Lemmas 8.2 and 8.5, we have����� 1n��1n @3L(�n; �n; ~�n)

@�3

����� =
�������1n E

"
@3l(�n; �n; ~�n)

@�3

#
+Op

�
1p
n

������
= O(�n) +Op

�
1p
n

�
;
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whence

1

n

@3L(�n; �n; ~�n)

@�3
n(�n � 1)3 =

�
O(�n) +Op

�
1p
n

��
n�n(�n � 1)3 = op[n�

2
n(�n � 1)2]:

In sum, we have LR(�n; �n; �n) = LM(�n; �n; �n) + op
�
n�2n

�
. �

Step 2

Lemma 2 For (� ; ') 2 D1
�', Gdn(� ; ') ) Gd(� ; '), where Gd(� ; ') is a Gaussian process with

mean 0 and covariance kernel

K[(� ; '); (� 0; '0)] = 1

�� 0
cov

�
@l[�(� ; '); �(� ; '); 1]

@�
;
@l[�(� 0; '0); �(� 0; '0); 1]

@�

�
: (B6)

Proof. Here we follow Andrews (2001). By Theorem 10.2 of Pollard (1990), Gdn(�) ) Gd(�)
if (i) the domain of (� ; ') is totally bounded, (ii) the �nite dimensional distributions of Gdn(�)
converge to those of Gd(�), (iii)

�
Gdn(�) : n � 1

	
is stochastically equicontinuous.

(i) is satis�ed because (� ; ') � [0; ��4 + ��2 + ����]� [0; 1].
(ii) The process ��1@li(�(� ; '); �(� ; '); 1)=@� is iid with mean 0.

Moreover,

E

"
sup

(�;')2D1
�'

����1� @l(�(� ; '); �(� ; '); 1)@�

����
#
�E

"
sup

j�j���2;j�j���2;�2+�2>0

���� 1

�(�; �)

@l(�; �; 1)

@�

����
#
<1: (B7)

To prove (B7), consider the �fth-order Taylor expansion of @l (�; �; 1) =@� around (�; �) = (0; 0)

given by

@l (�; �; 1)

@�
=

4X
k=1

X
i+j=k

1

i!j!

@1+kl (0; 0; 1)

@�@�i@�j
�i�j +

X
i+j=5

1

i!j!

@6l(~�; ~�; 1)

@�@�i@�j
�i�j

=h4

�
1

36
�4 � 1

8
�2
�
+ h3

1

2
��+

X
4�i+j�3;i�1;j�1

1

i!j!

@6l (0; 0; 1)

@�@�i@�j
�i�j

+
X

i+j=5;i�1;j�1

1

i!j!

@6l(~�; ~�; 1)

@�@�i@�j
�i�j +

@6l(~�; ~�; 1)

@�@�5
�5 (B8)

+

"
@4l (0; 0; 1)

@�@�3
+
@5l (0; 0; 1)

@�@�4
�+

@6l(~�; ~�; 1)

@�@�5
�2

#
�3:

Consequently���� 1

�(�; �)

@L(�; �; 1)

@�

���� � jh4j+ jh3j+ X
4�i+j�3;i�1;j�1

����@6l (0; 0; 1)@�@�i@�j

���� 2i!j!��i�1��j�1
+

X
i+j=5;i�1;j�1

sup
j~�j���;j~�j���

����� 1i!j! @6l(~�; ~�; 1)@�@�i@�j

����� ��i�1��j�1 + sup
j~�j���;j~�j���

�����@6l(~�; ~�; 1)@�@�5

�����
���� �5

�(�; �)

���� (B9)

+

 ����@4l (0; 0; 1)@�@�3

����+ ����@5l (0; 0; 1)@�@�4

���� j��j+ sup
j~�j���;j~�j���

�����@6l(~�; ~�; 1)@�@�5

����� ��2
!���� �3

�(�; �)

���� :
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It is then easy to check that

E

24jh4j+ jh3j+ X
4�i+j�3;i�1;j�1

1

i!j!

����@6l (0; 0; 1)@�@�i@�j

����+ ����@4l (0; 0; 1)@�@�3

����+ ����@5l (0; 0; 1)@�@�4

����
35 <1 (B10)

and

E

24 X
i+j=5;i�0;j�0

sup
j~�j���;j~�j���

�����@6l(~�; ~�; 1)@�@�i@�j

�����
35 <1: (B11)

For �2 + �2 > 0, if � = 0, �2=maxfj 136�
4 � 1

8�
2j; j12��jg = 0, otherwise

�2

�(�; �)
=

1

max
n��� 136 �2�2 �2 � 1

8

��� ; ��12 �� ��o �
8><>:

2

j �� j
� 2�� if �2=�2 � ���2;
1��� 136 �2�2 �2� 1

8

��� � 1

j 136� 1
8 j
= 72

7 if �2=�2 � ���2: (B12)

Finally,�����5�
������

 ���4� 36
8 �

2
��

max
��� 1
36�

4� 1
8�
2
�� ;��12����	+

36
8 �

2

max
��� 1
36�

4� 1
8�
2
�� ;��12����	

!
<36��

�
1+
1

8

�
2��+

72

7

��
(B13)

In sum, (B7) follows from (B9)�(B13). But given (B7), the martingale di¤erence central limit

theorem of Billingsley (1968, Theorem 3.1) implies that each of the �nite dimensional distrib-

utions of Gdn(�) converges in distribution to a multivariate normal distribution with covariance
given by (B6).

(iii) The process Gdn(� ; ') is stochastically equicontinuous if for all " > 0, there exists c > 0
such that

lim sup
n!1

Pr

"
sup

k(�1;'1)�(�2;'2)k�c, (�1;'1);(�2;'2)2D1
�'

���Gdn(�1; '1)� Gdn(�2; '2)��� > "

#
< ": (B14)

In the rest of this section, we keep the restriction (�1; '1); (�2; '2) 2 D1
�' implicit to simplify

notation.

The proof has two steps. First, we show that for all " > 0, there exist c1 � c2 > 0 such that

Pr

"
sup

k(�1;'1)�(�2;'2)k�c2;j�1j;j�2j�2c1

���Gdn(�1; '1)� Gdn(�2; '2)��� > "

#
� "

2
: (B15)

Second, we show that given c1 above, there is c1 � c3 > 0 such that

Pr

"
sup

k(�1;'1)�(�2;'2)k�c3;j�1j;j�2j�c1

���Gdn(�1; '1)� Gdn(�2; '2)��� > "

#
� "

2
: (B16)
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Let c = minfc2; c3g. Whence (B14) follows from

Pr

"
sup

k(�1;'1)�(�2;'2)k�c

���Gdn(�1; '1)� Gdn(�2; '2)��� > "

#

�Pr
"(

sup
k(�1;'1)�(�2;'2)k�c;j�1j;j�2j�2c1

���Gdn(�1; '1)� Gdn(�2; '2)��� > "

)

[
(

sup
k(�1;'1)�(�2;'2)k�c;j�1j;j�2j�c1

���Gdn(�1; '1)� Gdn(�2; '2)��� > "

)#

�Pr
"

sup
k(�1;'1)�(�2;'2)k�c2;j�1j;j�2j�2c1

���Gdn(�1; '1)� Gdn(�2; '2)��� > "

#
(B17)

+ Pr

"
sup

k(�1;'1)�(�2;'2)k�c3;j�1j;j�2j�c1

���Gdn(�1; '1)� Gdn(�2; '2)��� > "

#
� " (B18)

where the �rst inequality follows from that for 0 < c � c1,

sup
k(�1;'1)�(�2;'2)k�c

���Gdn(�1; '1)� Gdn(�2; '2)��� (B19)

�max
(

sup
k(�1;'1)�(�2;'2)k�c;j�1j;j�2j�2c1

���Gdn(�1; '1)� Gdn(�2; '2)��� ;
sup

k(�1;'1)�(�2;'2)k�c;j�1j;j�2j�c1

���Gdn(�1; '1)� Gdn(�2; '2)���
)
;

and the second inequality follows from c � c2 and c � c3.

We next show that there exist c1 � c2 > 0 such that (B15) holds. Given (B8), we will have

that

Gdn(� ; ') =
H4p
n

1
36�

4 � 1
8�
2

�
+
H3p
n

1
2��

�
+

X
4�i+j�3;j�1

1

i!j!

1p
n

@6Ln (0; 0; 1)

@�@�i@�j
�i�j

�

+
X
i+j=5

1

i!j!

1p
n

@6Ln

�
~�; ~�; 1

�
@�@�5

�i�j

�
;

where j~�j � j�j, j~�j � j�j, and �, �, ~�, ~� are functions of (� ; ') even though we have omitted
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these arguments. Therefore,

1

21

h
Gdn(�1; '1)� Gdn(�2; '2)

i2
�
�
H4p
n

�2�
��11

�
1

36
�41 �

1

8
�21

�
� ��12

�
1

36
�42 �

1

8
�22

��2
(B20)

+

�
H3p
n

�2�1
2
��11 �1�1 �

1

2
��12 �2�2

�2
(B21)

+
X

4�i+j�3;j�1

�
1

i!j!

1p
n

@6Ln (0; 0; 1)

@�@�i@�j

�2 n
��11 �i1�

j
1 � �

�1
2 �i2�

j
2

o2
(B22)

+
X
i+j=5

sup
j�j���;j�j���

�
1

i!j!

1p
n

@6Ln (�; �; 1)

@�@�i@�j

�2 n
��21 �2i1 �

2j
1 + �

�2
2 �2i2 �

2j
2

o
; (B23)

where �1 = �(�1; '1), �1 = �(�1; '1), �2 and �2 are de�ned in the same way. First, we can easily

check that

E

"�
H4p
n

�2#
= E

�
h24
�
<1; E

"�
H3p
n

�2#
= E

�
h23
�
<1

and

E

"�
1

i!j!

1p
n

@6Ln (0; 0; 1)

@�@�i@�j

�2#
= E

�
1

i!j!

@6l (0; 0; 1)

@�@�i@�j

�2
<1:

by the iid assumption and the zero expectation of these terms. Second, for the terms (B20)-

(B23), we can show that the non-random coe¢ cients in fg converge to zero as c1; c2 ! 0, using

arguments in (B12), (B13) and Lemma 9. To be more speci�c, for (� ; ') 2 D1, we have

��11

�
1

36
�41 �

1

8
�21

�
� ��12

�
1

36
�42 �

1

8
�22

�
= 1� 1 = 0

1

2
��11 �1�1 �

1

2
��12 �2�2 =

1

2
('1 � '2)

��11 �i1�
j
1 � �

�1
2 �i2�

j
2 =

(
= '1�

i�1
1 �j�11 � '2�i�12 �j�12 if i � 1;

= ��11 �j1 � �
�1
2 �j2 � sup

����2� ��� (�1 + �2) if i = 0
;

and the same applies to ��21 �2i1 �
2j
1 . Together with Lemma 8.3, which implies that

E

"
sup

j�j���;j�j���

�
1p
n

@6Ln (�; �; 1)

@�@�i@�j

�2#
! E

"
sup
j�j;j�j

�
G[i;j](�; �)

�2#
<1;

we can �nd c1 � c2 > 0 such that

E

"
sup

k(�1;'1)�(�2;'2)k�c2;�1;�2�2c1

�
Gdn(�1; '1)� Gdn(�2; '2)

�2#
� "3

2
: (B24)

19



Then Chebychev�s inequality implies that

Pr

"
sup

k(�1;'1)�(�2;'2)k�c2;j�1j;j�2j�2c1

���Gdn(�1; '1)� Gdn(�2; '2)��� > "

#

� 1

"2
E

"
sup

k(�1;'1)�(�2;'2)k�c2;j�1j;j�2j�2c1

�
Gdn(�1; '1)� Gdn(�2; '2)

�2#
� "

2
:

Step 2. Given c1, we need to �nd c3 such that c1 � c3 > 0 and (B16) holds. First, we change

(� ; ') into (�; �) for simplicity. For (� ; ') 2 D1, it holds that

1

36
�4 � 1

36
�4 � 1

8
�2 = �(�; �) � c1; � � 0;

which implies � �
p
6c

1
4
1 . Moreover, for all cB > 0, there exists a c3 > 0 such that�

(�1; '1; �2; '2) 2 B1�' �B1�' : k(�1; '1)� (�2; '2)k � c3; �1; �2 � c1
	

� f(�1; '1; �2; '2) 2 B1�' �B1�' : k(�1; �1)� (�2; �2)k � cB; �1; �2 �
p
6c

1
4
1 g (B25)

because
�
(� ; ') 2 D1

�' : � � c1
	
is a compact set, and �(�; �) and '(�; �) are continuous on

this set. Therefore, it su¢ ces to �nd cB such that fGn(�; �) : j�j �
p
6c
1=4
1 ; (�; �) 2 A1��g

is stochastically equicontinuous on (B25). To do so, we use Theorem 1 of Andrews (1994).

Speci�cally, we use the notation f for Gn(�; �) = 1p
n

P
i f (yi; �; �) and show that f belongs to

the type II class of functions de�ned in Andrews (1994, p.2270). This is the class of Lipschitz

functions in (�; �), which is such that

jf (:; �1; �1)� f (:; �2; �2)j �M (:) (j�1 � �2j+ j�1 � �2j)

for all (�1; �1); (�2; �2) 2 A1��; j�1j; j�2j �
p
6c
1=4
1 .

Note that

1

�1

@l

@�
(�1; '1)�

1

�2

@l

@�
(�2; '2) = y2 [D1(�1; �1; �1)�D1(�2; �2; �2)]

+ y [D2(�1; �1; �1)�D2(�2; �2; �2)]

+ [D3(�1; �1; �1)�D3(�2; �2; �2)]

� 1

�1
exp

24�e �213 ��1
2

(�1 + y)
2 +

1

2
y2 +

1

6
�21 �

1

2
�1

35
+
1

�2
exp

24�e �223 ��2
2

(�2 + y)
2 +

1

2
y2 +

1

6
�22 �

1

2
�2

35 ; (B26)

where

D1(� ; �; �) =
1

2
��1e��

�2

3 +
1

2

�2

�
; D2(� ; �; �) = �

�

�
and D3(� ; �; �) = �

1

2
��1

�
e��

�2

3 � �2
�
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so that D1, D2 and D3 are all Lipschitz in (�; �) for (�; �) 2 A1�� and � = �(�; �). And for the

last term in (B26), the mean value theorem implies that

� 1

�1
exp

24�e �213 ��1
2

(�1 + y)
2 +

1

2
y2 +

1

6
�21 �

1

2
�1

35
+
1

�2
exp

24�e �223 ��2
2

(�2 + y)
2 +

1

2
y2 +

1

6
�22 �

1

2
�2

35
=exp

24�e ~�23 �~�
2

(~� + y)2 +
1

2
y2 +

1

6
~�
2 � 1

2
~�

35( 1

~�2
(�1 � �2)

+
1

3~�

�
e
~�
2

3
�~�
�
~�
3
+ 3~� + ~�y2 + 2~�

2
y + 3y

�
� ~�
�
(�1 � �2)

+
1

2~�

�
1� e

~�
2

3
�~�(~� + y)2

�
(�1 � �2)

)
: (B27)

In addition,

j�1 � �2j =
���� 136�41 � 18�21 � 1

36
�42 +

1

8
�22

����
=

���� 136 ��21 + �22� (�1 + �2)(�1 � �2)� 18 (�1 + �2) (�1 � �2)
����

� 1

9
��
3 j�1 � �2j+

��

4
j�1 � �2j : (B28)

Moreover

exp

24�e �23 ��
2

(� + y)2 +
1

2
y2 +

1

6
�2 � 1

2
�

35 � g�(y); (B29)

where

g�(y) = exp

�
�e

���

2
(2��jyj+ y2) + 1

2
y2 +

1

6
��
2
+
1

2
��

�
:

Combining (B26), (B27), (B28) and (B29), we will have

1

�1

@l

@�
(�1; '1)�

1

�2

@l

@�
(�2; '2) � (g�(y) + 1)

�
a1 + a2jyj+ a3y2

	
(j�1 � �2j+ j�1 � �2j) :

But since

E
�
(g�(y) + 1)

�
a1 + a2jyj+ a3y2

	�
<1;

f will be Lipschitz withM (y) = (g�(y)+1)
�
a1 + a2jyj+ a3y2

�
for some constants a1, a2 and a3.

To apply Theorem 1 of Andrews (1994), we need to check Assumptions A, B, and C. Assumption

A: the class of functions f satis�es Pollard�s entropy condition with some envelope �M . This is

satis�ed with �M = 1 _ sup jf j _M(:) by Theorem 2 of Andrews (1994) because f is Lipschitz.
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In turn, Assumption B:

lim sup
n!1

1

n

nX
i=1

E �M2+� (yi) <1 for some � > 0;

is also satis�ed because yi is a standard normal random variable. Finally, Assumption C: fyig
is an m-dependent triangular array of r.v�s holds because fyig is iid. Stochastic equicontinuity
of f follows from Theorem 1 of Andrews (1994). Thus, for given " > 0, we can �nd cB such that

(B16) holds.

In sum, the results hold by virtue of (B17) and (B18). �

Step 3

Lemma 3 supd2D1 LRdn(d) = supd2D1 LMd
n(d) + op(1) = sup(�;')2D1

�'

[Gdn(�;')]
2

�
V d(�;')

+ op(1).

Proof. Since���� sup
d2D1

LRdn(d)� sup
d2D1

LMd
n(d)

���� � sup
(�;')2D1

�'

����� sup
�:(�;� ;')2D1

LRdn(�; � ; ')� sup
�:(�;� ;')2D1

LMd
n(�; � ; ')

����� ;
it su¢ ces to show that

sup
�:(�;� ;')2D1

LRdn(�; � ; ') = sup
�:(�;� ;')2D1

LMd
n(�; � ; ') + op(1): (B30)

Expression (B30) follows from Andrews (2001). To see this, we need to check his assumptions.

Let

ld(�; � ; ') = l(�(� ; '); �(� ; '); �(�; � ; '))

denote the log-likelihood of yi written in d 2 D1. The null hypothesis is H0 : � = 0 and (� ; ')

is the nuisance parameter that only appears under the alternative. Let

LRdn(�̂�'; � ; ') = sup
�:(�;� ;')2D1

LRdn(�; � ; '):

To verify Assumption 1, namely �̂�' = op;�'(1), let ld0(d) = E
�
ld(1; � ; ')

�
. Invoking Lemma

6, we have

sup
d2D1

���� 1nLdn(d)� ld0(0; � ; ')
���� � sup

�2�

���� 1nLn(�)� l0(�)
���� p�! 0 (B31)

(i.e. uniform convergence). Moreover, for all � > 0,

ld0(d) > sup
�>�;d2cl(D1)

ld0(d) (B32)

(i.e. well separated maximum), which follows from the fact that � = 1 is the unique maximizer

(note that (1 � �) � maxfj�j; j�jg), ld0(d) is continuous and cl(D1) is compact. As a result,

Lemma A1 in Andrews (1993) implies that we have �̂�' = op;�'(1).
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Assumption 2� holds with BT =
p
n using Andrews (2001) notation, see Lemma 1. Assump-

tion 3� holds by Lemma 2. Assumption 4 is implied by Assumptions 1, 2� and 3. Assumption

5 is satis�ed for BT = bT =
p
n and � = R�. Assumption 6 holds because R� is convex.

Assumptions 7 and 8 hold with �� = R� and with the fact that � and  are absent in our

setting. Assumptions 9 and 10 are satis�ed. Assumptions 1o and 4o hold trivially because the

restricted estimator is � = 0 and therefore not random.

By Theorem 4 and the remark at the bottom of p. 719 of Andrews (2001), it follows that

(B30) holds.

Step 4

In this step, we show that

sup
#2�0

2 [Ln(#)� Ln(0; 0; 1)] =
1

n
sup

#2�0n(0;0;1)

(min f@Ln(�;{; 1)=@�; 0g)2

V (�;{)
+ op(1);

where we use the notation Ln for the log-likelihood indexed by #, whereas Ln is the log-likelihood
indexed by �. First, by the results in Step 3, we have

sup
d2Dk

LRdn(d) = sup
(�;')2Dk

�'

�
Gdn(� ; ')

�2
�

V d(� ; ')
+ op(1):

Noticing also that

sup
d2Dk

LRdn(d) = sup
�2Ak

LRn(�) and sup
(�;')2Dk

�m

�
Gdn(� ; ')

�2
�

V d(� ; ')
= sup
(�;�)2Ak�m

bGn(�; �)c2�
V (�; �)

;

we will have that

sup
�2Pb

LRn(�) = max
k�16

sup
d2Dk

LRdn(d) = max
k�16

sup
(�;�)2Ak�m

bGn(�; �)c2�
V (�; �)

+ op(1)

= sup
(�;�):(�;�;1)2Pb

bGn(�; �)c2�
V (�; �)

+ op(1):

Therefore,

sup
#2P 0b

2 (Ln(#)� Ln(0; 0; 1)) = sup
�2Pb

LRn(�) = sup
(�;�):(�;�;1)2Pb

bGn(�; �)c2�
V (�; �)

+ op(1)

= sup
(�;{):(�;{;1)2P 0b

bGn(�;{)c2�
V (�;{)

:

Finally, the asymptotic distributions of the LM tests follow from the continuous mapping

theorem. �
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C Detailed proof of Proposition 6

Constant � and �2

We �rst consider the simple case in which we estimate both the unconditional mean and

variance parameters, say � and �2, respectively, under the additional assumption that they are

constants. Speci�cally, letting y =
p
�2z + � and z � MixN(0; 1), we have that the pdf of y is

simply given by

fY (y) =
1p
�2
fZ

�
y � �p
�2

�
;

so that the contribution of observation y to the log-likelihood, `(�; �2; �;{; �; y), will be given
by

k� 1
2
log�2+ log

(
�p
��21

exp

"
� 1

2��21

�
y � �p
�2

� ��1
�2#

+
1� �p
��22

exp

"
� 1

2��22

�
y � �p
�2

� ��2
�2#)

;

where k is an integration constant and

��1 =
�(1� �)q

1 + �(1� �)�2
; ��2 = �

�

1� ��
�
1,

��21 =
1�

1 + �(1� �)�2
�
[�+ (1� �) exp({)]

and ��22 = exp({)��21 :

Subtest in Pa We consider the reparametrization in (3) and de�ne

Ln(�; �
2; �; �; �) =

1

n

nX
i=1

li(�; �
2; �; �; �);

with li(�; �2; �; �; �) = `(�; �2; �; �� (2�� 1)�2=3; �; yi).
To shorten notation, let � = (�; �) with � = (�; �2) and � = (�; �; �). Let �0 =

�
�0; �

2
0

�
denote the true value of the parameter �. Next, de�ne

LRn(�; �
2; �; �; �) = 2

�
Ln(�; �

2; �; �; �)� Ln(�0; �20; 0; 0; �)
�

(C1)

and

�LRn;r = argmax
�2��f0g2�[1=2;1]

LR(�); �LRn;u = argmax
�2��P

LR(�);

where P can be replaced by Pa;1;Pa;2;Pa;3 as needed, and � denotes the feasible parameter

space of (�; �2). Then, it is easy to verify that �LRn;r =
�
�n;r; 0; 0; �n;r

�
with

�n;r = (�n;r; �
2
n;r) =

"
1

n

nX
i=1

yi;
1

n

nX
i=1

(yi � �n;r)2
#
;

which provide the restricted maximum likelihood estimators of �.
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Letting

LMa;�
n (�) =2

�
1

�0

H1;np
n

�p
n(�� �0) + 2

�
1

2�20

H2;np
n

�p
n(�2 � �20) (C2)

� 1

�20
n(�� �0)2 �

1

2�40
n
�
�2 � �20

�2
;

where

H1;n =

nX
i=1

h1i =

nX
i=1

yi � �0p
�20

and H2;n =

nX
i=1

h2i =

nX
i=1

(yi � �0)2 � �20
�20

:

Moreover, in the sequel LMa
n(�;�0) will coincide with (15) if we replace yi with (yi � �0)=

p
�20.

As in the proof of Proposition 1, we have the following �ve steps:

1. For all sequences of �n = (�n; �n; �n; �n) with (�n; �n; �n)
p�! (�0; 0; 0), we have that

LRn(�n) = LMa
n(�n) + LM

a;�
n (�n) + op[h

�
n(�n)] + op[h

�
n(�n)];

where h�n(�) = max
�
1; n(�� �0)2; n(�2 � �20)2

	
and

h�n(�) = max
�
1; n(1� �)2�8; n(1� �)2�2�2; n(1� �)2�4

	
:

2. For �n = (�LMn ; �2LMn ) 2 argmax�2� LM
a;�
n (�), we have that �LMn = �0 + op(1) and

h�n(�
LM
n ) = Op(1); and also de�ne �LMn = (�LMn ; �LMn ; �LMn ) 2 argmax�2� LMa

n(�), we

have that (�LMn ; �LMn ) = op(1) and h�n(�
LM
n ) = Op(1).

3. For �LRn;u = (�
LR
n;u; �

LR
n;u; �

LR
n;u; �

LR
n;u) 2 argmax�2��P LRn(�), we have that

(�LRn;u � �0; �LRn;u; �LRn;u)
p�! 0

and h(�LRn;u) = Op(1).

4. Then, we prove that LRn(�LRn;r )� LRn(�LRn;u) = LMa
n(�

LM
n ) + op(1).

5. Finally, show that the test is the same as before, but with yi replaced by (yi � �n;r)=�n;r.

Before going into the details of these steps, let us emphasize that the main di¤erence is in

Step 1, which shows that in the Taylor expansion the cross terms (T3 de�ned below) of � and �

are negligible, and thus we can consider the two parts separately. Step 2-4 are almost the same

as before.

Step 1 : Consider a sequence �n = (�n; �n; �n; �n) with (�n; �n; �n)
p�! (�0; 0; 0). Let

L[k1;k2;k3;k4]n =
1

k1!k2!k3!k4!

@k1+k2+k3+k4Ln(�)

@�k1 (@�2)k2 @�k3@�k4

�����
�n;0
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where �n;0 = (�0; 0; 0; �n) and

4[k1;k2;k3;k4]
n =

1

k1!k2!k3!k4!

24 @k1+k2+k3+k4Ln(�)

@�k1 (@�2)k2 @�k3@�k4

�����
(~�n;

~�n;~�n;�n)

� @k1+k2Ln(�)

@�k1@�k2

����
�n;0

35 ;
with (~�n; ~�n; ~�n) between (�0; 0; 0) and (�n; �n; �n). Consider the following eighth-order Taylor

expansion,

1

2
LRn(�n) = Ln(�n; �

2
n; �n; �n; �n)� Ln(�0; �20; 0; 0; �n)

= T1n(�n;�0) + T2n(�n;�0) + T3n(�n;�0; �
2
0) + �n;

where

T1n(�n;�0) =
X

k3+k4�8
L[0;0;k3;k4]n �k3n �

k4
n ;

T2n(�n;�0) =
X

k1+k2�8
L[k1;k2;0;0]n (�n � �0)k1

�
�2n � �20

�k2 ;
T3n(�n;�0) =

X
k1+k2+k3+k4�8
k1+k2�1; k3+k4�1

L[k1;k2;k3;k4]n (�n � �0)k1
�
�2n � �20

�k2 �k3n �k4n and

�n =
X

k1+k2+k3+k4=8

�[k1;k2;k3;k4]n (�n � �0)k1
�
�2n � �20

�k2 �k3n �k4n
First, we will show that T3n(�n;�0) = op[h

�
n(�n)] + op[h

�
n(�n)]. Speci�cally, for (k1; k2) 2

f(1; 0); (0; 1)g and (k3; k4) 2 f(k; 0) : k � 4g[f(0; k) : k � 2g[f(1; 1)g, we can easily check that

E[l[k1;k2;k3;k4](�0)] = 0 and Ef[l[k1;k2;k3;k4](�0)]2g <1;

which means that p
n

n

@k1+k2+k3+k4Ln(�)

@�k1 (@�2)k2 @�k3@�k4

�����
�0

= Op(1): (C3)

Therefore, we will have that the (k1; k2; k3; k4) term is such that

L[k1;k2;k3;k4]n (�n � �0)k1
�
�2n � �20

�k2 �k3n �k4n =

0@pn
n

@k1+k2+k3+k4Ln(�)

@�k1 (@�2)k2 @�k3@�k4

�����
�0

1A
�
hp

n (�n � �0)k1
�
�2n � �20

�k2i �k3n �k4n
= op[h

�
n(�n)];

where the last equality follows from (C3) and the fact that �k3n �
k4
n = op(1). As for the remaining

terms in T3n, we have either: a) k1 + k2 � 2 so that

n (�n � �0)k1
�
�2n � �20

�k2 �k3n �k4n = op[h
�
n(�n)]; (C4)

26



or b) (k3; k4) 2 f(k; 0) : k > 4g [ f(0; k) : k > 2g [ f(k; k0) : k; k0 > 1g, so that

L[k1;k2;k3;k4]n (�n � �0)k1
�
�2n � �20

�k2 �k3n �k4n =

"
1

n

nX
i=1

g(yi)

#
n (�n � �0)k1

�
�2n � �20

�k2
�(1� �n)�k3n �k4n

= op[h
�
n(�n)];

where g(y) = l
[k1;k2;k3;k4]
n (�n0)=(1��n) is square integrable. In this case, the last equality follows

from
p
n (�n � �0)k1

�
�2n � �20

�k2 pn(1� �n)�k3n �k4n = op[h
�
n(�n)]: (C5)

Secondly, we have to show that T2n = LMa;�
n (�n;�0) + op[h

�
n(�n)]. Invoking Rotnitzky et al

(2000), we will have that

1

n
L[2;0;0;0]n = � 1

2�20
+Op(n

� 1
2 ),

1

n
L[0;2;0;0]n = � 1

4�20
+Op(n

� 1
2 ) and

1

n
L[1;1;0;0]n = Op(n

� 1
2 ):

ThereforeX
k1+k2=2

L[k1;k2;0;0]n (�n � �0)k1
�
�2n � �20

�k2 = X
k1+k2=2

1

n
L[k1;k2;0;0]n n (�n � �0)k1

�
�2n � �20

�k2
= � 1

2�20
n (�n � �0)2 �

1

4�20
n
�
�2n � �20

�2
+ op[h

�
n(�n)]:

For k1 + k2 > 2, we have 1
nL

[k1;k2;0;0]
n = Op(1) and n (�n � �0)k1

�
�2n � �20

�k2 = op

h
h�n(�n)

i
.

Third, we have to show that T1n = LMa
n(�n) + op[h

�
n(�n)]. But since this is the same as we

did in the proof of Proposition 1, we can omit it.

The last part requires to prove that �[k1;k2;k3;k4]n (�n � �0)k1
�
�2n � �20

�k2 �k3n �k4n = op(1) for

k1 + k2 + k3 + k4 = 8, which is entirely analogous to the proof of Proposition 1.

Step 2 : This step is trivial sincemax�2� LMa;�(�) has a closed-form solution with probability

approaching one.

Step 3 : Following the proof of Proposition 1, we can �rst show that
�
�LRn;u; �

LR
n;u; �

LR
n;u

� p�!
(�0; 0; 0). Next, we can also show that h

�
n(�

LR
n;u) = Op(1) and h

�
n(�

LR
n;u) = Op(1) by an argument

analogous to Lemma 3 in Amengual, Bei and Sentana (2023).

Step 4 : It follows from the same argument as in the corresponding proof of Proposition 1.

Step 5 : Simplify LMa
n(�

LM
n ) as in the proof of Proposition 1. Then by the stochastic

equicontinuity of the test statistic in �, we can replace � by �n;r.

Subtest in Pb Here we use the reparametrization of Proposition 3 involving (�; � ; '). In terms

of Andrews (2001) notation, we have

�1 = �, � = (� ; ') and  = (�; �2):
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We show that we do not need to adjust for parameter uncertainty by verifying Assumption 7

of Andrews (2001), which guarantees that there is no cross term of � and � in the quadratic

approximation. Let

LRdn(�; �
2; �; � ; ') =LRn[�; �

2; �(� ; '); �(� ; '); �(�; � ; ')];

LMd
n(�; �

2; �; � ; ') =2Gn(� ; ')
p
n� � V (� ; ')n�2 + LM�

n (�);

Rdn(�; �
2; �; � ; ') =LRdn(�; �

2; �; � ; ')� LMd
n(�; �

2; �; � ; ');

where LRn(�; �2; �; �; �) is de�ned in (C1) and LM
�
n (�) in (C2). We need to show that for all

sequences (�n; �
2
n; �n; �n; 'n) with (�n � �0; �2n � �20; �n)

p�! 0, it holds that

Rn(�n; �
2
n; �n; �n; 'n) = op

�
max[n�2n; n(�n � �0); n(�2n � �20)2]

	
: (C6)

To see this, we can modify the proof of Proposition 3. Let �n = (�n; �
2
n; �n; �n; �n) with

�n = �(�n; 'n), �n = �(�n; 'n) and �n = �(�n; �n; 'n). A third-order Taylor expansion gives

L(�n; �
2
n; �n; �n; �n)� L(�0; �20; �n; �n; 1) = T1n(�n;�0) + T2n(�n;�0)

+ T3n(�n;�0) + T4n(�n;�0);

where

T1n(�n;�0) =
@L(�n0)

@�
(�n � 1) +

1

2

@2L(�n0)

@�2
(�n � 1)2 +

1

3!

@3L(~�n)

@�3
(�n � 1)3:

T2n(�n;�0) =
X
i+j�2

1

i!j!

@i+jL(�n0)

@�i@(�2)j
(�n��0)i(�2n��20)j+

X
i+j=3

1

i!j!

@3L(~�n)

@�i@(�2)j
(�n��0)i(�2n��20)j

and

T3n(�n;�0) =
@2L(�n0)

@�@�
(�n � 1)(�n � �0) +

@2L(�n0)

@�@�2
(�n � 1)(�2n � �20)

+
1

2

@3L(~�n)

@�2@�
(�n � 1)2(�n � �0) +

1

2!2!

@3L(~�n)

@�2@�2
(�n � 1)2(�2n � �20);

T4n =
X
j+k=2

1

j!k!

�
1

n

@3L(~�n)

@�@�j@(�2)k

�
n(�n � �0)j(�2n � �20)k(�n � 1)

with ~�n = (~�n; ~�
2
n; �n; �n;

~�n) between (�n; �
2
n; �n; �n; �n) and �n0 = (�0; �

2
0; �n; �n; 1). We can

show that

2T1n(�n;�0) = 2Gn(�n;mn)
p
n�n � V (�n;mn)n�

2
n + op(n�

2
n) (C7)

using the same argument as in Proposition 3. Moreover, it is straightforward to show that

2T2n(�n;�0) = LM�
n (�n) + op

h
n
�
�2n � �20

�2
+ n (�n � �0)2

i
(C8)

28



We can also show that

T3n(�n;�0) =

�
1p
n

@2L(�n0)

@�@�

��p
n(�n � �0)

�
(�n � 1)

+

�
1p
n

@2L(�n0)

@�@�2

��p
n(�2n � �20)

�
(�n � 1)

� 1
2

�
1

n
��1n

@3L(~�n)

@�2@�

�
[n(�n � �0)�n] (�n � 1)

� 1
4

�
1

n
��1n

@3L(~�n)

@�2@�2

��
n(�2n � �20)�n

�
(�n � 1)

= op[n(�n � �0)2 + n
�
�2n � �20

�2
+ n�2n]; (C9)

where the �rst equality follows from �n = (1 � �n)�n and the second one follows from Lemma

8 and �n
p�! 1. The result relative to T4;n is easy, as �n ! 1 and n(�n � �0)

j(�2n � �20)
k =

O[n(�n � �0)2 + n
�
�2n � �20

�2
], so that

T4n = op[n(�n � �0)2 + n
�
�2n � �20

�2
]: (C10)

Combining the results in (C7), (C8), (C9) and (C10), we �nally prove (C6).

General � and �2

Let us now consider the general case in which the conditional mean and variance are para-

metric functions of another observable vector X.

In this context, let Wt = (Yt; Xt) and assume that

fYtj(Xt;W t�1)(yjx;wt�1) = fYtjXt(yjx) =
1q

�2Y (x;�)
fZ

24y � �Y (x;�)q
�2Y (x;�)

35 :
As a consequence, the (conditional) log-likelihood can be written as

`p(�; �;{; �;Yt; Xt) = `[�Y (Xt;�); �
2
Y (Xt;�); �;{; �;Yt]

the subscript p is for �parametric�and ` was de�ned in the previous section. Accordingly, we

denote the likelihood after reparametrization as lp(�; �; �; �;Yt; Xt).

For Pa part, we only need to check the argument in Step 1 since Steps 2 to 4 are the same.
First, notice that for every vector k �with the same dimension as �� such that jkj = 1 and

(k2; k3) 2 f(k; 0) : k � 4g [ f(0; k) : k � 2g [ f(1; 1)g,

l[k1;k2;k3]p (�0) = l[1;0;k2;k3]c (�0)
@�Y (Xt;�)

@�k
+ l[0;1;k2;k3]c (�0)

@�2Y (Xt;�)

@�k
:
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Therefore, by the law of iterated expectations, we will have

E[l[k1;k2;k3]p (�0)] = EfE[l[k1;k2;k3]p (�0)jXt]g

= E

�
@�Y (Xt;�)

@�k
E[l[1;0;k2;k3]c (�0)jXt]

�
+ E

�
@�2Y (Xt;�)

@�k
E[l[0;1;k2;k3]c (�0)jXt]

�
= 0

because E[l[1;0;k2;k3]c (�0)jXt] = E[l
[0;1;k2;k3]
c (�0)jXt] = 0. Hence, if Assumptions 1 and 2 hold,

then the same arguments in Step 1 applies. Analogous arguments apply for the Pb part too,
which completes the proof. �

D Additional lemmas

Lemma 4 For k = 1; : : : ; 16, let

Dk =
n
(�; � ; ') : there exists � 2 Ak such that (20)-(19) holds

o
:

Then, (i) for all � 2 Ak, there exists a unique d 2 Dk such (20)-(19) holds; (ii) for all d 2 Dk,

there exists a unique � 2 Ak such that (20)-(19) holds.

Proof. (i) is straightforward. As for (ii), we show it for k = 1 since the proof for k = 2; : : : ; 16 is

similar. We only need to show the uniqueness of �, as the existence follows from the construction

of D1. Note that � > 0 for all � 2 A1, thus � = 1 � �=� . With the restrictions of A1, it holds

that
1

36
�4 � 1

8
�2 = � , that is,

1

2
�� = '�: (D1)

Hence, we can easily write
2

9
�4 � 4�

2'2

�2
= 8� : (D2)

Since the left hand side of (D2) is strictly increasing in �2, we can get unique �. Finally, we get

� from (D1). �

Lemma 5 If

(a)
p
n(1� �n)�n�n = Op(1) and (b)

p
n(1� �n)

�
�2n �

2(1� �n + �2n)
9

�4n

�
= Op(1);

where �n 2 [1=2; 1], then we have
p
n(1� �n)�2n = Op(1) and

p
n(1� �n)�4n = Op(1).

Proof. From (b) we have

p
n(1� �n)�2n =

2

9
(1� �n + �2n)

p
n(1� �n)�4n +Op(1):

But if
p
n(1 � �n)�

4
n = Op(1), then we can trivially show that

p
n(1 � �n)�

2
n = Op(1) because

1� �n + �2n 2 [3=4; 1]. The rest of the proof is by contradiction.
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Let us assume that
p
n(1 � �n)�

4
n 6= Op(1); in other words, that there exists an � > 0 such

that for all M1,

Pr(n
1
2 (1� �n)�4n > M1) > � i.o. (D3)

Next, given that
p
n(1� �n)�2n� 2

9(1� �n+ �
2
n)
p
n(1� �n)�4n = Op(1), there exists an M2 such

that

Pr

�����pn(1� �n)�2n � 29(1� �n + �2n)pn(1� �n)�4n
���� < M2

�
> 1� �

2

for all n. Consider M 0 > maxfM2; ��
2
=6g and let M1 = 6M

0 + 6M2. In view of (D3), we have

that

Pr[n
1
2 (1� �n)�4n > 6M 0 + 6M2] > � i.o.

Let

An = fn
1
2 (1� �n)�4n > 6M 0 + 6M2g

and

Bn = fj
p
n(1� �n)�2n �

2

9
(1� �n + �2n)

p
n(1� �n)�4nj < M2g:

Since Pr(An) > � i.o. and Pr(Bn) > 1� �=2 for all n, we will also have

Pr(An \Bn) � Pr(An) + Pr(Bn)� 1 >
�

2
i.o.

On the set An \Bn, we have

n(1� �n)2�2n�2n =
p
n(1� �n)�2n

�
2

9
(1� �n + �2n)

p
n(1� �n)�4n

+

�p
n(1� �n)�2n �

2

9
(1� �n + �2n)

p
n(1� �n)�4n

��
>
p
n(1� �n)�2n

�
2

9
(1� �n + �2n)

p
n(1� �n)�4n �M2

�
(D4)

�
p
n(1� �n)�2n

�
1

6

p
n(1� �n)�4n �M2

�
(D5)

�
p
n(1� �n)�4n

M 0

��
2 (D6)

�
p
n(1� �n)�4n

6
�M 0 +M2 > M 0; (D7)

where (D4) uses the de�nition of Bn, (D5) uses 1��n+�2n � 3=4, (D6) combines the de�nition
of An with �2n � ��

2, and (D7) uses the de�nitions of M 0 and An. Hence, An \ Bn � fn(1 �
�n)

2�2n�
2
n > M 0g, which implies that for all M 0,

Pr[n(1� �n)2�2�2 > M 0] � �

2
i.o.

which is a contradiction to (a). Thus, we have proved that
p
n(1� �n)�2n = Op(1) and

p
n(1�

�n)�
4
n = Op(1), as desired. �
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Lemma 6 (uniform convergence) Denote l0(�) = E[l(�)]. Assume the data is iid, E
�
y2
�
<1

and � is compact. Then,

sup�2�

���� 1nLn(�)� l0(�)
���� p�! 0:

Proof. Let ��2 = exp(�{)=� = 2exp(�{) be an upper bound for max(��21 ; ��22 ), �2 = e�2�{=(1 +

��
2
=4) a lower bound for min(��21 , �

�2
2 ), and �� = �� an upper bound for both j��1j and j��2j. Then,

we have

l(�) = log

(
�

1p
��21

exp

�
�(y � �

�
1)
2

2��21

�
+ (1� �) 1p

��22
exp

�
�y � �

�
2)
2

2��22

�)

� � log

(
1p
��21

exp

�
�(y � �

�
1)
2

2��21

�)
+ (1� �) log

(
1p
��22

exp

�
�(y � �

�
2)
2

2��22

�)

� �1
2
log(��2)� �(y � ��1)2 + (1� �)(y � ��2)2

2�2

� �1
2
log(��2)� (jxj+ ��)

2

2�2
;

where the �rst inequality follows from the concavity of the logarithm, the second one from the

de�nitions of ��2 and �2, and the last one from the de�nition of ��. Moreover,

l(�) = log

(
�

1p
��21

exp

�
�(y � �

�
1)
2

2��21

�
+ (1� �) 1p

��22
exp

�
�(y � �

�
2)
2

2��22

�)

� log
"
�

1p
��21

+ (1� �) 1p
��22

#
= log

 
1p
�2

!
:

Next, letting

d(y) =
(jyj+ ��)2
2�2

+
��log( ��2)��+ �����log

 
1p
�2

!����� ;
it is straightforward to see that jl(�)j � d(y) and E[jd(y)j] <1. Note that Ln(�) is continuous
at 8� 2 � with probability 1. Thus, by Lemma 2.4 in Newey and McFadden (1994),

sup�2�

���� 1nLn(�)� l0(�)
���� p�! 0;

as desired. �

Lemma 7 If there exist an M1 > 0 and a � < 1 such that jH3;n=
p
nj < M1, jH4;n=

p
nj < M1,

jw1j > M1=�, jw1j > jw2j, rn(�)=w21 < �, then LRn(�) < 0.

Proof. We have that

LRn(�) = 2
H3;np
n
w1 + 2

H4;np
n
w2 � V3w21 � V4w22 + rn(�);
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so that

LRn(�)

w21
= 2

H3;np
n

1

w1
+ 2

H4;np
n

w2
w21

� V3 � V4
w22
w21

+
rn(�; �; �)

w21

� 2� + 2�w2
w1
� V3 + �

� 5� � V3

< 0

because V3 = E[h23] = 6; which proves the result. �

Lemma 8 (Weak convergence)

(8.1)
p
n
�
1
n�

�1 @2L(�(�;');�(�;');1)
@�2

� E
h
��1 @

2l(�(�;');�(�;');1)

@�2

i�
= Op;(�;')(1).

(8.2)
p
n
�
1
n�

�1 @3L(�(�;');�(�;');�(�;� ;'))
@�3

� E
h
��1 @

3l(�(�;');�(�;');�(�;� ;'))

@�3

i�
= Op;(�;')(1).

(8.3) 1p
n
@6Ln(�;�;1)

@�@�i@�j
) G[i;j](�; �) for i+ j = 5.

(8.4) 1
n�

�1 @4L(�(�;');�(�;');�(�;� ;'))
@�4

= Op;(�;')(1).

(8.5) ��2E
h
@3l(�(�;');�(�;');�(�;� ;'))

@�3

i
= O(�;')(1).

(8.6) With � and �2, 1p
n
@2L(�n0)
@�@� = Op(1) and 1p

n
@2L(�n0)
@�@�2

= Op(1).

(8.7) With � and �2,
n
1
n�

�1
n

@3L(~�n)

@�2@�

o
= Op(1) and

n
1
n�

�1
n

@3L(~�n)

@�2@�2

o
= Op(1).

Proof. The proofs of (8.1) and (8.2) are similar to the proof of Proposition 1. Therefore, we only

give the Taylor expansion of @2l(�; �; 1)=@�2 and @3l(�; �; 1)=@�3 to justify the normalization

��1, but omit the detailed steps. Speci�cally, a �fth-order Taylor expansions yield

@2l(�; �; 1)

@�2
=h4

�
1

9
�4 � 1

4
�2
�
+ h3��

+
4X
i=3

1

i!

@2+il(�; �; 1)

@�2@�i
�i +

4X
i+j=3;i�1;j�1

1

i!j!

@2+i+jl(�; �; 1)

@�2@�i@�j
�i�j

+
X
i+j=5

1

i!j!

@2+i+jl(~�; ~�; 1)

@�2@�i@�j
�i�j

and

@3l(�; �; 1)

@�3
= 8h4�4 +

4X
i=3

1

i!

@3+il(�; �; 1)

@�3@�i
�i +

4X
i+j=3;i�1;j�1

1

i!j!

@3+i+jl(�; �; 1)

@�3@�i@�j
�i�j

+
X
i+j=5

1

i!j!

@3+i+jl(~�; ~�; 1)

@�3@�i@�j
�i�j :

The proof of (8.3) is similar but much simpler, as it is not normalized by � . To prove (8.4),

it su¢ ces to apply the uniform law of large numbers (see Lemma 2.4 of Newey and McFadden
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(1994)) and use

g(� ; ') =

(
��1 @

4l(�(�;');�(�;');�(�;� ;'))

@�4
if � 6= 0;

lim�!0 ��1
@4l(�(�;');�(�;');�(�;� ;'))

@�4
= 24h4 if � = 0:

To see (8.5), notice that

E

�
@3l

@�3

�
= �8960�8 � 54�4 � 36�2�2 + o(�2):

As for (8.7), we can also show that evaluated at ~�,

1

n

@3Ln

@�2@�
= � 32

3�̂
�4Ĥ3 +

2

�̂
�2Ĥ3 + op(�)

and
1

n

@3Ln

@�2@�2
= � 16

3�2
1

n
Ĥ4�

4 +
1

�2
1

n
Ĥ4�

2 � 3

2�2
1

n
Ĥ3 + op(�);

where

Ĥ3 =
X
i

ŷi(ŷ
2
i � 3) and Ĥ4 =

X
i

ŷ4i � 6ŷ2i + 3 with ŷi =
X
i

yi � �̂
�̂

;

whence we prove the desired result. �

Lemma 9
�� 1
36�

4 � 1
8�
2
��! 0 and

��1
2��
��! 0 implies � ! 0 and �! 0.

Proof. Once again, we prove this by contradiction. If the lemma does not hold, then one of

the following statement must be true:

(i) there exist sequences �n, �n such that
�� 1
36�

4
n � 1

8�
2
n

��! 0 and
��1
2�n�n

��! 0 but �n ! �� 6= 0,
or

(ii) there exist sequences �n, �n such that
�� 1
36�

4
n � 1

8�
2
n

��! 0 and
��1
2�n�n

��! 0 but �n ! �� 6= 0.
Consider (i):

��1
2�n�n

��! 0 and �n ! �� 6= 0 implies �n ! 0, thus���� 136�4n � 18�2n
����! ���� 136��4n

���� 6= 0;
which is a contradiction to

�� 1
36�

4
n � 1

8�
2
n

��! 0. Similarly, for (ii),
��1
2�n�n

��! 0 and �n ! �� 6= 0
implies �n ! 0, thus ���� 136�4n � 18�2n

����! ����18��2n
���� 6= 0;

as desired. �
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