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Abstract

Testing normality against discrete normal mixtures is complex because some parameters
turn increasingly underidentified along alternative ways of approaching the null, others are
inequality constrained, and several higher-order derivatives become identically 0. These
problems make the maximum of the alternative model log-likelihood function numerically
unreliable. We propose score-type tests asymptotically equivalent to the likelihood ratio
as the largest of two simple intuitive statistics that only require estimation under the null.
One novelty of our approach is that we treat symmetrically both ways of writing the null
hypothesis without excluding any region of the parameter space. We derive the asymptotic
distribution of our tests under the null and sequences of local alternatives. We also show that
their asymptotic distribution is the same whether applied to observations or standardized
residuals from heteroskedastic regression models. Finally, we study their power in simulations

and apply them to the residuals of Mincer earnings functions.
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1 Introduction

Finite mixture distributions arise naturally when an observed population contains two or
more underlying subpopulations. Starting with the famous Naples bay crab data that Pearson
(1894) analyzed, they are often used to model unobserved heterogeneity in many disciplines.
Economics examples include duration analysis (Heckman and Singer, 1984), measurement errors
(Horowitz and Manski, 1995), schooling and career choice (Keane and Wolpin, 1997), industrial
organization (Berry, Carnall and Spiller, 2006), and multiple equilibria in discrete games (Berry
and Tamer, 2006); see Compiani and Kitamura (2016) for a more thorough list of references.
They have also been used in other fields, such as finance, where the objective is to capture the
observed skewness and kurtosis of asset returns that may result from different market conditions,
as well as for identifying “convergence clubs” of countries based on per capita GDP, and within-
country clustering in household income and wealth.

In this paper, we focus on finite Gaussian mixtures, which are the most popular, with the
seemingly modest objective of testing a normal distribution against a mixture of two normals
using ¢.i.d. data. Specifically, suppose that individual observations y; (i = 1,...,n) can be of two
types, each following a normal distribution with mean y; and variance a?, j = 1,2. Crucially,
these types are not observed by the econometrician, so from her perspective the probability

density function (pdf) of an observation is given by the following linear combination of the pdfs

Ad <yz ;1M1> F(1-N)o <yi;2:u2> :

where ¢ denotes the standard normal pdf.

of the two types

Studying classical tests of normality against a mixture of two normals is a devilish problem.
First, the null hypothesis can be written in two ways: either as Hy : uy = py and o3 = 03, or
as Hp: A (1 — X\) = 0. Many papers focus only on one of these two null hypotheses but we treat
both together. Another difficulty is linked to the fact that some parameters are not identified
under normality, although their identity depends on the path along which one approaches the
null. Moreover, when testing Hp : A (1 — X\) = 0, A is on the boundary of the parameter space, so
standard asymptotic theory no longer applies (see Andrews (2001)). Finally, some parameters
are only identified — if at all — through higher-order derivatives (cf. Dovonon and Renault
(2013)), which means that studying the properties of the likelihood ratio (LR) tests requires
up to an eighth-order expansion. All these aspects make likelihood-based testing for normal

mixtures highly nonstandard.

Previous papers investigating the properties of the LR tests in this context include Ghosh



and Sen (1985), Hathaway (1985), Chen and Chen (2001), Chen, Chen and Kalbfleisch (2004),
Azais, Gassiat and Mercadier (2006), and Chen, Ponomareva and Tamer (2014). The closest
papers to ours are Chen and Li (2009) and Kasahara and Shimotsu (2015). The main difference
is that they only focus on the null Hy : j1; = 5 and o3 = 03, while we simultaneously deal with
the second null hypothesis Hy : A (1 — A) = 0. Our work is also closely related to Cho and White
(2007), who consider both null hypotheses but exclude some corner regions of the parameter
space. In this respect, one important contribution of our paper is that we explicitly consider all
possible values of the parameters thanks to a novel convenient bijective reparametrization.

To circumvent the unusual features of the LR test, which not only make inference complex
but also render the maximum of the log-likelihood function of the alternative model numerically
unreliable when the null is true, some authors have proposed moment-based tests. Such an
approach goes back to the smooth tests in Neyman (1937). In particular, Quandt and Ramsey
(1978) use influence functions derived from the moment generating function, while others com-
pare the empirical characteristic function to the theoretical one under normality (see Amengual,
Carrasco and Sentana (2020)), or simply a handful of higher-order moments of the normal dis-
tribution, as in Jarque and Bera (1980), Bai and Ng (2005), and Bontemps and Meddahi (2005),
who, like Kiefer and Salmon (1983), look at the expected values of Hermite polynomials rather
than simple powers.!

In this paper, we propose score-type tests based on expansions of the log-likelihood function
for three null hypotheses: equality of means and variances, equality of means only, and equality
of variances only. In all three cases, we derive their limiting distributions and show that they
are asymptotically equivalent to the corresponding LR tests under the null and sequences of
local alternatives. At the same time, our statistics are much simpler to compute because they
do not require the estimation of the full model under the alternative, with the unknown mean
and variance parameters simply replaced by their sample analogs under the null hypothesis.
Moreover, they do not require any tuning parameters, unlike the EM tests of Chen and Li
(2009) and Kasahara and Shimotsu (2015). Interestingly, when testing for the equality of means
and variances, our test statistic coincides with the popular Jarque and Bera’s formula involving
the sample skewness and kurtosis coefficients, which implies that their moment test is equivalent
to the LR test in that context. However, when we look at the global LR test, which explicitly
considers the two different ways of writing the null hypothesis, the equivalence disappears.

Empirical researchers in economics and finance, though, are often interested in testing the

'Bai and Ng (2001) propose a test for conditional symmetry in time series contexts based on the empirical
distribution function that can be used to test the null of normality too; see also Dufour et al (1998) for a comparison
of the small-sample properties of various normality tests.



normality of the standardized residuals of an econometric model. For that reason, we investigate
if our testing procedure is robust to parameter uncertainty. Importantly, we show that when the
mean and variance of the observed variable given some conditioning variables are parametric
functions of those variables, replacing the unknown parameters by a Gaussian maximum like-
lihood estimator obtained under the null does not alter the expressions for our proposed test
statistics or their asymptotic properties.

The rest of the paper is organized as follows. In Section 2, we introduce the model and the
three null hypotheses. Then, we derive the test statistics and their distributions under both the
null and suitable sequences of local alternatives in Section 3, and establish their robustness to
parameter uncertainty in Section 4. Next, we discuss the results of our simulation experiments in
Section 5, and present an empirical application to Mincer earnings functions in Section 6. Finally,
Section 7 concludes, with the proofs collected in the Appendix. Moreover, a supplemental

appendix includes extra details for some of those proofs together with other auxiliary results.

2 Model, hypotheses, and overview of the test

We consider the model
y=u(z,a)+o(z,a)e, (1)

where p and o are known functions of x and a finite-dimensional vector of unknown parameters
a, and ¢ conditional on x is ¢.i.d. with zero mean and unit variance. Observations are given by
(ziyyi), 1 = 1,2,...,n, where z; could be the lagged value of y; in time-series models, in which
case we would assume that ¢; conditional on the past is ¢.i.d. We want to test € is standard normal
against the alternative that it follows a standardized mixture of two normals. It is crucial to
impose that € maintains the same mean and variance in both the null and alternative hypotheses
to ensure that the test’s power is focused on discerning a mixture from a standard normal. This
requires a reparametrization, but as we will show in Section 4, it has the advantage of making
the test robust to the sampling uncertainty in the parameter estimators of a. Consequently, for
the time being we assume « is known and focus on the case without conditioning variables.
Assuming without loss of generality that p (z;, ) =0 and o (x;,«) = 1, we want to test:
Hj : y has density ¢ (y) against
H, : y has density \¢ (yi/f{) +(1=XN¢ (yfffg), where

e
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o2 = L and o2
DA = N0 A+ (1= N) exp(s2)] 2

with 9, >, and A becoming the unknown shape parameters. This parametrization guarantees

= exp(%)a?, (2)

that the marginal distribution of y has zero-mean and unit-variance both under the null and the
alternative.? As the labels of the two regimes are not identified, we set A > 1/2 henceforth.?
Let ¥ = (8,5, \), with ¥ € [~6,6] x [~72,32] x [1/2,1], with 3z < In2 for reasons that will

become clearer in section 3.2.1.* We consider three different parameter spaces

O] = [-6,0] x [~3,3] x [1/2,1],
O = [-§,6] x {0} x [1/2,1] and

=10} x [—3, 7] x [1/2,1].

©' corresponds to the case where 0, >, and X are free to take any values within their respective
intervals. In turn, ©} corresponds to the case where s is constrained to be equal to zero,
which is relevant when the econometrician knows that the variance is the same in both regimes.
Finally, ©% corresponds to the case where § is constrained to be equal to zero, which captures
the knowledge that the means are zero in both regimes.

As we mentioned in the introduction, normality can be achieved within ©] with § = 5 =0
or with A = 1. When § = > = 0, A is not identified. In turn, when A = 1, § and 3¢ are not
identified. The existing literature circumvents these problems by testing either Ho; : (§,5) =0
for A <1—e < 1,0r Hpa: A =1 with min{|d|, ||} > & > 0 (see, e.g., Cho and White (2007), and
Kasahara and Shimotsu (2015), among others), which effectively excludes the regions depicted
in Figures la and 1b, respectively, from the parameter space. However, the “corner case”
{(0,k, ) : min{|d], |s|} < e, A >1—¢} in Figure 1c will remain off-limits even after combining
the admissible parameters in Figures 1la and 1b, and it is not obvious that a test statistic that
excludes that cube is asymptotically equivalent to the unrestricted LR test.

Moreover, it is well known that the information matrix of the maximum likelihood estimators
of (0, ) is singular under Hy regardless of the value of A\. To confine those singularities to specific
parameters whose first-order derivatives become exactly equal to zero under the null, we use a

trick analogous to Kasahara and Shimotsu (2015) and replace » with

K=+ (2)\ —1)§?/3, (3)

2The fact that (2) restricts the range of values that u?, p3, 02 and o3 may take to ensure that the uncondi-
tional variance of y is 1 is inconsequential for our inference procedures because the new parameters § and s are
unrestricted.

$We could label the two components for A = 1/2 based on the sign of , and if that also failed, we could
eventually rely on the sign of 4.

“Note that the values of 03? and ¢32 are bounded away from zero by the definition of the parameter spaces
G);, j =1,2,3, which rules out poles in the likelihood when the values of 032 or o2 go to zero.



so that the parameter vector becomes # = (d,k,A). The most general version of the null

hypothesis Hp can thus be written as either A =1 or (d,x) = 0. Let
0; = {(6,m,0) : (6,5 — (A — 1)32/3,0) € O}, j=1,2,3. (1)

Figures 2a-2d describe ©1, as well as the parameter combinations that lead to Gaussianity.
In this context, the goal of our paper is to construct a score-type test for each of the three
hypotheses mentioned above that is asymptotically equivalent to the analogous LR statistic

n

LRj =2 |sup Ly (6,5, A) = Ln(0,0,1) | with Lp(d,5,A) = > 1i(8,5,N), (5)
9€®j =1

where I; is the log-likelihood of ; given 6, i = 0 and 02 = 1.5

To avoid excluding any region of the relevant parameter spaces, we partition them as follows,
Paj =1{(0,k,A) € ©; :max{|d], |k|} <1—A} and Pp; = {(d,K,\) € ©; : max{[d], x|} > 1 — A}

for j = 1,2,3. Testing Hy,;j : 0 = k = 0 with 0 € P, ; tests whether one or both of the first two
moments of the regimes coincide. In turn, testing Hop j : A = 1 with 6 € P, ; checks that all the
observations come from a single regime. We can thus associate each of the two ways of writing
the null hypothesis to one and only one of these parameter subspaces, as illustrated in Figures

2e-2g. To the best of our knowledge, this has never been done before.

3 Test statistics

In this section, we first treat Ho,,; and Hoyp, j separately and develop the corresponding test

statistics, which we then combine by taking the largest of the two.

3.1 Inside the pyramid: testing Hy,

As we mentioned above, testing Hpq1 : 6 = k = 0 with 0 € P, assesses whether the
mean and variance are the same in both regimes. Similarly, testing Ho,2 : 6 = 0 with 6 € P, o
implicitly assumes that the variances are known ex-ante to be the same in both regimes and
one simply wants to test whether the mean is also the same. Finally, testing Ho, 3 : £ = 0 with
¢ € P, 3 maintains that the means of the two regimes are known ex-ante to be 0 and one only
wants to check that the variances coincide too.

Let LR, ; be the LR statistics for testing Ho, ; with 6 € P, ;, as in Figure 2f, which is given

’For notational simplicity, we systematically use L, (0,0, 1) to denote the log-likelihood function under Hy even
though it coincides with both L, (8, ,1) and L,(0,0, ), avoiding the dependence on u and o2 if unnecessary.



LRq;=2| sup L,(8) —L,(0,0,1)].
6673,1,]-

Our reparametrization allows us to write the derivatives of the log-likelihood with respect to ¢

and k at the point (0,0, \) using the Hermite polynomials h3 = y3 — 3y and hy = y* — 6y + 3

- ol ol
aT; =0, 872 -0,
fo; =0 88;(;; = —%A(l = Ahai, gi{j = im — Mhai,
g?é =0 and g‘;zz = —%A(l = (L= A+ X%)hy;.

Hence, an eighth-order expansion of the log-likelihood function immediately implies that our

score-type tests will depend on

n n
Hzp = Zhiii = Zyz(yf —3), Vs =war (hs;) =6,
i=1 i=1

n

Hyp = Z ha; = 2(3 —6y? +y}) and Vi =var (hy;) = 24.
i=1 i=1

More formally, the score-type test statistics corresponding to the three null hypotheses and their

asymptotic distributions are given by the following result:

Proposition 1 Let

2 2 2 2 2
H
3.n 4.n 3,n 4.n 4.n
LM,1 = =~ 4+ —=, LM,s= — + ——1[Hy, <0 d LM,3 = —1[Hyp, >0
a1 nVs nVy @2 nVj nVy [Han | an a3 nVy [Han ]

denote the score-type test statistics corresponding to the three null hypotheses, where 1[A] denotes
the indicator function for event A. Then:

a) For j =1,2,3, LR, ; = LM, + o, (1) under Hy, ;.

b) In addition, under Hy,

LM, 4, X%; LM, 4, X% + max(0, Z)2 and LM,3 4, max (0, Z)Q,

where X? denotes a chi-square random variable with j degrees of freedom and Z is a standard
normal independent of X3.

In LM, 1 we recognize Jarque and Bera’s (1980) test statistic, which exploits both the skew-
ness and kurtosis of the data. Not surprisingly, its asymptotic distribution, as well as that of
LR, 1 by virtue of the asymptotic equivalence in Proposition 1.a, is x3 under Hy. In contrast,
LM, 3 exploits the data’s potential lepkurtosis only, while LM, 2 both its potential skewness
and platykurtosis, which explains their partially one-sided nature. Intuitively, unrestricted two-

component Gaussian mixtures, such as the one in Figure 3a, can generate the entire admissible



range of skewness-kurtosis coefficients. In contrast, two-component mixtures with a common
variance can have either positive or negative skewness but they can only be platykurtic in the
vicinity of the null, as illustrated in Figure 3b. Finally, scale mixtures of two Gaussians are

symmetric and necessarily leptokurtic, as confirmed by Figure 3c.

3.2 Outside the pyramid: testing Hy,

We are now concerned with testing Hop j : A = 1 with 6 € Py ;, as in Figure 2g. As usual,
Hoyp,1 corresponds to the case where both the mean and variance can be different across regimes
under the alternative, Hy,o to the case where only the mean may differ across regimes, and
Hgy 3 to the case where only the variance is allowed to change. Importantly, we are in the rather
unusual setting where the parameter \ is on the boundary of its range [1/2, 1] and the “nuisance”
parameters (0, k) are not identified under Hy.

The score with respect to A at the point (9, x, 1) is given by

o _ 1y 2N 1 Il o 0 oo —(s-%)
D 2<3 e 3) H_ﬂexp{z [yi (yi +9)%e (6)
e~ 3

As we explained before, 0l;/0O\ equals zero when § and k are simultaneously 0. For that
reason, we first focus on a region where (0, ) is kept away from (0, 0), leaving the discussion of

the general case for later.

3.2.1 Qutside the pyramidion

Let B = {(0,k,A) € Pp1 : V 62 + K2 > ¢} for some € > 0. Henceforth, we refer to the
complement of this subset over P represented in Figure 2h as the “pyramidion”.°

For a given (0, k), let

2
LM, (8,K) = {%J : (7)

where |-] = min(0,-), G,(d, k) = ﬁ Yoy %, and V(6,k) =g (6,,% —6%/3;6,k — (52/3), with

oxp | (33eM 1 +diet2) 2
RO1 L 02 B2 Vekr 4 ek2 — gkitke P T ekt (ekrtha — ek — eha)
1
-3 [3 20100 + (6102)% + 02(e"2 — 1) + G2(e"1 — 1) — ef1 — eF2 4 emﬂ . (8)

6 A pyramidion is the capstone of an Egyptian pyramid, and therefore pyramidal itself. By relying on Euclidean
distances, though, ours is cylindric instead.



The one-sided nature of (7) reflects the fact that expected value of (6) is negative for alternatives
with A strictly less than 1 and § and x not simultaneously 0. Importantly, the fact that V (4, k),
which is the variance of (6) under the null, becomes unbounded when exp (k —§2/3) > 2 is
inconsequential because of our assumption that > < In2. In this context, we define our score

test statistic as

Lleg1 = sup LMy (0, k) 9)
(0,5,1)EPy 1NB

and the corresponding LR test statistic by

LRE, =2| sup L,(0)—L,(0,0,1)]. (10)
’ 0€P,,1NB

We can then show that:

Proposition 2 1) Under Hy, we have that

NG

over P,1 N B, where G (8, k) is a Gaussian process indexved by (6, k) with E[G (6,k)] =0 and

1 = 0l
Gn(6, k) = :za:G@@
=1

52 63
cov[G (61, K1) , G (02, k2)] = g (51, K1 — 31,52, Ko — 32> :
2) In addition,
G(4, k)

V'V (6,k)

2
(b) LMbl?l 4, sup {G((S’H)J and

(6,5,1)€Pb,1ﬁB \/ \% (5, K})

(c) LRy =LM} +op(1).

2
(a) LMy (6,k) = { J for (6,K,1) € Pp1 N B,

Proposition 2 determines the limits of the empirical processes G,,(d, k) (score) and LMy (§, k)
(test) under Hy, whence one can obtain the asymptotic null distribution of the equivalent sta-

tistics LR, and LM} .
3.2.2 Inside the pyramidion

In the previous subsection, we restricted (,x) away from 0. Therefore, we still need to
obtain a test statistic that remains valid inside the pyramidion when (d,x) — 0, in which case

both (6) and G, (d, k) also go to zero for any given sample. The problem is that

{ G (6, k)

W 1 (0,K,1) € @1\{07071}}

8



is not stochastically equicontinuous” because for any given sample of size n we can find sequences

(01ms K1m) — 0 and (d2pm, K2m) — 0 such that

gn (51m7 Hlm) lim gn (52m7 "12m)

hm e —— 1 .
m—=00 \/V (§1m, Kim) ™7 \/V (02m, Kom)

Consequently, we cannot directly rely on the functional central limit theorem underlying Propo-
sition 2.

To deal with this problem, we perform yet another one-to-one reparametrization over P
from (4, k, A) to (1, ¢,n) such that 7 — 0 if and only if (§,x) — 0 (see equations (18)-(20) in the
proof of Proposition 3 for details). Drawing inspiration from Lee and Chesher (1986), we then

define
/ 1
gn(T7 QO) = ;gn [6(7-7 ¢)7 R(T7 (P)]
and

/ 1
14 (T7 ()0) = ﬁv[(s(Tv QO)? H(T7 30)]
This simple trick guarantees that lim,_,o Q;(T, ©) is well defined, so that we can show that the
empirical process {G/,(7,¢)} converges weakly to a well defined Gaussian limit (see again the
proof of Proposition 3 for details). But since
g;L(Tv SO) — gn [5(7—) 90)5 ”(Ta @)]
VV(T,0) V(T 9), 5(7,0)]

for any 7 # 0, the one-to-one mapping from (6, x, ) to (7,¢,n) over the whole of P, ;, and

(11)

therefore over both P, ; N B and its complement, implies that we can work with Gy, (7, ¢) over
the entire P, 1 regardless of the partition. Thus, we can define the score-type tests corresponding

to Hopj, with j = 1,2, 3, as:

2
Gn(0,K)
LMy, = sup —_—
(8,5):(8,%,1)€01\{0,0,1} {\/V (0,K) |

2

LMo = sup | —F———
0<lo|<3 | [y (5 ﬁ)
» 3

and )
Gn(0, k) J
VVI(0,K)|

where we have excluded the element {0, 0, 1} because at this point both G,,(0,0) and V (0,0) = 0,

LMz = sup {

0<|r|<32

"See Andrews (1994) for the definitions of stochastic equicontinuity and weak convergence. An example of
failure of equicontinuity is given in Supplemental Appendix B.



although it is easy to see that the avoidable discontinuity of (11) at 7 = 0 could be easily removed
by replacing the ratio by 0.
Let us explain the choice of the spaces over which the supremum is taken. When A = 1,

(6,5,1) € Oy is equivalent to {(, k) : [§] <6, |k —§?/3] < 5} in view of (4), so that

{ G0, 1) J2 _ . { G5, k) J2 |
VV(6,E) | 1515, 1k—62/3]<z, 8|+ |x|>0 | VV(0,5) |

Similarly, (6, s, 1) € O3 is equivalent to {(6,) : || < 6,k = 52/3}, while (4, k,1) € O3 is equiv-

sup
(8,5,1)€01\{0,0,1}

alent to {(0,x) : § =0, |r| < 5x}.
In this context, the following proposition establishes the equivalence between the LR test

and our proposed one:

Proposition 3 (a) Under Hy, we have

2
LMys sup GOk |
1615, [k—52 /3| <5z 8| +|x1>0 | V'V (0, 8)] |
2 2
d G((Sv%)
LMo — sup and

0<|5]<8 v (s, %) )

2
LMy % sup V«))J |

o<|x|<z | VV (0, K)
(b) Moreover,
where

LRy;=2| sup Ly(0)— L,(0,0,1)|.
HE’P[;J‘

Importantly, the results of Proposition 3, which allow one to obtain the common asymptotic
distributions of LM, ; and LR, ; under the relevant null hypothesis, are novel because they hold
for the whole space Py, without the need to exclude the corner case in Figure 1c in which the

pyramidion lies.

3.3 Combined test of H

In the previous two subsections, we have derived the relevant tests statistics over either
Pa,j or Py, but we really want to test the null of normality of the entire parameter spaces
0, 7 = 1,2,3. Given that ©; = P,; U P ;, and that the LR test statistic is such that
LR; = max(LR,;, LRy ;), we define LM; = max(LM,;, LM, ;). Using the asymptotically
equivalent results in Propositions 1 and 3, it immediately follows that LR; = LM; + o, (1).

10



Interestingly, we can show that the test statistic in P, is no larger than the one in P, with
probability 1 for ©; and ©3, which implies that the corresponding tests can be simplified as

follows:
Proposition 4 Under Hy and Hy, we have
max (LM, j, LMy ;) = LMy ; for j =1 and 8. (12)

Therefore, under Hy, we have

2
Gu(5, K) J
LR, = sup ————=| +op(1) (13)
' |8]<8,|k—62/3|< 57,04 K|>0 {\/ V (4, k) _ .
and
Gn(0,K) 2
LR3 = Bl A 1). 14
’ 0<S|:I;2{ V(O;R)J_—l_op( ) )

In contrast, the test statistic in P2 may be either smaller or larger than that in P2
with positive probability asymptotically (see Figure 3e in comparison to Figures 3d and 3f).
Consequently, our score-type statistic for testing normality against a finite normal mixture with
0 € ©5 will be

LMy = max(LMg2, LMys).

3.4 Distribution under local alternatives

Given that there are two ways of expressing the null, there are two natural local alternatives

to Ho : y; ~ N (0,1), depending on whether (d,x) — (0,0) or X goes to 1.
First, we consider local alternatives in which A is kept fixed somewhere in the range [1/2,1—¢]
while (J, k) approaches (0,0). Let Py be the distribution of yi, ..., y, under the null hypothesis
and Py, be the distribution of yi, ..., y, under local alternatives such that lim,_,oo (Win, w2,) =

(w1, w2) € R? where

1
Wi, = —5\/ﬁénﬁn and

3 1, 124X,
wWon — \/’77/(8/{”365”) .

We will denote the corresponding local alternatives as

Hin : {(wln,wgn) such that lim (wip,way) = (w1, ws) € RQ} .

n—oo

1), or
1)

Somewhat unusually, we can have wi, = O (1) and wa, = O (1) in two different cases:
(a) when /né,k, = O (1) and /nk2 = O(1),
(b) when /né,k, = O (1) and /nd2 = O(1).

11



Second, we also consider local alternatives in which ¢ and & are fixed and not simultaneously

0 while X\ goes to 1 at the usual \/n rate. We will denote these other local alternatives as

Hom : Ap = 1 — %,
where p is some positive constant.

Let Pg,, with 8 = (6,x), denote the probability measure of yi,...,y, corresponding to
Hap. In addition, let X% (v) denote a non-central chi-square random variable with & degrees of
freedom and non-centrality parameter v. We can then show that:

Proposition 5 (a) Py, is contiguous with respect to Py.

(b) For any (B,1) € B, Psy, is contiguous with respect to Fj.
(c) Under the relevant local alternatives, we have

LMa,l =

H??n HZn d X% (szl + V4wz) under Hip,
’ 2 2 C3p c4p .
nVs nVy X2 ( + ) under Hop;

sup ~ min {O G(ﬁ)“ﬁ;%wz} under My,
LMzﬁ = sup LM, (B) KA (B,1)€Py1NB

(B,1)€Py1NB sup  min {0 VvV (—g ) } under Hap;

(B,1)ePp1NB

where G (8) and V () are defined at the beginning of section 3.2.1, and

. 2
c3 = cov <h3i, giﬁ) =6 +36 (6“_53 — 1) and

2 2\ 2
c4 = cov <h4z, gi) = 662 <1 - eﬂ‘%> —5 -3 (1 - 6“3) ,

(d) Moreover, LM, ; and LR, ; are asymptotically equivalent under Hy,, while Lij and Llej,
which are defined in (9) and (10), respectively, are asymptotically equivalent under Hay,.

The following remarks are in order:

Remark 1 An interesting implication of Proposition 5(c) in terms of power under Hy,, is

2
cawy = {53 + 30 <e”63 — 1)] wy <0,
2 52 2
caws = | 662 <1 “_> . ( — e”_3) Wo

depends on both the type of local alternative (either \/nx2 = O (1) or v/nd% = O (1)) and the

the following. We have

while the sign of

values taken by § and k. Since we take a minimum over ¢ and x, we can always find values of

these parameters such that cqws < 0. Consequently, the expectation of dl;/0\ is negative and
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the test Lij will have nontrivial power against P, . However, if x,, and ¢,, go to zero too fast,
so that w1 = o0, (1) and wy = 0, (1), then the tests LM, 1 and Lij will have trivial power.

Remark 2 The Llej test has nontrivial power against the local alternatives Ha,,.

Remark 3 It follows from Proposition 5 that the LM, test has non trivial power against
Hoy, provided either 6 # 0 or k # 0. On the other hand, if A were to go to zero faster than
1/y/n, then LM, would not have power even if § # 0 and & # 0.

Remark 4 The asymptotic distribution of max (LM, 1, LMbl?j) under H1,, and Hs, could
in principle be deduced from Proposition 5(c), although there is no simple expression for it.

Remark 5 Proposition 5(d) implies that the asymptotic distribution of LR, ; is the same
as that of LM, ; under local alternatives Hi,, and the asymptotic distribution of LREj is the
same as that of LMIfj under local alternatives Ho,,.

We would like to emphasize that Proposition 5 implies that our tests are consistent for any
fixed alternative for which A # 1 and either § # 0 or k # 0. Indeed, the different test statistics
diverge under such fixed alternatives, so their power goes to 1. Consequently, the following
corollary holds:

Corollary 1 Under fized alternatives for which A # 1 and either d # 0 or x # 0, we have
that

LMa1 — o0 and LM — oo

as n goes to infinity.

4 Robustness to parameter uncertainty

In this section, we study the impact of estimating the mean and variance parameters under
the null on the asymptotic properties of our testing procedures. Specifically, we consider the case
where the conditional mean and variance of y are parametric functions of another observable
variable z, as in (1). Autoregressive and GARCH models are particular examples in which x
contains lagged values of y. In this context, the objective becomes to test whether the standard-
ized innovation ¢ follows a standard normal distribution versus a standardized mixture of two
Gaussian components.

The conditional log-likelihood of the i** observation is given by

2

1 py 1 _ .

k — §lnay (zi, ) + In o exp |~ Yi — by (w4, @) .
Vit o @)
2
L= 1 T Zi, & *

T g &P T 952 ety (o )_M2 )

72 72 U%’ (@i, @)
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where k is the constant of integration and p}, u}, 032 and 032 are defined in (2).
Assumption 1 py (z;,«) and oy (x;,«) are eight times continuously differentiable with
respect to o.
Assumption 2 For all k € N% and /k=1,...,8, it holds that

"y (4, ) ’ "k02. (x4, ) ’
F Z Py \mn B < 00, FE Z Yy \re < 00,

Oak Oak

where k = (kh .. '7kd9)7

'k 'k
0 My (xiv a) _ 0 My (mi’ a) and
aak a a k1 a kda7
ot ... 0ay
'k _2 'k _2
0"Foy (zia) 0"Foy (14, )
k = kay,
dox ookt ... 9
1 do

Proposition 6 Under Assumptions 1 and 2, replacing o by the restricted maximum likelihood
estimator under Hy, &, does not alter the expressions of the score-type tests or their asymptotic
distributions.

In practice, y; is simply replaced by §; = [yi — py (24, @)]/1/0% (@, &) in the expressions for
the different test statistics discussed in the previous section.

Proposition 6 is reminiscent of Proposition 3 in Fiorentini and Sentana (2007), who proved
that when a researcher estimates a multivariate parametric location-scale model with a para-
metric distribution for the innovations that nests the multivariate normal, including mixtures of
normals as a particular case, the (scaled, average) scores of the mean and variance parameters
are asymptotically independent of the (scaled, average) scores of the shape parameters when the
true distribution is in fact Gaussian. However, their proof assumes a regular model in which the

usual information matrix has full rank.

5 Monte Carlo evidence

In this section, we assess the finite sample performance of our proposed tests by means of
several extensive Monte Carlo exercises. The composite null hypothesis is a normal distribu-
tion with unknown mean p and variance o2, while the alternative is a mixture of two normal
distributions with either different means, different variances, or different means and variances.
In addition, we compare our tests to the LR test, the EM tests by Chen and Li (2009) and
Kasahara and Shimotsu (2015), whose asymptotic distributions is X%, and some popular non-
parametric procedures based on either the empirical cumulative distribution function (cdf) or
the characteristic function. Specifically, we look at the Kolmogorov-Smirnov (KS) test and the

continuum of moments-test proposed in Amengual, Carrasco and Sentana (2020) (ACS).
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In this context, the LR test effectively reduces to

n

LRj =2 sup Ln(¥, fi,,62) = Ln (0,0, 1, f1,,,62) | with Ly (9, f1,,62) =Y & (9, f1,,63)

GSeH i—1
where /; (19, Ly s (}%) is the log-likelihood contribution coming from the i** standardized observa-
tion
. Yi — b . N 1 ¢ ) 1 & A \2
Ji= =" with fi, ==Y y; and &p ==Y (yi— f1,)".
On i i

To calculate the maximizers of the unrestricted log-likelihood function, we use the GlobalSearch
Toolbox in Matlab with initial value (0,0, 1/2), which in turn chooses another 1,000 combinations
of §, sc and A\. We have also tried the analogous optimization of the reparametrized log-likelihood

function

n
eseug Z 11(57 K,y )‘a ,[Lna &31)

i =1
Finally, we consider as initial values the maximizers of the eighth-order expansion of the
log-likelihood function too. Specifically, for each ©;, we use:

e Initial value 1: (&5, k% — (2X\5 — 1)(65)?/3, Ay), where &5, s}, and A}, are defined in Step 5

n»''n n’

of the proof of Proposition 1.

e Initial value 2: (8, kp — (2X\, — 1)62/3, \y), where

2
(8p, kb) € arg max ([OL(5,5,1)/0A] )
(6,6,1)€0;,6%+r2>10-3 V(d, k)
and
= 1 1 OL(6p,kp, 1) | 1
e ] e A TS

It turns out, though, that maximizing the original likelihood using GlobalSearch with initial
value (0,0,1/2) yielded the largest criterion function among all these possibilities

As for the other tests that we use for comparison purposes, we proceed as follows. For
Kasahara and Shimotsu (2015), we fix the number of iterations K to 3, the initial value for A
(v in their notation) to 0.5, the penalty term in the penalized likelihood function as in their
expression (22) with a, = 0.25, and all tuning parameters to the values suggested in their
paper. As for Chen and Li (2009), we use the code provided by the authors in which the
number of iterations is set to K = 2, the initial values for A (again, « in their notation) to
(0.1,0.3,0.5), while the penalty term is the same as in Kasahara and Shimotsu (2015), but with
a4, = 0.2 + ¢~ 1-410209-114.433126/n

In turn, we compute the KS statistic on the basis of the

probability integral transforms of the standardized observations obtained through the standard
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normal cumulative distribution function (cdf). Finally, for the ACS test, we fix the Tikhonov
regularization parameter v to 0.01 and the scale parameter w? of the Gaussian density used
to define distances and inner products in a suitable L?-type Hilbert space to 1 in view of the
simulation results in Amengual, Carrasco and Sentana (2020).

In all cases, we compute empirical critical values using the following parametric bootstrap
procedure. First, we generate y1,...,y, as iid N(0,1) and calculate the test statistics based on
the observations standardized with the estimated mean and variance in that sample, restricting
the parameter values over which we compute the supremum to [§] < § = 2 and || < 5z = 1/2.
We then repeat this 10,000 times to estimate the 1 — « quantile of the distribution of our test
statistics in samples of size n, which we then use as “exact” (up to Monte Carlo error) critical
values. In contrast, the use of asymptotic critical values led to substantial size distortions under
the null in simulations available on request.

To assess the size-corrected power of the different tests, we generate y1, ..., y, from a stan-
dardized mixture of two normal distributions with several combinations of A,  and s that include
symmetric mixtures with outliers (sr > 0), as well as asymmetric ones (6 # 0). Then, for each
sample we standardize the observations and calculate the test statistics as before, repeating this
10,000 times. Finally, we compute the corresponding rejection rates using the empirical critical
values obtained by means of the parametric bootstrap procedure in the previous paragraph.

Rejection rates for sample sizes n = 500 (Panel A) and n = 125 (Panel B) are reported
in Table 1. We include results for LM; (denoted by sup in the table), LM, ; and LM, ;, for
Jj = 1,2,3 (O in the table), whenever different. Note that LM, ; is called JB in the table
because it coincides with Jarque and Bera’s test. Moreover, LM, and LM, 3 are omitted
from the table because they coincide with LM; and LMj3, respectively. The upper subpanels
contain results for different combinations of § and > when A\ = 0.975, while the lower ones do
the same but when the mixing probability is 0.75, with the values § and s chosen so that the
skewness and kurtosis in both subpanels coincide. As for the competitors, CL. and KaSh refer
to the testing procedures proposed in Chen and Li (2009) and Kasahara and Shimotsu (2015),
respectively, while KS denotes the Kolmogorov-Smirnov test and ACS the CGMM test proposed
in Amengual, Carrasco and Sentana (2020). As a guide, we also include two columns reporting
the third and fourth moments of the alternative DGPs that we consider.

By and large, the results are very encouraging. When focusing on the parameter space
©1, our LM, test performs similarly to the usual Jarque and Bera’s test. In turn, LMy clearly
dominates both LM, 2 and LMy, while LM3 is better than LM, 3, as expected. In addition, the

relative performance of the tests for different ©’s is in line with the alternative DGPs we consider.
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Regarding the competitors proposed by Chen and Li (2009) and Kasahara and Shimotsu (2015),
our proposal outperforms them for most of the ©;’s, particularly for the alternatives with A
close to one, which confirms the importance of covering the entire parameter space. As for the
consistent tests, the ACS does a decent job, beating both the LR and our score-type tests for
the symmetric alternative hypothesis we consider.

We also assess the asymptotic equivalence between our LM test and the LR test by computing
Gaussian rank correlation coefficients (see Amengual, Tian and Sentana (2022)), which are
robust to the presence of unusually large values. Specifically, when n = 125 (500) we obtain .90,
.88 and .86 (.93, .90 and .86) for O1, ©y and O3, respectively.

Finally, we can confirm that computing times for the score-tests are significantly smaller than
for the LR tests, taking 0.59, 0.62 and 0.27 seconds per simulation when n = 500 versus 1.57,
1.20 and 1.53 seconds for ©1, O, and Ojs, respectively. Nevertheless, these figures underestimate
the numerical advantages of our proposed tests in practice for two different reasons. First, the
location-scale model that we have considered in this section only contains two parameters, unlike
more realistic empirical models such as the one considered in the next section, which typically
contain many more parameters that will have to be estimated under the alternative too. Second,
supplemental appendix E7 of Fiorentini and Sentana (2021) shows that the ML estimators of the
unconditional mean and variance parameters 1 and o2 in a given sample numerically coincide
with the sample mean and variance (with denominator n) of the observations. As a result, the
criterion function maximized with respect to the shape parameters d, x and A keeping y and o2
fixed at those restricted ML estimators coincides with the criterion function maximized over all

five parameters.

6 Empirical application to wage determinants

As is well known, the popular Mincer (1974) regression equation explains individual workers’
(log) earnings of as a function of their education, measured by the number of years of schooling,
and their experience, usually captured by a quadratic polynomial to reflect skill depreciation.
The rationale for these variables is that labor earnings may be regarded as the returns to human
capital, with education and on the job-training two different forms of investment in it.

But a simple Mincer equation fails to capture cross-sectional heterogeneity in the earnings
of workers with identical schooling and experience. For example, female MBAs might earn
noticeably less than male MBAs with the same number of years of experience. For that reason,
empirical Mincer earnings functions often include several dummy variables, like gender or race,

aimed to capture part of that heterogeneity. Formally, the gender dummy regression coefficient

17



can be understood as the proportional decrease in labor earnings for a woman relative to a
man with the same schooling and experience profile. Not surprisingly, earnings discrimination
analysis often focuses precisely on the statistical significance of this regression coefficient.

But another crucial determinant of earnings is innate ability, for which data is regrettably
inexistent in most labor surveys.® Given the dummy representation of a discrete mixture that
we have exploited in our tests, a mixture model for the residuals of the Mincer equation seems
very adequate to capture the possible existence of different underlying groups (or categories) of
workers with noticeably different ability characteristics.”

Chapter 5 of Berndt (1991) contains not only a detailed analysis of the issues that arise in
estimating the determinants of labor earnings, but also a random sample of 534 observations
from the May 1985 issue of the Current Population Survey compiled by the US Bureau of
Census. Given the illustrative nature of our analysis, we estimate by OLS the following baseline

specification with all the observations in this dataset:
Inw=ac+apFE+ apgOTHERS + ¢,

where w is earnings, F'E the female dummy variable, and OT H ERS includes dummy variables
for union status, blacks, Hispanics, years of education, years of experience, its square and an
interaction term between schooling and experience. In addition, we estimate the same regression
specification using exclusively female and male subsamples separately after dropping F'FE to avoid
collinearity. For each of those three empirical specifications, we test whether the residual follows
a normal distribution with 0 mean and unknown variance o2.

Unfortunately, we cannot use the parametric bootstrap to compute the critical values as we
did in our Monte Carlo simulations because of the presence of regressors. For that reason, we
use the following semiparametric bootstrap procedure:

1. Regress Y (= Inw) on the explanatory variables (X) and obtain the ordinary least-squares
estimates &, 62, and the OLS residual &.

2. Calculate the test statistic (denoted T for simplicity) using é.

3. Using random sampling with replacement to nonparametrically bootstrap the regressors,
X3, and then construct Y, = Xp& + d¢p, where g|(Y, X) ~ iid N(0,1).

4. Regress Y}, on X}, and get &; and &,.

5. Calculate the test statistic T; with input &.

8Griliches and Mason (1972) constitute an important exception, as they had data on both earnings and IQ
scores for the individuals in their sample. Somewhat surprisingly, though, they found that their ability measures
were essentially uncorrelated with schooling, which means that the omitted variable bias in measuring the returns
to education was negligible.

9See Bonhomme and Manresa (2015) for a closely related approach in panel data.
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6. Repeat 10,000 times steps 2 to 5 and compute the bootstrap p-value as % 25:1 1[Ty, > T]

The results of the empirical application are displayed in Table 3. The first column includes
results for the full sample, and the second and third ones for men and women separately. On
the basis of the p-values, we can see that the distribution of wages for the entire sample, condi-
tional on the regressors, is leptokurtic but apparently symmetric. However, when we distinguish
between males and females, some asymmetry appears, with positive skewness for men and nega-
tive skewness for women. Moreover, our tests reject the null hypothesis of normality against the

normal mixture, which suggests that some unobserved heterogeneity remains in both samples.

7 Conclusions and directions for further research

This paper presents score-type tests for normality against normal mixtures with different
means or variances. Our tests, which are robust to the sampling uncertainty resulting from
the estimation of the conditional mean and variance parameters used to construct standardized
residuals, are asymptotically equivalent to the LR test.

For illustrative purposes, we focus on mixtures of two normal distributions. Considering more
than two categories would represent an interesting extension. We could also explore procedures
to determine the number of components in normal mixture models, as in Kasahara and Shimotsu
(2015). We have restricted ourselves to serially independent observations, but the underlying
regimes may be somewhat persistent in many macroeconomic and financial applications. An
extension of our work to the Markov-switching models studied by Carrasco, Hu and Ploberger
(2014) and Qu and Fan (2021) provides another promising route for future research. Similarly,
it would also be worthwhile to consider models in which y is a latent variable, as in Almuzara,
Amengual and Sentana (2019).

It would also be interesting to consider other distributions besides the normal. In fact, the
normal distribution is very special and some of the difficulties we have dealt with, such as the
singularity of the information matrix, may not arise with other mixtures. On the other hand,
scale mixtures of univariate normals give rise to mixtures of chi-square distributions with 1
degree of freedom for the squares, and the same happens in the multivariate case if we consider
the exponents of the multivariate normal density, except that the degrees of freedom of the chi-
squares will coincide with the dimension of the random vectors. Therefore, it should be possible
to test for mixtures of two chi-squares using our existing results. We are currently exploring

some of these interesting research avenues.
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Appendix: Proofs

The proofs of our main theorems use some lemmas which we present and prove in the
Supplemental Appendix D. We will also make extensive use of the following notation:
1. the stochastic sequence a, is “bounded in probability”, or O,(1), when Ve > 0, there
exists M such that Pr(|a,| < M) > 1 — e for all n;
2. the sequence of events A, holds “infinitely often” (i.0.) when the cardinality of the set
{n: A,, holds} is infinite; and
3. A, holds ultimately (all but finite) when there exists N such that {n : A, holds} = {n :

n > N}, with N < oo. “ultimately” is denoted “ult.” in the sequel.

Overview of the proof of Proposition 1
We find the score-type test statistic that is asymptotically equivalent to
2 | sup L,(0) — L,(0,0,1)],
0P,
where P, satisfies that (0,0,1) € P, C ;. Notice that in the proof, we use P, as the parameter
space, but we could, when required, change from P, to P, ; for j = 1,2,3. With a slight abuse

of notation, we also define

LR(0) = 2[Ln(0) — L(0,0,))] and

Hs, Hy,
LMO(0) =2 \/ﬁ”wl ~ Vaw? + 27;%2 — Vs, (15)

where

A1 =X+ 2%

A
wy = —5\/5(1 — Ak and wo = — 6

V(1 = M)t + %\/5(1 — Mr2

Moreover, note that L, (d, x,1) = L,(0,0,)\).

There are five steps in the proof:

1. For all sequences of 6,, € © with (d,, kn) 2,0, we have that

LR, (0,) = LM%(0,,) + 0p[hn(00)],

n-'n’

where hy,(0,,) = max {1,n(1 — A,)205, n(1 — A\,)20262,n(1 — A )%k}

2. Defining 95M = (M LM A\LMy ¢ argmaxy.gLME(6), we show that (6EM kLMY 2,

n rttn

and h, (0LM) = 0,(1).

3. Defining L% = (628 xLE NLE) ¢ argmaxyeo LR, (6), we also show that (65F, kL1) 25 0

( n »’'n n »'Vn
and h, (0L7) = 0,(1).

20



4. We then prove that LR, (0L%) = LM2(0EM) + 0,(1).

5. We finally simplify LM;}(H{;M ) to LM, (respectively, LMyo and LM,3) in P41 (respec-
tively, Pyo and P3).

The detailed steps can be found in Supplemental Appendix A. O

Proof of Proposition 2

Regarding part (1), by Theorem 10.2 of Pollard (1990) (see also Andrews (2001)),

\}ﬁzgl;(.,l)éG(.)

if (i) B (the set within which the index lies) is totally bounded, (ii) the finite dimensional
distributions of le 23 (-, 1) converge to those of G(.), (iii) {IEZ 1 8)\ (,1):in> 1} is
stochastically equicontinuous.

(i) is satisfied because 8 = (6,k) € B = {((5, k) :(0,k,1) € Py 1 and Vo2 4+ k2 > e} and B
is compact.

(ii) The process % (.,1) is 4id with mean 0. Moreover,

FE sup
BeB

o5 ()] <. (10

Indeed, the absolute value of the score involves a constant, a linear combination of |y;| and y2,
and finally an exponential term. By the definition of B, we cannot have § = 0 and k = 0
simultaneously. Below, we use the notation y for y; while » denotes x — /3. As x and § belong

to compact sets, so does 5. Hence, we can write s € [—3¢,%]. Moreover, 1 —e¢™* <1—¢e % <1

1 1f 5, [y + 6] _ )2 1(1-¢*) , yo 572
\/e7exp [2 {y e = e oxp | =5y | exp | = Jexp | —5 -

1 ) 52
_ —5/2 - 2 ) Y _ 7
e exp {2 (1 e )y } exp < e%> exp < 26%)

and

Y). (17)

Note that E[g* (y)] is finite because 1 — e~ < 1. So we can major % (B, 1)‘ by terms which
do not depend on 8 and have finite expectations.

By (16), the martingale difference central limit theorem of Billingsley (1968, Theorem 3.1)
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implies that each of the finite dimensional distributions of ﬁ > % (., 1) converges in distrib-
ution to a multivariate normal distribution whose covariance matrix is characterized by (8).
(iii) Let vy, (B) = ﬁ > % (8,1). A process vy, (5) is stochastically equicontinuous if for all

€ > 0, there exists ¢ > 0 such that

liMy— oo P sup  |vn (B1) —vn (By)] >¢| <e.
181 —B2lI<c

To establish that the process v, () is stochastically equicontinuous, we use Theorem 1 of An-
drews (1994). First, we use the notation f for v, (5) = ﬁ > [ (yi, B) and show that f belongs
to the type II class of functions defined in Andrews (1994, p.2270). This is the class of Lipschitz

functions in 8, which is such that

If (5 B1) = (B <M ()81 — Ball, for all 5,8 € B.

But
2 — el

f(yaﬁl)_f(y7ﬁ2) 2

1
- e { L0 - e

1
+e7#2/2 exp {2[y2 —(y+ 52)26_”2]} + (02 — 1)y
2 52 . 52
+ (e —e“z)y—+7( 1= %) (y2 —1).
2 2
Using the mean-value theorem, we have
e — &1 = e (3 — 1),

where 3z lies between s and 5. Hence, |e2 — 1| = € |30 — 31| < €% |50 — 311]. Let

908) =~ ep {1P- + 07 e |

The mean-value theorem gives

9w, B) —g(y.By) = [e’ﬁ(y +0)% - 1] 9(y, B) (a1 — 32) — (y + 8)e Zg(y, B) (51 — 82)

|g (yaﬁl) - g(y752)’ <

DN = Do =

3 < <2 *
[ (v + 2yl 6] + |0]") + 1g" (y) |2 — s
+(|yl + [6))e*g* (y) 161 — b2l
where B = (5, R), § is between 8; and dy, and g* is defined in (17). Note that |61 — d2| <
181 — Bs|l and |21 — 3e2| < ||B1 — Boll. Hence, f is Lipschitz with M (y) = co + c1y + c2v® +

3 |yl g* (y) + cay®g* (y) for some constants co, c1, 2, c3 and c4. Now, to apply Theorem 1 of

Andrews (1994), we need to check his Assumptions A, B, and C. Specifically, Assumption A: the
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class of functions f satisfies Pollard’s entropy condition with some envelope M. This is satisfied
with M = 1Vsup |f|V M(.) by Theorem 2 of Andrews (1994) because f is Lipschitz. Similarly,
Assumption B:

Tim — ZEM2+“( i) < oo for some v > 0.

n—oon,

This condition is also satisfied because y; is a standard normal random variable (r.v.). In turn,
Assumption C: {y;} is an m-dependent triangular array of r.v’s holds because {y;} is iid. Finally,
stochastic equicontinuity follows from Theorem 1 in Andrews (1994).

As for part (2) of the proposition, expressions (a) and (b) are direct consequences of part
(1) and the continuous mapping theorem. In turn, expression (c) follows from Andrews (2001).
To see this, we need to check the assumptions in Andrews (2001), whose notation is such
that 6 is our A and 7 is our (d,k). Let [; denote the log-likelihood of y;. Note that A +
(1—=Nexp(x) <14+exp(z@) and 1+A(1—-XN)6% < 1+6%/4<1+ 5. As a consequence,
ot > [(1438°) (1+exp (32)]"L > 0 and 0% > exp (—32) [(1+6°) (1 + exp (39))] L > 0.

To verify Assumption 1*(a), it suffices to apply the uniform law of large numbers (see Lemma
2.4 of Newey and McFadden (1994)), which holds because {l;} is éid, continuous in both A and
B = (6, k) with probability one, and

1 1
E sup (BN < sup In < 00.
Aef0,1],8€B ' A€[0,1],8€B V2mo} \/ﬂa;

Moreover, the limit ) . 1; (5, A) /n is E[l; (8,\)] = (8, A), which does not depend on /5 when
A=1

To verify Assumption 1*(b), we need to show that [ (5, A) is maximized over [0,1] at \g = 1
for each 8 € B. By the properties of maximum likelihood estimators (see Theorem 2.5 of Newey
and McFadden (1994)), it suffices to check that P [l; (8, \) # l; (Bg, Xo)] > 0 for any § # 5, and
A # Ao = 1, which is true here.

Assumption 22" (a) is clearly satisfied for O = (1 — ¢, 1).

As for Assumption 22 (b), it is easy to check that I; (8, \) has left and right partial derivatives
with respect to A on O, V3 € B.

Regarding Assumption 2% (c), we can show that for all ~,, — 0,

n 2 9

sup
AE[Oal]HA_l"S’Yn

where X;,3 = ops (1), implies that supgep || Xnpll = op (1). This condition is tedious to check
but does not raise any special difficulty, so the details are omitted.

Assumption 3* holds by of part (A) of Proposition 2. Assumption 5 is satisfied for B, =
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b, = +/n and A = R~. Assumption 6 holds because R~ is convex.

Assumptions 7 and 8 hold with Ag = R™ and with the fact that 8 in Andrews (2001)’s
notation corresponds to our A, while his (d,) are absent in our setting.

Assumptions 9 and 10 are satisfied. Assumptions lo and 4o hold trivially because the
restricted estimator is A = 1 and therefore not random.

By Theorem 4 and the remark at the bottom of p. 719 of Andrews (2001), it follows that
LR, = LM}, + 0, (1). O

Overview of the proof of Proposition 3
Part (a) follows from the results of Proposition 2 and the continuous mapping theorem.
In part (b), we look for the score-type test statistic that is asymptotically equivalent to

2 Sup Ln(e) - Ln(oa Oa 1)
0Py,

where Py satisfies that (0,0,1) € P, C ©1. Notice that in the following proof we use P, as the
parameter space, but we could, if necessary, replace P, with Py, for k = 1,2,3. For 0 € P,
define

LR, (0) =2[L,(0) — L,(0,0,1)]

and for 6 € P,\{(0,0,1)}, let

LMb(9) = %W\/ﬁu 1) = V(5 k)m(A — 1) and

<8l(%’f’1)>1 |

We will show that the LR test statistic is asymptotically equivalent to the following score-type

Vo(0,r) = E

statistic:

1 1 Ln 1 2
sup LR, (0) = ~ sup (min {OL, (9, %,1)/9,0})
0<Py T §5,k:(8,k,1)EPL\(0,0,1) V((S, /{)

+ op(1).

The LM statistic is usually constructed based on the first two terms of the Taylor expansion.

A third-order Taylor expansion of /() gives

2 3 A
alwa’f’l)()\ 1)+ EM(A —1)%+ lM(A —1)3

l((sa K, )‘) - l(57 R, 1) = 3 8A3

It is then easy to verify that 0l(0,x,1)/OA = 0 at (0,x) = 0, which confirms the singular

information matrix problem. Moreover, the limit

) ol(d,k,1)
lim
(6,5)=0 \/V (9, K) O
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does not exist because its value depends on the direction of (4, k) (see Supplemental Appendix

B for an example).

One way to circumvent this problem is to normalize 9I(d, k,1)/0\ by a

function of (9, ) and further reparametrize the model. To be more specific, for 624+ Kk2 >0, let

SD:

7}:

max{‘54 ; 2 15& }, (18)
41,2

mln{‘3654 SK' } and (19)

a1 o)

max {‘54 ; 2 cm }( — . (20)

Note that 7 > 0 if and only if 6% + x? > 0. Additionally, we can normalize the score by 7 as

follows: if ‘3—16(54 — %/{2‘ > ‘%5&‘,

1 1 1 1
;ig(lj 7__181((;,;,) = sign (3654 — 8142) h4 + sign (26ﬂ> hsp,
and if |%64 — %/@
1(0,k,1 1 1 1
li_r)r(l] 7_18(8’;’) = sign (3654 - 8H2> hap + sign (25/1> hs.

To further simplify the notation, we also reparametrize from 6 to d =

(10,7, ).

To guarantee that there is a one to one mapping from 6 to d, we further partition the

parameter space into the following sets. Let

Aloz{((slﬁ',/\)epb ‘

A20 = {((5,/42,)\) € Pb

33

,52+F(,2>0},

754

2> 2
36 3 0,9 + K2 >0}

Aso = {(6,k,)\) € Pp: 5 >0,0°+ k%> 0} and

Ay

={(6,k,A) €Py:6>0,6+r*>0},

Define A;; = P\ (AZ'() @] {(0, 0, 1)}) and let

{A',.

It is easy to see that

sup LR, (f) = max sup LR,() and sup LM?’(#) =
k<16 ge Ak

6cPy,

AIG} {mz 1*’4@]I (]17'--

’j4) € {07 1}4} :

max sup LM?(6).

9Py k<16 e Ak

As a consequence, it suffices to consider the asymptotic equivalence between supge 4x LRy, (6)

and supge 4 LM, () for each A*. Let

DF = {d = (n,7,¢) : there exists € A* such that (20)-(19) holds} .
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By Lemma 4, there is a one-to-one mapping between § € A* and d € D*.

Similarly, let

A% = {(8,r) : there exists A such that (5,x,\) € A*} and

D];p = {(7, ) : there exists n such that (n,7,¢) € Dk}.

We will show below the asymptotic equivalence of supge 41 LRy, (0) and supge 41 LM, (6) for
Al = ﬂleAio. The proofs for the remaining 15 sets are very similar, so we omit them in the
interest of space. With a slight abuse of notation, let §(7, ¢), k(7, ¢), A(n, T, ¢) denote the value
of §, K, A for given (n, 7, ), and let n(d, k, A), 7(J, k), ¢(0, k) denote the value of (n, 7, ¢) for given

(0, k).
For (7,¢) € D}, let
1 0L (6(7, ), (T, ), 1)
d _ 1 5 ) 3 5
i) = = o, ,
so that

1
lim G2 = —(Hy + @H3).
Nm (7, 0) = = (Ha+ oHs)

Finally, let

LM (n, 7, 0) = 2G4(1,0)v/nn — V(7,0)nn? and

LR (n,7,9) = LRA[8(7, ), (7, 0), A1, 7, ),
There will be four steps in the proof:
1. For all sequences of (n,,, Tn,¢,) € D! and n,, 2,0, we have that
LRy (1 Ty ) = LM (1, T 0) = 0p(n,).
2. Weak convergence of the process {G4(7,¢) : (1,¢) € D},}.

3. We prove that

in {G(r,¢),0})”
sup LRA) = sup LMEd) + op(1) = sup  ind9n(7:9).0})
debt deD! (.0)€DY,, V(9,k)

+ op(1).

4. Main theorem: We combine results for the 16 sets and go back to the (J, ) space

1 (min {HL, (6, 32,1) /O, 0})?
sup 2 (L,(%) — L,(0,0,1)) = — su
oup 2 (enl0) = £n(0,0,1)) = 2, S, V(5,)

+ 0p(1).

The detailed steps can be found in Supplemental Appendix B. g
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Proof of Proposition 4

To show (12) for j = 1, note that for k; € R,

2 2
lim gn(sa k]_&‘) 1 L4k1H37n B k%H47nJ — (21)
im | —(—— ==
e=0 | \/V(e, ki) n 16k3Vs + kiVy
In addition, let ky = —424 ”“;3, which is well defined with probability one. Then, we can write
Hy nV3 H2 HA% 2
o1 1 |4k Hs o — K3Ha0)® 1 {_16 H Vs ( vt )J_
21) = n o 162z +kiv,  n o H2, Vi H§ . HZ,
16 HE Vi + Vi
1 (HE, Hi,
= - : —— | 1|Hy, > 0].
n ( n Ty ) ez
On the other hand, for ky € R,
2 2
i | Gnle: B2e%) |1 [Hap +hoHyn)” (22)
£—0 Ve, ;fg 5| n Vi+ k3V3

. Hs .,V
Letting ko = Hj “oes We can write

2
Hs Vi
[H4”+Hi V;H?’ J,

(2 %)
LH‘L’TZ + k2H3,nJ2, Hyn V3 -

1 1 1
E V4+k§V§3 N ﬁ 3nV4 ﬁ V2 H2 HZ,
Vit g V3 Hf,n o 53
1 (H3, HZ,
= = d — | 1[Hypn <0].
n ( v, Ty, |1 Haa <0
Then, it is easy to show that with probability 1,

5,50 | ke) | Gule, 2% |
sup \\gn( ’%)J > max < lim {gn(g, 1€)J ,lir% S 18° )

161<8 58 /3]< sl JgI>0 [ V'V (0, ) =0 | \/V (e, kie) Ve, k2e3)

1 He?,n+H42,n
AN A

In turn, to show (12) for j = 3, note that

(22) =

1 N1 I

Gn(0, ) = ﬁ;2[e )2 — 1) +2 — 22 (=T WER)] anq
1 2v/2eF 1

V(O,m)—2< ee 5 + 2e” — 2“3)
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with
gn(oﬂi) o _H4,n

"0 JV(0,7)  VvVa

As a consequence,

2
Gn(0, k) - {—Hzan H,

VV(0,5) ’ Hypn >0
'”'f?’ﬁw{ V(O,ff)J ~ v wve L Han > 01,

as desired. Results (13) and (14) follow from Propositions 2 and 3. O

Proof of Proposition 5

We show the results for Hsy, first.

Contiguity. By Le Cam’s first lemma (see Lemma 6.4 of van der Vaart (1998)), contiguity
holds if dPj3 y, /dPy U under Py with E(U) = 1. Let L, (8, \) denote the joint likelihood of

Y1, ---,Yn for a given 8 and A. By the mean value theorem, we have
9Ly (B, 20) 192Ln (8, )) 2
Ly (B, \) = Ly (B, A —————— (A=A An — o),
(B,A) (B, 20) + o ( 0) + 2 o2 ( 0)

where X is between Ag and A,. Replacing A\g by 1 and using Andrews (2001), we have

2
Lo(B:A) = Ln(B.1)— %f’”\/ﬁ ;3 Laif’ A p? i
= LB D= \/1778L 8()? 1)/’ - %var[G (B)]p* + ops (1) .

Therefore, under Hy,

D e {200, LoariG (1)} + s )

dPy
by exp{—Gw)p—;var[GwW}.

Using the expression of the moment generating function of a normal distribution, we have
E (U) =1 and hence (b) holds.
Asymptotic distribution. Using the results from (b), the joint distribution of

HB,n H4,n LaLn (ﬂa 1) In dpﬁ,/\n '
i e ve ox U\ TR

converges under Hy to a Gaussian process such that

Vs 0 c3 —C3p
0 Vy cy4 —c4p
N ;
0 6 o warlG@)]  —verlG @) >
—svar[G (B)]p? —c3p —cap —var[G(B)lp  war[G(B)]p?
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Let w = x — 62/3 and consider

s = covlhsi, 0l (B,1) JON = El[hgili (8,1) /0N
= —\/tTJE [(yf’—i%yi) eXp{; [y?—(yi:wéﬂ H

which follows because hs; is orthogonal to both hy; = y; and ho; = yf—l. Under Hy, y; ~ N (0,1),

it follows that

o -meof} - Y]} A [0 o] 7]

:\/eTU/ {( ewu—(5>i3< ewu—5>] \/12?eujdu
= Ve (—8° — 366 + 30)

if we use the change of variable u = (y + §) /v/e¥.
Hence, we have cov[ha;, 0l; (8,1) /N = 6% + 36 (¢¥ — 1), and also

Cov [h4i, 8lz (ﬁ, 1) /8)\] = E[h418l2 (5, 1) /8)\]
b s (yi+9)?

= — =P |l -6 +3) exp{i {y‘ew] H

= - [362“’ +6e“52+ 54— 6 (e“’ + 62) + 3]

= 662(1—e¥)—0'—3(1—e”)?

by the orthogonality of the Hermite polynomials and the same change of variable as before.
Then, if we denote by (7, In(U)) the limiting joint distribution given in (23), it follows from

Le Cam’s third Lemma (see van der Vaart (1998)) that

H3n Hypn 1 0Ly (B,1)

VAORRVORRVIR

converges in distribution under Ha,, to a normal distribution with mean E(T") + cov[T,In(U)]

T, =

and the same variance V(7T') as under Hy, which proves the following result:
Under Hoy,,

H3 n

\/';71 —C3p ‘/3 0 Cc3
S R —cap dow o«
NDE —var(G (B)]p s ea var[G(B)]
The limiting distribution of LM, ; under Ha,, follows from the joint distribution of (P\I;ﬁ” , h\%" )

under the same sequence of local alternatives derived above.
Finally, the limiting distribution of LMf1 test follows from the distribution of ﬁ ; % and

the continuous mapping theorem.
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Next, we show the results for Hq,,.

H3,n
NG
\‘} %M”(B D and ln ” under Py. It follows from the proof of Proposition 1 that
Hs n
j;? 0 V3 0 c3 Vaw
H4;L" d 0 0 Vi Ca Vaws
dhugyy | =N ’
# 0 3 cq var[G(B)]  czwr + caws
2 2
d;‘i; —V?’;Ul - V4§”2 Vawy Viws  cswy + caws  Vaw? + Vyw}

under FPy. Contiguity is established using Le Cam’s first lemma as above.
Asymptotic distribution. It follows from Le Cam’s third lemma that

H3,n

NG V3w, V3 0 c3
}f;;{l LN Vaws | 0 Vi C4
%LL%&B’D c3wy + caws c3 ¢4 var|G(B)]

under Hi,. Therefore,

H32,n HZ,n d 2 2 2
LMy = Vs + A — X2 (V3w1 + VZ;ZUQ) .

Again, the continuous mapping theorem establishes the asymptotic distribution of LMbl?l.
Finally, we turn our attention to (d). Given any ¢ > 0, consider the sets {|LR,, — LM,,| > ¢}
where LR,,, LM,, correspond to either the pair LR, ;, LM, ; or the pair LREj, LMb%. Proposi-
tion 1 states the asymptotic equivalence of LR, ; and LM, ; under the null, while Proposition 2
establishes the analogous asymptotic equivalence of LRfjand LMbI?j. Hence, we will have that
Py ({|LR, — LM,| >¢€}) — 0 as n — oo. Then, the definition of contiguity implies that the
same probabilities go to zero under contiguous alternatives. Thus, result (d) is a consequence

of the fact that Py, is contiguous with respect to Py and Py ), with respect to Fy, as shown in
(a) and (b). O

Proof of Proposition 6
The detailed steps are analogous to the ones in Proposition 1 and can be found in Supple-

mental Appendix C. O
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Table 2: Application to Mincer equations

Specification Men & women Men only Women only
n 534 245 289
Skewness -0.08 0.49 -0.56
Kurtosis 4.72 4.68 4.70

Testing procedures

statistic  p-value statistic  p-value statistic  p-value
6, LM, 751.0 .00 522.3 .00 1,234.5 .00
JB 61.9 .00 34.2 .00 45.0 .00
LRy 10.7 .01 10.0 .01 11.1 .01
O, LM, 534.1 .00 468.9 .00 963.8 .00
LM, 0.6 .62 8.8 .00 13.7 .00
LMy o 534.1 .00 468.9 .00 963.8 .00
LRs 5.2 .07 6.2 .05 7.1 .03
O3 LM; 714.1 .00 207.9 .00 464.1 .00
LM, 3 61.3 .00 25.5 .00 31.3 .00
LRs 10.6 .00 5.0 .00 5.4 .00
JB skew 0.6 44 8.8 .00 13.7 .00
JB kurt 61.3 .00 25.5 .00 31.3 .00

Notes: CPS85 dataset provided by the Berndt (1991). For both, the score-type tests and the likelihood
ratio test, the three different parameter spaces are

O] = [=0,0] x [=5, 3] x [1/2,1], 05 =[-0,0] x {0} x [1/2,1], and ©f = {0} x [-3,] x [1/2,1].

LM’s and LR’s are defined in Section 3. JB skew (JB kurt) refers to the Jarque-Bera skewness (kurtosis)
component of the Jarque-Bera (1980) test.
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Figure 1: Exclusion zones of the parameter space

Figure la: Hop: (0,2) =0with A <1—-e<1

Figure lc: Corner case, min{|d], ||} < e, A >1—¢

/\
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Figure 2: Reparametrization, null hypotheses and parameter space partition

Figure 2a: Transformed parameter space Figure 2e: Partition of the parameter space

A

A N

Figure 2¢: The null hypothesis Hyp: A =1 Figure 2g: The null hypothesis Hyp : A =1

Figure 2d: The joint null hypothesis Figure 2h: The (cylindric) pyramidion
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Figure 3: Unrestricted and restricted alternatives

Figure 3a: § =3, 2= -3 and A = 0.5 Figure 3d: LMy vs LM

1.2

15¢

0.8}

0.6

0.4F¢

0.2+

LM

Figure 3b: § =2, % =0 and A =0.6 Figure 3d: LMy vs LM,

0.4

15"

0.3}

0.2}

0.1}

15

Figure 3c: § =0, » =3/2and A=0.5 Figure 3f: LM 3 vs LM, 3

0.5

15¢
0.4}

0.3}

0.2}

0.1}

LM

Notes: (a)-(c) The dashed (black) line represents the pdf of a standard normal distribution. The
continuous (red) line represents the density of the standardized Gaussian mixture described in Section 2,
while the dotted (blue) lines the probability weighted densities of its components; (d)-(f) Scatter plots of
the two test statistics for the three possible null hypotheses based on 10,000 replications under normality.
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Figure 4: Distributions under different alternatives

Figure 4a: § = 3, »» = —3 and A = 0.975 Figure 4d: 6 =3, % = -3 and A = 0.75
0.5 : : : 0.7
0.6}
041
0.5}
03¢ 04}
02l 03}
02}
0.1}
0.1t
0 0
4 4 -4 4
Figure 4b: 6 =2, s =0 and A = 0.975 Figure 4e: § =2, x =0 and A =0.75
0.5 : : : 0.5
0471 04}
031 03}
0.2 0.2}
0.1} 0.1}
0 0
_4 4 -4 4
Figure 4c: § =0, 5 = 3/2 and A = 0.975 Figure 4f: 6 =0, > =3/2 and A = 0.75
0.5 : : : 0.5
0471 04}
031 03}
0.2+ 0.2}
0.1} 0.1}
0 0 = =
_4 4 -4 4

Notes: The dashed (black) line represents the pdf of a standard normal distribution. The continuous
(red) line represents the density of the standardized Gaussian mixture described in Section 2, while the
dotted (blue) lines represent the probability weighted densities of its components.

40






Supplemental Appendices for

Score-type tests for normal mixtures

Dante Amengual
CEMFI

<amengual@cemfi.es>

Xinyue Bei
Duke University
<xinyue.bei@duke.edu>

Marine Carrasco
Université de Montréal

<marine.carrascoQumontreal.ca>

Enrique Sentana
CEMFI

<sentana@Qcemfi.es>

February 2024



A Detailed proof of Proposition 1
We follow the steps outlined in the appendix of the paper.
Step 1
We want to show that for all sequences 0, = (0p, in, An) € O with (dy,, kp) 2,0, we have
LR, (0,) = LM (0,,) + op[hn(6n)], (A1)

where hy,(0) = max {1, n(1 — \,,)265, n(1 — Ay)202k2, n(1 — \y) %k}
Let [ denote the log likelihood of the observable y, hy = y(y —3) and hg = y* — 6y% + 3.

The scores and relevant higher-order derivatives with respect to § and x at the point (0,0, \,)

are
ol ol
5% = 0, P 0,
921 921 1 0%l 1
- = =—=(1-A\ 3 = = An)Anha,
o2 =0 Bsan — a0 T A Mhe 5e = g1 Al
ol o _ 2
d 7:—71—77, nl_n )\Qh’
o5t =0 and o= =2 (1= Al = A+ A
Let ki+k
k1] L O Ln(6)
n kilks! 06" 0Kk |01,
and ky+k
Alkka) — L 0%T=L.(6)
kilka! 050Kk |5, 2 a0

with (Sn, Rn) between 0 and (0, ky,). Then, taking an eighth-order Taylor expansion we get

%LRH(Hn) L (6) — Ln(0,0, An)
=v/nd} (A1y + 6nAon + V/nop Asy,)
+ Vil [Aan + KnAsn + VK2 (Agn + knAm)]
+ VOt [Asn + 0n (Agn + Vdp Aron) + ki (Ar1n + VK2 A2, ]

+TL52 2(A13n+A14n) Z lA[j’k]n&]nH,ﬁ, (AQ)
]+k:9n
where
Ay = ol g —27: Lol sis 4~ {Lpsal 4, [ L o2
n n n ) n par \/ﬁ n n n n n , n \/ﬁ i ,

8
1 1 1 . . 1
A5n nLn } Y AG’VL nLn ) A?n {nLn } K’n 9 ASn { \/ﬁLn } )



5 7 3
=D { ]’1]} 6,7 Ao = {iLL{?”} 6%, Aun=) {}Lg’ﬂ} w2
n

Jj= j=6 j=2
(1 ) 1 1. .
Amzz{nLB’ﬂ}%—‘*, Argn = — L2 and Aup = Y {RLQ’“}%‘%Z‘?
j=4 8>j+k>5
Jj>2,k>2

Next, we have to show that
> APHS k= oyl (6,)]. (A3)
J+k=9

To do so, it is worth noticing that for j + k =9,

j+k ]+k+1 ~
L] <[1 1 2,00) L1 @) 5 (a0
n n gkl 0570kF lgony|  |mIE 0FTORE |5, 5 )
L 1 97 L.(6) |
njlk! 957 9rk+1 (BrsFinsAn) "
1 &7*1(6) < 1 )
= j!k![ 950Kk [0 o] T \VR o
1
+(1_)\n)ﬁ
j+k+1 j+k+1
g | 220 +||p L) +0,(1)
06 ORE J0,00,) 087 ORML(0,0,0,)
1
=0 [(1 — An>2] + Op <\/ﬁ> + Op(1 - )\n)a (A6)

where (A4) comes from the mean-value theorem, (A5) follows from the central limit theorem

and

[Fnl} < max{|dn], [mn} < (1= An),

while (A6) follows from

= O[(l - )‘H)ZL

j/+kl
g | 20
67 OKF

(0,0,An)

for 7'+ k" =9 and j' + k' = 10, which can be easily checked by hand. Then,

> AbHsI ek = ) {o [(1- )% + 0, <;ﬁ> +0,[(1— /\n)]} nél kk

j+k=9 J+k=9
Z Of(1-A néjﬁk—l— Z Op(v/nd Kl + Z 0p [(1 = An)| ndd i
J+k=9 J+k=9 J+k=9
= 0p [P (0n)]

which follows from §,,, k, = 0,(1) and (1 — A,) > max{|d,|, |kn|}.



If we then use (A2) and (A3), we can show that

%LRn(Hn) =v/nd} (A1y + Vn6h Asn) + Vnk2 (Agy + Vw2 Agn )
+ \/ﬁén”n (A8n + \/ﬁén/{nAIZSn) + Op[hn (an)}v (A7)

which follows from the fact that Aj, to A3y, are Oy(1), and A4y = 0p(1) because the terms in
curly brackets are O,(1). Also,

o) = - 0= T B iy
_ % An(1 _3?6” + Ai)] 2 Van(l — A\,)288
S (= AR - (AS)Z Van(1 — An)
_ ?I%\/ﬁu — An)Onkin — % <A2n)2 Van(L = Xa)?05 57, + 0plhn(62)]  (A8)
:il/ggwln — %V;J,IU%H + 13/4510% — %VzﬂUgn + 0op[hn(0n)], (A9)
with
wln:—)\?n\/ﬁ(l—)\nﬁnlin and wgn:—%(l—)\nﬁi‘i‘%\/ﬁ(l_)\n)“i, (A10)

where in the first step we re-write (A7) as (A8). Then, letting

l[k‘hkz} B 1 oFitka]

 k1'ko! 96k 9Kk’

the result follows from

1 1 1 1 1 _1
ELLS’O} = —§E[(l[4’0])2] +Op(n~2) and ELL?A] = —iE[(Z[O’Q])Q] + Op(n™2),

(see Lemma 1 in Rotnitzky et al (2000)), and

L = B+ 0y,

which can easily be checked by hand. As for the second step, it is a simple rearrangement
of terms to go from (A8) to (A9). Therefore, the only difference in the leading terms is the

coefficient of V4, namely,

A\ An(1 = Ap 4+ 22)7°
o= (%) n-n et 2O 10,028 = 0,1, 2682] = oyl

as required.



Step 2

First, we show that h,,(05*) = O,(1). By definition, we have

LM%(#) =2 \FHgnw1+2 \/>H4nw2—‘/3w1 Vyws
1 H, 1 (Hs,\? 1 Hip\? | 1 (Hip\?
=-V - = = ’ -V, - == = ’
(o Vé\/ﬁ>+‘/3(x/ﬁ> (o) (0
Let wiM and wiM be defined as in (A10) with §, = 6LM k, = kLM and N\, = XEM | Tt is

straightforward to see that wiM = 0,(1) and wiM = O,(1) because

1 1

n_EHgyn n_§H4,n

T = Op(l) and ‘/21 = Op(l)
by the central limit theorem. Next, we have that

1 — \LMy§LM LM| _ 27”1%‘/1 A M 1
|\/ﬁ( n)an ‘_ )\LM ‘wl }_ P()a
whence
V(L= XEMYSEMGEM 0 (1), (A11)

In addition, we also have

91 — \LM LM 2
g ey 22 B iy | =
< 16 |wgM| = Oy(1).
Then by Lemma 5, y/n(1 — ALM) (kEM)? = 0,(1) and v/n(1 — AEM) (65M)* = 0,(1). Together

with (A11), we have h,(02M) = O,(1). Moreover, it holds that 6™ kLM = ¢, (1) because

Va(lrpM)? < V(g™ (1= XM) = 0,(1)
and

Va(lepM)® < Va1 = AR = 0,(1),
as desired.
Step 3

Next, we show Step 3.1: (657, k%) 20, and Step 3.2: hy, (657 kLR ALEY = 0,(1).
Step 3.1
Let lo(0) = E(o,0,) [[(9)]. Invoking Lemma 6, we have

SUPgeco

%Ln(a) - zo(a)‘ 20 (A12)



(i.e. uniform convergence). Moreover, for all € > 0, we have that

lo (0, 0, )\) > SUP62+K2>6,HGPEZO(9) (A13)

(i.e. well separated maximum), which follows from the fact that § = x = 0 is the unique
maximizer (note that (1 — ) > max{|d|,||}), lo(#) is continuous, and O is compact. Hence, we
have that (627 kER) = 0,(1) by virtue of Lemma Al in Andrews (1993).
Step 3.2

hn (027 = O,(1) follows directly from Step 3.2.1 and Step 3.2.2 below.
Step 3.2.1

We first show that n (1 — )\53)2 (551{)8 = Op(1) and n (1 — /\,QR)2 (/ﬁﬁR)4 = Op(1). By
contradiction, assume that either n (1 — )\,LZR)Q (551%)8 #O0p(1) orn (1 - )\,LLR)Q (K,,ZL’R)4 # Op(1),
so that there exists € > 0 such that for all M it holds that Pr(A4,) > € i.o., where

1 1 4 1 1 2
= {gggnt (1= 61 > arfu { et (1= (617" >

Since Hzp/+/n and Hyp/+/n are Op(1), there exists M; such that Pr(B,) > 1 — €/4 for all n,

where
H H
B = {| e < a0} o
n Vn

‘\/>
Next, let 7,(0) = LR, (0) — LM, (). Since k%%, 5L and 7, (0L%)/h(0ER) are 0,(1), with
positive £ < 1/3, we have that Pr (C,) > 1 — ¢/4 ult., where
1\2
<¢ (288) } .
LR

Let us define wy," in the same way as wa,, but with the parameters A,, x, and J,, replaced by

LR _LR LR
)\7’1 7'%71 571

<M1}.

Tn(‘gﬁR)

_ LR LR _n\'n /
Cn - {|"€n ’ < 57 |5n ‘ < 5} n { hn(GﬁR)

and , respectively. In addition, let

D= { bl = g [ (1) (62" 2t (1= N2 (k)]

E, = {n% (65}%)4 > Iz (liﬁR)2} and F, = {|w2Lf\ < |w1L§|}
Then, we can show that for all M,
Pr(A, N B, N Cy) > Pr(A,) + Pr(By,) + Pr(C,) — 2 > % io.,

where the first inequality follows from Pr(ANB) > Pr(A)+Pr(B) —1, and the second inequality
follows from the lower bounds of Pr(A,), Pr(B,) and Pr(C,,) derived above.

In addition, let M > M; /¢ and consider A, N B, N C, N Dy, N E,,. We next use Lemma 7 to
show that A, N B, NCy, N Dy, NE, C {LR(65%, kEE NLF) < 0} = 0. To do so, let us check all

the required conditions. First, notice that |Hs,/v/n| < My and |Hya,/v/n| < M are satisfied



on B,. Second, we can easily check that

M,
i > —= and [wf;] > |wg|

£

because

(1 A (ERGERY? — (1 ) ()7 (1 AER) (45
uwklit 2 1 4
{ o Tl = (ALY I3 (1 — ALR) (65R) } (A14)
( )\LR (5LR)

{ 16\w2R\+6n (1 — LR (553)4] n2(1— ARy (5ER)? (A15)

11 1 — ALR)? (sLR)®
> (3 ) na-am e MO BT g

where (A14) follows from the definition of w’, (A15) follows from the bound of AL the first

inequality of (A16) is a direct consequence of combining D, with FE,,, while the second one follows
from the definition of C),.

Then, we have

1 LRy (sLR\4
1 LR\, LRSLR 1nz(1l— A, )(5n )
‘wl | = 2 2(1 =N,k ZZ 3¢ (A17)
24M M
{21£ le LR\ (sLR\4% LR W (A18)
> gggnz (1= Ay )(5n ) > |wyyt| (i)

where (A17) follows from (A16), (A18i) follows from combining A,, with E,, and M; < M, while
(A18ii) follows from combining D,, with E,,.
Next, we check that 7, (L%)/ (wLR)2 < & thanks to

1n

3 (1-ALR)(§ERY

n3 (1= ALR)cLRSLR . >3 (1= ALR)(51RY ! (A19)
1. \LR\/sLR\4 1. \LR\(,LR
nd (1 ARkt > 20 A;‘g)(é” S, 2l Agng NE) B (AR (P2, (A20)

where (A19) follows from (A16) and £ < 1/3, and (A20) follows from the definition of E,, and
€ < 1/3. Thus, h, (0ER) = n(1 — NEB)2(5LESLE)2 and, as a result,

PO | 1 (BER) by (05R) | | (05 || 0 (1 — AE®)? (wERSET)
(wER)* | [Bn(02") (wER)* | 107 (wh)’
1\? 4
< (288) W <, (A21)

where (A21) follows from the definitions of C,, and wkf. But then, we have that LR(ALF) < 0
conditional on A, N B, NC, N D, N E, by virtue of Lemma 7, and consequently, that A, N B, N



C,ND,NE, =0.

Consider now A, N B, NC,, N D, N ES. We can use Lemma 7 again to show that A, N B, N
CnN D, NES C {LR(OE™) < 0} = 0. First, notice that |Hs,//n| < My and |Hyp/v/n| < M
are satisfied on B,,. Next, we have to check that |wf®| > M;/¢ and |[wiE| > |wlE|. To do so,

notice that

n (1= AeBY? (GERGLR)? > pa (5LR)? 3 (5LR)* 512 (1= ALR)? (A22)
1 36
20 (10 () (1— An+A2) (423)
1 LRy LIR\2 Wo | 1
< gVr (=) () =

> n2 (1 - ALR) (kER)? 36 (A24)
41

[ (- M) (k) — 2]
?7

where (A22) follows from the definition of C,,, (A23) follows from the definition of wi !t (A24)
follows from the bound of AL and (A25) follows from combining D,, with EC.

Then,

> dn (1 — ALR)? (kLR)

n

(A25)

__yLR\\LR L/ YLRy/,LR\2
|wfR — (1 >‘n ))‘n n%RLRdLR >12n2(1 )‘n )(En ) >in%(1_)\LR)(RLR)2 (AQG)
n 2 n n — 4 € 72 n n
{>M>A§1 (i), (A27)
> Jwgf (i),

where (A26) follows from (A25), (A27i) follows from combining A,, with ES, and (A27ii) follows
from combining D,, with E .
To check that r,(05%)/ (wf,fi)Q < &, let us write

20 (1 — ALY (iLF)?

n3 (1 — ALR)LRSLR| > e > nz(1 — ALR) (5ER)* (A28)
L. \LR\(,LR\2 1. VLR (sLR\%
nb - Aimegnapn] 2 2L () = M) ()
> nz(1 — ALR) (5ER)* (A29)

where (A28) follows from (A25), and (A29) follows from the definition of ES. Thus, h,(65%) =

n(1 — MNERY2(gLRSLRY2 and| consequently,

ru(@5)| _ @) (| (L= N (R0 | | o A30
(whf)* | Tha(627) (w)” " |noim | e <6 )

where the last inequality in (A30) follows from the definition of C,,. By Lemma 7, we have
LR(6E1) < 0 conditional on A, N B, N C,, N D,, N ES, and thus, A, N B, NC, N D, NES=0.



Consider now the case A, N B, N C,, N DS N F,. We can use Lemma 7 once again to show
that A, N B, N C, N DS NE, C {LROLT) < 0} = (. Noticing that |wEl| > M > M; /¢ is
satisfied by combining A,, with D¢ and F,, and that |w?| > |wl | is satisfied by F},, we have
to check that |r,, (L%)/ (wff)z | < ¢. To do so,

LR LR
i) P (A31)

max {1,n (1= XER)* (ER)*m (1= AER)? (357)" (1= AER)® (wEROER)}

X

(wh)*

o (0LR) | [max { (2880ER)?, (2whR/AER)? |

< | R ; (A32)
Fin (0:,7) (wi)
Tn(eLR) 2

- 288)° <
< [eim | 89 <€

where (A31) to (A32) follow from the definitions of D¢ and w;. By Lemma 7, we have that

LR(6ER (LR \LRY

n JY''n »’'n

conditional on A, N B, N C, N DS N F,,, and therefore A, N B, NC, N DS N F, = 0.
Finally, consider the case A, N B, N C,, N D¢ N FY, in which

ha (L) max {n (1= AERY? (GLRY® (1 — ALR)? (SERY® (1 — ALR)? (H,LLRagR)?}

(whR)® (wh)*
max { (288w )? | (4wlF)?
< {( 2)2( 1)}§124><4, (A33)
(wr)

where the first inequality in (A33) follows from the definition of D¢ and the second one from

the definition of F};. But then,

LR(OF) _ My wif  Hin 1 (0B (00"
2 = 2 LR~ '3 2~ V4 2
(wgF) Vi (whE) Vi wy; (w3,7) (wg™)
M, M, T (L) 4
<2 42— V4 212t x4 A34
SO M T T ey | (A34)
<4 -V +£<0, (A35)

where (A34) follows from the combination of A4,, with B,,, DS, FS and (A33), and (A35) follows
from the definition of C}, and V; = 24.

To summarize, we have A, N B, N C,, = (), which contradicts

™

Pr(A,NnB,NC,) > B i.o.,

as desired, and thus, n(1 — A2)2(6L17)8 = 0,(1) and n(1 — AER)2(kLEYE = O,(1).



Step 3.2.2
Next, we will show that n(1 — AEF)2(§LRGLEY2 — 0,(1), i.e. that for all € > 0, there exists
M > 1 such that Pr[n(1 — AEF)26ERGLE2 . M| < ¢ ult. To do so, notice that

ra(057) = 0p[hn (05™)] = op[max{1,n (1 — AER)* (657kER) %))

because n(1 — ALH)2(6L7)8 = 0,(1) and n(1 — A\EF)2(kLE)* = O,(1). Letting 0 < m < 1V5, we

n
have that
167, (AL

Pr LR\2 (<LR, LR\?
max{1,n (1 — A;"%)" (6, "kER)"}
In turn, given that Hs3, /v/n and Hy,/+/n are Op(1), there exists M > 1 such that for all n,

2

> 2m> << . (A36)

Pr [%ZM(?—2m)] <iand Pr 2%/4(I;[;TLZZ>Q>TnM2] <i. (A37)
We then have that Pr (!wﬂﬂ > M) is equal to
— P [{Jut] > M} 0 {LREE) > 0)]
i (25 o)
et a0 {ECR i 2o} o[ e <o)
e e {5 e = o} o i o)
2

2
LR 1H4n 1 H4n
Hs, 1 V4(w2 Vi ) 7( )
3n AN n 1 /n LY NG Lm0

<Pr [{|wff| > M}n

Vi owfit 2 2(wi,7)? 2(wi, )2
+P n (SITL;IZ) > 2m]
(wln)
<pe (ot >0 0 { a2 s g |- T ) (439
<Pr [ff/?’g 2M<‘;3—m—5§’;;]\;2> +§ ult., (A39)




where (A38) uses (A36). In addition,
H3n VE} Hzn 1 an 2
Do (B o= A~ )V A

{ Jn <2 T oV, M2 oV =
H3n Vé HZn 1 HZn 2

Y g R ’ M
{ n (2 mn 2nVy M2 : 2nVy = m
Hy, HE,
§Pr[ 3 2M<V3—2m>}—l—Pr< 4 >mM2>—i—

€, (A40)

(A39) < Pr

_{_7

<
2

where in (A40) we have used (A37).

Step 4

We now show that LR,(057) = LM2(02M) + 0,(1), that is, that for all ¢; > 0 and for all
€s > 0, there exists N such that for all n > N,

P (|LR,(05%) — LME(OFM)] < 1) > 1 — e
Letting

G = {n¥ (1= AER) (05F)", 1n% (1= AER) OERRER|, n3 (1— AER) (kER)?,

n n

n3 (1= AER) (8EM)" n% (1= ALR) 6EM M| nb (1 XER) (k)7

we know that max {G,} = Op(1), so that for ez > 0 there exists M such that for all n,

Pr(maxG, < M)>1-— %2 (A41)

Letting A = {0 € © : n? (1—-X)6t< M, n2 (1-N)k? < M, ]n% (1 =X)d0k| < M}, we can then
show

sup | LRy (0) — LM (0)| = op(1),
0cA

i.e. there exists N such that for all n > N, we have that

Pr <sup ILR,(0) — LM®(0)| < 61) >1- 2 (A42)
6cA 2

To show this, let

(Ony Kny An) € arg (671’2%)(614 |LR,(6,k,A) — LM (5, K, N)]|.

Given that n2 (1 —\y) 0% = 0p(1) and nz (1= X\y) K2 = Op(1), we have 6, k, 2 0, whence

n

sup |LRTL(57 R, )‘) - LM??(& R, )‘)‘ = |LRH(67L7 Rn, )\n) - LM:LL((STH Rn, )‘n)| = OP(1>a
(8,k,N)€A

10



where the second equality follows from (Al). Therefore, for n > N we have

Pr( W (O — LME(OEM)] < 1)
Pr ({|LR,(05") — LM;;(egMﬂ <eapn{oife Ay n{oLM e A})
({Sup |LR,(0) — LM2(0)| < 61} N{o:t e A} n {05 € A}) (A43)
feA
>Pr (Sup |LR,(6) — LM%(9)| < 61) +P ({0 e A} n{0EM € A}) — 1 (A44)
fcA
21—%2+1—%2—1:1—62, (A45)

where we have used Pr(E; N Eq) > Pr(E;) + Pr(E2) — 1 to go from (A43) to (A44), and (A41)
and (A42) to go from (A44) to (A45).

Step 5

We consider the different cases separately in Step 5.1: P = P, 1, Step 5.2: P = Py 2 and
Step 5.3: P = P,3.
Step 5.1 We have that

1 Hy, \* | 1 (Hzn)? 1 Hyp\? | 1 (Hyp)?
LMa(S )\ :—V n— T . 5 : _V n - 55 . 17 . ’
n( y Ky ) 3 <w1 Vs \/ﬁ) + Vs < \/ﬁ> 4 | wa Vi \/ﬁ + Vi \/ﬁ

where

1

B 2
wy = —5(1 — MAndk and we = A1 —A)/n (51352 — 1)\—i_)\(54> .

36

Next, let
2

We first aim to find an upper bound for LM®(#%M). In that respect, we can easily show that

1-— 1
wo1 = ( ) fﬁ and w22:—(

H2 — H?
LM (6EMy < 30 an A46
a0, < s T (A46)

Second, we aim to find a lower bound for LMZ(#EM). To do so, let A} = 1/2,

1
1 1 .
o Jomi (<) if Hap <0,
n
ot %ff;g / %Iﬁﬁ if Hy, >0,
and L
=] (i) [ (CRTR) i <o
¥ =
4sign(H37n)n_i %If%l if Hyp > 0.
It is then easy to verify that (0, k", A;) € P, with probability approaching one, whence
y i, | 1
LM? (0EM) > LME (6%, k5, = — : 1). A47

11



To verify the second equality of (A47), we can easily check by hand that

* 1 ®\ | * * 1 H37TL
wy = _5(1 - An))‘n\/ﬁénmn = Vg \/ﬁ ’

1
%\ k 1 -1 4H7n2 12 Hin \2 .
w;l (1 — )\n))‘n n(:‘i*)Q _ 31 4 (73 jﬁ) /(— Va \;ﬁ) = Op(l) if H4,n <0,
i s if Hy,, >0,
and
x 1— AR [L = X%+ (A)? .
iy =~ (PN O8] s
e if Hy, <0,
- rafﬂ_zﬁm/¢zmg{mu)ﬁH o
192 Vs \/n Vavn ) — 9 an >0,
with
1 Hyp

x ok *
Wy = Way + Wy =

+ op(1).
L4 \/ﬁ Op( )
But then, (A46) and (A47) imply that

LM H?? Z
n N
LM;LL (0n ) = TV}, + TL‘/4 + 0p(1).

Step 5.2: Recall that @y = {# : A € [1/2,1],0 € [-4,6],x = (2\ — 1)6?/3]}. Then, given
that x = (2\ — 1)6%/3, we will have
(1—=XA2X-1)

1—
wy = — 5 Vnd® and wy = (72)\))\ (—1—2X+2)?) v/ns*.

As before, we first aim to find an upper bound for LM,?(G,LLM ). In that regard, we can notice

that we < 0 for 0 € ©4 so that
1 H4n 2 1 H4n 2
-V _ - % ;
4W'mﬁ>+w<ﬁ>

1 [ Hs,\?
LME(SEM kEM NEMY < v < \;’g) + sup
woER™

1 (H3,\%2 1 [(Hy,\?
= : () 1[Hy, <0).
%(ﬁ)*m(ﬁ) Han <0

Second, we aim to find a lower bound for LM2(#LM). For that purpose, let A € (1/2,1),

1
—sign(Hgyn)Qn_% ( QH4’") b Hypn <0,

Vi /n
1
6: = L VLH\SF’" 3
e 3 I CRRV/ TR '
oo ERex-T) if Hyp 20,
and .
_1sign(Han) 3 o2
r4+ns Vs e if Hy, <0,
A5 = 2<—QH4’")ZI
n B Vi Vn
)y if Hy, > 0.

12



We can then verify that
(1= X)X 2N, - 1)

wy = — 5 Vn(oy)? = 73% + op(1),
1=\
wy= U2y oy ooy
T+ 0p(1) if Hy,, <0,
= _ 4
2\ < 72y 1 Hs , |3 .
U2 (-1 224+ 20078 | oty 6 9] = oplD) i Haw 20,
As a result,
5. Hi
LMA(OEMY > LMO(6%, k5, \5) = —2 "1 [Hyp <0 1
n(n )— n( ns B n) nV3+nV4 [ 4n < ]+0P( )a
whence
LMA(6EMY) = M3 H‘%’”1 H. 0
n n - nV3 + n‘/4 [ 47n< ]7
as desired.

Step 5.3: Recall that ©5 = {9 : A € [1/2,1],6 = 0, € [—k,R]} and Py3 = {(d,K,\) :
(6,6 — (2X —1)5%/3,\) € ©%, max{|d], ||} < 1 — \}. Exploiting the fact that § = 0, we have

1
w; =0 and wy = §>\(1 — MVnk?.

Thus,

1 H4n 2 1 H4n 2
LMY, k,\) = =V, - — ’ .
n( y ) 4<’U}2 Vs \/ﬁ> +V21<\/’71>

Next, we first aim to find an upper bound for LMZ(#5M). Tt is easy to see that wy > 0 for
LMz (6™, kM AGM) < sup

0 € O3 so that
1 Hyp\? 1<mny
~V -2 += (=
waent 4(w2 Vwﬁ) Vi \ v

1 I_I4n2
= ) 1[Hy, > 0].
V4<ﬁ> [Han >0

Second, to find a lower bound for LM&(0EM), let \¥ = 1/2 and

- {0 if Hyp <0,
n = _1 2H4,n :
4n~1 Vi if Hyp > 0.
As a result, wi = V%If%t [H4, > 0], whence

2

H
LM (0;) 2 LM (0, 5, A,) = 21 [Ha = 0]

as desired. (]

13



B Detailed proof of Proposition 3

Before proceeding with the proof, we start by giving an example of sequences (dy,, K1m) — 0

and (d2m, k2m) — 0 such that

gn (51m7 Kflm) li gn (52m7 52m)
—_—— m ——-.
m—oo [/ (51m7 "‘flm) m—oo (52m7 HQm)

Note that for (§,x) — (0,0), it holds

1 L O Hiy (14 15\ Ha
— — — 5 J
VoA sy VR (365 >+ vn 2 "t oplr ()l
where
1 1
7(k,0) = max{‘gl(sé4 - §H2 , 55#@ }
Let

(61,51) = (\/% \/ﬁu) L (82, k2) = (0,0).

It is easy to see that with v — 0, we have |61 — 02| + |k1 — k2| — 0,

AL 1 8L
lim %ﬁ(él’ w1 1) _ and lim %ﬁ(%’ w2 1) _
v=0 \/V&l" (a—f\(él, K1, 1)) VnVs v—0 \/V&r (%\(52, K9, 1)) VnVy
This shows that the process Gu0K) 6 not stochastically equicontinuous.
V'V (0,k)

Next, we follow the steps of the proof outlined in the appendix of the paper.

Step 1

Lemma 1 Let R(n,7,¢) = LRE(n,7,0)— LM% (n,7,0). For all sequences of (n,,, Tn,®,) € D*

and n, 2,0, we have that

R0, T, ) = 0p (max {1,nnm2}) .

Proof. Let 0, = 6(Tn, ©n); kn = &(Tns ©n), An = A1, Tny @,,). First we show that 1 — X, 2 0.

Recall that n,, = max {|3:07 — 12|, |26nkn|} (1 — Ay), whence either (1 —\,) < /7, or
max § |—=04 — 1,%2 15 Knl| ¢ < /M (B1)
36" 82 v

Under (B1), we have

a1 2 21 2 2 Ly ? L o 2 2 2 L o
It is then easy to verify that given (B1), 1 316 62 > 0 with probability approaching 1. Therefore,

14



(B2) implies that
1\ /1 5\
= (5) + (5+)
=[0n] < 2/5VBni/%, [kn| < 27403/,

and also, that 1 — X\, < max{|d,|, |kn|} < max{25/8\/§77,1/8, 27/477711/4} because of the restriction
on Py. In sum, it holds that

1= A < max{2%/5V30,/%, 274,/ 0 /%) 2 0.
Second, a third-order Taylor expansion gives

1
§LR’rdL(Tln? Tn, (Pn) = ng(nnﬂ—m ‘Pn) - Lg(oﬂ—m (pn)
= Ln(5na Rn, An) - Ln(5n7 Rn, 1)

_ OLy(6y, ki, 1) 10%Ly (60, Finy 1) 9
—T()\n—l)+§T(An—l)
1 &Ly (6 Ky An) 5
30 00 (A — 1)°.
The first term is
0Ly, (0n, Kin,y 1) 1 1 0Lu(6p, kin, 1)
T(>\n—1)— N B VnTan(Ap — 1)
= gg(Tm @n)\/ﬁTn()‘n —1).
In turn, the second term will be
1 (10%Ly (6, in, 1) 5 1 O?1(6p, ki, 1) T 9
1 [0%1(0n, kin, 1)
2
=38 [P 2 (0, 120,y 177 (B
1
=—§Vd(m en)nTn(An = 1D? + 0p[v/nra (A = 1), (B5)

where (B3) follows from Lemma 8(8.1), and (B4) to (B5) from the information matrix equality.

Let us now turn to the third term. In view of Lemmas 8.2 and 8.5, we have

1 PL(6n, Kny An) 1 PP Koy An) 1
il e S R R LV | R =
n'n N3 T BIE O\
1
= O(Tn) + Op <\/ﬁ> N

15



whence

LT LOnstns 23, 1= [0(52) 4.0, (= ) e = 17 = aplnran — 17

n N3
In sum, we have LR(0y, fin, An) = LM (8p, Kny An) + 0p (nn%) O
Step 2

Lemma 2 For (1,¢) € DL, Gd(t,0) = G, ), where G4(1,¢) is a Gaussian process with

TP?
mean 0 and covariance kernel

Kl(r, ), (7, )] = Tlﬂcov{azwn sogf(ﬂw),l]’ 35[5(7’7s0’)(§;(7’7s0’),1]}' (B6)
Proof. Here we follow Andrews (2001). By Theorem 10.2 of Pollard (1990), G4(-) = G%(-)
if (i) the domain of (7,¢) is totally bounded, (ii) the finite dimensional distributions of G%(-)
converge to those of gd ), (iii {gd n > 1} is stochastically equicontinuous.

(i) is satisfied because (7,¢) C [0,5 + R2 4 0R] x [0,1].

(ii) The process 7 10L;(6(7, @), K(T, ), 1)/ON is iid with mean 0.

Moreover,
1 ) 1
ol s [L2OC0).AER.D] s | M.k DI o (87
(T,QD)ED}W; - o\ } 5|§32,|n\§f€2,52+ﬁ2>0|7—(5 KJ) o\ ‘

To prove (B7), consider the fifth-order Taylor expansion of 0l (4, k, 1) /OX around (d, k) = (0,0)
given by

4 1+k o 67(% = o
ol (687;’ 1) _ Z '1 9 ! (?a Oal) Skl + Z %8 1(57;{" 1) 5yl
i il ONDS Ok i I 0N O
1 1 9°0(0,0,1)  ;
=hy (6 ) + h325m + Z W ONS O 0K

=921~

67(5 =~ 86
n Z 1 0°l(4, R, 1)5’HJ+ 0 l(é,/{,l)&g

i3 ONIS Ok NI (B8)
i+j=5ix1,j>1 ") &
91(0,0,1)  8°1(0,0, 1)/{ a%1(0, &, 1)%2 3
ONOK3 OOk ONOKD
Consequently
1 OL(d,k,1 9%1(0,0,1)] 2 —1_,_
5 (a)\KI )‘ < ’h4‘ + ‘h3’ + Z a)\é(szaj) ﬁ(g 1/€j 1
7(3, %) 4>i4>3,i>1,j>1 D
1 951(8,/, 1) | ~i—1_. a51(8, &, 1 80
4 Z sup ﬁ(iz/{]) 5 1I_€]_1+ _sup ( 55 ) ; (Bg)
ij=5i>1,7>1181<8,|7|<r | ©T° OA00" O Bi<alri<r| OAD0 7(3, %)
91(0,0,1)| 18°1(0,0,1) %1(6,7,1)| _ K3
+ 3 | |El[+ sup | R 5
ONOK ONOK 5|<5 |7j<r| OOk 7(0,K)
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It is then easy to check that

9%1(0,0,1)

1 0*1(0,0,1) 0°1(0,0,1)
h h — . B10
fal 1l +4>HJ;>U>1 i1 | ONOO Ok ONDK oot || <0 (BLO)
and
6 T o~
E Z sup L’f’l) (B11)
i4j=5,i>0,j>0 [0|<8,|R|<R ONDO Ok
For 62 + k2 > 0, if K = 0, /ﬂ2/max{\%54 — 1K%],30k|} = 0, otherwise
2 1 W <20 if 62 /K2 >0
r(6,K) T 1] el S ) ! < =72 g2 <52 (B12)
’ max{‘%?5 —§’>\§ﬂ} PR - =7
Finally,
55 |64 36 2 361%2 79
—| <4 : <366 |14~ <25+ )} B13
T (max{\3654 360" " [ s\t )] B

In sum, (B7) follows from (B9)—(B13). But given (B7), the martingale difference central limit
theorem of Billingsley (1968, Theorem 3.1) implies that each of the finite dimensional distrib-
utions of G¢(-) converges in distribution to a multivariate normal distribution with covariance
given by (B6).

(iii) The process G%(7, @) is stochastically equicontinuous if for all € > 0, there exists ¢ > 0

such that
lim sup Pr [ sup Gd(r1,01) — G(r2, @2)’ > 6] <e. (B14)
n—oo ”(7'17901)_(7—27902)”§07 (717W1)7(T21§02)€D}'w

In the rest of this section, we keep the restriction (71, 1), (72, p9) € D71'<p implicit to simplify
notation.

The proof has two steps. First, we show that for all € > 0, there exist ¢; > ¢o > 0 such that

€
Py sup Gi(r1, 1)~ Ga(ra0)| >e| < 2. (B1Y)
1(T1:01) —(T2,02) | <ez,|T1],|72|<2c1
Second, we show that given ¢ above, there is ¢; > ¢3 > 0 such that
d d €
Pr [ sup gn(Tlvcpl) - gn(T27902)‘ > 5] < 5 (B16)
[(T1.01)—(T2,02)[I<e3,|T1];|T2[>c1

17



Let ¢ = min{ca, c3}. Whence (B14) follows from

Pr [ sup
Ii(

T1,01)—(T2,2)[|<c

Gl(r1,1) — gﬁ(f2,s@2)) > 6]

<Pr [ sup

[1(T1,01) = (T2,02) 1<, |71, 72| <2¢1

G (r1,1) — 92(727902)‘ > 6}

Gl(T1,01) — 95(72,902)) > 6}

U sup
[(T1.01) = (T2,02)[I<e | 1], T2 >e1

<Pr sup Gi(r1.1) = Gil(ranip2)| > @ (B17)
[(T1,01)=(T2,02) | <c2, |1, 2] <2e1
+Pr sup Gil(ri o) — Galra,p0)| > < (BIS)
l(T1,01)—(T2,00)[[Scs |1l 2|21
where the first inequality follows from that for 0 < ¢ < ¢4,
s |G — GiTa. ) (B19)

[(71,01) = (T2:2) [ <c

< max sup
[1(T1,01)—(T2,02) 1<, |71, 72| <2e1

gg(Tl, 901) - gg(TQa @2)‘}

Gi(r1.01) = Gilra,00)|

sup
1(T1,01) = (T2,02) [ Lc,| 1], T2 =1

and the second inequality follows from ¢ < ¢ and ¢ < c3.
We next show that there exist ¢; > ¢a > 0 such that (B15) holds. Given (BS8), we will have
that

_Hy +06'— iK% Hjy 3ok Z 1 1 0%L,(0,0,1) 87

d 9 _
Gn(T,9) N N iljly/n ONDS'ORT T

4>i+j>3,j>1

where |0] < |8], |#| < |«|, and 8, k, &, & are functions of (,¢) even though we have omitted
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these arguments. Therefore
1 2
57 971, 01) = Gilr2,00)]

< () {7 Gat=oot) = Gt =3}

3672 82 (B20)
H. 2 1 1 2
1 1 8°L,(0,0,1) » e
+4>z‘+j§>:3j>1 (l'J' f&)A(‘)é@/ﬁ;J) { 51“1 — T2 52“2} (B22)

11 0Ly (6,5 0N\> [ ooi 27 201 2;
" Z5é|<sz‘su|p|< (Mﬁam&%) {Tl 0Ty + 73 035 } (B23)
l+j: SO,|R|ISK

where §; = §(71,¢1), k1 = k(T1,¢71), 02 and Ky are defined in the same way. First, we can easily
check that
N N
1 1 6 . 2 6 2
. (”8L (Q,o,‘1)> :E<181(0,0,1)) o
il /n ONOS'OKI

ilj! ONDS Ok

by the iid assumption and the zero expectation of these terms. Second, for the terms (B20)
Y

E

[hi] <oo, B

=E [h3] <

and

(B23), we can show that the non-random coefficients in {} converge to zero as c1,co — 0, using
arguments in (B12), (B13) and Lemma 9. To be more specific, for (7,¢) € D!, we have
1 1 1
—1 4 2 412
T (3661 81>_7'2 < 03 8 >_1_1_0
1

—1
27'1 51/@1 - =

_ 1
27'2 162/@2 =

5(901 — )
_ i—1,.J—1 i—1 j—1 o
= 107 K] — ol KD ifi>1,
1 151’41 —72152“2 {_ ' ' ’ i

=77 /<;1—7'2 /4;2<sup‘—‘ (k1 + ko) ifi=0"

and the same applies to 7] 2(51 /ﬂ?lj . Together with Lemma 8.3, which implies that

( 1 9L, (6, k, 1)>2
sup _——

E

16]<5,|k|<R Vo ONIS Ok

we can find ¢; > ¢ > 0 such that

— B

.. 2
sup (G19(, ) ) ] < o0,
S]]

E sup

d d 2l _ €
(Ghri 1) = Gllrao)) | <5 (B24)
[(T1,01) = (T2,02) | <c2,71,72<2¢1
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Then Chebychev’s inequality implies that

Gl(r1, 1) — GilTa, <P2)‘ > 5]

Pr sup
(T1,01) = (T2,00) | Sc2,| 71,72 <201

1 2
up (Gir1e1) = Gilr2, 22) ] =

<5
€8 | 1(rip)—(ra.p0)l|<ea,|r1 |2l <261

E

Step 2. Given ¢y, we need to find c3 such that ¢; > ¢3 > 0 and (B16) holds. First, we change
(1, ) into (d, k) for simplicity. For (7,¢) € D', it holds that

1 1 1
— 6> 5t — K2 =7(0,K) > 1,6 > 0

1
which implies § > \@cf. Moreover, for all cg > 0, there exists a ¢ > 0 such that

{(T1.01,72,02) € Bf, x Bl : [(1,01) — (T2, 02)|| < ¢3,71,72 > 1}

1
C{(r1,¢1, 72, 09) € Bl x By, : [|(61, k1) — (02, k2)[| < ¢B, 01,69 > V6ef}  (B25)

because {(7,¢) € D;p 7> ¢} is a compact set, and 7(6,x) and ¢(d, k) are continuous on
this set. Therefore, it suffices to find cp such that {G,(d,k) : |d] > \/601/4,(5, k) € A} }
is stochastically equicontinuous on (B25). To do so, we use Theorem 1 of Andrews (1994).

Specifically, we use the notation f for G,(8,x) = - > [ (i, 0, k) and show that f belongs to

n

the type II class of functions defined in Andrews (1994, p.2270). This is the class of Lipschitz

functions in (4, k), which is such that
[f (01, k1) = f (02, k)| < M (1) (|01 = G2 + [r1 — Kal)

for all (81, k1), (62, k) € AL [61],162] = V6ei/.
Note that

1 0l 1 9l
;5(717901) - 725(727902) = y?[D1(71,01, K1) — D1(72, 02, K2)]

+ Y [DQ(T17517’%1) - D2(T27627H’2)]
+ [D3(71,901, K1) — D3(72, 2, K2)]

S -
1 es M 1 1 1
= _ 5 2 -2 752 =
TleXp 5 (01 +) +2?J +61 51
1 : eéﬂf? 1 1 1 :
- _ 5 2 T2 se2 o B26
where
1 2 142 B) 1 2
Dy(1,0,k) = 57_16”_% + 37 Dy(1,0,Kk) = — and D3(7,0,K) = —57'_1 (e”_é?) — (52)
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so that D1, Dy and D3 are all Lipschitz in (6, ) for (§,x) € A}, and 7 = 7(d, ). And for the

last term in (B26), the mean value theorem implies that

52 7
1 es M 1 1 1
R _ o) 2 -2 752 -
TleXp 5 (01 +y) +2y +61 2,%1
1 : 57“2 1 1 1 :
e
- o 5 2 =2 752 .
+T2€Xp 5 (2+y)+2y +62 512
g—f‘ 1 1 1 1 _
€ % 2 2 2 -
=exXp | — (6 +y) Ty +66 gk {72(71—7'2)
1 ﬁfﬁa ~3 ~ ) ~2 ~
o [ (5 436+ 0y? + 25 y+3y>_5 (61— 52)
7
toz |13 0+ y)7) (k1 — k) . (B27)
In addition,
1 1 1 1
|71 — 2| = %5% - gn% - %53 + gﬁ%
1 1
= |35 (01 +03) (61 + 02) (01 — 02) = 2 (W1 + #) (k1 — )
1= I
< *53\51—(52]—1-*]/4:1—%2]. (B28)
9 4
Moreover
g_'{ 1 1 1
¢ 2 2 2 *
i 5 —0" — K| < B2
exp 5 O+ )"+ 5y" + 20" — okl < g7(y), (B29)
where .
* S 2 9 12 1
9" (y) = oxp | =Dyl +y°) + 5y° + 6 + 3R
Combining (B26), (B27), (B28) and (B29), we will have
1 ol 1 ol

715(71#?1) - ;25(72,@2) < (9" (y) + 1) {a1 + azly| + azy®} (|61 — 02| + [m1 — ko).

But since

E[(g*(y) + 1) {a1 + asly| + asy?}] < oo,

f will be Lipschitz with M (y) = (g*(y)+1) (a1 + az|y| + asy?) for some constants a1, az and as.
To apply Theorem 1 of Andrews (1994), we need to check Assumptions A, B, and C. Assumption
A: the class of functions f satisfies Pollard’s entropy condition with some envelope M. This is

satisfied with M = 1V sup|f| vV M(.) by Theorem 2 of Andrews (1994) because f is Lipschitz.
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In turn, Assumption B:

JER N
lim sup — ZEM%“ (yi) < oo for some v > 0,
=1

n—oo T %

is also satisfied because y; is a standard normal random variable. Finally, Assumption C: {y;}
is an m-dependent triangular array of r.v’s holds because {y;} is ¢id. Stochastic equicontinuity
of f follows from Theorem 1 of Andrews (1994). Thus, for given € > 0, we can find ¢p such that
(B16) holds.
In sum, the results hold by virtue of (B17) and (B18). O
Step 3
[gire)]”

Lemma 3 supyep1 LR%(d) = supgepr LM2(d) + 0p(1) = SUP(rp)eDt, Vg T op(1).

Proof. Since

sup LR} (d) — sup LMif(d)' < sup sup  LRI(n,7,0)— sup LMI(n,7,¢),
deD! deD! (T.p)eDL, |n:(n,Tp)eD1 n:(n,7,p)€D?
it suffices to show that
sup  LRI(n,7,0)= sup LMI(n,7,¢)+op(1). (B30)
n:(n,7,p)€D? n:(n,7p)€D?

Expression (B30) follows from Andrews (2001). To see this, we need to check his assumptions.
Let

1 (n,7,0) = 10(1,0), K(T,0), \(n, T, )

denote the log-likelihood of y; written in d € D!. The null hypothesis is Hy : 7 = 0 and (7, ¢)

is the nuisance parameter that only appears under the alternative. Let

LRY(f,p7o0) = sup  LRi(n,7,¢).
n:(n,7,)€D?

To verify Assumption 1, namely 7)., = 0p7o(1), let 14(d) = E [1%(1, 7, ¢)]. Invoking Lemma

6, we have
L a d 1 P
sup |~ L (d) — 190, 7, )| < sup | Ly (6) — lo(6)] 2 0 (B31)
deD! | T 9co |1
(i.e. uniform convergence). Moreover, for all € > 0,
13d) > sup  1d(d) (B32)

n>e,decl(D1)

(i.e. well separated maximum), which follows from the fact that n = 1 is the unique maximizer
(note that (1 — ) < max{|d|, |«|}), l&(d) is continuous and cl(D?) is compact. As a result,
Lemma A1l in Andrews (1993) implies that we have 7)., = 0p 7, (1).
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Assumption 2* holds with By = /n using Andrews (2001) notation, see Lemma 1. Assump-
tion 3* holds by Lemma 2. Assumption 4 is implied by Assumptions 1, 2* and 3. Assumption
5 is satisfied for By = by = /n and A = R™. Assumption 6 holds because R~ is convex.
Assumptions 7 and 8 hold with Ag = R™ and with the fact that 6 and v are absent in our
setting. Assumptions 9 and 10 are satisfied. Assumptions 1o and 4o hold trivially because the
restricted estimator is n = 0 and therefore not random.

By Theorem 4 and the remark at the bottom of p. 719 of Andrews (2001), it follows that
(B30) holds.

Step 4
In this step, we show that

1 (min {0L, (3, 5, 1)/0X, 0})?
sup 2[L,(9¥) — L£,(0,0,1)] = —  sup 1),
Ve’ () ( ) N 9eer\(0,0,1) V (4, ») (1)

where we use the notation £,, for the log-likelihood indexed by ¥}, whereas L,, is the log-likelihood
indexed by 0. First, by the results in Step 3, we have

d 2
sup LRZ(d) = sup 7@”(7-’()0”_

+ op(1).
de Dk (T,p)EDE, Vd(T’ (P) P

Noticing also that

Gd(r, 2 (5, 5) |2
sup LR%(d) = sup LR,(f) and sup LS‘P)J_ =  su M)
deDr beak (rp)eDk, v (T.9) (6,k)€Ak, V(d,k)

we will have that

2
_ d _ n(57 KJ)J —
R = A P S TR
1Gn (6, %) ]2
= sup ———— +0,(1).
(8,K):(8,K,1)EPy V(57 H) P
Therefore,
0 (6, 1))
sup 2 (L, (¥) — £,(0,0,1)) = sup LR,(0) = sup M +0p(1)
9P 0eP, 6.0):6,m)eP, V(0 K)

_ _— [Gn (3, %)J3
(0,7):(8,,1)€P; V((Sa %)

Finally, the asymptotic distributions of the LM tests follow from the continuous mapping

theorem. 0
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C Detailed proof of Proposition 6
Constant y and o?

We first consider the simple case in which we estimate both the unconditional mean and
variance parameters, say p and o2, respectively, under the additional assumption that they are

constants. Specifically, letting y = Vo2z + p and z ~ MixN(0, 1), we have that the pdf of y is

fr(y) = \/10_—2fz (y\/g) ;

so that the contribution of observation y to the log-likelihood, £(u, 02,6, 2, A; ), will be given

by
L1 1 <y —p ) 2
exp |53 | ——= — ,

simply given by

A 1 <y — B >
exXp | —5 — K
/72 2012 \ /o2 1
where k is an integration constant and

5(1—A) A

1
k— 510g02 + log {

MT: ) M;:_l—)\l[{’
14+ A1 — \)62
1
01?2 = and o3 = exp(s¢)oi2.

[14+ A1 = N8 A+ (1 — X) exp(52)]

Subtest in P, We consider the reparametrization in (3) and define
Ln(p, 0 5&)\):lil‘(u02 9, K, )
n ) Y ) ) n ‘ 1 K3 ) Y Y ) )
1=

with 1; (11, 02,6, 6, A) = €(p, 02,6,k — (2X — 1)62/3, X; 5.
To shorten notation, let p = (¢,60) with ¢ = (u,0?) and 0 = (,,A). Let ¢y = (1o, 03)

denote the true value of the parameter ¢. Next, define

LRn(Ma 0-25 67 Ky )‘) =2 [Ln(lu’v 027 5a K, >‘) - Ln(lan 0(2)7 07 0’ )‘)] (Cl)
and
pi = argmax LR(p), pkf =argmaxLR(p),
T pedx{0}2x[1/2,1] ’ pEDXP

where P can be replaced by Pg1,Pa2, Pz as needed, and ¢ denotes the feasible parameter
space of (11, 02). Then, it is easy to verify that pﬁf = (¢rr 0,0, M) with

n

I~ 1
¢n,r = (Mn,rvgi,r) - E Zyia g Z(yz - :umr)z ;
=1

i=1

which provide the restricted maximum likelihood estimators of ¢.
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Letting

£315%(6) =2 (- 22 ) i - o) + 2 <2}%f§ﬁ) V(o o) ()
- %n(u — p1g)* — Lo (0* = 03)”,

4
og 20

where

Yi — Yi — — 0
H]_7n = E h‘l’i = E i 'LQLO and H2,TL = E hz’i = E —( ! ILLO(?Q) 0 .
i=1 i=1 V90 i=1 0

i=1
Moreover, in the sequel LMZ(6; ¢) will coincide with (15) if we replace y; with (y; — pg)/+/03.

As in the proof of Proposition 1, we have the following five steps:
1. For all sequences of p,, = (¢,,, 0, kins An) With (@,,, 0ns kin) = (g, 0,0), we have that
LRn(py) = LM (6n) + LM% (¢,,) + 0p[hiy (82)] + 0p 15 (6],
where h£(¢) = max {1, n(p — pg)?,n(o? — 0(2))2} and

h0(0) = max {1,n(1 — \)26%,n(1 — X)26%k%, n(1 — N\)?k*} .

2. For ¢, = (utM,02FM) € argmaxyee LM{?(¢), we have that ¢EM = ¢, + op(1) and
RS (GEMY = O,(1); and also define §LM = (§EM LM \EMY  argmaxpce LME(0), we

have that (6ZM kEM) = 0,(1) and B2 (0LM) = O,(1).

»'n

3. For pﬁﬁ = (¢EB GLE (LR NLIY ¢ arg maxgeawp LRy (p), we have that

n,u “n,u Ynau nyu

(BLT — o, 6ER (LE) 2, ¢

n,u n,u Vnyu
and h(pLE) = 0,(1).
4. Then, we prove that LRn(pﬁf) - LRn(pﬁﬁ) = LM2(0EM) 1 0,(1).

5. Finally, show that the test is the same as before, but with y; replaced by (y; — j,, ) /0.

Before going into the details of these steps, let us emphasize that the main difference is in
Step 1, which shows that in the Taylor expansion the cross terms (73 defined below) of ¢ and 6
are negligible, and thus we can consider the two parts separately. Step 2-4 are almost the same
as before.

Step 1: Consider a sequence p,, = (¢,,, 0n, n, An) With (¢,,, dn, £n) LN (¢9,0,0). Let

L[k17k2,k37k4} _ 1 ak1+k2+k3+k4Ln(p)
" kl'kQ'k3'k4' aﬂk‘l (80-2)k2 857938,1134
p

n,0
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where p,, o = (¢9,0,0, ;) and

plibsil 1| O L) L)

n
with ((Nﬁn, On, Rn) between (¢,0,0) and (¢,,, 0n, kn). Consider the following eighth-order Taylor
expansion,

1
5 LEn(Pn) = Ln(ttns 03, 6ns Kins An) = Ln(tig, 05, 0,0, An)

= T1n(0n; 00) + Ton (B Bo) + Tn(pni o> 03) + A,

where

Tin(Oni o) = D LpOfmlowe,

ka+ks<8
. _ k1,k2,0,0 k 2 2\ k2
TQn(¢n’ ¢0) = Z L£Ll ? ](:U’n - NO) ! (Un - 00) )
k1+k2<8
k1,k2,k3,k ki (-2 2\ k2 ks k
T3n(pn; (bO) = Z L£117 2,ka k] (:un - H’O) ! (Un - J0) 5n3’%n4 and
k1+ko+k3+ks<8
k1+ko>1, kg+ka>1
k1,ko,k3,k k 2 2\k2 cks k
Ay = Z ALL]-’ 2 41(:“’71 - MO) ! (Un - 00) ’ 5n3K’n4

k1+ka+ks+ks=8

First, we will show that T3, (p,; ¢g) = 0p[h%(0,)] + op[hﬁ@n)]. Specifically, for (ki,k2) €
{(1,0),(0,1)} and (ks, k4) € {(k,0) : E <4} U{(0,k) : E <2}U{(1,1)}, we can easily check that

Efilkrkakska ()] = 0 and B{[1lErF2koka (5012} < oo,

which means that

@ QFrthathstkay, (p)
n

= 0,(1). C3
Okt (002)"2 06%3 01k e p(1) (©3)

Therefore, we will have that the (ki1, k2, k3, k4) term is such that

a/ﬁ +ko+k3+ks L, (P)

[ E1:k2 k3, ka] _ ki (52 _ 52)k2 oks ke _ @
" (hn = 0] o = 00) O o opk (902)" 95" akk |
0

X [\/ﬁ (tt, — t10)™ (o7 - U%)Iﬂ O it
= 0p[hf(9,)],

where the last equality follows from (C3) and the fact that ¥k = 0,(1). As for the remaining

terms in T3, we have either: a) k; 4+ ko2 > 2 so that

1 (1t — o)™ (02 — 03)" 65kt = 0, [h2(6,,)], (C4)

26



or b) (ks, k1) € {(k,0) : k >4} U{(0,k) : k > 2} U{(k, k') : k, k' > 1}, 5o that

1 n
kb ksl (, — o) (o2 — o3)™ okonks = [n Zg(yi)] n (1, — o)™ (02 — 03)"
i=1
X (1 — Ay, )oks ks
= oplh(0n)],

where g(y) = ez ks al (Pno)/(1—Ay) is square integrable. In this case, the last equality follows

from
Vi (1, = 110)" (02 = 02)" /(1 = Ag)SE kb = 0,1 (0,,)]. (C5)

Secondly, we have to show that Th, = LM>%(¢,,; bo) + 0p [hﬁ(%)} Invoking Rotnitzky et al
(2000), we will have that

112000 1 -1 1 10200 1 _1 1 1100 _1
£L7[7,7 00 = _T‘(Q)—i_op(n 2)7 EL7[17 0.0 = _?‘(2)""01)(” 2) and gl—ﬁ[f 0.0 :Op(n 2).
Therefore
k 1 k
Do L (= o)™ (o = o)™ = D L% (u, — o)™ (o7, - 05)™
k1+ko=2 k1+ko=2
1 2 1 2
= — 5, — o) = =5 (07 — 05)” + 0 ()]

206 R

For ki + kg > 2, we have %L[fl’b’o’o} = 0,(1) and n (p,, — p1g)"™ (02 — U%)k2 = 0p {hﬁ(gf)n)}
Third, we have to show that Ty, = LM%(6,,) + op[h%(0,)]. But since this is the same as we
did in the proof of Proposition 1, we can omit it.
The last part requires to prove that AlF1F25s:#4] (1, — 1) (02 — O'%)kz Skagks = 0,(1) for
k1 + ko + k3 + k4 = 8, which is entirely analogous to the proof of Proposition 1.
Step 2: This step is trivial since maxgee LM @9 (¢) has a closed-form solution with probability
approaching one.
o v Frcs)

(¢0,0,0). Next, we can also show that hﬁ(Qﬁﬁ) = Op(1) and hi( ﬁﬁ) = Op(1) by an argument

analogous to Lemma 3 in Amengual, Bei and Sentana (2023).

Step 3: Following the proof of Proposition 1, we can first show that (

Step 4: It follows from the same argument as in the corresponding proof of Proposition 1.
Step 5: Simplify LM®(#EM) as in the proof of Proposition 1. Then by the stochastic

equicontinuity of the test statistic in ¢, we can replace ¢ by ¢, ..

Subtest in P, Here we use the reparametrization of Proposition 3 involving (7, 7, ¢). In terms

of Andrews (2001) notation, we have

Bi=mn, m=(r,¢) and ¢ = (u,0°).
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We show that we do not need to adjust for parameter uncertainty by verifying Assumption 7
of Andrews (2001), which guarantees that there is no cross term of ¢ and 7 in the quadratic

approximation. Let

LR} (1,0%,0,7,9) =LRn[p, 0%, 8(7,0), 5(7, 0), A(n, 7, )],
LMy (n,0%,,7, ) =2Gu(7, @)V — V (7, 0)nip® + LM (¢),
Ry (1, 0%, m,7,0) =LR (1,02, 1,7, ) — LM (1, 02,1, 7, 0),
where LR,,(p1,02,8, k, ) is defined in (C1) and LM% (¢) in (C2). We need to show that for all
sequences (i, 02, My, Ty ©p) With (i, — tg, 02 — 0,1,,) = 0, it holds that
Rn(/lnv 0-7217 Mns> Tns c)On) = Op {maX[nn%’ n(#n - :U’O)7 n(o-?z - 0(2))2]} . (CG)
To see this, we can modify the proof of Proposition 3. Let p, = (i, 02, 6n, fn, An) With
On =0(Tn, ©pn)s kn = K(Tn, p,) and Ay, = X(1,,, Tn, ©,,)- A third-order Taylor expansion gives

L(Mna U%, On, K, )‘n) - L(M()v ‘737 Ons Ky 1) = Tln(pn; ¢O) + TQn(pn; ¢0>
+ T3n(lon; ¢0) + T4n(pn7 ¢0)7

where
. _ 8L(pnO) o 18 L(pnO) o la L(pn) _1)\3
1 9" L(p, 1 &L(p ; .
Ton(oni 00) = 3 15 i o) (0 b+ 3 i P (02 =
1+75<2 i+j=3
and
9L (p,, 0*L(p,,
T (9 60) = 5 O = 1)1, = i) + 02 1, 1)(0%
10°L(p,) 2 1 9*L(p,) 2
2 oNop (An = 1%t = o) + 5157571355 (An —1)*(o7 - 03),

1 (1 &L(p,
Tyn = Z j'k;‘{n(‘?)\@/ﬂgzal)k} (i, = o) (05 — 03) (A = 1)

k=2

with p,, = (fip, 52, 0ns Fin, An) between (tiy,, 02, 6n, kin, An) and pno = (Ko, 03, Ons kin, 1). We can
show that

2T1n(pp; $0) = 2G0Ty M) V110 — V (T, mn)nni + Op(mli) (C7)

using the same argument as in Proposition 3. Moreover, it is straightforward to show that

2T2n(¢n; ¢0) = LMr?(gbn) + Op [n (0-31 - 03)2 +n (iun - M0)2] (CS)
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We can also show that

Tantpi0) = { =20 i, = )] (1)
+{ ST (o2 - o) (- 1)
(SR b, ol O~ )
- {ir;;i;; b (o = ahme] O 1)
— oylnlis, — po)? + 1 (0 — oF)° + ], (©9)

where the first equality follows from 7,, = (1 — \,,)7,, and the second one follows from Lemma

8 and A\, 2 1. The result relative to Ty, is easy, as A, — 1 and n(u, — o)/ (02 — od)* =

Oln(p, — po)* +n (o2 — 0(2))2], so that
Tin = opln(pt, — 19)* + 1 (0% — 03) ). (C10)
Combining the results in (C7), (C8), (C9) and (C10), we finally prove (C6).

General p and o2

Let us now consider the general case in which the conditional mean and variance are para-
metric functions of another observable vector X.

In this context, let Wy = (Y3, X;) and assume that

Y= py (73 ¢)
o} (x; ¢) o2 (z;9)

fYt|(Xt,Wt*1)(y|$awt_1) = fYt\Xt (ylz) =

As a consequence, the (conditional) log-likelihood can be written as
bp(, 8,56, 3 Yy, Xi) = Llpy (X3 ), 0% (X33 ), 0, 22, A Vi]

the subscript p is for “parametric” and ¢ was defined in the previous section. Accordingly, we
denote the likelihood after reparametrization as l,(¢, d, &, m; Yy, X¢).

For P, part, we only need to check the argument in Step 1 since Steps 2 to 4 are the same.
First, notice that for every vector k —with the same dimension as ¢— such that |k| = 1 and
(ko,k3) € {(k,0) : E <4} U{(0,k) : k <2} U{(1,1)},

. 2 (..
(lenaskal oy — (10 kaiks] (po)aﬂya(;it; ) 1[0k k] (po)aaya(;it, ¢).
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Therefore, by the law of iterated expectations, we will have

E[ b2kl (py)] = B{E[ ") (pg)| ]}

= p {25 pyakesl y1xa} + {WE“?’LW (i}

=0

because E[l?’o””””] (po)| Xt = E[ZLO’I’M’]C?’} (po)|Xt] = 0. Hence, if Assumptions 1 and 2 hold,
then the same arguments in Step 1 applies. Analogous arguments apply for the P, part too,

which completes the proof. ]

D Additional lemmas
Lemma 4 Fork=1,...,16, let
Dk = {(n, 7,¢) : there exists 0 € A* such that (20)-(19) holds} .

Then, (i) for all @ € A¥, there exists a unique d € D* such (20)-(19) holds; (i) for all d € D¥,
there exists a unique 6 € A* such that (20)-(19) holds.

Proof. (i) is straightforward. As for (ii), we show it for & = 1 since the proof for k = 2,...,16 is
similar. We only need to show the uniqueness of 6, as the existence follows from the construction
of D!. Note that 7 > 0 for all § € A', thus A = 1 — /7. With the restrictions of A!, it holds
that

1 1 1
%(54 - gffz =7, that is, 55% = QT. (D1)
Hence, we can easily write
2 4 4722
Since the left hand side of (D2) is strictly increasing in 6%, we can get unique §. Finally, we get
k from (D1). O

Lemma 5 If

s 21—+ N2

(a) V(1 = An)dntin = Op(1) and (b) Vn(l— ) |ky 9 0n| = Op(1),

where A, € [1/2,1], then we have \/n(1 — \,)k2 = Op(1) and v/n(1 — \,)65 = Op(1).

n

Proof. From (b) we have
2
Vn(l = M)k = o= 2n+ A2)V/n(1— N\,)o% + O,(1).

But if /n(1 — \,)0% = Op(1), then we can trivially show that /n(1 — A\,)x2 = Op(1) because
1 — X\, + A2 € [3/4,1]. The rest of the proof is by contradiction.
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Let us assume that /n(1 — )84 # O,(1); in other words, that there exists an e > 0 such
that for all M,
Pr(n2 (1 — An)0% > M) > e i.o. (D3)

Next, given that v/n(1 — Ay)k2 — 2(1— Ay + A2) /(1 — Ap)dp = Op(1), there exists an Mj such

that
Pr <

for all n. Consider M’ > max{Mg,(_SQ/G} and let M; = 6M' 4+ 6M;. In view of (D3), we have
that

V(L= A = 201 A V(L M) :

<M2>>1—6

Pr[nz (1 — A\,)d% > 6M' + 6]My) > € io.

Let
Ap = {nz2(1=A,)0% > 6M + 60y}

and
Bu = (V{1 ~ AR — 2(1 = A+ NV~ M54 < Mo},

Since Pr(A,,) > € i.0. and Pr(B,) > 1 — ¢/2 for all n, we will also have
Pr(A, N By) > Pr(4,) + Pr(B,) — 1 > % i.0.

On the set A, N B,,, we have

B(L = A)2622 = V(L = A)32 {ju e X2 = At

> v/n(l — \,)o2 [3(1 — A+ A2Vl = \,)0t — Mg} (D4)
> VAL = A3 | GV - 2,08} - 0 (D5)
> vn(l - An)éi];/ (D6)
> vn( ; An)dn > M + My > M, (D7)

where (D4) uses the definition of By, (D5) uses 1 — A, + A2 > 3/4, (D6) combines the definition
of A, with 62 < 5%, and (D7) uses the definitions of M" and A,,. Hence, A, N B, C {n(1 —
An)20%K2 > M'}, which implies that for all M,

Prn(1 — \,)?0%6% > M'] > = i.o.

€
2
which is a contradiction to (a). Thus, we have proved that \/n(1 — A,)x2 = Op(1) and /n(1 —

n

)64 = Op(1), as desired. O
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Lemma 6 (uniform convergence) Denote lo(0) = E[l(0)]. Assume the data is iid, E (y*) < oo

and © is compact. Then,

SUPgeco

L (0) zo(e)‘ 2.

n

Proof. Let 62 = exp(5)/\ = 2exp(5) be an upper bound for max (o2, 0%2), 02 = e=2%/(1 +
)

52/4) a lower bound for min(o3?, 032), and ji = ¢ an upper bound for both |u}| and |u3|. Then,

we have
1 (y — p3)? 1 y — 113)?
1(0) =1 A—— — 1—A -
( ) 0og { m exp |: 209{2 + ( ) 0_32 exp 20_32

1 — )2 1 . %\2
e P e | RS PP =)

— *)2 _ . *\2
> iog(e) - AT+ (= Ny — p3)
2 202
Lo oy (2l +R)?
> ] 2y _ MM TR
—_— 2 Og(o— ) 2Q2 9

where the first inequality follows from the concavity of the logarithm, the second one from the

definitions of &2 and ¢?, and the last one from the definition of fi. Moreover,

(y — p})?

1(0) =log< A ! exp[—]ﬂ-(l—A) ! exp[—W}
A /()‘I2 20’;2 A\ /0'32 20’32
1 1 1
<logg  \——=4+1-A)—| =log| ——= | -
g[ 7Y ] g(ﬁ?)

(3

it is straightforward to see that [I(0)| < d(y) and E[|d(y)|] < co. Note that L, (6) is continuous
at V0 € © with probability 1. Thus, by Lemma 2.4 in Newey and McFadden (1994),

Next, letting

.9 )
d(y) = W + ‘log(UQ)‘ +

)

SUPgeo n

1
Ln(0) — 50(9)‘ %0,
as desired. OJ

Lemma 7 If there exist an My > 0 and a § < 1 such that |Hs,/v/n| < My, [Hayn//n| < M,
lwy] > My /€, |wi| > |wal, rn(0)/w? < &, then LR, (0) < 0.
Proof. We have that

H3,n
N

H4,n

LR, (0) =2 NG

wy + 2 Wy — V},w% - V4w% + 7rn(0),
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so that

LR, (0 Hsz, 1 H 2 5, K, A
n2( ) —9 3,n7+2 47”%—‘/3—‘/4%4-7.”( 72"47 )
wi LR Vn wi wi wi

§2§+2§%—V3+§
1

<58 —V3
<0
because V3 = E[h3] = 6, which proves the result. O

Lemma 8 (Weak convergence)

2
(8.1) i (Lr 1 ELCASEON _ p [ PEaman]) Z 0, ().

_103L(8(T,),k(T,0), T, _193U1(8(T T T
(8.2)\%(%7 193L(8(,p) 8&3@)/\(77 so))_E[ 1%U(8(7,0) .5 égAw)A(n @))D:On(mp)(l)-

(8.3) L LLaORD) _y Glil(5, ) for i+ = 5.

_10*L(8(T, 0), T,
(8. 4) 1, —197L(8(r.9).k 8()\ T,0)AMT8)) Op,(T,(p)(l)'

(8.5) 72E [8 1(5(7',90)7I€{§;§P)7)\(777T,80))] = O(r.)(1).

(8.6) With p and o 1 L) _ Op(1) and L P Lloy) _ Op(1).

7 /n OXOp vn 0Xdo?
3 ~
(8.7) With p and o2, {%T,jlaafg(gz)} =0p(1) and {711 ;1%)\2%’"2)} = 0p(1).

Proof. The proofs of (8.1) and (8.2) are similar to the proof of Proposition 1. Therefore, we only
give the Taylor expansion of 821(8,k,1)/0A% and 931(5, k,1)/0X3 to justify the normalization
771, but omit the detailed steps. Specifically, a fifth-order Taylor expansions yield

agl(&/’%l) a1 4 1 2

192+1(5, 1, 1) ! 1 92++i)(5,k,1)
= (27"? )5z+ Z - . (i7’€; )6ZH]
v 0N itjesisl 1 T OO0k

Z L@“”H(S,R,l)yﬂj
s 1l ON2058' Ok

and

+i 4 3+i+j A

81((;5:1)_8h454+216 l(35/<;1)5 n Z %8 3l(f’ﬂ;1)5zn3
A IN"0d itjmsisiy1 I ONO0'Ok

3+i+i1(§ R .

R

it2s 0 0N 000k

The proof of (8.3) is similar but much simpler, as it is not normalized by 7. To prove (8.4),

it suffices to apply the uniform law of large numbers (see Lemma 2.4 of Newey and McFadden
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(1994)) and use

. 0) = 1 a*(4(r, so)ﬁ(;Tf) A7) if 7 £ 0,
g lim: o7 _1841(6(”0) Nd(; 2)AMTR) — 94pt i + = 0.

To see (8.5), notice that

3
E [g)\é] = —896006% — 54k* — 366%K% + o(7?).

As for (8.7), we can also show that evaluated at p,

;;;I;u = Hs + %HQﬁg—l—Op(T)
and 1 &L, 16 1 11, 31,
noNdo?  30%n o Had® & **H‘“"’ J*H?’ +0p(7),
where R
;= Zy(y2 —3) and Hy = Zy4 — 62 +3 with §; = ZyU“
whence we prove the desired result. U

Lemma 9 ‘%54 — %mﬂ — 0 and ‘%(5&‘ — 0 implies § — 0 and kK — 0.

Proof. Once again, we prove this by contradiction. If the lemma does not hold, then one of
the following statement must be true:

(i) there exist sequences 0, Kk, such that }%631 — %/ﬂ%‘ — 0 and ‘%571/%‘ — 0 but §, — 0" #0,
or

(ii) there exist sequences 0, Kk, such that ’3—1654 — l 31| — 0 and |15 lsn} — 0 but k, — k* # 0.

Consider ( ! 1) nn} — 0 and 6, — 6" # 0 implies k, — 0, thus
1 1 .
‘3(55?3 g"éi — %5714 # 0,

which is a contradiction to ‘36(54 -z 2’ — 0. Similarly, for (ii) ‘ ) /{n’ —0and kK, — K*#0
implies §,, — 0, thus

Lo Lol [l

36" 8" 8 " ’
as desired. O
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