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ABSTRACT

A popular approach to multivariate dynamic conditional
heteroskedasticity assumes that the observed variables
are a time-invariant linear combination of a few
conditionally heteroskedastic orthogonal factors plus
idiosyncratic noise. We discuss the identification of
these models, and find that when the factors show
conditional heteroskedasticity, the matrix of factor
loadings is unique under orthogonal transf ormations if
the changing volatility of the factors is recognised in
estimation. Our main result also applies to dynamic
versions of the APT in which the variances of the
common factors determine the (now identifiable) risk
premia associated with each factor. Our findings could
also be useful in the interpretation of dynamic factor
models, and in the identification of fundamental
disturbances from vector autoregressions.

Keywords: Factor Models, Conditional Heteroskedasticity,
ARCH, APT, Dynamic Factor Models, Vector
Autoregressions.
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1. Introduction

In recent years, increasing attention has been
paid to modelling the observed changes in the
volatility of many economic and financial time series,
especially after the introduction of Engle’s (1982)
Autoregressive  Conditional Heteroskedasticity (ARCH)
model. Most theoretical and applied research in this
area has concentrated on univariate series. However,
many interesting issues in financial economics, such as
tests of asset pricing restrictions, asset allocation
or performance evaluation, can only be fully addressed
within a multivariate framework. Unfortunately, the
empirical application of dynamic conditional
heteroskedasticity in a multivariate context has been
hampered by the sheer number of parameters involved.
For this reason, only particular parameterizations have
been considered in practice (see Bollerslev, Chou and

Kroner (1992) for a recent survey).

Given that there are some similarities between
this problem and that of modelling the unconditional
covariance matrix of a large number of series, it is
perhaps not surprising that one of the most popular
approaches to multivariate dynamic conditional
heteroskedasticity is based on the same idea as

traditional factor analysis. That is, it is assumed




that each of several observed variables is a
(time-invariant) linear combination of a smaller number
of (conditionally) orthogonal factors plus an
idiosyncratic noise term, but allowing for conditional
heteroskedasticity-type effects in the common factors.
As in standard factor analysis, it is in this way
possible to obtain a parsimonious representation of the
(conditional) second moments in terms of fewer

processes.

We shall refer to these factor models as
conditionally heteroskedastic. As we shall see, they
encompass all the dynamic specifications of conditional
factor models adopted so far in empirical applications.
Specifically, the factor GARCH model of Engle (1987),
the latent factor ARCH model of Diebold and Nerlove
(1989) and their extensions are all members of this
family. Besides, these models are also compatible with
standard factor analysis based on unconditional

covariance matrices.

In addition to its parsimony, an important reason
for the popularity of this formulation is that it is in
line with the long tradition of factor or multi-index
models in finance. In particular, it can be closely
integrated with dynamic versions of the Arbitrage

Pricing Theory of Ross (1976) (see e.g. Engle, Ng and

Rothschild (1990), and King, Sentana and Wadhwani
(1991)).

Although many properties of this model have
already been studied in detail recently, either for the
general class or for some of its members (see e.g.
Bollerslev and Engle (1990), Demos and Sentana (1992),
Engle (1987), Engle, Ng and Rothschild (1990),
Gourieroux, Monfort and Renault (1991), Harvey, Ruiz
and Sentana (1992), Kroner (1987), Lin (1991), Nijman
and Sentana (1992), Sentana (1992)), one remaining
issue is especially  relevant: the identification
problems which affect factor analysis models have not
been explicitly investigated for the case in which the
factors show dynamic conditional heteroskedasticity. In
part, this may be due to the fact that some empirical
applications have effectively assumed that the factors
were known, while others have considered only one
factor. The purpose of this paper is to discuss how
this new element affects the identification question in

the general case.

This issue has important implications for
empirical work related to the Arbitrage Price Theory,
as the lack of identifiability of standard factor

analytic estimation implies that the individual risk

premia components associated with each factor are only




identifiable up to an orthogonal transformation.
Furthermore, it also has some bearing upon the
interpretation of common trend and dynamic factor
models, and on the identification of fundamental
disturbances and their dynamic impact in vector

autoregressions.

In section 2 the model is formally introduced.
Identification is discussed in section 3, in which a
generalization of sufficient conditions for the
constant-variance case is stated. Extensions of the
main result to conditionally heteroskedastic in mean
factor models, dynamic factor models and vector
autoregressions are discussed in section 4. Finally the
conclusions are presented in section 5. Proofs and

auxiliary results are gathered in the appendix.

2. A Multivariate Conditionally Heteroskedastic

Factor Model
Let’s consider the following multivariate model

X, = Cft+ w, (1)

where X, is a Nxl1 vector of observed variables, f ;@

kxl vector of unspecified common factors, w, o a Nxl1

vector of idiosyncratic noises, C a Nxk matrix of
constant factor loadings, with N2k and rank(C)=k, and
both f + and w, are stochastic processes which may show

dynamic conditional heteroskedasticity.

In particular, it is assumed that given the

information set available at time t-1, <I>t_

1:
f o} [A 0
e, - |t (2)
w, 0 0 r t]t-1
where Atl -1 is a kxk positive definite diagonal matrix

of the conditional variances of the common factors, and
I‘tI -1 2 NxN positive semidefinite matrix of
conditional variances of the idiosyncratic terms.

Note that the diagonality of A implies that

t]t-1
the factors are conditionally orthogonal. As we shall
see, this assumption, together with the constancy of C,
has important identifiability implications. However, we

shall not impose any restrictions on the functional

ilit
form of Atlt—l and rtlt—l (other than measurability
with respect to <I>t_1) in order to retain full
generality.

Our assumptions imply that the distribution of X,

conditional on <I>t 1 has a zero mean and a covariance




matrix, characterized by the following

Zet-1
approximate conditionally heteroskedastic k factor
structure:

C’

(3)

Zi1t-1 = e T

For this reason, we shall refer to the data
generation process specified by (1) and (2) as a
multivariate conditionally heteroskedastic factor

model. Such a formulation nests several models widely

! The main difference with exact (i.e. standard)

conditional factor structures is that Ftl -1 is not
necessarily taken to be a diagonal matrix, so that the

idiosyncratic terms, w +

Nevertheless, since we assume that the number of

may be correlated.

factors, k, is known, the degree of cross—correlation
in w, has to be small. Chamberlain and Rothschild
(1983) show that the sequence of covariance matrices
{thI t—l} N=1,2,... has an approximate k factor
structure if the sequence of idiosyncratic covariance

matrices has ©bounded eigenvalues as N

Tt t-1

increases. For instance, } band diagonal for

TNt 1t-1
all N satisfies this restriction. As our results on the
identifiability of C do not depend on the structure of
rtl t-1° we shall not differentiate between exact and
approximate factor structures.

used in the empirical literature. These typically
assume that the common factors follow ARCH-type
processes, but differ in the way the conditional
covariance matrix of the idiosyncratic terms is
modelled. For instance, Diebold and Nerlove (1989)
assumed that the variance of W, is constant and
diagonal, while King, Sentana and Wadhwani (1991)
retained diagonality but allowed for time variation in
r -1 Alternatively, in the Factor GARCH model of
Engle (1987), the covariance matrix of w, is constant,
not necessarily diagonal, but singular (see Nijman and
Sentana (1992) and Propositions Al and A2 in the

appendix).

Notice also that if f ¢ and w, are both
conditionally homoskedastic and orthogonal, the above
model reduces to the standard orthogonal factor
analysis model (e.g. Johnson and Wichern (1982)). But

even if f t and w. are conditionally heteroskedastic,

provided that they :u*e covariance stationary, the above
model also implies an unconditional k factor structure
for Xy That is, the unconditional covariance matrix,
T, can be written as:

S =CAC +T (4)

)=I. This

where V(ft)=E(At|t—1

)=A and V(W)=E(T, .




property makes the conditionally heteroskedastic model
considered here compatible with traditional factor

analysis.

The above formulation is also an important
special case of the model discussed in Harvey, Ruiz and
Sentana (1992), who allow for general dynamics in the
mean. Their general formulation includes several
popular choices, such as models in which the variances
of the common factors affect the mean of X, (see e.g.
Engle, Ng and Rothschild (1990) and King, Sentana and
Wadhwani (1991)), common trends/dynamic factor models,
and also vector ARMA processes. We shall defer the
discussion of the identifiability of these models in
the presence of conditional heteroskedasticity until

section 4.

3. Sufficiency Conditions for Identification

Since the scaling of the factors is irrelevant,
to remove this indeterminacy it is customary in the
constant variance case to consider factors with unit
variances. By analogy, we shall impose here the same

scaling assumption on the factors unconditional

variances, i.e. A=V(f t)=12.

Suppose that we were to ignore the time-variation
in the conditional variances and base our estimation in
the unconditional covariance matrix of Xy Z. As is
well known from standard factor analysis theory, it
would then be possible to generate an observationally
equivalent model to (1) (up to unconditional second
moments) as:

x = Cf, +w, (5)
where C’= cQ, f :=Qf ¢ and Q is an arbitrary orthogonal
kxk matrix, since the unconditional covariance matrix,

* ¥
£=C C ’+I'=CC’+l", remains unchanged.

Hence, some restrictions would be needed on C.
One way to impose them would be to use Dunn’s (1973)
set of sufficiency identification conditions for the
homoskedastic factor model with orthogonal factors.
These conditions are zero-type restrictions on C that

guarantee that the only admissible orthogonal matrices

£ If the unconditional variance is unbounded, other

scaling assumptions could be made just as well, e.g. we
could set the constant part of the conditional variance

of each factor to 1.




Q above are I and its square roots (i.e. that C is

locally identifiable up to column sign changess).

For instance, when C is otherwise unrestricted,
imposing Cij=0 for i (i.e. C lower trapezoidal)
ensures identification. These restrictions imply that
X4 depends only on the first factor, X,, on the first
two, and so on until xkt’ x(k+1)t"”th

on all k factors. Although this is clearly arbitrary

which depend

unless k=1, the factors can be orthogonally rotated to
simplify their interpretation once the model has been
estimated. In some other cases, identifiability can be
achieved by imposing plausible a priori restrictions.
For example, if in a two factor model it is believed
that the second factor only affects a subset of the
variables (say the first Nl’ with N1<N, so that Ci2=0
for i=N1+1,...,N) the non-zero elements of C will

always be identifiable.

Other alternative sets of sufficient local
identifiability restrictions have been suggested, and
for example Jennrich (1978) proves that when C is

otherwise unrestricted, fixing not necessarily to zero

? The local identifiability can be trivially

transformed into a global one by fixing arbitrarily the

sign of one non-zero coefficient in each column of C.

10

the  k(k-1)/2  supra-diagonal coefficients of (a
permutation of) C also guarantees identifiability.
However, when time variation in At lt-1 is
explicitly recognized in estimation, the set of
admissible Q matrices is substantially reduced since
the conditional covariance matrix of the transformed
factors f : = Qf ¢ has to remain diagonal Vt. Without
loss of generality, let’s divide the factors into two
groups, the second of which, if it exists, |is

characterised for all t by a scalar covariance matrix

(of at least dimension 2), i.e.:

A o
A 1t|t-1

tit-1 - |0 A (€

2t1t-1'k
2
If we partition C accordingly, i.e.:
cC=(C |C,) (7)
the following result can be stated:

Proposition 1: Let A take the form of (6)

and let V(ft)=I.

tit-1

Then C1 is unique under orthogonal

transformations (except for column sign)

Proof: see appendix

11




Notice the generality of Proposition 1 since it
has been obtained without assuming any particular
parameterization for the dynamic conditional
heteroskedasticity, and hence relies only on the
conditional orthogonality of the factors, the
time-variation of their variances and the constancy of
C.

This result may be apparently paradoxical, for
relaxing the assumption of conditional homoskedasticity
is what makes identification possible. The intuition,
however, is as follows. Assume for simplicity that

Atl 1 is not partially scalar (i.e. k =0). It is

2
certainly true that for any t° and any orthogonal Q,
the orthogonally rotated factors f:o=QA;%ﬁg_1f £° and
the rotated factor loading matrix C:°=CAi£Tt:IQ’

generate the same conditional covariance matrix for
X, 0. Unlike in the homoskedastic case, though,
different orthogonal rotations are required for
different time periods. Hence the parameters in C are
identifiable with respect to the kind of time-invariant

orthogonal transformations considered in (5).
An alternative way of viewing this result can be

obtained by re-writing this model as one with

conditionally homoskedastic factors in which the

12

loadings of different variables on a factor change
proportionately over time (see Engle, Ng and Rothschild
(1990)). That is:

-r
= 8
X, Ctlt—lft + W, (8)
here V., (f1)=I and C, . .=CA]'/% . In this framework
where Yiaq'e tit-1" "t t-1" ’
Proposition 1 simply says that the columns of C whose
constants of proportionality, A:iiﬁ-l’ actually change

over time are directly identifiable.

As for the factors with common conditional
variance, the particular parameterization chosen will
imply more often than not that the only way two factors
will always have the same variance is when this common
variance is in fact constant. Proposition 1 could then
be re-stated so that it would refer only to the

relevant case when A =] vt. However in its present

2t|t-1
form it makes it «clearer that the lack of
identifiability comes from the factors having common,

rather than constant, variances.

Due to computational considerations, some
empirical applications of conditionally heteroskedastic
factor models have effectively assumed that the factors
are known; others that there is only one factor. In

both cases, our result contains little added value. In

13




general, though, it has important implications for the
estimation and interpretation of models with more than
one unspecified common factor. The main message for
practitioners is the identifiability of Cl’ so that
even when C is unrestricted, identification problems
only arise if the number of homoskedastic factors is at
least 2. Therefore if none or only one of the factors
is conditionally homoskedastic, the matrix C is locally
identifiable under orthogonal transformations without
additional restrictions, and the factors are uniquely
defined. In this case, the imposition of unnecessary
restrictions on C by analogy with standard factor
models would produce totally misleading results. An
important implication of our results is that if such
restrictions were nevertheless made, at least they
could then be tested. However, the accuracy that can be
achieved in estimating C depends on how much
variability there is in AtI -1’ for if the elements of
this matrix are essentially constant, identifiability

problems will reappear.

As an acid test of Proposition 1, we have
estimated a two factor model for excess returns on
twelve European stock markets with and without the
"identifying" restriction clz=0 (see Sentana, Shah and
Wadhwani (1992) for a description of the data). As

expected, if the variances of the factors are held

14

constant, no improvement in the likelihood function can
be achieved by lifting the above restriction. By
contrast, if we allow the variance of the first factor
to change over time, not only do we obtain a better
fit, but also a further increase in the likelihood

function when clzaeo.

4. Extensions

The result presented above can also be applied to
other closely related models, and in particular to the
model in Harvey, Ruiz and Sentana (1992). Theirs is a
general state space formulation for X with
unrestricted mean dynamics, in which some unobservable
components show dynamic conditional heteroskedasticity.
In this section, we shall explicitly consider the
application of Proposition 1 to some well-known special

cases which are empirically more interesting.

a) Conditionally Heteroskedastic in Mean Factor
Models

Several recent studies based on dynamic versions
of the Arbitrage Pricing Theory of Ross (1976), have
estimated conditionally heteroskedastic factor models

in which the variances of the common factors affect the

15




mean of X, (see e.g. Engle, Ng and Rothschild (1990),
King, Sentana and Wadhwani (1991), Ng, Engle and
Rothschild (1992) and Sentana, Shah and Wadhwani
(1992)). The models typically considered in these
studies can be expressed as:

X T + Cft+ w (9)

¢ = et t

where T is a kxl vector of ‘"price of risk"
coefficients. Notice that if t=0, we return to the
previous case. Since the proof of Proposition 1 is
based on the diagonality of the conditional variance of
f v it is straightforward to show that the columns of .C
and T corresponding to factors with time-varying
variances are identifiable (up to sign changes). This
has important implications in the context of the
Arbitrage Pricing Theory, as the lack of
identifiability of conventional factor analytic models
implies that the the individual risk premia components
associated with each factor are only identifiable up to
an orthogonal transformation (see the discussion in
King, Sentana and Wadhwani (1991)). Hence, capturing
the conditional variances of the factors offers a

non-trivial advantage over the conventional approach.

16

b) Conditionally Heteroskedastic Dynamic Factor

Models

The formulation considered in section 3 is also a
special case of the so-called dynamic factor model,
which constitutes a popular specification for
multivariate time series applications because of its
plausibility and parsimony (see e.g. Engle and Watson
(1982), Pefia and Box (1987)). For simplicity, we shall
just consider here the case in which the factor
dynamics can be captured by a VAR(l1) process.

Specifically,
X, = Cyt +w (10a)
Vo = Ay * f, (10b)

where Vi1 is a kxl vector of dynamic factors, A is the
matrix of VAR coefficients and f g W, are defined as in
(2). If A=0, we go back to the traditional (i.e.
static) factor model. On the other hand, when A=I we
have the common trends model (see e.g. Harvey (1989) or
Stock and Watson (1988)). If f I is conditionally
homoskedastic, it is well known that an observationally
equivalent model (up to unconditional second moments)
can be obtained by orthogonally rotating Yy That is,

for any orthogonal matrix Q, the following model is

17




observationally equivalent:

_ C' *
X, =Cy, +w, (11a)

*

_ A! * f.
y, =Ay._, +f, (11b)

] *» »
where y,;=Qy,, f,=Qf, C=CQ’ and A"=QAQ’. Again,
Proposition 1 implies that time-variability in the
conditional variances of the f t—s will eliminate the

nonidentifiability of the matrix C.
c) Vector Autoregressive Moving Average Models

Our results also apply to model with N common
factors, no idiosyncratic noise and linear mean
dynamics, such as VARMA(r,s) models. Again, for
simplicity consider the following VAR(1):

X, = Axt_1 +u, (12a)

u t=Cf 5 (12b)

where f B is a Nx1 vector defined as in (2), which we
could perhaps better understand in this context as
conditionally orthogonal "fundamental” disturbances
affecting the process xt. Given that f t is white noise,

we can estimate this model without taking into account

18

the time-variation in conditional variances. But then C
is not identifiable without extra restrictions. This
problem is well known and has received substantial
attention in macroeconometrics. To solve it, some
authors impose short run restrictions such as C lower
triangular (cf. the discussion in section 3). More
recently, Blanchard and Quah (1989) have achieved
identifiability by means of restrictions on some
elements of the long run multipliers (1-A)'c. But
suppose that some elements of f t have time-varying
conditional variances and this is explicitly recognized
in estimation. Then Proposition 1 implies that the
columns of C associated with those disturbances are

identifiable.

In this context, we can perhaps shed more light
on Proposition 1 by re-interpreting it as a uniqueness
result for the disturbances, f + Given the way in which
the model is defined, we know that there is a set of
disturbances, each uncorrelated with the others given
the information set, that can be written as a
(time-invariant) linear combination of the innovations
in X, namely, f t=C-1ut. If kzsl, Proposition 1 then

says that there is only one such set®.

However, it is important to emphasise that

Proposition 1 is not an existence result, in that it

19




As an example, consider a bivariate VAR(1) in
which u, follows the 1 factor GARCH(p,q) process of
Engle (1987). Using Proposition A2 in the appendix we

can write this model as:

X1t 211 212] |*11-1 . Uit

*2t] %21 %22} [F2t-1) Y2t

211 212| [*1e-1] |1 Ciz| Tt
" la,, a X le,. ¢ f L
21 “22||"2t-1] |"21 22| | 2t
where f It f oy @re conditionally orthogonal, f 1t

follows a wunivariate GARCH(p,q) process and f 2t is
conditionally homoskedastic. Proposition 1 then says
that f 1t and th are unique (up to scaling), and that
their dynamic effects on X, and X,, can be identified.
Notice that in this framework the restrictions
typically imposed on the matrix C (such as 021=0, or
{(I—A)_IC}11=0) become overidentifying, and therefore
can be tested under our maintained assumption about u,.
Of course, the relevance of this proposition depends on
the empirical plausibility and importance of this form

of dynamic conditional heteroskedasticity in

does not say whether or not such disturbances exist to

begin with. Rather, it takes them as given.

20

macroeoconomic time series.

5. Conclusions

In this paper the issue of identification of
multivariate conditionally heteroskedastic factor
models has been discussed. It turns out to be the case
that the model considered here only suffers from lack
of identification in as much as the variances of some
of the common factors are constant. In particular, if
all but one common factor have time-varying variances,
the time-invariant factor loading matrix C is (locally)
identifiable under orthogonal transformations. Thus,
there is a non-trivial advantage in explicitly
recognising the existence of dynamic conditional
heteroskedasticity when estimating factor analytic
models. Our findings are partly related to the well
known fact that parameter identifiability can be
obtained in many econometric models by looking at
higher order moments. In this framework, our paper
could be understood as providing an example in which
identifiability derives from considering conditional,

as opposed to unconditional, second moments.

Our main result also applies to other popular

time series models, and in particular, to dynamic
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versions of the APT in which' the variances of the
common factors affect the mean of X, In this context,
Proposition 1 implies that the individual risk premia
components associated with each factor could be
identified. Importantly, our result could also be
useful in the interpretation of common trend-dynamic
factor models, and in the identification of fundamental

disturbances from vector autoregressions.

The conditionally heteroskedastic factor model in
(1) and (2) is a special case of the general

approximate conditional factor representation:

Zit-1 = G-ttt Tetar (14)

where Ctl -1 is a Nxk matrix of measurable functions of
the information set and 1"tl -1 is such that its
eigenvalues remain bounded as N increases. If C is

. t]t-1
left unspecified, the above model is not identifiable.

What this paper shows is that plausible restrictions on

the time-variation in may ensure

Ceit-1
identifiability. In particular, in the version of (14)

that we have considered, the assumption that
172 . 172

C =

t]t-1 CAtIt-l’ with C constant and Atlt—l

a sufficient condition. The motivation for this

diagonal, is

assumption is twofold. First, it provides a

parsimonious and plausible specification of the time

22

variation in ztl T and for that reason has been the
only one adopted so far in empirical applications.
Second, it implies that the wunconditional factor
representation of X, is well defined, provided
unconditional variances are bounded. Therefore, it is
compatible with the standard approach based on Z.
Notice that in principle, the unconditional variance of
a process characterised by (14) may very well lack an
unconditional approximate factor structure for any k<N

(see Hansen and Richard (1987)).

Although the conditionally heteroskedastic factor
model considered here seems to be the emerging
consensus on the dynamic specifications of conditional
factor modelss, the assumption of proportionate changes
in factor loadings might not be totally realistic in
practice (but see Figure B in Ferson and Harvey
(1991)), and alternative formulations may yet be
preferred. The message in this paper is that the issue
of identification of the factors in such models would

certainly merit a close look.

® For instance, Ho, Perraudin and Serensen (1992) have
recently suggested a system of stochastic differential
equations that can be regarded as the continuous time

analogue of the model considered here.
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APPENDIX

Factor GARCH Models as Conditionally Heteroskedastic
Factor Models

The k factor GARCH(p,q) model of Engle (1987)

assumes that

k q

=v+ Y el ¥ a_(dx, )%+
o1 34

ztlt—l sj j t-s

s=1

P
(d’ .
r§1BrJ( jzt dJ)] (A1)

-rit-r-1

where ¥ is a NxN symmetric positive semidefinite
matrix, and C=(Cl" . .ck), D=(dl" .. .dk) are NxK
coefficient matrices satisfying D’C=Ik.
Proposition Al:

The data generation process implied by (Al) is
the same (up to conditional second moments) as the DGP
associated with the following conditionally

heteroskedastic k factor model:

X, = Cft A (A2a)
q B p
A. = ’. A . v, =
ftlt-1 dJ‘I'dJ+s§1°‘Sth-s+r§lBrJAJt-rI fpg J=LK  (A2b)
24

k
Fr=¥-Y cd¥dc’ (A2¢c)
it i ]

This is a generalization of Proposition 1 in
Nijman and Sentana (1992) for the case of k factors and

GARCH(p,q) variances.

Prsof: By assumption, Et-l(wt)=0 and Vt—l(wt)= r=1v

-¥ cjdj\Ildjcj. Hence, Et—l(diwt)=0 and
J=1 :

Vt—l(diw t)=di‘l’di_di(j;lcjdjq’djcj)di=o’ so diwt= for

i=1,.,k. In this case, diy t=din t+diw t=f it and

v(dix,/®,  )=A But then it is easy to see that

it t-1 it|t-1
k k

V(xt/tbt_l)= ¥ _ngcjdj\l’d\jcj +j§1cjcjhjt|t—l = Ztlt—l'

q.ed.

Proposition A2:

Let C." be a Nx(N-k) matrix such that CTCf’= ¥
k

- ¥ c.d¥d c’.
j§1 JiJ

(A1) is the same (up to conditional second moments) as

The data generation process implied by

the DGP associated with the following conditionally

heteroskedastic N factor model:

£
x. =cch| b + w' (A3a)
t " t

i
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Proof of Proposition 1

P
Ajtlt 1 d‘Ild ga ft- ?_: T Jt—rlt -1 =1Lk (A3b)
Let A be the covariance matrix of the
Al =1 jek#1,N (A3c) thtl — .
jtlt-1" transformed factors f = Qf ¢ where Q is an arbitrary
' orthogonal matrix.
r =0 (A3d)
Let’s partition Q as:
Proof:
It is straightforward to see that the model in k—k2 k2
(A3) is equivalent to the model in (A2), which in turn
Q = Q,Q, |Kk,
is equivalent to (Al). Notice that D can be recovered
as the unique solution of the system D’(C:C"‘)=(Ik:0). Q21(222 kz

Proposition Al says that the factor GARCH model in accordance with (6) and (7).
can be written as a conditionally heteroskedastic

factor model with k common GARCH(p,q) factors and N Tor provel Propesition '1 e SGAIL sShew that Whe

idiosyncratic noises which are linearly dependent of Gpiyl aCmissDIS KFENCIopISHon gResgiven By

rank N-k. Proposition A2 shows that it can also be

written as a model with N "common" factors and no kll:z kz

idiosyncratic noise, in which k of the common factors, ! 0 k_kz

f + have time varying GARCH(p,q) variances and the sz k2

remaining N-k factors, f :, are homoskedastic. Not

surprisingly, the identifiability of C can be obtained where Q2 is orthogonal and %= 1.

by wusing either reparameterization. Notice that the

elements of C* are not identifiable without further To see why let’s partition A Q’ as:

tlt-1" tlt—l
restrictions, such as making it lower trapezoidal.
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A QM e t-11 22t 11-1%221 2
t]t-1 ~ X s
QM 121212t 11212222

Qe -1%1"22t 1 1-1%12%%2
LMt 1t-1%112t 1 1-1%2%2

Given that A is time varying, for A to

1t]t-1 t|t-1
preserve the form of (6) for all t the following

conditions must all hold:

a) QA Q

diagonal

111t t-1711

b) Q

12012 diagonal

null

) QA 4-1%

d) le 22 null

scalar

) Q1A ¢ 1t-1%1

) Q

22022 scalar

Let q21i be the i-th column of Q21 and Alitt—l

the i-th diagonal element of A (i=1,k—k2). Then

1t t-1
e) can be re-written as:

k-k
2
e )izl Ait | t-19211%1i
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Now, since A_. varies with both i and t, the
lit | t-1

expression in e) will be scalar if and only if qznqé1i
is scalar for all i. But 95;95; 1S scalar if and only

if q21i=0, S0 QZI=0’ and c) is also satisfied.
Besides f) transforms into:

) Q50551
so that 022 must be orthogonal. But then d) is
satisfied if and only if 012=0’ and then b) is also

satisfied.

Finally if 95 is the i-th column of Q11

(i=1,k—k2), a) can be re-stated as:

k-k
2

a )izl Ahtlt 1qlhq11 .diagonal

By a similar argument this condition will be
satisfied if and only if each 94 has a single
non-zero  element. Positive  definiteness and the
exclusion of mere permutations of the factors imply
that Q11 must be (a square root of) the unit matrix.

qg.ed.
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