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1 Introduction

Latent variable models that relate a set of observed variables to a meaningful set of unob-

served influences are widely used in many applied fields. The list of empirical studies that make

use of those models is vast. In this paper, we consider a classic application of signal extraction

techniques whereby we obtain an improved aggregate (real) production series by combining its

expenditure (GDP) and income (GDI) measures, which differ because they are constructed using

largely independent data sources (see Landefeld, Seskin and Fraumeni (2008) for a review).

We will use this model in section 7, but in developing it, one particularly relevant decision

we must make is the normality of the underlying variables, which implies the normality of the

observed variables and justifies the use of the Kalman filter for inferring the true underlying

output from its two measures. In contrast, if the innovations are not Gaussian, the Kalman

filter only provides the best linear filter for the latent variable, which can be noticeably different

from its conditional expectation. To illustrate this point, consider the simplest possible example

in which a negatively skewed signal x is observed cloaked in some additive symmetric noise ε.

As can be seen in Figure 1, the linear projection can display important biases relative to the

conditional expectation of x given the observed series y = x + ε. Intuitively, the conditional

expectation takes into account that the asymmetry in x implies that large negative/positive

realizations of y are more/less likely to result from the signal, while the linear projection assigns

a constant fraction of y to x regardless.

The remarkable increase in computing power has made possible the implementation of

simulation-based estimation and filtering techniques for non-Gaussian dynamic latent variable

models (see e.g. Johannes and Polson (2009)). However, the majority of practitioners continue

to rely on the Kalman filter, which is far simpler to implement and explain. Undoubtedly, those

practitioners would benefit from the existence of diagnostics that could tell them the extent to

which normality of the latent variables is at odds with the data. Although there are many read-

ily available normality tests, they are designed to be directly applied to the observed variables

in static models or their one-period ahead prediction errors in dynamic ones.

The objective of our paper is precisely to derive simple to implement and interpret tests

for non-normality in all or a subset of (the innovations to) the state variables. We focus on

Lagrange Multiplier (LM) tests, which only require estimation of the model under the null. As

is well known, Likelihood ratio (LR), Wald and LM tests are asymptotically equivalent under
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the null and sequences of local alternatives, and therefore they share their optimality properties.

Aside from computational reasons, the advantage of LM tests is that rejections provide a clear

indication of the specific directions along which modelling efforts should focus.

Nowadays, the computational advantages of LM tests might seem irrelevant, but in our case

they are of first-order importance because the density function of the observed variables or their

innovations is typically unknown when the distribution of the latent variables is not Gaussian,

and in many cases it can only be approximated by simulation (see Durbin and Koopman (2012)

for an extensive discussion in the context of dynamic models). As a result, the log-likelihood

function under the alternative, its score and information matrix can seldom be obtained in

closed form despite the fact that we can compute the true log-likelihood function under the

Gaussian null. We overcome this stumbling block by exploiting what we call “the EM principle”.

Specifically, we generalize Louis’(1982) score formula in order to obtain the first derivatives of the

log likelihood with respect to the shape parameters that characterize departures from normality.

The EM algorithm studied in Dempster, Laird and Rubin (1977) is a well known procedure for

obtaining maximum likelihood estimates in both static and dynamic latent variable models (see

e.g. Rubin and Thayer (1982) or Watson and Engle (1983), respectively). However, to the best

of our knowledge it has only been used for testing purposes by Fiorentini and Sentana (2015),

who employ it to assess neglected serial dependence in non-Gaussian static factor models.

Our approach introduces a relatively minor complication: the influence functions that consti-

tute the basis of our tests are serially correlated in dynamic models. In this regard, our methods

are related to Bai and Ng (2005) and Bontemps and Meddahi (2005), who derive moment-based

normality tests for a single observed variable or its innovations in potentially serially correlated

contexts by relying on heteroskedastic and autocorrelation consistent estimators of the asymp-

totic variances. Nevertheless, we derive analytical expressions for the autocovariance matrices

of the influence functions, which we would expect a priori to lead to more reliable finite sample

sizes for our statistics than their non-parametric counterparts. For that reason, our approach is

more closely related to Harvey and Koopman (1992), who apply standard univariate normality

tests for observed variables to the smoothed values of the innovations in the underlying com-

ponents of a univariate random walk plus noise model explicitly taking into account the serial

correlation implied by the model for those estimates. Unlike us, though, none of those authors

justify their procedures by appealing to the likelihood principle or consider multivariate models.
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For most practical purposes, departures from normality can be attributed to two different

sources: excess kurtosis and skewness. Although our EM-based LM approach can be applied

far more generally, we follow Mencía and Sentana (2012) in considering Generalized Hyperbolic

(GH) alternatives, which include the symmetric and asymmetric Student t, normal-gamma

mixtures, hyperbolic, normal inverse Gaussian and symmetric and asymmetric Laplace distri-

butions. The main advantage of these GH alternatives is that they lead to easy to interpret

moment tests that focus on third and fourth moments. In particular, they coincide with the

moments underlying the Jarque and Bera (1980) test in the univariate case. At the same time,

the number of moments that are effectively tested in multivariate contexts is proportional to the

number of series involved, unlike tests against Hermite expansions of the multivariate normal

density, which suffer from the curse of dimensionality (see Amengual and Sentana (2015) for a

comparison in the context of copulas). Importantly, we show that our tests are not affected by

the sampling variability in the model parameters estimated under the null, so we can treat them

as if they were known.

The rest of the paper is organized as follows. Section 2 describes the econometric model,

as well as the GH alternatives. We derive our normality tests against the Student t first and

the GH distribution later in sections 3 and 4, respectively. Then, in section 5 we illustrate our

procedures with two popular examples, while in section 6 we discuss the results of our Monte

Carlo experiments. Section 7 explores in detail the information about aggregate output in the

GDP and GDI measures. Finally, we present our conclusions in section 8. The Supplemental

Material contains proofs and provides additional results.

2 The model

2.1 Linear state-space models

A linear, time-invariant, parametric state-space model for a finite dimensional vector of N

observed series, yt, can be recursively defined in the time domain by the system of stochastic

difference equations

yt = π(θ) + H(θ)ξt (1)

ξt = F(θ)ξt−1 + M(θ)εt (2)

εt|It−1,φ ∼ iid D(0, IK ,ϕ) (3)

3



where φ = (θ′,ϕ′)′, θ ∈ Θ ⊆ Rp is a vector of p first and second moment parameters, π :

Θ → RN is the mean vector of the observed series, H : Θ → RN×M , F : Θ → RM×M and

M : Θ→ RM×K are matrix valued functions of coeffi cients, many of whose elements will typically

be either 0 or 1, ξt is an M -dimensional vector of state variables, εt is a K-dimensional vector

of standardized structural iid innovations driving those variables whose distribution depends on

a vector of shape parameters ϕ, and It−1 is an information set that contains the values of yt

and ξt up to and including t− 1.

We assume that N ≤ K ≤M to avoid dynamic singularities. We also assume that the model

above is correctly specified, in the sense that there is some θ for which (1) and (2) constitute

the true data generating process of {yt, ξt}. In this context, static models will be such that

F(θ) = 0 for all θ.

There are multiple alternative representations of state-space models,1but in this paper we

follow the one in Harvey (1989), except that we have deliberately subsumed any possible error

in the measurement equation (1) into the state vector so as to be able to test for normality not

only in the minimal possible set of state variables but also in the measurement errors. For that

reason, equations (1) and (2) closely resemble the usual state representation in the engineering

literature, in which the elements of εt would be regarded as control variables (see Anderson and

Moore (1979)). For ease of exposition, we do not look at models with exogenous regressors or

those in which some of the system matrices are deterministic functions of time or observable

predertermined variables.2

We assume without loss of generality that the columns of the matrix M(θ) are linearly

independent so that there are no redundant elements in εt. Typically, M(θ) will be a selection

matrix whose columns are (proportional to) vectors of the M -imensional canonical basis, but in

principle they could be different. As a result, we can uniquely recover εt from ξt as

εt = M+(θ)[IM − F(θ)L]ξt, (4)

where M+(θ) = [M′(θ)M(θ)]−1M′(θ) denotes the Moore-Penrose inverse of M(θ). We also

assume no linear combination of all the observables {yt} has zero variance.
1For example, Durbin and Koopman (2012) shift the transition equation (2) forward by one period, as in

Anderson and Moore (1979), and include measurement errors in (1), which they assume are orthogonal to the
innovations in the state variables. On the other hand, Komunjer and Ng (2011) substitute the transition equation
(2) into the measurement equation (1), thereby creating an alternative measurement equation whose innovations
are perfectly correlated with the innovations in the transition equation.

2Minor changes to the testing procedures we propose will render them applicable to those situations.
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Finally, we assume that the researcher makes sure that the model parameters θ are identi-

fied before estimating the model, which often requires restrictions on the system matrices (see

e.g. section 2.3 of Fiorentini, Galesi and Sentana (2016) and the references therein). These

assumptions are satisfied in virtually all applications of state-space models.

2.2 Null and alternative hypotheses

In section 4 we derive computationally simple tests of the null hypothesis that the structural

innovations are Gaussian against the alternative that they follow a member of the GH family

of distributions introduced by Barndorff-Nielsen (1977) and studied in detail by Blæsild (1981).

This is a rather flexible family of multivariate distributions that nests not only the normal

and Student t but also many other examples such as the asymmetric Student t, the hyperbolic

and normal inverse Gaussian distributions, as well as symmetric and asymmetric versions of the

normal-gamma mixture and Laplace. As we mentioned in the introduction, the main advantages

of these GH alternatives is that they lead to easy to interpret moment tests that focus on third

and fourth moments, but in such a way that the number of conditions which are effectively tested

is proportional to the number of series involved. Nevertheless, for clarity we first present the

relevant results regarding testing multivariate normal versus multivariate Student t innovations

in the next section, and then generalize them to the GH case.

In many applications, the researcher may only be interested in testing whether the source of

non-normality comes from a subset of the underlying components, which have some meaningful

interpretation. In our empirical application, for example, it matters whether the potential

non-normality is a feature of the true GDP or its measurement errors. Given that we can

always re-order the vector of structural innovations εt and postmultiply the matrix M(θ) by a

permutation matrix, without loss of generality we can assume that the non-Gaussian distribution

is confined to the first R ≤ K innovations under the alternative. Henceforth, we refer to the

relevant components as εGHt = SRKεt, with SRK = (IR,0), and to the remaining ones as εNt .

As a result, we explicitly consider the following alternative hypotheses:

1. The joint distribution of all structural innovations is GH : HJ : εt ∼ GHK(η, ψ,β);

2. The joint distribution of the first R structural innovations is GH while the rest are

Gaussian: HS : εGHt ∼ GHR(η, ψ,β), εNt ∼ NK−R(0, IK−R).3

3We might also envisage an alternative situation in which the elements of εt are cross-sectionally independent
but non-Gaussian, see Almuzara, Amengual and Sentana (2017) for details.
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3 Multivariate normal versus Student t innovations

The multivariate Student t distribution generalizes the multivariate normal distribution

through a single additional parameter ν, which is usually known as the degrees of freedom. For

convenience, we work with its reciprocal, η, so that Gaussianity requires η → 0+.

3.1 The score under Gaussianity

LM tests are usually obtained from the score associated to the (marginal) likelihood function

of the observed variables, fY(YT |φ), with YT = vec(y1, . . . ,yT ), evaluated under the Gaussian

null. Unfortunately, the functional form of fY(YT |φ) is generally unknown under the alternative,

and the same is true of its score vector evaluated under the null despite the fact that we can

easily compute the Gaussian likelihood function. For that reason, we rely on a variant of Louis’

(1982) score formula, which is based on the so-called “EM principle”; see also Ruud (1991) and

Tanner (1996).

Initially, we assume θ is fixed and known, and later on we consider the effect of estimation

of mean and variance parameters. Formally, the EM principle applied to this context says

Proposition 1 Let fE(ET |ϕ) denote the density of ET = vec(ε1, . . . , εT ) with respect to Lebesgue

measure on RKT , which is continuous in ET and differentiable in ϕ. Then,

∂ ln fY(YT |φ)

∂ϕ
= E

[
∂ ln fE(ET |ϕ)

∂ϕ

∣∣∣∣YT ,φ

]
. (5)

Remark 1 : The identity (5) is different from Louis’(1982) original formula, in that it applies

when K > N but only for a subset of the parameters.

Remark 2 : Let f(Y,E)(YT ,ET |φ) denote the joint likelihood function for both observed

variables {yt} and structural innovations {εt} of model (1)—(2) for a sample of size T . This joint

density will necessarily be singular in linear state-space models because of the restrictions the

observed variables YT place on the latent ET . The same comment applies to the conditional

likelihood function of the latent variables given the observed ones, fE|Y(ET |YT ,φ), which will

usually be defined over a manifold of smaller dimension. Since the Kullback inequality implies

that E
[
∂ ln fE|Y(ET |YT ,φ)/∂ϕ|YT ,φ

]
= 0, it follows that we can obtain ∂ ln fY(YT |φ)/∂ϕ

as the expected value of the unobservable score corresponding to f(Y,E)(YT ,ET |φ) conditional

on YT and φ. Therefore, an alternative formulation of (5) is

∂ ln fY(YT |φ)

∂ϕ
= E

[
∂ ln f(Y,E)(YT ,ET |ϕ)

∂ϕ

∣∣∣∣YT ,φ

]
, (6)
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where

f(Y,E)(YT ,ET |φ) = 1{YT=DT (ET ,θ)}fE(ET |ϕ),

with YT = DT (ET ,θ) denoting the exact relationship between observed variables YT and

innovations ET implied by model (1)-(2) and 1{.} the usual indicator function.

Importantly, while the mean and variance parameters enter in the indicator function, the

shape parameters do not, so that the right hand side of (6) is well defined.4

Remark 3 : One must be careful in applying the “EM principle” to the score with respect

to θ. We deal with this situation in Proposition 3b and 6b (see the proof of Lemma 7 in the

Supplemental Material A)

In the case of Student t innovations, we can use the expression provided in Fiorentini, Sentana

and Calzolari (2003) for the score with respect to η under the Gaussian null:

∂ ln f(Y,E)(YT ,ET |φ)

∂η
=
R(R+ 2)

4
− R+ 2

2
ςGHt +

1

4
(ςGHt )2, (7)

where ςGHt = εGH′t εGHt and εGHt = SRKεt. Thus, we can regard (7) as the M-step in Louis’(1982)

formula (5). Next, we can apply the E-step by taking expectations. Specifically, if εt|T (θ) denotes

the Kalman smoothed values of the innovations at t given YT , which contains past, present and

future values of the observed series, and Ωt|T (θ) the corresponding mean-square error, we have

that εt|YT ,θ ∼ N [εt|T (θ),Ωt|T (θ)] under the null of normality, so that

∂ ln fY(YT |φ)

∂η
=
R(R+ 2)

4
− R+ 2

2
E
[
ςGHt

∣∣YT ,θ
]

+
1

4
E
[
(ςGHt )2

∣∣YT ,θ
]

only involves the computation of E
[
ςGHt

∣∣YT ,θ
]
and E

[
(ςGHt )2

∣∣YT ,θ
]
, whose expressions we

derive in the main appendix. Thus, we can show that:

Proposition 2 The score of the Student t log-likelihood with respect to the shape parameter η

when η = 0 is given by

s̄kt|T (θ) =
1

T

T∑
t=1

skt|T (θ) =
1

T

T∑
t=1

b′kt|T (θ)mkt|T (θ),

where mkt|T (θ) = [1,m′2t|T (θ),m′4t|T (θ)]′, bkt|T (θ) = [b0t|T (θ),b′2t|T (θ),b′4t|T (θ)]′,

m2t|T (θ) = vec[εt|T (θ)εt|T (θ)′],
m4t|T (θ) = vec{[εt|T (θ)� εt|T (θ)][εt|T (θ)� εt|T (θ)]′}. (8)

4We thank a referee for pointing this out.
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and

b0t|T (θ) = c0 + {c1 + c2tr[Ω
GH
t|T (θ)]}tr[ΩGH

t|T (θ)] + 2c2tr{[ΩGH
t|T (θ)]2},

b2t|T (θ) = {c1 + 2c2tr[Ω
GH
t|T (θ)]} (S′RK ⊗ S′RK) vec(IR) + 4c2 (S′RK ⊗ S′RK) vec[ΩGH

t|T (θ)],

b4t|T (θ) = c2 (S′RK ⊗ S′RK) `R2 ,

with c0 = R(R+ 2)/4, c1 = −(R+ 2)/2, c2 = 1/4 and `H a vector of H ones.

3.2 Asymptotic covariance matrix of the score under Gaussianity

As is well known, the Kalman smoothed process εt|T (θ) will typically be serially correlated

in spite of εt being iid. Consequently, the same will be true of skt|T (θ). In addition, the

autocovariances of εt|T (θ) change with both t and T . Nevertheless, we show in Supplemental

Material B that it suffi ces to compute the autocovariances of powers of εt|∞(θ), which is the

Wiener-Kolmogorov filter of εt based on a double-infinite sample of the observable vector yt,

for the purposes of obtaining the asymptotic variance of
√
T s̄kt|T (θ). For that reason, we define

mjt(θ) as mjt|T (θ) in (8) with εt|∞(θ) in place of εt|T (θ), bj(θ) as bjt|T (θ) in Proposition 2

with Ω∞(θ) replacing Ωt|T (θ),5and s̄kT (θ) as the associated average score.

In practice, however, we do not generally know θ. Therefore, we need to obtain the asymp-

totic covariance matrix of
√
T s̄kT (θ̂T ), where θ̂T is the Gaussian Maximum Likelihood estimator

of θ, which is the effi cient estimator under the null. Importantly, the second part of the following

proposition shows that the sampling variability of the Gaussian ML estimators of θ does not

affect the asymptotic variance of the test:

Proposition 3 Under the null hypothesis of Gaussian innovations:

a) limT→∞ V [
√
T s̄kT (θ)|θ] = b′4(θ)κ4(θ)b4(θ)− b′2(θ)κ2(θ)b2(θ) = Ck(θ),

where

κi(θ) =

∞∑
j=−∞

cov[mit(θ),mit−j(θ)], (9)

denotes the autocovariance generating function of mit(θ) evaluated at one.

b) limT→∞ cov[
√
T s̄kT (θ),

√
T s̄MVT (θ)|θ] = 0,

where s̄MVT (θ) denotes the average Gaussian score with respect to the conditional mean and

variance parameters θ.

5Under the usual controllability and observability conditions (see e.g. Harvey (1989)), which we assume
henceforth, Ωt|∞(θ) will not depend on t in steady state, so we can write Ω∞(θ) = Ωt|∞(θ).
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3.3 The test statistic

We can easily compute an LM test for multivariate normality versus multivariate Student

t distributed innovations on the basis of the value of the score of the log-likelihood function

corresponding to η evaluated at the Gaussian ML estimates φ̂T = (θ̂
′
T ,0

′)′.

Proposition 4 The LM test of normality against a multivariate Student t can be expressed as:

LMStudent
T (θ̂T ) = T

s̄2kt|T (θ̂T )

Ck(θ̂T )
,

which is asymptotically distributed as a χ21 under the null.

The fact that η = 0 lies at the boundary of the admissible parameter space invalidates the

usual distribution of the LR and Wald tests, which under the null will be a 50:50 mixture of

χ20 (=0 with probability 1) and χ
2
1. Although the distribution of the LM test statistic remains

valid, intuition suggests that the one-sided nature of the alternative hypothesis should be taken

into account to obtain a more powerful test. For that reason, we follow Fiorentini, Sentana

and Calzolari (2003) in using the Kühn-Tucker (KT) multiplier test introduced by Gouriéroux,

Holly and Monfort (1980) instead, which is equivalent in large samples to the LR and Wald

tests. Thus, we would reject H0 at the 100κ% significance level if the average score with respect

to η evaluated under the Gaussian null is strictly positive and the LM statistic exceeds the

100(1−2κ) percentile of a χ21 distribution.
6In this respect, it is important to mention that when

there is a single restriction, as in our case, those one-sided tests would be asymptotically locally

most powerful.

4 Multivariate normal versus GH innovations

4.1 The GH as a location-scale mixture of normals

We can gain some intuition about the GH distribution by considering Blaesild’s (1981)

interpretation as a location-scale mixture of normals in which the mixing variable is a Generalized

6 Intuituitively, under the null of normality

√
T
s̄kt|T (θ̂T )√
Ck(θ̂T )

will be asymptotically distributed as a standard normal. Therefore, the one-sided nature of the alternative
hypothesis implies that the relevant critical value for size κ is given by the (1 − κ)th quantile of a standard
normal insttead of the usual (1− κ/2)th one.
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Inverse Gaussian (GIG). Specifically, if ε is a GH vector, then it can be expressed as

ε = α+ Υβζ−1 + ζ−
1
2Υ

1
2ε◦, (10)

where α,β ∈ RK , Υ is a symmetric positive definite matrix of order K, ε◦ ∼ N(0, IK) and

the positive mixing variable ζ is an independent GIG with parameters −ν, γ and δ, or ζ ∼

GIG (−ν, γ, δ) for short, where ν ∈ R and γ, δ ∈ R+ (see Jørgensen (1982) and Johnson,

Kotz, & Balakrishnan (1994) for further details). Obviously, the distribution of ε becomes a

simple scale mixture of normals, and thereby spherical, when β is zero. By restricting α and Υ,

Mencía and Sentana (2012) derive a standardized version of the GH distribution with zero mean

and identity covariance matrix, which therefore depends exclusively on three shape parameters

that we can set to zero under normality: β, which introduces asymmetries, η = −.5ν−1 and

ψ = (1 + γ)−1, whose product τ = ηψ effectively controls excess kurtosis in the vicinity of the

Gaussian null.

4.2 The score under Gaussianity

As in section 3, there is no analytical expression for the log-likelihood function under the

alternative, so once again we resort to the generalized Louis’ (1982) formula. However, we

face two additional diffi culties. First, there are three different paths along which a symmetric

GH distribution converges to a Gaussian distribution. Fortunately, Mencía and Sentana (2012)

showed that the score of the relevant kurtosis parameter evaluated under the null of normality

is proportional along those three paths to the score with respect to τ = ηψ evaluated at τ = 0.

Second, β vanishes from the log-likelihood function as τ → 0.

One standard solution in the literature to deal with testing situations with underidentified

parameters under the null involves fixing those parameters to some arbitrary values, and then

computing the appropriate test statistic for the chosen values. To apply this idea to the LM

test in our context, we need:

Proposition 5 The score of the asymmetric GH with respect to the parameter τ when τ = 0

for fixed values of the skewness parameters β is given by

s̄GHT (θ,β) =
1

T

T∑
t=1

[
skt|T (θ) + β′sst|T (θ)

]
, (11)

sst|T (θ) = b′st|T (θ)mst|T (θ),
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where mst|T (θ) = [m′1t|T (θ),m′3t|T (θ)]′, bst|T (θ) = [b′1t|T (θ),b′3t|T (θ)]′,

m1t|T (θ) = εt|T (θ),

m3t|T (θ) = vec{εt|T (θ)[εt|T (θ)� εt|T (θ)]′},

and
b1t|T (θ) = [c3 + tr(ΩGH

t|T (θ))]S′RK + 2S′RKΩGH
t|T (θ),

b3t|T (θ) = S′RK`R ⊗ S′RK ,

with c3 = −(R+ 2) and `H a vector of H ones.

This result provides an intuitive interpretation for sGHt|T (θ,β) as a linear combination of a

kurtosis component, skt|T (θ), and R skewness components, sst|T (θ).

4.3 Asymptotic covariance matrix of the score under Gaussianity

If we denote by s̄sT (θ) the average score with εt|T (θ) and Ωt|T (θ) replaced by εt|∞(θ) and

Ω∞(θ), respectively, arguments analogous to those in section 3.2 allow us to prove the following

result:

Proposition 6 Under the null hypothesis of Gaussian innovations:

a)
√
T s̄kT (θ) and

√
T s̄sT (θ) are asymptotically independent, and

lim
T→∞

V [
√
T s̄sT (θ)|θ] = b′3(θ)κ3(θ)b3(θ)− b′1(θ)κ1(θ)b1(θ) = Cs(θ),

with κi(θ) defined in (9).

b) limT→∞ cov[
√
T s̄sT (θ),

√
T s̄MVT (θ)|θ] = 0.

The second part of this proposition, combined with the second part of Proposition 3, implies

that the scores of the conditional mean and variance parameters θ and the scores of the shape

parameters ϕ are asymptotically independent under the null of Gaussianity, so that we need not

worry about parameter uncertainty, at least in large samples. Interestingly, this implication is

closely related to Proposition 3 in Fiorentini and Sentana (2007), which contains an analogous

result for multivariate, dynamic location-scale models with non-Gaussian innovations. It is also

related to Bontemps and Meddahi (2005), who show that univariate normality tests based on

third and higher order Hermite polynomials are insensitive to parameter uncertainty too.

In Supplemental Material C, we provide a numerically reliable algorithm for computing the

asymptotic covariance matrices Cs(θ) and Ck(θ) for any state space model.
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4.4 The test statistic

If we combine Propositions 5 and 6, we can easily show that the LM test statistic for a

given value of β will be given by

LMGH
T (θ̂T ,β) =

T

Ck(θ̂T ) + β′Cs(θ̂T )β

{
1

T

T∑
t=1

[
skt|T (θ̂T ) + β′sst|T (θ̂T )

]}2
,

which will also follow an asymptotic χ21 distribution under H0.

But since it is often unclear what value of β to choose, we prefer a second approach, which

consists in computing the LM test for all possible values of β and then taking the supremum

over those parameter values. Remarkably, we can maximize LMGH
T (θ,β) with respect to β in

closed form, and also obtain the asymptotic distribution of the resulting sup test statistic:

Proposition 7 The supremum with respect to β of the LM tests based on (11) is equal to

sup
β
LMGH

T (θ̂T ,β) = LMStudent
T (θ̂T ) + T

[
1

T

T∑
t=1

sst|T (θ̂T )

]′
C−1s (θ̂T )

[
1

T

T∑
t=1

sst|T (θ̂T )

]
,

which is asymptotically distributed as a χ2R+1 under the null.

Given that skt|T (θ) is asymptotically orthogonal to the other R moment conditions in sst|T (θ)

from the first part of Proposition 6, we can conduct a partially one-sided test by combining the

KT one-sided version of the symmetric GH test and the moment test based on sst|T (θ), which

should be equivalent in large samples to the corresponding LR test (see Proposition 6 in Mencía

and Sentana (2012) for a more formal argument). The asymptotic distribution of the joint test

under the null will be a 50:50 mixture of χ2R and χ
2
R+1, whose p-values are the equally weighted

average of those two χ2 p-values.

5 Further discussion

In section 7 we will use our methods for improving GDP measurement. But since they apply

far more generally, in this section we first describe how to implement our testing procedures in

a generic model. Next, we illustrate them with two popular textbook examples: a static factor

model and the so-called local-level dynamic model. Finally, we use these examples to explicitly

compare our proposed testing procedures to previous suggestions.
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5.1 Practical implementation

Assume the researcher has already (i) specified the model and (ii) computed if necessary

the Gaussian maximum likelihood estimates, θ̂T .

STEP 1: Compute the smoothed influence functions. Propositions 2 and 5 provide the ex-

plicit expressions required to compute the contribution to the score of each smoothed innovation,

namely skt|T (θ) and sst|T (θ), respectively. One simply needs as inputs the smoothed innovations

εt|T (θ), which are required to compute mjt|T (θ), for j =, 1..., 4, and the mean-square error for

the vector of innovations being tested, ΩGH
t|T (θ), which are necessary to compute the vector of

coeffi cients bjt|T (θ), for j = 0, ..., 4. Importantly, both of these quantities can be easily obtained

from a standard Kalman filter-smoother.

STEP 2: Obtain the asymptotic variance of the test statistics. Although this can be done in

different ways, in what follows we describe a numerically reliable and computationally effi cient

algorithm that avoids simulations.

STEP 2.1: Obtain the Varma representation of the Wiener-Kolmogorov filter for the in-

novations. It turns out that the Wiener-Kolmogorov filter always has a finite-order Varma

representation with scalar autoregressive part for all the models in this paper. This feature

follows from the fact that their autocovariance generating functions are rational polynomials.

Specifically, there exist positive integers p and q, a set of scalars φ1, ..., φp ∈ R and a set of

matrices Θ0,Θ1, ...,Θq ∈ R(M+K)×K such that

(1− φ1L− · · · − φpLp)
(
ξ̂t−1|∞
ε̂t|∞

)
= (Θ0 + Θ1L+ · · ·+ ΘqL

q)εt.

This representation, in which importantly the Var component is scalar, is useful to the

extent that the coeffi cients φ1, ..., φp and matrices Θ0,Θ1, ...,Θq can be obtained in terms of the

parametrization of the state matrices H, F and M. This can be done using symbolic software

such as Mathematica. We refer the reader to Lemma 4.

STEP 2.2: Compute the autocovariance function implied by the Wiener-Kolmogorov filter of

the innovations. To do so, consider a Varma process with scalar Var part for a Kx-dimensional

process xt,

φ(L)xt = Θ(L)ut

where φ(z) = 1 − φ1z − · · · − φpz
p and Θ(z) = Θ0 + Θ1z + . . .Θqz

q. In Section C of the

Supplemental Material we provide a detailed algorithm to compute the autocovariance function
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of xt, whence we can compute the autocovariances of (ξ̂
′
t−1|∞, ε̂

′
t|∞)′.

STEP 2.3: Compute the expressions that appear in Propositions 3 and 6. To do so, e.g.

one can obtain the autocovariance function of mh,t|∞(θ) for h = 1, . . . , 4 from the expressions

in i), ii), iii) and iv) in the proof of Proposition 6. Next, one can cumulate the autocovariance

matrices of mh,t|∞(θ) for h = 1 . . . 4 until some convergence criterion is satisfied. This gives a

numerical approximation to κh(θ̂T ) for h = 1, . . . , 4. Finally, one computes bh(θ̂T ), which only

requires knowledge of the contemporaneous covariance matrix of the Wiener-Kolmogorov filter

because Ω∞ = IK − Γ0.

Codes for all the different steps above, as well as detailed derivations for the expressions in

STEP 2 are available upon request.

5.2 Static factor models

We start by considering a single factor version of a traditional (i.e. static, conditionally

homoskedastic and exact) factor model. Specifically,

yt = π + cft + vt, (12)(
ft
vt

)∣∣∣∣ It−1,φ ∼ iid D

[(
0
0

)
,

(
1 0
0 Γ

)
,η

]
,

where yt is an N × 1 vector of observable variables with constant conditional mean π, ft is an

unobserved common factor, whose constant variance we have normalized to 1 to avoid the usual

scale indeterminacy, c is the N×1 vector of factor loadings, vt is an N×1 vector of idiosyncratic

noises, which are conditionally orthogonal to ft, Γ is an N ×N diagonal positive definite matrix

of constant idiosyncratic variances, and θ = (π′, c′,γ ′)′, with γ = vecd(Γ).

We can easily express model (12) as in (1)—(2) with ξt = (ft,v
′
t)
′, H(θ) = (c, IN ), F(θ) = 0,

M(θ) =

(
1 0

0 diag1/2(γ)

)
and εt = (ft,v

∗′
t )′, where v∗t = Γ−1/2vt. Note that this specification trivially implies that

yt|It−1,φ ∼ iid D∗[π,Σ(θ),ϕ], with Σ(θ) = cc′ + Γ.

While the normality of ξt implies the normality of yt, in principle the distribution of yt and ξt

will be different under the alternative.

Letting D(θ) = H(θ)M(θ), we can show that

εt|∞(θ) = εt|t(θ) = D′(θ)[D(θ)D′(θ)]−1D(θ)(yt − π),
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so like in any other static model, εt|∞(θ) will be white noise, with covariance matrix

Γ(0) = D′(θ)[D(θ)D′(θ)]−1D(θ).

In addition,

Ωt|T (θ) = Ωt|∞(θ) = Ω∞(θ) = IK −D′(θ)[D(θ)D′(θ)]−1D(θ),

which has rank N rather than N + 1, so that the conditional density will be degenerate. Hence,

we will have that under the null,

εt|YT ,θ ∼ N [εt|t(θ),Ω∞(θ)],

which contains all the information we need to compute the normality tests.

To provide some intuition, though, it is convenient to focus on tests that look exclusively at

the common factor. If we could observe ft, then we could write the joint log-likelihood function

of yt and ft as the sum of the marginal log-likelihood function of ft and the log-likelihood

function of yt conditional on ft, which would coincide with the marginal log-likelihood function

of the idiosyncratic terms vt. If we maintained the assumption that this conditional distribution

was Gaussian, and confined the non-normality to the marginal distribution of ft, the results

in Mencía and Sentana (2012) would imply that the LM test of the null hypothesis that ft is

Gaussian versus the alternative that it follows an asymmetric Student t would be based on the

following influence conditions:

H3(ft) = f3t − 3ft,
H4(ft) = f4t − 6f2t + 3,

}
(13)

which coincide with the third and fourth Hermite polynomials for ft underlying the usual Jarque

and Bera (1980) test.

Unfortunately, ft is unknown. But we can easily compute the expected values of these

expressions conditional on yt, which under normality are simple functions of

ft|t(θ) = E(ft|yt) = ωf (θ)c′Γ−1(yt − π)

and

ωf (θ) = V (ft|yt) =
1

c′Γ−1c + 1
.

In particular, we can show that the expected values of the elements of (13) are proportional to

H3[ft|t(θ)/
√

1− ωf (θ)] and H4[ft|t(θ)/
√

1− ωf (θ)], respectively, where V [ft|t(θ)] = 1− ωf (θ)
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by virtue of the fact that

V (ft) = E[V (ft|yt)] + V [E(ft|yt)].

Somewhat remarkably, therefore, the LM test for the normality of the latent common factor

will numerically coincide with the usual LM test for the normality of its best estimator in the

mean square error sense. Obviously, analogous calculations apply to each element of vt.

5.3 The local-level model

Consider now the random walk plus noise model studied in Harvey and Koopman (1992):

yt = π + xt + vt

xt = xt−1 + ft(
ft
vt

)∣∣∣∣ It−1,φ ∼ iid D

[(
0
0

)
,

(
σ2f 0

0 σ2v

)
,ϕ

]
,

where xt is the “signal” component, vt the orthogonal “non-signal” component, and θ refers

to the model parameters that characterize the autocovariance structure of the observed series.

Once again, we can easily express this model as in (1)—(2) with ξt = (ft, v
′
t)
′, H(θ) = (1, 1),

F(θ) =

(
α 0
0 0

)
, M(θ) =

(
σ2f 0

0 σ2v

)
and εt = (f∗t , v

∗
t )
′, where f∗t = σ−1f ft and v∗t = σ−1v vt.

Since there are only two shocks, we could look at (i) a test of joint normality, (ii) a test of

normality of the “signal”with the maintained hypothesis of normality for the “non-signal”, and

(iii) vice versa.

For the sake of brevity, let us focus on the non-signal component. Proposition 5 implies that

for symmetric Student t alternatives, the score with respect to the reciprocal of the degrees of

freedom parameter evaluated under the null will be given by

E
[
sSvηt (θ,0)|YT

]
=

1

2

√
3

2

[
1− ωvt|T (θ)

]2 −√3

2

[
1− ωvt|T (θ)

]
v∗2t|T (θ) +

1

2

√
1

6
v∗4t|T (θ). (14)

But the optimality of the Wiener-Kolmogorov-Kalman filter under Gaussianity implies that

V (v∗t ) = V [v∗t|T (θ)] + V [v∗t − v∗t|T (θ)],

which in turns means that

V [v∗t|T (θ)] = 1− ωvt|T (θ).
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Hence, expression (14) is proportional to the fourth order Hermite polynomial of the standardized

variable v∗t|T (θ)/
√

1− ωvt|T (θ). Therefore, for this model our proposed LM test also yields

exactly the same influence function as an LM test of normal versus Student t that would treat

v∗t|T (θ) as an iid series. Unlike in the static model considered in section 5.2, though, the elements

of (14) are serially correlated.

5.4 Comparison with alternative approaches

5.4.1 Univariate tests applied to the smoothed innovations

As we mentioned in the introduction, Harvey and Koopman (1992) applied standard uni-

variate normality tests for observed variables to the smoothed values of the innovations in the

underlying components of a local level model explicitly taking into account the serial correlation

in those filtered estimates implied by the model.

Their asymmetry test is based on the skewness coeffi cient

skεi = mεi3/m
3/2
εi2
,

where

mεij = T−1
T∑
t=1

(εit|T − ε̄)j

is the jth centred sample moment of the smoothed innovations of either the signal (i = 1) or the

noise (i = 2). Under normality, the asymptotic variance of skεi will be given by ζεi(θ, 3), where

ζεi(θ, λ) = λ!
∞∑

j=−∞
[ρεi(j)]

λ

provides the sum of powers of the autocorrelations, which are the autocorrelations of the powers

of the original Gaussian series (see Lomnicki (1961)).

Similarly, their excess kurtosis test is based on the sample excess kurtosis coeffi cient

kεi = mεi4/m
2
εi2 − 3,

whose asymptotic variance under normality will be given by ζεi(θ, 4).

It is interesting to compare these tests to our LM tests based on Propositions 4 and 7. The

procedures proposed by Harvey and Koopman (1992) can be regarded as moment tests of

E[f∗3t|T (θ)] = 0, E[f∗4t|T (θ)− 3] = 0,

E[v∗3t|T (θ)] = 0, E[v∗4t|T (θ)− 3] = 0,
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where f∗t|T (θ) and v∗t|T (θ) are standardized smoothed innovations. Thus, the main difference

is that they look at third and fourth moments, while we use the log-likelihood scores, which

are proportional to the third and fourth Hermite polynomials. The main advantage of the

latter is that they are not affected by the sampling variability in θ̂T , as we have shown in

Propositions 3 and 6. Nevertheless, Harvey and Koopman (1992) indicate that their tests are

also asymptotically insensitive to parameter uncertainty when the standardization of f∗t|T (θ) and

v∗t|T (θ) relies on sample moments (see also Bontemps and Meddahi (2005)).7 In fact, we can

show that their tests and ours are asymptotically equivalent under the null hypothesis in the

local level model in section 5.3.

5.4.2 Reduced form tests

Assuming covariance stationarity, possibly after some suitable transformation, we can find

the autocorrelation structure of the observed series generated by (1)-(2), as well as the corre-

sponding Wold representation, which will typically resemble a Varma model, with potentially

long but finite Ar and Ma orders, but restricted coeffi cient matrices because M ≥ N .

As a result, we will be able to write

[yt − π(θ)] =

py∑
j=1

Aj(θ)[yt−j − π(θ)] + wt +

qy∑
j=1

Bj(θ)wt−j ,

where wt is a serially uncorrelated sequence, linearly unpredictable on the basis of lagged values

of yt. In fact, assuming that the Wold representation is strictly invertible,

wt =

IN +

qy∑
j=1

Bj(θ)Lj

−1 IN −
qy∑
j=1

Aj(θ)Lj

 [yt − π(θ)]. (15)

This relationship is the basis for the comparison of our tests, which target the components

in εt directly, to existing tests, which target wt instead. If εt|It−1 is iid normal, then yt will be a

Gaussian process, and therefore wt|It−1 will be iid normal too. As a result, checking the normal-

ity of the latter provides an indirect way of checking the normality of the former. Nevertheless,

if some elements of εt are not normal, then the conditional distribution of the reduced form

innovations will typically be extremely complicated, especially taking into account that they are

unlikely to follow a martingale difference sequence in dynamic contexts.8The problem is that

the conditional mean of the observed variables given their past alone will no longer be given
7 In that regard, the situation seems analogous to the Jarque and Bera (1980) tests, whose distribution is

insensitive to parameter uncertainty for many models (see Fiorentini, Sentana and Calzolari (2004)).
8Although we would expect it to be closer to a normal than εt because of the averaging implicit in (15).
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by the one-period ahead linear prediction generated by the Kalman filter recursions, yt|t−1(θ).

Similarly, the conditional variance will not usually coincide with the associated mean-square

error matrix Σt|t−1(θ).

Still, it may be worth considering tests against the following alternative model

yt|yt−1, ...,y1,φ ∼ GH[yt|t−1(θ),Σt|t−1(θ), η, ψ,β],

which maintains the assumption that the conditional mean and variance coincide with their

values under normality, but allows for a non-Gaussian distribution. The assumption that the

distribution of yt conditional on Yt−1 is GH but with a mean vector and covariance matrix

given by the usual Gaussian Kalman filter recursions may be regarded as a way of constructing

a convenient auxiliary model that coincides with the model of interest for ϕ = 0, but whose

log-likelihood function and score we can obtain in closed form for every possible value of θ when

ϕ 6= 0. The pay-off is that the resulting model falls within the framework studied by Mencía

and Sentana (2012). Specifically, if we define the standardized reduced form innovations as

w∗t|t−1(θ) = Σ
− 1
2

t|t−1(θ)[yt − yt|t−1(θ)],

and their (square) Euclidean norm as

ςt|t−1(θ) = w∗t|t−1(θ)′w∗t|t−1(θ) = [yt − yt|t−1(θ)]′Σ−1t|t−1(θ)[yt − yt|t−1(θ)],

we can write the influence functions underling their test as

sMS
kt|t−1(θ) =

1

4
ς2t|t−1(θ)− N + 2

2
ςt|t−1(θ) +

N(N + 2)

4
,

sMS
st|t−1(θ) = Σ

1
2

t|t−1(θ)w
∗
t|t−1(θ)

[
ςt|t−1(θ)− (N + 2)

]
.

Propositions 3 and 5 in Mencía and Sentana (2012) provide expressions for the asymptotic

covariance matrix of the sample average of those influence functions in terms of Σ(θ) = V (wt),

which typically coincides with the steady state value of Σt|t−1(θ) (see footnote 4).

6 Monte Carlo simulations

In this section, we study the finite sample size and power properties of the testing procedures

discussed above by means of several extensive Monte Carlo exercises. We do so in the context

of three different models:9

9Results for a trivariate version of the static factor model (12) can be found in section 4.2.2 of Almuzara,
Amengual and Sentana (2017).
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1. the cointegrated single factor model we use in our empirical application in section 7,

2. the illustrative local level model in section 5.3, and

3. a multivariate version of this local level model in which there is a single integrated common

trend, but the number of observed series is 10, each of which containing an iid idiosyncratic

component.

6.1 Simulation and estimation details

We assess the power properties of our tests by generating non-Gaussian data in three alter-

native designs:

1. All structural innovations are jointly GH : εt ∼ GH(η, ψ,β) (alternative J);

2. The distribution of the innovations to the signal component is GH while the idiosyncratic

shocks are Gaussian: ft ∼ GH(η, ψ, β), vt ∼ N(0, IN ) (alternative Sf );

3. The joint distribution of the innovations to the idiosyncratic variables is GH while the

common component is Gaussian: vt ∼ GH(η, ψ,β), ft ∼ N(0, 1) (alternative Sv).

We consider two examples of GH distributions: a symmetric Student t with 8 degrees of

freedom and an asymmetric Student t with 8 degrees of freedom and skewness vector β = −`K×1.

Thus, we end up with a total of seven different specifications for εt, including the Gaussian null.

For each distributional assumption, we generate 10,000 samples of size T exploiting the location-

scale mixture of normal representation of the GH distribution we discussed in section 4.1.

We use standard Matlab routines for estimation. In the case of the local-level model, we

rely on its Ima(1, 1) reduced form representation to improve the computational effi ciency of the

algorithm. Finally, we compute the asymptotic variances of the test statistics by truncating the

infinite sum in expression (9) when the additional terms lead to increments lower than 10−5.10

Given that in all the models we observe a “pile-up”problem, whereby the fraction of nega-

tive values of the average kurtosis scores exceeds 50% under the null, we employ a parametric

bootstrap procedure based on 10,000 simulated samples. In this way, we can automatically

compute size-adjusted rejection rates, as forcefully argued by Horowitz and Savin (2000). Im-

portantly, our bootstrap procedure does not exploit the asymptotic orthogonality of the scores
10 In Supplemental Appendix E we report analogous results but using a HAC estimator to compute the as-

ymptotic variances of the influence functions underlying our test statistics. As expected, the results are far less
reliable than when we use the theoretical expressions.
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between mean and variance parameters on the one hand and shape parameters on the other

in Propositions 3 and 6. On the contrary, it explicitly takes into account the sensitivity of the

critical values to the estimated values of θ in order not to rule out higher order refinements (see

Appendix D.1 in Amengual and Sentana (2015) for details).

In all the tables, the row labels HJ , HSf , and HSv refer to the score tests in Propositions 4

and 7 corresponding to the J , Sf and Sv alternative hypotheses, while Red denotes the reduced

form tests discussed in section 5.4.2. For each of those labels, Kt and Sk refer to the kurtosis

and skewness components of the corresponding test statistics, while GH indicates the sum of

the two.

6.2 Small sample properties

6.2.1 Cointegrated dynamic factor model

We simulate data from the model (16) that we use in our empirical application, with ρx = .5,

ρεE = .2, ρεI = .8, σ2f = 1 and σ2vi chosen such that qE = 2 and qI = .5, where qi = σ2x/σ
2
εi =

[σ2f (1− ρ2εi)]/[(1− ρ
2
x)σ2vi ] represents the signal-to-noise ratio for yit for i = E, I.

Panels A of Tables 1 and 2 report rejection rates under the null at the 1%, 5% and 10%

levels for T = 100 and T = 250, respectively, which roughly correspond to the sample sizes in

our empirical application in section 7. The results make clear that the parametric bootstrap

works remarkably well for both sample sizes.11

Panels B of the same tables report the rejection rates at the 5% level of the tests under each

of different alternative hypotheses that we consider. As expected, the most powerful test for any

given alternative is typically the score test we have designed against that particular alternative.

In that regard, we find that while the reduced form tests have non-trivial power, especially under

alternative J , they are clearly dominated by the tests aimed at the structural innovations.

6.2.2 Univariate local level model

Table 3 contains the results for samples of size T = 250 of the local-level model in section

5.3 in which the signal-to-noise ratio q = σ2f/σ
2
v is set to 2, as in Harvey and Koopman (1992).

For comparison purposes, we also include their original tests.

Our results confirm the asymptotic equivalence between their tests and the less powerful two-

sided versions of ours (not reported). More generally, we essentially reach the same conclusions

11Given the number of Monte Carlo replications, the 95% asymptotic confidence intervals for the rejection
probabilities under the null are (.80,1.20), (4.57,5.43) and (9.41,10.59) at the 1, 5 and 10% levels.
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for size and power as in the previous two examples.

6.2.3 Multivariate local level model

To assess the performance of our tests when the cross-section dimension is moderately large,

in Table 4 we provide results for a ten-variate model with a single common trend and uncorrelated

idiosyncratic terms. Specifically, we assume π = 0, c = `10 and γ = q−1`10, where the signal-

to-noise ratio q is set to 2, as in the univariate version. We also maintain T = 250. Once again,

we reach analogous conclusions for size and power as in the other three examples. The main

difference is that rejection rates are almost 100% under SJ and Sv because the number of non-

normal innovations is substantially larger than in the univariate case. Moreover, the precision

with which the common factor is filtered is much higher than in the previous example because,

ceteris paribus, the increase in the cross-sectional dimension N increases the observability of

the latent variables. As a result, we obtain rejection rates close to the nominal ones in cases in

which the mantained assumption of normality is indeed satisfied.

7 Inferring real output from GDP and GDI

7.1 The model

As we mentioned in the introduction, in theory the expenditure (GDP) and income (GDI)

measures of output should be equal, but they differ because they are calculated from different

sources. Traditionally, the difference between the two, offi cially known as the “statistical discrep-

ancy”(see Grimm (2007)), was regarded by many academic economists as a curiosity in the US

National Input and Product Accounts (NIPA) elaborated by the Bureau of Economic Analysis

(BEA) of the Department of Commerce. However, the Great Recession substantially renewed

interest in the possibility of obtaining more reliable GDP growth figures by combining the two

measures (see e.g. Nalewaik (2010, 2011), Greenaway-McGrevy (2011) and especially Aruoba

et al (2016), which provides the background for the Philadelphia Fed GDPplus measure). Some

national statistical offi ces compute a simple equally weighted average of the different aggregate

series, and in fact, BEA began providing this average in 2015. More sophisticated combination

methods would give higher weights to the more precise GDP measures, as argued by Stone,

Champernowne and Meade (1942) (see Weale (1992) for an account of the earlier literature).

As emphasized by Smith, Weale and Satchell (1998), though, dynamic considerations also

matter because the contemporaneously filtered GDP series and its succesive updates as future
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data becomes available will depend on the specification of the underlying processes. The secular

growth in GDP and GDI has understandably led all previous studies to apply a signal-extraction

framework to their growth rates, but doing so rules out by construction the possibility of saying

anything about the level of U.S. output, which is of considerable interest on its own. In addition,

taken literally, the absence of cointegration between the expenditure and income measures, with

cointegrating vector (1,-1), implies an implausible diverging statistical discrepancy. Figure 2a

contains the temporal evolution of the US quarterly (log) GDP and GDI series between 1984Q3

and 2015Q2, with shaded areas indicating NBER recessions. Although the two series differ, their

(1,-1) cointegration relationship is evident. In turn, Figure 2b shows that their first differences

are also highly correlated, but with a rich dynamic bivariate structure. Finally, Figure 2c makes

clear that the statistical discrepancy is a persistent but stationary series whose movements are

unrelated to the business cycle.

In view of the previous considerations, we prefer to formulate and estimate a model with

covariance stationary measurement errors and an integrated common trend in the (log) levels of

the two output measures.12Specifically, if yEt and yIt denote (log) GDP and GDI, respectively,

the model that we consider is(
yEt
yIt

)
=

(
1
1

)
xt +

(
εEt
εIt

)
(16)

(1− ρxL)(∆xt − µ) = ft

(1− ρεEL)(εEt − δ/2) = vEt

(1− ρεIL)(εIt + δ/2) = vIt ft
vEt
vIt

∣∣∣∣∣∣ It−1,φ ∼ iid D

 0
0
0

 ,

 σ2f 0 0

0 σ2vE 0
0 0 σ2vI

 ,ϕ

 ,
where xt is the “true GDP” common factor, whose rate of growth follows an Ar(1) process

with mean µ, autoregressive coeffi cient ρx and innovation variance σ
2
f , while εEt and εIt are the

measurement errors in the (log) expenditure and income measures, respectively, which follow co-

variance stationary Ar(1) processes with unconditional means ±δ/2, autoregressive coeffi cients
12Arguably, a suffi ciently flexible specification for the measurement errors in first-diferences by means of high-

order autoregressive moving average processes may mitigate and, eventually, eliminate the consequences of ignoring
cointegration, at least for the growth rates (see Almuzara, Fiorentini and Sentana (2018)).
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ρεE and ρεI , and innovation variances σ
2
vE
and σ2vI .

13 Our specification of the serial correlation

structure of the latent series follows from the empirical analysis in earlier versions of Fiorentini

and Sentana (2017), who found evidence in favour of Ar(1) processes for both the first differ-

ence of the common factor and the levels of the measurement errors. Importantly, our model

allows for systematic biases in the measurement errors through δ, the difference between those

biases determining the mean of the statistical discrepancy while their levels fixing the initial

conditions.14

7.2 Estimation under the null and normality tests

We initially estimate the model using data from 1984Q3 to 2007Q2. We chose the final

date to exclude the Great Recession from the sample. As for the start date, it marks the

beginning of the so-called Great Moderation, as in Nalewaik (2010). We estimate the model in

the time domain on the basis of the bivariate Gaussian likelihood of the stationarity-inducing

transformation ∆yEt+∆yIt and yEt−yIt, systematically exploring its surface to make sure that

we have found the global maximum. Panel A of Table 5 presents the estimates of the model

parameters and their corresponding standard errors obtained from the asymptotic information

matrix, which we compute using its frequency domain closed-form expression. As expected, we

find that the growth rate of the “true” aggregate real output series is reasonably persistent.

Our estimates also suggest that GDP provides a better measure of output than GDI, in the

sense that GDP measurement errors have both a smaller autoregressive coeffi cient —in absolute

value—and a smaller variance parameter. Indeed, the negative serial correlation coeffi cient for

the GDP measurement error implies a tendency to compensate prior measurement errors, while

the highly persistent GDI measurement error indicates that the difference between the growth

rates of GDI and the true output measure are close to white noise.

13 In terms of the formulation (1)—(2), we have that π(θ) = (δ/2,−δ/2)′, ξt = (1, xt, xt−1, εEt, εIt)
′,

H(θ) =

(
0 1 0 1 0
0 1 0 0 1

)
, F(θ) =


1 0 0 0 0

µ(1− ρx) 1 + ρx −ρx 0 0
0 1 0 0 0
0 0 0 ρεE 0

0 0 0 0 ρεI

 , M(θ) =


0 0 0
σf 0 0
0 0 0
0 σvE 0
0 0 σvI


and εt = (ft, vEt, vIt)

′.
14For identification purposes, though, we assume without loss of generality that the magnitude of those biases

is the same for the two output series. We also assume that the two measurement errors are uncorrelated, which
guarantees the non-parametric identification of the signal from the noise (see Almuzara, Fiorentini and Sentana
(2018) for further details). The fact that the two measures of output are obtained from independent sources
provides some plausibility to this assumption (but see Aruoba et al (2016)).
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In turn, the normality tests reported in Panel B of Table 5 suggest that the soothing effects

of the so—called Great Moderation propagated beyond second moments because the normality

of the innovations to the underlying GDP growth rates is not rejected at conventional levels. On

the other hand, we clearly reject the null of Gaussian innovations in the measurement errors. In

fact, we reject not only when we use the joint test but also when we look at the skewness and

kurtosis components separately. In contrast, the bivariate normality test of the reduced form

innovations fails to reject its null hypothesis, which confirms the power advantages of looking at

the structural innovations we documented in section 6.

To gain some further insight, in Figure 3 we plot the temporal evolution of the smoothed

innovations (top panels), as well as the influence functions underlying the kurtosis tests (middle

panels) and skewness tests (bottom panels) for both common factor (left panels) and measure-

ment errors (right panels). Panels 3d and 3f indicate that an unusual measurement issue in

both series around the first quarter of 2000 leads to the rejection of the Gaussian null for the

measurement errors.

In Table 6 we present analogous results for a slightly larger sample that includes the Great

Recession (1984Q3-2015Q2). As can be seen from Panel A, there are no dramatic changes in

the parameter estimates, except perhaps for a higher persistence in the common factor, whose

innovations have an unsurprisingly larger variance too. Nevertheless, the smoothed series are

almost identical over the overlapping period. Figure 4 presents the evolution of the two output

measures and our smoothed estimate in the period surrounding the Great Recession. As can be

seen, GDP kept increasing over the entire 2007 while GDI began to show early warning signs

of stagnation one year before. In the fourth quarter of 2008, though, both series experimented

a dramatic drop, with GDI recovering slightly earlier than GDP. Our estimate tends to closely

follow the GDP series, but taking into account the differing behavior of GDI around the turning

points.

The large fall in output experienced in 2008Q4 implies that we also reject the normality of

the common factor over this extended period. In that regard, we would like to emphasize that

plots of the influence functions sk,t|T (θ) and ss,t|T (θ)’s seem to be more informative than plots

of the smoothed innovations for the purposes of detecting non-normality. For example, Figure 5,

which is entirely analogous to Figure 3 but including the Great Recession, confirms that 2008Q4

has a huge impact on the skewness and kurtosis scores of the common factor, resulting in a
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strong rejection of the null.

Nevertheless, if we take a longer historical perspective, and start our sample soon after the

Treasury - Federal Reserve Accord whereby the Fed stopped its wartime pegging of interest

rates, the Great Recession is no longer an isolated outlier. There are several other periods,

including the turbulences in the late 70’s, early 80’s, in which the normality of the “true GDP”

innovations is clearly rejected (see Supplemental Material F for details).

7.3 The model under the alternative

Given those rejections, the natural next step is to estimate the parameters and obtain

smoothed versions of the latent variables under the alternative distributions that we have con-

sidered. In view of the fact that the rejection of the null comes from both skweness and kurtosis,

we consider an asymmetric Student t, a popular member of the asymmetric GH distribution,

as DGP for the structural innovations. To estimate the model, we rely on a Metropolis-within-

Gibbs algorithm which exploits the interpretation of the asymmetric Student t as a location-scale

mixture of normals in (10). We estimate this model with 500,000 draws for the parameters and

250,000 for the latent variables, which correspond to 1 in 20 and 1 in 40 of the 107 original

simulations (see Supplemental Material D for further details on the posterior simulator).

For the sake of brevity, we focus on the shape parameters, which are reported in Figure

6, with the left and right panels corresponding to the posterior distributions for the samples

1984Q3-2007Q2 and 1984Q3-2015Q2, respectively. Interestingly, when we exclude the Great

Recession from the sample, the 95% credible intervals of all the skewness parameters include the

origin. In the longer sample, in contrast, the asymmetry coeffi cient of the latent “true GDP”

series becomes statistically significantly different from zero, which is in line with the evidence

obtained from our proposed score test statistics in the previous section. Similarly, there is a

shift in the mode and median of the reciprocal of the degrees of freedom (top panels) towards

a lower number when we use the longer sample. The results in Figure F2 in the Supplemental

Material F confirm the agreement between our proposed tests and the posterior intervals.

Finally, in Figure 7 we compare ∆xt|T under the null and under asymmetric t innovations.

In order to account for parameter uncertainty in both models, we also estimate the Gaussian

specification using a simplified version of the MCMC algorithm which imposes η = 0 but uses

the same number of draws. The top panel (Figure 7a) reports the median of the posteriors, while

the bottom one (Figure 7b) reports the centered 95% error bands, computed by substracting the
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median from the quantiles 97.5% and 2.5%. As can be seen, the median values are quite similar

across distributions, but the drop in 2008Q4 seems to be sharper under asymmetric Student t

innovations. Perhaps more interestingly, while we find that the asymmetric t seems to generate

narrower (wider) intervals on the right (left) of the distribution in normal times, their magnitudes

increase substantially during the Great Recession, exacerbating the asymmetry of the error band

too. Importantly, this pattern starts to appear —albeit moderately—a few quarters before 2008Q4.

In contrast, the Gaussian error bands are symmetric and almost constant irrespective of whether

the economy is in a recession or not.

8 Conclusions

We exploit the EM principle to derive simple to implement and interpret LM-type tests of

normality in all or a subset of the innovations to the latent variables in state space models against

GH alternatives, which include the symmetric and asymmetric Student t, together with many

other popular distributions. We decompose our tests into third and fourth moment components,

and obtain one-sided LR analogues, whose asymptotic distribution we provide.

We perform a Monte Carlo study of the finite sample size and power of our procedures,

explicitly comparing them to previously proposed tests. For all the models that we consider,

our results detect a pile-up problem, whereby the fraction of negative values of the average

kurtosis scores exceeds 50% under the null. For that reason, we employ a parametric bootstrap

procedure, which improves the reliability of our tests under the null. In terms of power, we find

that the most powerful test for any given alternative is usually the score test we have designed

against it. We also find that while the tests that are based on the reduced form innovations have

non-trivial power, they are clearly dominated by our proposed tests, which aim at the structural

innovations.

When we apply our tests to a common trend model which combines the levels of the ex-

penditure and income versions of US aggregate real output to improve its measurement, we

reject normality of the innovations to the true GDP if the sample span extends beyond the

Great Moderation (1984Q3-2007Q2). In contrast, the GDP/GDI measurement errors seem to

be non-normal regardless of the period. For that reason, we develop a non-linear, simulation-

based filtering procedure that improves over the Kalman filter, and highlights the importance

of taking non-normality into account during turbulent periods such as the Great Recession.
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From a methodological point of view, our EM-based approach can be successfully used in

cross-sectional contexts too. In particular, it is straightforward to employ it for proving that

many of the diagnostics suggested by Pagan and Vella (1989) for Tobit models do indeed coincide

with the LM tests against specific alternatives in Chesher and Irish (1987) and Gouriéroux et al

(1987). While the linearity implicit in (1)-(2) helps us obtain closed-form expressions for all the

relevant quantities, it is not a requirement for applying our methodology in different contexts.

Analyzing other latent variable models in which non-Gaussianity might be relevant constitutes

a very interesting avenue for future research.

28



References

Almuzara, T., D. Amengual and E. Sentana (2017): “Normality tests for latent variables”,

CEMFI Working Paper No. 1708.

Almuzara, T., G. Fiorentini and E. Sentana (2018): “US aggregate output measurement: a

common trend approach”, mimeo.

Amengual, D. and E. Sentana (2015): “Is a normal copula the right copula?”, CEMFI Working

Paper No. 1504.

Anderson, B.D.O. and J.B. Moore (1979): Optimal filtering, Prentice-Hall, New Jersey.

Aruoba, S. B., F.X. Diebold, J. Nalewaik, F. Schorfheide and D. Song (2016): “Improving

GDP measurement: a measurement-error perspective”, Journal of Econometrics 191, 384—397.

Bai, J. and S. Ng (2005): “Tests for skewness, kurtosis, and normality for time series data”,

Journal of Business and Economic Statistics 23, 49—60.

Barndorff-Nielsen, O. (1977): “Exponentially decreasing distributions for the logarithm of par-

ticle size”, Proceedings of the Royal Society 353, 401—419.

Blæsild, P. (1981): “The two-dimensional hyperbolic distribution and related distributions,

with an application to Johannsen’s bean data”, Biometrika 68, 251—263.

Bontemps, C. and N. Meddahi (2005): “Testing normality: a GMM approach”, Journal of

Econometrics 124, 149—186.

Chesher, A. and M. Irish (1987): “Residual analysis in the grouped data and censored normal

linear model”, Journal of Econometrics 34, 33—62.

Dempster, A., N. Laird, and D. Rubin (1977): “Maximum likelihood from incomplete data via

the EM algorithm”, Journal of the Royal Statistical Society Series B 39, 1—38.

Durbin, J. and S.J. Koopman (2012): Time series analysis by state space methods, 2nd ed.,

Oxford University Press, Oxford.

29



Fiorentini G., A. Galesi, A. and E. Sentana (2016): “A spectral EM algorithm for dynamic fac-

tor models”, Bank of Spain Working Paper 1619, forthcoming in the Journal of Econometrics.

Fiorentini G., E. Sentana and G. Calzolari (2003): “Maximum likelihood estimation and in-

ference in multivariate conditionally heteroscedastic dynamic regression models with Student

t innovations”, Journal of Business and Economic Statistics 21, 532—546.

Fiorentini G., E. Sentana and G. Calzolari (2004): “On the validity of the Jarque-Bera nor-

mality test in conditionally heteroskedastic dynamic regression models”, Economics Letters 83,

307-312.

Fiorentini, G. and Sentana, E. (2007): “On the effi ciency and consistency of likelihood estima-

tion in multivariate conditionally heteroskedastic dynamic regression models”, CEMFI Working

Paper 0713.

Fiorentini G. and E. Sentana (2015): “Tests for serial dependence in static, non-Gaussian

factor models”, in S.J. Koopman and N. Shephard (eds.) Unobserved components and time

series econometrics, 118-189, Oxford University Press.

Fiorentini G. and E. Sentana (2017): “Dynamic specification test for dynamic factor models”,

mimeo, CEMFI.

Greenaway-McGrevy, R. (2011): “Is GDP or GDI a better measure of output? A statistical

approach”, Bureau of Economic Analysis WP 2011—08.

Gouriéroux C., A. Holly and A. Monfort (1980): “Kühn-Tucker, likelihood ratio and Wald

tests for nonlinear models with inequality constraints on the parameters”, Discussion Paper

770, Harvard Institute of Economic Research.

Gouriéroux, C., A. Monfort, E. Renault and A. Trognon (1987): “Generalized residuals”,

Journal of Econometrics 34, 5—32.

Grimm, B.T. (2007): “The statistical discrepancy”, Bureau of Economic Analysis, Washington

D.C.

Harvey, A.C. (1989): Forecasting, structural models and the Kalman filter, Cambridge Univer-

sity Press, Cambridge.

30



Harvey A. and S.J. Koopman (1992): “Diagnostic checking of unobserved-components time

series models”, Journal of Business and Economic Statistics 10, 377—389.

Horowitz, J. and N.E. Savin (2000): “Empirically relevant critical values for hypothesis tests:

a bootstrap approach”, Journal of Econometrics 95, 375—389.

Jarque, C.M. and A. Bera (1980): “Effi cient tests for normality, heteroskedasticity, and serial

independence of regression residuals”, Economics Letters 6, 255—259.

Johannes, M. and Polson, N. (2009): “Particle filtering ”in T.G. Andersen, R.A. Davis, J.-P.

Kreiss and T. Mikosch (eds.) Handbook of financial time series, 1015-1029, Springer-Verlag.

Johnson, N., S. Kotz and N. Balakrishnan (1994): Continuous univariate distributions, Wiley,

New York.

Jørgensen, B. (1982): Statistical properties of the Generalized Inverse Gaussian distribution,

Springer-Verlag, New York.

Komunjer I. and S. Ng (2011): “Dynamic identification of dynamic stochastic general equilib-

rium models”, Econometrica 79, 1995—2032.

Landefeld, J.S., E.P. Seskin and B.M. Fraumeni (2008): “Taking the pulse of the economy:

measuring GDP”, Journal of Economic Perspectives 22, 193—216.

Lomnicki Z. (1961): “Tests for departure from normality in the case of linear stochastic

processes”, Metrika 4, 37—62.

Louis, T.A. (1982): “Finding the observed information matrix when using the EM algorithm”,

Journal of the Royal Statistical Society Series B 44, 226—233.

Mencía J. (2012): “Testing nonlinear dependence in the hedge fund industry”, Journal of

Financial Econometrics 10, 545—587.

Mencía J. and E. Sentana (2012): “Distributional tests in multivariate dynamic models with

normal and Student t innovations”, Review of Economics and Statistics 94, 133—152.

Nalewaik, J. (2010): “The income- and expenditure-side measures of output growth”, Brookings

Papers on Economic Activity 1, 71—106.

31



Nalewaik, J. (2011): “The income- and expenditure-side measures of output growth —an update

through 2011Q2”, Brookings Papers on Economic Activity 2, 385—402.

Pagan A. and F. Vella (1989): “Diagnostic tests for models based on individual data: a survey”,

Journal of Applied Econometrics 4, S29—S59.

Rubin, D. and D. Thayer (1982): “EM algorithms for ML factor analysis”, Psychometrika 47,

69—76.

Ruud, P. (1991): “Extensions of estimation methods using the EM algorithm”, Journal of

Econometrics 49, 305—341.

Smith R., M. Weale and S. Satchell (1998): “Measurement error with accounting constraints:

point and interval estimation for latent data with an application to UK gross domestic product”,

Review of Economic Studies 65, 109—134.

Stone, R., D.G. Champernowne and J.E. Meade (1942): “The precision of national income

estimates”, Review of Economic Studies 9, 111—125.

Tanner, M. (1996): Tools for statistical inference: methods for the exploration of posterior

distributions and likelihood functions, 3rd ed., Springer-Verlag.

Watson, M.W. and R.F. Engle (1983): “Alternative algorithms for estimation of dynamic

MIMIC, factor, and time varying coeffi cient regression models”, Journal of Econometrics 23,

385—400.

Weale, M. (1992): “Estimation of data measured with error and subject to linear restrictions”,

Journal of Applied Econometrics 7, 167—174.

32



Table 1: Monte Carlo rejection rates (in %) under null and alternative hypotheses for the
bivariate cointegrated, dynamic single factor model (T = 100)

Panel A: Null Panel B: Alternative hypotheses (5%)
hypothesis Student t asymmetric Student t

1% 5% 10% J Sf Sv J Sf Sv

Kt 1.15 4.72 9.43 55.73 6.72 44.09 71.44 12.64 55.04
HJ Sk 1.00 4.92 10.30 31.77 6.79 25.05 68.09 17.31 50.62

GH 1.02 4.67 9.79 48.13 6.88 37.11 74.04 16.26 57.02

Kt 0.94 4.71 9.60 19.54 13.83 6.70 39.00 26.72 13.38
HSf Sk 0.91 4.69 9.79 13.03 10.07 6.11 33.83 29.56 10.26

GH 0.95 4.69 9.65 18.22 12.90 6.40 39.76 30.13 13.08

Kt 1.08 4.75 9.70 48.35 4.84 46.40 58.30 5.02 55.61
HSv Sk 1.09 4.87 9.92 27.60 5.29 27.15 51.41 6.30 54.84

GH 1.04 4.83 9.94 42.96 5.14 41.71 61.15 5.74 60.98

Kt 1.04 4.76 9.58 53.15 7.71 37.89 70.70 14.98 48.17
Red Sk 0.88 4.61 8.91 24.33 5.02 21.65 31.23 5.30 23.59

GH 0.99 4.45 9.02 47.45 6.79 34.36 65.45 12.37 44.22

Notes: Results based on 10,000 samples of size T = 100 from model (16) with ρx = .5, ρεE = .2, ρεI = .8,
σ2f = 1 and σ2vi chosen such that qE = 2 and qI = .5, where qi = σ2x/σ

2
εi represents the signal-to-noise ratio

for yit for i = E, I. The column labels J , Sf , Sv refer to the alternative εt ∼ GH(η, ψ,β) (i.e. R = 3),
ft ∼ GH(η, ψ, β), vt ∼ N(0, IN ) (R = 1) and vt ∼ GH(η, ψ,β), ft ∼ N(0, 1) (R = 2), respectively.
The row labels HJ , HSf , and HSv refer to the score tests in Propositions 4 and 7 corresponding to the
J , Sf , and Sv alternative hypotheses, while Red denotes the reduced form tests discussed in section
5.4.2. In Panel B, Student t refers to the DGP for the GH being symmetric Student t with 8 degrees of
freedom and, analogously, asymmetric Student t to the asymmetric Student t with 8 degrees of freedom
and skewness vector β = −`R. For each of those labels, Kt and Sk refer to the kurtosis and skewness
components of the corresponding test statistics, while GH indicates the sum of the two.
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Table 2: Monte Carlo rejection rates (in %) under null and alternative hypotheses for the
bivariate cointegrated, dynamic single factor model (T = 250)

Panel A: Null Panel B: Alternative hypotheses (5%)
hypothesis Student t asymmetric Student t

1% 5% 10% J Sf Sv J Sf Sv

Kt 0.83 4.67 9.72 88.54 9.89 76.00 96.80 23.30 86.98
HJ Sk 1.02 5.33 10.19 42.42 8.77 33.85 95.50 36.18 82.65

GH 0.98 4.99 9.85 80.82 9.73 66.07 98.55 34.51 90.56

Kt 1.07 4.81 9.79 34.44 22.74 8.27 64.40 48.53 22.74
HSf Sk 1.11 5.25 10.04 17.07 12.33 6.45 55.84 58.49 16.27

GH 1.09 5.08 10.09 31.41 20.69 7.86 67.19 59.01 22.76

Kt 0.86 4.78 9.78 81.86 5.60 79.33 91.86 6.87 88.03
HSv Sk 1.15 5.21 10.15 35.49 6.07 35.22 83.47 8.32 86.65

GH 1.03 4.89 9.83 74.06 5.83 72.00 93.88 7.99 92.91

Kt 0.93 4.68 9.61 85.85 11.43 66.66 96.22 27.25 80.75
Red Sk 1.22 5.15 10.72 31.06 5.41 27.85 41.49 6.24 31.54

GH 0.98 4.71 9.96 80.97 9.57 60.67 94.33 23.22 76.20

Notes: Results based on 10,000 samples of size T = 250 from model (16) with ρx = .5, ρεE = .2, ρεI = .8,
σ2f = 1 and σ2vi chosen such that qE = 2 and qI = .5, where qi = σ2x/σ

2
εi represents the signal-to-noise ratio

for yit for i = E, I. The column labels J , Sf , Sv refer to the alternative εt ∼ GH(η, ψ,β) (i.e. R = 3),
ft ∼ GH(η, ψ, β), vt ∼ N(0, IN ) (R = 1) and vt ∼ GH(η, ψ,β), ft ∼ N(0, 1) (R = 2), respectively.
The row labels HJ , HSf , and HSv refer to the score tests in Propositions 4 and 7 corresponding to the
J , Sf , and Sv alternative hypotheses, while Red denotes the reduced form tests discussed in section
5.4.2. In Panel B, Student t refers to the DGP for the GH being symmetric Student t with 8 degrees of
freedom and, analogously, asymmetric Student t to the asymmetric Student t with 8 degrees of freedom
and skewness vector β = −`R. For each of those labels, Kt and Sk refer to the kurtosis and skewness
components of the corresponding test statistics, while GH indicates the sum of the two.
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Table 3: Monte Carlo rejection rates (in %) under the null and alternative hypotheses for the
local-level model

Panel A: Null Panel B: Alternative hypotheses (5%)
hypothesis Student t asymmetric Student t

1% 5% 10% J Sf Sv J Sf Sv

Kt 1.15 5.15 10.07 56.63 25.12 13.82 90.53 53.15 33.40
HJ Sk 1.06 5.20 10.26 24.27 13.33 8.87 95.14 63.39 36.51

GH 1.19 5.02 10.33 48.81 21.71 12.22 95.64 64.17 39.28

Kt 1.14 5.23 10.69 47.35 29.64 7.80 83.55 59.20 16.38
HSf Sk 1.03 4.82 10.22 19.81 13.77 5.81 88.63 68.30 8.68

GH 1.22 5.17 9.94 42.65 26.21 7.24 90.45 69.28 15.45

Kt 1.03 4.72 9.93 40.70 11.13 18.34 82.43 26.60 41.91
HSv Sk 1.05 4.89 9.92 14.67 6.47 9.49 72.92 8.18 43.37

GH 1.04 4.70 9.84 35.77 9.94 15.97 84.85 22.82 47.82

Kt 1.08 5.37 10.30 55.48 25.49 11.25 89.72 54.63 27.29
Red Sk 1.17 4.99 10.04 22.31 13.11 6.83 94.90 63.05 16.58

GH 1.20 5.22 10.09 49.66 22.93 10.34 95.58 64.10 26.14

Kt 1.14 5.49 10.68 43.99 26.97 7.33 82.00 56.92 15.26
HKf Sk 1.04 4.83 10.19 19.82 13.75 5.79 88.67 68.30 8.73

GH 1.22 5.23 9.96 41.95 25.67 7.06 90.29 69.15 15.06

Kt 1.03 4.41 10.33 36.81 9.64 16.18 80.21 24.26 39.17
HKv Sk 1.05 4.89 9.99 14.66 6.51 9.49 72.91 8.19 43.38

GH 1.05 4.81 9.98 35.25 9.70 15.51 84.54 22.41 47.29

Notes: Results based on 10,000 samples of size T = 250 from the local-level model discussed in section
5.3 in which the signal-to-noise ratio q = σ2f/σ

2
v is set to 2. The column labels J , Sf , Sv refer to the

alternative εt ∼ GH(η, ψ,β) (i.e. R = 2), ft ∼ GH(η, ψ, β), vt ∼ N(0, 1) (R = 1) and vt ∼ GH(η, ψ, β),
ft ∼ N(0, 1) (R = 1), respectively. The row labels HJ , HSf , and HSv refer to the score tests in
Propositions 4 and 7 corresponding to the J , Sf , and Sv alternative hypotheses, Red denotes the reduced
form tests discussed in section 5.4.2, while HK denotes the original Harvey and Koopman (1992) tests
discussed in section 5.4.1. In Panel B, Student t refers to the DGP for the GH being symmetric Student
t with 8 degrees of freedom and, analogously, asymmetric Student t to the asymmetric Student t with
8 degrees of freedom and skewness vector β = −`R. For each of those labels, Kt and Sk refer to the
kurtosis and skewness components of the corresponding test statistics, while GH indicates the sum of the
two.
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Table 4: Monte Carlo rejection rates (in %) under null and alternative hypotheses for the
multivariate local-level model

Panel A: Null Panel B: Alternative hypotheses (5%)
hypothesis Student t asymmetric Student t

1% 5% 10% J Sf Sv J Sf Sv

Kt 0.91 4.79 9.51 100.00 13.63 100.00 100.00 34.12 100.00
HJ Sk 1.04 5.29 10.53 98.31 9.91 96.99 99.97 44.21 99.12

GH 1.17 4.91 10.46 100.00 10.24 100.00 100.00 45.78 100.00

Kt 0.96 5.16 10.20 67.44 64.58 4.98 84.78 86.99 8.44
HSf Sk 1.08 5.36 9.60 28.13 58.96 5.10 86.72 95.72 5.88

GH 0.95 5.60 10.14 62.40 59.98 5.44 90.96 95.81 7.95

Kt 0.67 5.05 9.83 100.00 5.35 100.00 100.00 5.34 100.00
HSv Sk 0.87 5.27 10.13 97.70 4.98 97.48 99.90 5.26 99.48

GH 0.93 5.33 10.06 100.00 4.90 100.00 100.00 5.29 100.00

Kt 0.95 4.86 9.45 100.00 14.48 100.00 100.00 36.05 100.00
Red Sk 1.10 5.18 10.23 98.18 10.84 96.63 99.93 46.46 98.15

GH 1.10 4.91 10.46 100.00 11.10 100.00 100.00 48.75 100.00

Notes: Results based on 10,000 samples of size T = 250 from a 10-variate version of the local-level model
with π = 0, c =`10 and γ = q−1`10, where q reflects the signal-to-noise ratio, which we set to 2. The
column labels J , Sf , Sv refer to the alternative εt ∼ GH(η, ψ,β) (i.e. R = 11), ft ∼ GH(η, ψ, β),
vt ∼ N(0, IN ) (R = 1) and vt ∼ GH(η, ψ,β), ft ∼ N(0, 1) (R = 10), respectively. The row labels
HJ , HSf , and HSv refer to the score tests in Propositions 4 and 7 corresponding to the J , Sf , and Sv
alternative hypotheses. In Panel B, Student t refers to the DGP for the GH being symmetric Student
t with 8 degrees of freedom and, analogously, asymmetric Student t to the asymmetric Student t with
8 degrees of freedom and skewness vector β = −`R. For each of those labels, Kt and Sk refer to the
kurtosis and skewness components of the corresponding test statistics, while GH indicates the sum of the
two.
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Table 5: Parameter estimates and normality tests during Great Moderation

Panel A: ML estimates
Param. estimate std. err.
µ 0.765 0.330
δ 0.181 0.040
ρx 0.536 0.105
ρεE -0.672 0.152
ρεI 0.940 0.036
σ2f 0.135 0.027
σ2vE 0.010 0.005
σ2vI 0.153 0.025

Panel B: Normality tests
statistic p-value

Kt 0.646 0.211
HSf Sk 1.540 0.215

GH 2.186 0.237

Kt 5.901 0.008
HSv Sk 7.914 0.019

GH 13.815 0.002

Kt 1.585 0.104
Red Sk 1.478 0.478

GH 3.063 0.299

Notes: Data: Quarterly real GDP and GDI from 1984Q3 to 2007Q2. Model: Bivariate cointegrated,
dynamic single factor model (16); see section 7 for parameter definitions. In Panel A, estimates are
Gaussian ML of the bivariate Gaussian likelihood of the stationary transformation ∆yEt + ∆yIt and
yEt − yIt in the time domain. Standard errors are obtained from the asymptotic information matrix,
which is computed using its frequency domain closed-form expression. In Panel B, the row labels HSf

and HSv refer to the score tests in Propositions 4 and 7 corresponding to the Sf (R = 1) and Sv (R = 2)
alternative hypotheses, respectively, while Red denotes the reduced form tests discussed in section 5.4.2.
For each of those labels, Kt and Sk refer to the kurtosis and skewness components of the corresponding
test statistics, while GH indicates the sum of the two.
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Table 6: Parameter estimates and normality tests during the Great moderation and the Great
Recession

Panel A: ML estimates
Param. estimate std. err.
µ 0.642 0.196
δ 0.033 0.036
ρx 0.643 0.080
ρεE -0.384 0.204
ρεI 0.938 0.032
σ2f 0.169 0.031
σ2vE 0.022 0.010
σ2vI 0.150 0.023

Panel B: Normality tests
statistic p-value

Kt 64.691 0.000
HSf Sk 22.542 0.000

GH 87.233 0.000

Kt 8.210 0.002
HSv Sk 4.398 0.111

GH 12.607 0.004

Kt 20.828 0.000
Red Sk 7.818 0.020

GH 28.645 0.000

Notes: Data: Quarterly real GDP and GDI from 1984Q3 to 2015Q2. Model: Bivariate cointegrated,
dynamic single factor model (16); see section 7 for parameter definitions. In Panel A, estimates are
Gaussian ML of the bivariate Gaussian likelihood of the stationary transformation ∆yEt + ∆yIt and
yEt − yIt in the time domain. Standard errors are obtained from the asymptotic information matrix,
which is computed using its frequency domain closed-form expression. In Panel B, the row labels HSf

and HSv refer to the score tests in Propositions 4 and 7 corresponding to the Sf (R = 1) and Sv (R = 2)
alternative hypotheses, respectively, while Red denotes the reduced form tests discussed in section 5.4.2.
For each of those labels, Kt and Sk refer to the kurtosis and skewness components of the corresponding
test statistics, while GH indicates the sum of the two.

38



Figure 1: Linear projection versus conditional expectation in a non-Gaussian univariate

static factor model
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Notes: The observed variable is yt = 1
2xt +

√
3
2 εt. We assume that the joint distribution of xt and εt

is asymmetric Student t with zero mean, identity covariance matrix, 8 degrees of freedom and skewness
vector parameter b = (−1, 0)′. Given that the joint distribution of yt and xt will also be an asymmetric
Student t, we can use the expressions in Mencía (2012) to compute the conditional expectation of xt
given yt.

39



Figure 2: Expenditure (GDP) and income (GDI) measures of real output

Figure 2a: Quarterly real (log) GDP and (log) GDI
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Figure 2b: Quarterly real GDP and GDI growth
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Figure 2c: Statistical discrepancy
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Notes: Data: Quarterly real GDP and GDI from 1984Q3 to 2015Q2. Statistical discrepancy is defined
as log(GDP )− log(GDI). Shaded areas represent NBER recessions.
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Figure 3: Smoothed innovations and influence functions for the kurtosis and skewness tests:
Sample 1984Q3 to 2007Q2.

Figure 3a: Smoothed innovations Figure 3b: Smoothed innovations
for the underlying factor for the measurement errors
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Figure 3c: Influence functions Figure 3d: Influence functions
for the underlying factor (kurtosis) for the measurement errors (kurtosis)
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Figure 3e: Influence functions Figure 3f: Influence functions
for the underlying factor (skewness) for the measurement errors (skewness)
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Notes: Smoothed innovations and influence functions were obtained from fitting the bivariate coin-
tegrated, dynamic single factor model (16) to the quarterly real GDP and GDI from 1984Q3 to 2007Q2;
see Table 4 for parameter estimates. Shaded areas represent NBER recessions.
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Figure 4: GDP, GDI and smoothed estimate of real output around the Great Recession
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Notes: The smoothed estimate xt|T was obtained from fitting the bivariate cointegrated, dynamic
single factor model (16) to the quarterly real GDP and GDI from 1984Q3 to 2015Q2; see Table 5 for
parameter estimates. The shaded area represents the NBER recession.
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Figure 5: Smoothed innovations and influence functions for the kurtosis and skewness tests:
Sample 1984Q3 to 2015Q2.

Figure 5a: Smoothed innovations Figure 5b: Smoothed innovations
for the underlying factor for the measurement errors
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Figure 5c: Influence functions Figure 5d: Influence functions
for the underlying factor (kurtosis) for the measurement errors (kurtosis)

1985 1990 1995 2000 2005 2010 2015
0

10

20

30

40

50

60
sf

k ,t|T

1985 1990 1995 2000 2005 2010 2015
0

10

20

30

40

50

60
sv

k ,t|T

Figure 5e: Influence functions Figure 5f: Influence functions
for the underlying factor (skewness) for the measurement errors (skewness)
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Notes: Smoothed innovations and influence functions were obtained from fitting the bivariate coin-
tegrated, dynamic single factor model (16) to the quarterly real GDP and GDI from 1984Q3 to 2015Q2;
see Table 5 for parameter estimates. Shaded areas represent NBER recessions.
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Figure 6: Posterior densities of shape parameters under the asymmetric Student t alternative

Figure 6a: η, 1984Q3 to 2007Q2 Figure 6b: η, 1984Q3 to 2015Q2
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Figure 6c: βx, 1984Q3 to 2007Q2 Figure 6d: βx, 1984Q3 to 2015Q2
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Figure 6e: βvE , 1984Q3 to 2007Q2 Figure 6f: βvE , 1984Q3 to 2015Q2
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Figure 6g: βvI , 1984Q3 to 2007Q2 Figure 6h: βvI , 1984Q3 to 2015Q2
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Notes: Data: Quarterly real GDP and GDI from 1984Q3 to 2007Q2 (2015Q2) in left (right) panels.
Model: Bivariate cointegrated, dynamic single factor model (16) with multivariate asymmetric Student t
innovations; see Section 7 for parameter definitions. η refers to the reciprocal of degrees of freedom while
βx (βvE ) [βvI ] refers to the skewness parameter of the “true GDP”(expenditure) [income] measure. Solid
vertical lines refer to the median values while dashed lines report the 2.5% and 97.5% quantiles.
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Figure 7: Smoothed “true GDP”growth under Gaussian and asymmetric Student t innova-
tions

Figure 7a: Posterior median of ∆xt|T
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Figure 7b: Posterior 95% error bands for ∆xt|T
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Notes: Data: Quarterly real GDP and GDI from 1984Q3 to 2015Q2. Model: Bivariate cointegrated,
dynamic single factor model (16) with multivariate asymmetric Student t innovations; see Section 7 for
parameter definitions. Results are based on 25,000 draws from the posterior simulator. Error bands refer
to the 2.5% and 97.5% quantiles from which the median values where substracted.
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A Proofs

Lemmata

Lemma 1 Let z ∼ N(µ,Σ) be an nz-dimensional real Gaussian random vector. Then,

i) Expectation of second powers:

E(zz′) = µµ′ + Σ,

ii) Expectation of third powers:

E[z(z� z)′] = µ(µ� µ)′ + 2(Σ� `nzµ′) + µvecd′(Σ),

iii) Expectation of fourth powers:

E
[
(z� z)(z� z)′

]
= (µ� µ)(µ� µ)′ + 2(Σ�Σ) + vecd(Σ)vecd′(Σ)

+ 4(Σ� µµ′) + vecd(µµ′)vecd′(Σ) + vecd(Σ)vecd′(µµ′),

where � denotes the Hadamard (or elementwise) product, vecd(·) is the operator which stacks
the diagonal elements of a square matrix in vector form and `nz is a vector of nz ones.

Proof. The proof is tedious but straightforward. �

Lemma 2 Define mh : Rn1 × Rn2 → Rn1×n2 for n1, n2 ∈ Z++ and h ∈ {2, 3, 4} as

m2(w1,w2) = vec(w1w
′
2),

m3(w1,w2) = vec[w1(w2 �w2)
′],

m4(w1,w2) = vec[(w1 �w1)(w2 �w2)
′],

where w1 ∈ Rn1, w2 ∈ Rn2, and vec(·) is the vectorization (by columns) operator. Consider the
real Gaussian random vector x

y
z

 ∼ N
 µx

µy
µz

 ,

 Σxx Σxy Σxz

Σ′xy Σyy Σyz

Σ′xz Σ′yz Σzz


where x is nx-dimensional, y is ny-dimensional, and z is nz-dimensional. Then,

i) Covariance with the first power:

cov [x,m2(y, z)] = 0,

cov [x,m3(y, z)] = 2
[
`nx ⊗ vec′(Σyz)

]
� (Σxz ⊗ `′ny)

+
[
vecd′(Σzz)⊗ 1nx×ny

]
�
(
`′nz ⊗Σxy

)
,

cov [x,m4(y, z)] = 0,

ii) Covariance with the second power:

cov [m2(x,x),m2(y, z)] = (1nx×nz ⊗Σxy)�
(
Σxz ⊗ 1nx×ny

)
+ (`nx ⊗Σxz ⊗ `′ny)�

(
`′nx ⊗Σxy ⊗ `nz

)
,

cov [m2(x,x),m3(y, z)] = 0,

1



cov [m2(x,x),m4(y, z)] = 4
[
`n2x ⊗ vec

′(Σyz)
]
� cov [m2(x,x),m2(y, z)]

+2
[
`n2x ⊗ `

′
nz ⊗ vecd

′(Σyy)
]
� (`nx ⊗Σxz ⊗ `′ny)�

(
Σxz ⊗ 1nx×ny

)
+2[`n2x ⊗ vecd

′(Σzz)⊗ `′ny ]� (1nx×nz ⊗Σxy)� (`′ny ⊗Σxy ⊗ `nx),

iii) Covariance with the third power:

cov [m3(x,x),m3(y, z)] = [vecd(Σxx)⊗ `nx ⊗ `′nynz ]� {`nx ⊗ cov [x,m3(y, z)]}

+2 (1nx×nz ⊗Σxy)�
[
(Σxz �Σxz)⊗ 1nx×ny

]
+2[vec(Σxx)⊗ `′nynz ]� [`n2x ⊗ vecd

′(Σzz)⊗ `′ny ]� (`′ny ⊗Σxy ⊗ `nx)

+4[vec(Σxx)⊗ `′nynz ]�
[
`n2x ⊗ vec

′(Σyz)
]
�
(
Σxz ⊗ 1nx×ny

)
+4(`nx ⊗Σxz ⊗ `′ny)�

(
`′nz ⊗Σxy ⊗ `nx

)
�
(
Σxz ⊗ 1nx×ny

)
,

cov [m3(x,x),m4(y, z)] = 0,

iv) Covariance with the fourth power:

cov [m4(x,x),m4(y, z)] = 4cov [m2(x,x),m2(y, z)]� cov [m2(x,x),m2(y, z)]

+4[vec(Σxx)⊗ `′nynz ]� cov [m2(x,x),m4(y, z)]

+2[`nx ⊗ vecd(Σxx)⊗ `′nynz ]�
[
`n2x ⊗ `nz ⊗ vecd

′(Σyy)
]
�
(
Σxz ⊗ 1nx×ny

)
�
(
Σxz ⊗ 1nx×ny

)
+2[`nx ⊗ vecd(Σxx)⊗ `′nynz ]�

[
`n2x ⊗ vecd

′(Σzz ⊗ `ny)
]
�
(
`′nz ⊗Σxy ⊗ `nx

)
�
(
`′nz ⊗Σxy ⊗ `nx

)
+2[vecd(Σxx)⊗ `nx ⊗ `′nynz ]�

[
`n2x ⊗ `nz ⊗ vecd

′(Σyy)
]
� (`nx ⊗Σxz ⊗ `′ny)� (`nx ⊗Σxz ⊗ `′ny)

+2[vecd(Σxx)⊗ `nx ⊗ `′nynz ]�
[
`n2x ⊗ vecd

′(Σzz ⊗ `ny)
]
� (1nx×nz ⊗Σxy)� (1nx×nz ⊗Σxy)

+8[`nx ⊗ vecd(Σxx)⊗ `′nynz ]�
[
`n2x ⊗ vec

′(Σyz)
]
�
(
`′nz ⊗Σxy ⊗ `nx

)
�
(
Σxz ⊗ 1nx×ny

)
+8[vecd(Σxx)⊗ `nx ⊗ `′nynz ]�

[
`n2x ⊗ vec

′(Σyz)
]
� (1nx×nz ⊗Σxy)� (`nx ⊗Σxz ⊗ `′ny)

+8 (Σxy ⊗ 1nx×nz)�
(
1nx×ny ⊗Σxz

)
�
(
`′nz ⊗Σxy ⊗ `nx

)
� (`nx ⊗Σxz ⊗ `′ny),

where ⊗ denotes Kronecker product and 1n1×n2 denotes a matrix of ones of dimension n1 × n2.

Proof. Again, the proof is tedious but straightforward. �

Lemma 3 Consider the model (1)-(2) where εt = (εGH′t , εN′t )′, with εGHt ∼ GHR(η, ψ,β) and

εNt ∼ N(0; IK−R). Let ςGHt = εGHt
′εGHt and

skt = c0 + c1ς
GH
t + c2(ς

GH
t )2,

sst = εGHt (c3 + ςGHt ),

sGHt = skt + β′sst,

where c0 = R(R+ 2)/4, c1 = −(R+ 2)/2, c2 = 1/4, and c3 = −(R+ 2). Then,

i) For any β ∈ RR and ψ > 0,

lim
η→0+

1

T

∂ ln f(YT ,ET |φ)

∂η
= − lim

η→0−
1

T

∂ ln f(YT ,ET |φ)

∂η
=

1

T

T∑
t=1

sGHt, and

lim
η→0±

1

T

∂ ln f(YT ,ET |φ)

∂ψ
= 0.
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ii) For any β ∈ RR and η ∈ R,

lim
ψ→0+

1

T

∂ ln f(YT ,ET |φ)

∂η
= 0, and lim

ψ→0+
2

T

∂ ln f(YT ,ET |φ)

∂ψ
=

1

T

T∑
t=1

sGHt.

Proof. See Mencía and Sentana (2012). �

Lemma 4 Consider the model (1)-(2) where {εt}∞t=−∞ is white noise with identity covariance

matrix. Further, assume that all the eigenvalues of F are inside the unit circle. If we observe

the double-infinite sequence Y∞ = {yt}∞t=−∞, then the linear projection(
ξ̂t−1|∞
ε̂t|∞

)
= P

[(
ξt−1
εt

)∣∣∣∣Y∞] =

[
Ψ(L)
Υ(L)

]
yt,

where Ψ and Υ are absolutely summable two-sided filters in the lag operator L, will be given by[
Ψ(z)
Υ(z)

]
=

[
zF−1(z)M

IK

]
D′(z−1)

[
D(z)D′(z−1)

]−1
,

where

F−1(L) = (IM − FL)−1 =

∞∑
j=0

FjLj and D(L) = HF−1(L)M =

∞∑
j=0

DjL
j

with Dj = HFjM for all j.

Proof. Given that yt = D(L)εt, the joint autocovariance generating function for (y′t, ε
′
t)
′ is

easily seen to be

G(z) =

[
Gyy(z) Gyε(z)
Gεy(z) Gεε(z)

]
=

[
D(z)D′(z−1) D(z)

D′(z−1) IK

]
for any z ∈ C. The Wiener-Kolmogorov filter for εt is given by

ε̂t|∞ = Gεy(L)G−1yy (L)yt = D′(L−1)
[
D(L)D′(L−1)

]−1
yt

It is then easily checked that for every t, ε̂t|∞ is well-defined as a mean-square limit under the

assumptions of the Lemma. Moreover, because

ξt−1 = LF−1(L)Mεt,

the filter for ξt−1 follows from the filter for εt, so it is also well-defined. �

Lemma 5 Consider the model (1)-(2). The score of the asymmetric GH with respect to the

parameter τ when τ = 0 for fixed values of the skewness parameters β is given by

s̄GHT (θ,β) =
1

T

T∑
t=1

[
skt|T (θ) + β′sst|T (θ)

]
,

skt|T (θ) = b′kt|T (θ)mkt|T (θ),

sst|T (θ) = b′st|T (θ)mst|T (θ),
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where

mkt|T (θ) =

 1
m2t|T (θ)

m4t|T (θ)

 , bkt|T (θ) =

b0t|T (θ)

b2t|T (θ)

b4t|T (θ)

 ,

mst|T (θ) =

(
m1t|T (θ)

m3t|T (θ)

)
, bst|T (θ) =

(
b1t|T (θ)

b3t|T (θ)

)
,

b0t|T (θ) = c0 + {c1 + c2tr[Ω
GH
t|T (θ)]}tr[ΩGH

t|T (θ)] + 2c2tr{[ΩGH
t|T (θ)]2},

b1t|T (θ) = [c3 + tr(ΩGH
t|T (θ)]S′RK + 2S′RKΩGH

t|T (θ),

b2t|T (θ) = {c1 + 2c2tr[Ω
GH
t|T (θ)]}

(
S′RK ⊗ S′RK

)
vec(IR) + 4c2

(
S′RK ⊗ S′RK

)
vec[ΩGH

t|T (θ)],

b3t|T (θ) = S′RK`R ⊗ S′RK ,

b4t|T (θ) = c2
(
S′RK ⊗ S′RK

)
`R2 ,

with c0 = R(R+ 2)/4, c1 = −(R+ 2)/2, c2 = 1/4, c3 = −(R+ 2) and `H a vector of H ones.

Proof. From Lemma 3, we can obtain the expression for the score with respect to τ for a fixed

value of the skewness parameter vector β, sGHt = skt + β′sst, which corresponds to the M-step

of the EM algorithm. Next, we can apply the E-step to each of the components separately.

As for skt, we have that εt|YT ,θ ∼ N [εt|T (θ),Ωt|T (θ)] under the null of normality, so that

skt|T (θ) = c0 + c1E
[
ςGHt

∣∣YT ,θ
]

+ c2E
[
(ςGHt )2

∣∣YT ,θ
]

involves the computation of E [ ςt|YT ,θ] and E
[
ς2t
∣∣YT ,θ

]
. To compute the first expectation,

we can write

E
[
ςGHt

∣∣YT

]
= E

[
εGH′t εGHt

∣∣YT ,θ
]

= tr
{
E
[
εGHt εGH′t |YT ,θ

]}
= tr[ΩGH

t|T (θ)] + vec(IR)′vec[εGHt|T (θ)εGHt|T (θ)′],

where the first equality follows from the fact that tr(A′B) = tr(BA′), and the second one from

Lemma 1.i. As for the second expectation,

E
[
(ςGHt )2 |YT ,θ

]
= E{

[
εGHt � εGHt

]′
1R×R

[
εGHt � εGHt

]
|YT ,θ}

= tr[1R×RE{
[
εGHt � εGHt

] [
εGHt � εGHt

]′ |YT ,θ}]

= 2`′R2vec[Ω
GH
t|T (θ)�ΩGH

t|T (θ)]

+ `′R2vec{vecd[ΩGH
t|T (θ)]vecd[ΩGH

t|T (θ)]′}

+ 4`′R2vec[Ω
GH
t|T (θ)� εGHt|T (θ)εGHt|T (θ)′]

+ `′R2vec{vecd[(ΩGH
t|T (θ)]vecd′[εGHt|T (θ)εGHt|T (θ)′]}

+ `′R2vec{vecd[εGHt|T (θ)εGHt|T (θ)′]vecd′[ΩGH
t|T (θ)]}

+ `′R2vec{[ε
GH
t|T (θ)� εGHt|T (θ)][εGHt|T (θ)� εGHt|T (θ)]′},
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where the first equality is a rewriting of (ςGHt )2, the second one follows from the aforementioned

property of the trace, and the third one from Lemma 1.iii. Finally, to obtain the expression for

sk,t|T (θ), we have made use of the following identities:

`′R2vec[Ω
GH
t|T (θ)�ΩGH

t|T (θ)] = vec′[ΩGH
t|T (θ)]vec[ΩGH

t|T (θ)]

= tr[ΩGH
t|T (θ)ΩGH

t|T (θ)] = tr{[ΩGH
t|T (θ)]2}

`′R2vec{vecd[ΩGH
t|T (θ)]vecd′[ΩGH

t|T (θ)]} = tr2[ΩGH
t|T (θ)]

`′R2vec{Ω
GH
t|T (θ)� [εGHt|T (θ)εGHt|T (θ)′]} = vec′[ΩGH

t|T (θ)]vec[εGHt|T (θ)εGHt|T (θ)′]

`′R2vec{vecd[ΩGH
t|T (θ)]vecd′[εGHt|T (θ)εGHt|T (θ)′]} = tr[ΩGH

t|T (θ)]vec′(IR)vec[εGHt|T (θ)εGHt|T (θ)′],

together with

vec[εGHt|T (θ)εGHt|T (θ)′] = (SRK ⊗ SRK) m2,t|T (θ)

vec{[εGHt|T (θ)� εGHt|T (θ)][εGHt|T (θ)� εGHt|T (θ)]′} = (SRK ⊗ SRK) m4,t|T (θ).

Similarly, in order to compute

sst|T (θ) = c3E
[
εGHt |YT ,θ

]
+ E

[
εGHt ςGHt |YT ,θ

]
,

we need the expectation of the first component, which is trivially E
[
εGHt |YT ,θ

]
= εGHt|T (θ). We

also need

E
[
εGHt ςt |YT ,θ

]
= E[εGHt (εGHt � εGHt )′ |YT ,θ ]`R

= 2ΩGH
t|T (θ)εGHt|T (θ) + tr[ΩGH

t|T (θ)]εGHt|T (θ)

+ εGHt|T (θ)[εGHt|T (θ)� εGHt|T (θ)]′`R,

where we have used the fact that ςGHt =
[
εGHt � εGHt

]′
`R in the first equality, and applied

Lemma 1.ii. in the last one. Finally, we obtain the desired result by exploiting the fact that

vec{εGHt|T (θ)[εGHt|T (θ)� εGHt|T (θ)]′} = (SRK ⊗ SRK) m3,t|T (θ),

after re-arranging terms. �

Lemma 6 Let

κi(θ) =

∞∑
j=−∞

cov[mit(θ),mit−j(θ)],

denote the autocovariance generating function of mit(θ) evaluated at one. Then,

i) The asymptotic variance of s̄kT (θ) is given by

Ck(θ) = b′4(θ)κ4(θ)b′4(θ)− b′2(θ)κ2(θ)b′2(θ).

ii) The asymptotic variance of s̄sT (θ) is given by

Cs|∞(θ) = b′3(θ)κ3(θ)b′3(θ)− b′1(θ)κ1(θ)b′1(θ),

iii)
√
T s̄kT (θ) and

√
T s̄sT (θ) are asymptotically independent.
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Proof. Following the same steps as in Lemma 5, but conditioning on Y∞ instead of YT , we

can obtain skt|∞(θ) = E [skt(θ) |Y∞,θ ] and sst|∞(θ) = E [sst(θ) |Y∞,θ ]. Specifically, we can

write [
skt|∞(θ)− b0(θ)

sst|∞(θ)

]
= B′(θ)mt(θ) where B(θ) =


0 b1(θ)

b2(θ) 0
0 b3(θ)

b4(θ) 0

 ,
and mt(θ) = [m1t(θ),m2t|(θ),m3t(θ),m4t(θ)]′, where

b0(θ) = c0 + {c1 + tr[ΩGH
∞ (θ)]c2}tr[ΩGH

∞ (θ)] + 2c2tr{[ΩGH
∞ (θ)]2},

b1(θ) = {c3 + tr[ΩGH
∞ (θ)]}S′RK + 2S′RKΩGH

∞ (θ),

b2(θ) = {c1 + 2tr[ΩGH
∞ (θ)]c2}(S′RK ⊗ S′RK)vec(IR) + 4c2(S

′
RK ⊗ S′RK)vec[ΩGH

∞ (θ)],

b3(θ) = S′RK`R ⊗ S′RK ,

b4(θ) = c2
[
S′RK ⊗ S′RK

]
`R2 ,

with ΩGH
∞ (θ) = SRKΩ∞(θ)S′RK and

m1t(θ) = εGHt|∞(θ),

m2t(θ) = vec[εGHt|∞(θ)εGHt|∞(θ)′],

m3t(θ) = vec{εGHt|∞(θ)[εGHt|∞(θ)� εGHt|∞(θ)]′},

m4t(θ) = vec{[εGHt|∞(θ)� εGHt|∞(θ)][εGHt|∞(θ)� εGHt|∞(θ)]′}.

Next, we can use Lemma 4 to obtain Γj = E[εGHt|∞(θ)εGHt−j|∞(θ)′], which corresponds to the jth

order autocovariance matrix of the Wiener-Kolmogorov filter for εt based on Y∞ for any integer

j. Further, we can apply Lemma 2 to obtain:

i) Covariance matrices with the first power:

cov [m1t(θ),m2t−j(θ)] = 0, (A1)

cov [m1t(θ),m3t−j(θ)] = 2
[
`K ⊗ vec′(Γ0)

]
�
(
Γj ⊗ `′K

)
+
[
vecd′(Γ0)⊗ 1K×K

]
�
(
`′K ⊗ Γj

)
, (A2)

cov [m1t(θ),m4t−j(θ)] = 0, (A3)

ii) Covariance matrices with the second power:

cov [m2t(θ),m2t−j(θ)] = (1K×K ⊗ Γj)� (Γj ⊗ 1K×K)

+
(
`K ⊗ Γj ⊗ `′K

)
�
(
`′K ⊗ Γj ⊗ `K

)
,

cov [m2t(θ),m3t−j(θ)] = 0, (A4)

cov [m2t(θ),m4t−j(θ)] = 4
[
`K2 ⊗ vec′(Γ0)

]
� cov [m2t(θ),m2t−j(θ)]

+2
[
`K2 ⊗ `′K ⊗ vecd′(Γ0)

]
�
(
`K ⊗ Γj ⊗ `′K

)
� (Γj ⊗ 1K×K)

+2
[
`K2 ⊗ vecd′(Γ0)⊗ `′K

]
� (1K×K ⊗ Γj)�

(
`′K ⊗ Γj ⊗ `K

)
, (A5)
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iii) Covariance matrices with the third power:

cov [m3t(θ),m3t−j(θ)] = [vecd(Γ0)⊗ `K ⊗ `′K2 ]� {`K ⊗ cov [m1t(θ),m3t−j(θ)]}

+2 (1K×K ⊗ Γj)� [(Γj � Γj)⊗ 1K×K ]

+2[vec(Γ0)⊗ `′K2 ]� [`K2 ⊗ vecd′(Γ0)⊗ `′K ]� (`′K ⊗ Γj ⊗ `K)

+4[vec(Γ0)⊗ `′K2 ]� [`K2 ⊗ vec′(Γ0)]� (Γj ⊗ 1K×K)

+4(`K ⊗ Γj ⊗ `′K)� (`′K ⊗ Γj ⊗ `K)� (Γj ⊗ 1K×K) ,

cov [m3t(θ),m4t−j(θ)] = 0, (A6)

iv) Covariance matrix of the fourth power:

cov [m4t(θ),m4t−j(θ)] = 4cov [m2t(θ),m2t−j(θ)]� cov [m2t(θ),m2t−j(θ)]

+4[vec(Γ0)⊗ `′K2 ]� cov [m2t(θ),m4t−j(θ)]

+2[`K ⊗ vecd(Γ0)⊗ `′K2 ]�
[
`K2 ⊗ `K ⊗ vecd′(Γ0)

]
� (Γj ⊗ 1K×K)� (Γj ⊗ 1K×K)

+2[`K ⊗ vecd(Γ0)⊗ `′K2 ]�
[
`K2 ⊗ vecd′(Γ0 ⊗ `K)

]
�
(
`′K ⊗ Γj ⊗ `K

)
�
(
`′K ⊗ Γj ⊗ `K

)
+2[vecd(Γ0)⊗ `K ⊗ `′K2 ]�

[
`K2 ⊗ `K ⊗ vecd′(Γ0)

]
�
(
`K ⊗ Γj ⊗ `′K

)
�
(
`K ⊗ Γj ⊗ `′K

)
+2[vecd(Γ0)⊗ `K ⊗ `′K2 ]�

[
`K2 ⊗ vecd′(Γ0 ⊗ `K)

]
� (1K×K ⊗ Γj)� (1K×K ⊗ Γj)

+8[`K ⊗ vecd(Γ0)⊗ `′K2 ]�
[
`K2 ⊗ vec′(Γ0)

]
�
(
`′K ⊗ Γj ⊗ `K

)
� (Γj ⊗ 1K×K)

+8[vecd(Γ0)⊗ `K ⊗ `′K2 ]�
[
`K2 ⊗ vec′(Γ0)

]
� (1K×K ⊗ Γj)�

(
`K ⊗ Γj ⊗ `′K

)
+8 (Γj ⊗ 1K×K)� (1K×K ⊗ Γj)�

(
`′K ⊗ Γj ⊗ `K

)
�
(
`K ⊗ Γj ⊗ `′K

)
.

Then, we can show the asymptotic independence of the kurtosis and skewness components by

noticing that

cov
[
sst|∞(θ), skt−j|∞(θ)

]
= b′1cov [m1t(θ),m2t−j(θ)] b2

+ b′1cov [m1t(θ),m4t−j(θ)] b4

+ b′3cov [m3t(θ),m2t−j(θ)] b2

+ b′3cov [m3t(θ),m4t−j(θ)] b4

= 0,

where the last equality follows from (A1), (A3), (A4) and (A6). Moreover, we can simplify even

further the relevant expressions by exploiting the cancellation of cross-terms within the variance

formulas,

cov [m1t(θ), sst−j(θ)] = 0, and cov
[
m2t(θ), skt−j|∞(θ)

]
= 0. (A7)

For the sake of brevity, we prove the above equalities for the case when R = K; the proof for

the case R < K is similar, but more tedious.

To show the first equality in (A7), notice that for any j, we obtain

cov [m1t(θ),m1t−j(θ)] b1 = − [2ΓjΓ0 + tr(Γ0)Γj ]
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because Ω∞ = IK − Γ0 and b1 = −tr(Γ0)IK − Γ0. The remaining part follows from exploiting

the following equalities:

ΓjΓ0 =
{[
`K ⊗ vec′(Γ0)

]
�
(
Γj ⊗ `′K

)}
(`K ⊗ IK) (A8)

and

tr(Γ0)Γj =
{[
vecd′(Γ0)⊗ 1K×K

]
�
(
`′K ⊗ Γj

)}
(`K ⊗ IK). (A9)

For instance, to show (A8), define

TK =
[
e1e
′
1 . . . eKe′K

]
,

with (e1| . . . |eK) = IK , as the unique K ×K2 “diagonalization”matrix that transforms vec(A)

into vecd(A) as vecd(A) = T′Kvec(A) (see Magnus (1988)). Similarly, let

TK2 =
[
(e1e

′
1 ⊗ e1e

′
1) (e1e

′
2 ⊗ e1e

′
2) . . . (eKe′K−1 ⊗ eKe′K−1) (eKe′K ⊗ eKe′K)

]
,

which is K2 ×K4. Some straightforward algebra delivers the following key identities:

e′iTK = (ei ⊗ ei)
′,

(ei ⊗ ei)
′TK2 = (ei ⊗ ei ⊗ ei ⊗ ei)

′,

T′K2(`K ⊗ IK)ei = (IK ⊗ ei ⊗ IK ⊗ ei)vec(IK),

T′K2`K2 = vec(IK2),

for all i = 1, . . . ,K. Moreover, TK and TK2 have the important property that

(A�B) = TK(A⊗B)T′K2

for any pair of K×K2 matrices A and B. As a consequence, we have that for any pair of indices

i1, i2 = 1, . . . ,K,

e′i1{[`K ⊗ vec
′(Γ0)]� (Γj ⊗ `′K)}(`K ⊗ IK)ei2 = e′i1TK{[`K ⊗ vec′(Γ0)]⊗ (Γj ⊗ `′K)}

×T′K2(`K ⊗ IK)ei2

= (ei1 ⊗ ei1)
′{[`K ⊗ vec′(Γ0)]⊗ (Γj ⊗ `′K)} × (IK ⊗ ei2 ⊗ IK ⊗ ei2)vec(IK)

= {e′i1 [`K ⊗ vec
′(Γ0)](IK ⊗ ei2)⊗ e′i1(Γj ⊗ `

′
K)(IK ⊗ ei2)} × vec(IK)

= (e′i2Γ0 ⊗ e′i1Γj)vec(IK) = e′i1ΓjΓ0ei2 .

But since i1, i2 are arbitrary, we can conclude that (A8) holds. Analogous calculations allow us

to show (A9). Therefore (A8) and (A9), together with the fact that b3 = `K ⊗ IK and (A2),

imply that

cov
[
m1t(θ), sst−j|∞(θ)

]
= cov[m1t(θ),m′1t(θ)]b′1 + cov[m1t(θ),m′3t(θ)]b′3 = 0.
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As for the second equality in (A7), again given that Ω∞ = IK − Γ0 and

b2 = −1

2
tr(Γ0)vec(IK)− vec(Γ0),

we can then use the same tedious but straightforward arguments as before to show that

cov [m2t(θ),m2t−j(θ)] vec(Γ0) = {[`K2 ⊗ vec′(Γ0)]� cov [m2t(θ),m2t−j(θ)]}`K2 ,

tr(Γ0)cov [m2t(θ),m2t−j(θ)] vec(IK) = {
[
`K2 ⊗ `′K ⊗ vecd′(Γ0)

]
�
(
`K ⊗ Γj ⊗ `′K

)
� (Γj ⊗ 1K×K)}`K2 + {[`K2 ⊗ vecd′(Γ0)⊗ `′K ]� (1K×K ⊗ Γj)� `′K ⊗ Γj ⊗ `K)}`K2 ,

which, together with the fact that b4 = `K2/4 and (A5), imply that

cov
[
m2t(θ), skt−j|∞(θ)

]
= cov

[
m2t(θ),m′2t(θ)

]
b′2 + cov

[
m2t(θ),m′4t(θ)

]
b′4 = 0,

as desired. This allows us to write

lim
T→∞

V

[√
T s̄kT (θ)√
T s̄sT (θ)

]
=

[
Ck(θ) 0

0 Cs(θ)

]
where the expressions for Ck(θ) and Cs(θ) can be found in the statement of the Lemma. �

Lemma 7 Let s̄MVT (θ) denote the Gaussian ML score with respect to the conditional mean and

variance parameters θ. Then,

i) lim
T→∞

cov[
√
T s̄MVT (θ),

√
T s̄kT (θ)|θ] = 0,

ii) lim
T→∞

cov[
√
T s̄MVT (θ),

√
T s̄sT (θ)|θ] = 0.

Proof. As shown in Mencía and Sentana (2012), the score of the latent model with respect to

the mean-variance parameter vector θ converges to the Gaussian score as we approach the null

hypothesis along any of the possible directions through which the GH distribution approaches

Gaussianity. This observation combined with the EM principle provides a very convenient way

of studying explicitly the score with respect to θ. For ease of exposition assume ξ0 = 0. Then,

YT = [`T ⊗ π(θ)] + [IT ⊗H(θ)]{IMT − [CT ⊗ F(θ)]}−1[IT ⊗M(θ)]ET

≡ ΠT (θ) + DT (θ)ET .

where we have defined

CT ≡
[
0 IT−1
0 0

]
,

ΠT (θ) ≡ `T ⊗ π(θ),

and

DT (θ) ≡ [IT ⊗H(θ)]{IMT − [CT ⊗ F(θ)]}−1[IT ⊗M(θ)]. (A10)

Under our assumption that no linear combination of YT has zero variance, the matrix DT (θ)

has full row-rank. Let D∗T (θ) be a (K −N)T ×KT matrix of differentiable functions such that

D̃T (θ) = [D′T (θ), (D∗T (θ))′]′ (A11)
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is non-singular. Let Π̃T (θ) = [Π′T (θ),0′]′ and define

ỸT ≡ Π̃T (θ) + D̃T (θ)ET .

This reasoning delivers the following alternative state space representation under the null,

YT = SNT,KT ỸT , with ỸT ∼ N [Π̃T (θ), D̃′T (θ)D̃T (θ)].

We now apply the EM principle to the previous representation noting that the measurement

equation contains no unknown parameters. The score of the latent model is

∂ ln fỸ(ỸT |θ)

∂θ
=
∂Π̃′T (θ)

∂θ
D̃T (θ)ET +

1

2

∂vec′[D̃′T (θ)D̃T (θ)]

∂θ
[D̃′T (θ)⊗ D̃′T (θ)]vec

(
ETE′T − IKT

)
,

≡ bMV1,T (θ)ET + bMV2,T (θ)vec
(
ETE′T − IKT

)
.

where we have used ET = D̃−1T (θ)[ỸT − Π̃T (θ)], with bMV1,T (θ) and bMV2,T (θ) defined in the

obvious way. Smoothing the score above we obtain

s̄MVT (θ) ≡ 1

T

∂ ln fY(YT |θ)

∂θ

=
1

T
bMV1,T (θ)E[ET |YT ,θ] +

1

T
bMV2,T (θ)vec{E[ETE′T |YT ,θ]− IKT }.

But since

E[ETE′T |YT ,θ] = V [ET |YT ,θ] + E[ET |YT ,θ]E[E′T |YT ,θ]

and V [ET |YT ,θ] does not depend on YT , it is clear that s̄MVT (θ) is a linear combination of

ET |T (θ) ≡ E[ET |YT ,θ] and vec[ET |T (θ)E′T |T (θ)] (with coeffi cients possibly varying with T ). If

we then replace Kalman smoothed variables by their Wiener-Kolmogorov counterparts and the

coeffi cients of the linear combination by their limits as T →∞, we obtain

s̄MVT (θ) = bMV0(θ) + bMV1(θ)′
1

T

T∑
t=1

εt|∞(θ)

+

T−1∑
`=0

{
bMV2(θ)′

1

T

T∑
t=`+1

vec
[
εt|∞(θ)ε′t−`|∞(θ)

]}
.

The rest of the proof follows from (A7) and from the fact that

cov{vec[εt|∞(θ)ε′t−`|∞(θ)], sst−j(θ)} = 0 and cov{vec[εt|∞(θ)ε′t−`|∞(θ)], skt−j(θ)} = 0,

which can be established by an argument analogous to that of (A7). �

Proposition 1

To simplify the exposition, we focus on the case where θ is fixed and known, so that and

the task is to derive the scores with respect to the shape parameters ϕ only. We further assume
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that ξ0 = 0 and π(θ) = 0. These assumptions are not essential to the argument and may be

removed at the cost of more notation. We can then write

YT = DT (θ)ET ,

where DT (θ) is given in (A10). Note the (NT × KT ) matrix DT (θ) does not depend on ϕ,

although it depends on θ. Notice also that fE(ET |ϕ) is continuous in ET and differentiable in

ϕ by construction because of the properties of the GH distribution D(0, IK ,ϕ). Given that we

are assuming N ≤ K, we require the additional assumption that DT (θ) has full row rank. As

in Lemma 7, we define D∗T (θ) such that (A11) is invertible. Similarly, we define the random

vector Y∗T = D∗T (θ)ET . Hence,

ỸT ≡
[
YT

Y∗T

]
= D̃T (θ)ET

will be a KT -dimensional random vector with density fỸ(ỸT |ϕ) with respect to Lebesgue

measure on RKT given by the usual change-of-variable formula,

fỸ(ỸT |ϕ) =
fE(D̃−1T (θ)ỸT |ϕ)

|det[D̃T (θ)]|
.

Moreover, the density fỸ is continuous in ỸT and differentiable in ϕ, and the marginal density

fY(YT |ϕ) =

∫
R(K−N)T

fỸ(ỸT |ϕ)dY∗T

is continuous in YT and differentiable in ϕ as well. Taking logs, differentiating with respect to

ϕ on both sides of the foregoing equation, and exchanging the orders of the differentiation and

integration operators on the right-hand side by virtue of theorem 16.8 in Billingsley (1995), we

conclude that

∂ ln fY(YT |ϕ)

∂ϕ
=

∫
R(K−N)T

∂ ln fE(D̃−1T (θ)ỸT |ϕ)

∂ϕ

fỸ(ỸT |ϕ)

fY(YT |ϕ)
dY∗T , (A12)

for all YT and ϕ for which fY(YT |ϕ) > 0 (and this holds for almost all ϕ). The function

fY∗|Y(Y∗T |YT ,ϕ) ≡ fỸ(ỸT |ϕ)/fY(YT |ϕ) is the conditional density of Y∗T given YT , which is

a continuous density with respect to Lebesgue measure on R(K−N)T . In that precise sense, we
write

E

[
∂ ln fE(ET |ϕ)

∂ϕ

∣∣∣∣YT ,ϕ

]
=

∫
R(K−N)T

∂ ln fE(D̃−1T (θ)ỸT |ϕ)

∂ϕ

fỸ(ỸT |ϕ)

fY(YT |ϕ)
dY∗T .

Importantly, the value of the integral in (A12) is independent of the choice of D∗T . To see this,

multiply both sides by fY(YT |ϕ) and integrate with respect to YT ,∫
RNT

∫
R(K−N)T

∂ ln fE(D̃−1T (θ)ỸT |ϕ)

∂ϕ
fỸ(ỸT |ϕ)dY∗TdYT

=

∫
RKT

∂ ln fE(D̃−1T (θ)ỸT |ϕ)

∂ϕ
fỸ(ỸT |ϕ)dỸT = E

[
∂ ln fE(ET |ϕ)

∂ϕ

∣∣∣∣ϕ]

11



by Fubini’s theorem. For all possible choices of D∗T (θ) we obtain a version of

E

[
∂ ln fE(ET |ϕ)

∂ϕ

∣∣∣∣YT ,ϕ

]
,

whose uniqueess follows from the a.s. equality of conditional expectations. Therefore, equation

(5) holds. �

Proposition 2

It follows from Lemma 5 when β = 0. �

Proposition 3

It follows from Lemma 6.i and 7.i. �

Proposition 4

It follows from Propositions 2 and 3. �

Proposition 5

It is a rewriting of Lemma 5. �

Proposition 6

It follows from Lemma 6.i, , 6.ii, 6.iii and 7.ii. �

Proposition 7

It follows by combining the arguments in the proof of Proposition 5 in Mencía and Sentana

(2012) with the results in Propositions 5 and 6. �

B Asymptotic equivalence of smoothed scores sample moments

Consider the model (1)-(2) with εt ∼ N(0, IK) and, to save notation, assume (i) π = 0. To

facilitate exposition we further assume that (ii) det(IM−Fz) = 0 implies |z| > 1. This condition

can be removed at the cost of considerably complicating the analysis.

Under these assumptions, the MA(∞) representation of {yt} is

yt =

∞∑
s=−∞

D(s)εt−s for all t,

where D(s) = HFsM for all s ≥ 0, and D(s) = 0 whenever s < 0.

Let FT = σ({yt}|t|≤T ) denote the σ-field generated by {yt}|t|≤T . Also, let F∞ = σ(∪∞T=0FT ).

It is well known that the assumption of Gaussianity implies existence of sequences of K × N

12



matrices {At|T (τ)} for all t and T , and {A(τ)} with At|T (τ) = 0 whenever |t| > τ , such that

εt|T = E(εt|FT ) =

T∑
τ=−T

At|T (τ)yt−τ , for all t and T,

εt|∞ = E(εt|F∞) =
∞∑

τ=−∞
A(τ)yt−τ , for all t.

For any real matrix A, let ‖A‖ =
√
tr(A′A) be its Frobenius norm.

The purpose of this appendix is to show that:

Proposition 8 As T ∗ ≡ 2T + 1→∞,

1√
T ∗

∑
|t|≤T

(εt|∞ − εt|T ) = oP (1) .

In the proof of Proposition 8, we will make use of the following:

Lemma 8 The following three properties hold:

i) (L2-optimality) Any FT -measurable function ε̃T satisfies

E

∥∥∥∥∥∥
∑
|t|≤T

(εt|∞ − εt|T )

∥∥∥∥∥∥
2 ≤ E

∥∥∥∥∥∥
∑
|t|≤T

εt|∞ − ε̃T

∥∥∥∥∥∥
2 for all T.

ii) (Geometric decay of A) For some ρα ∈ (0, 1), Cα > 0 and all τ , ‖A(τ)‖ ≤ Cαρ|τ |α . Hence,
∞∑

τ=−∞
‖A(τ)‖ <∞.

iii)(Geometric decay of D) For some ρδ ∈ (0, 1), Cδ > 0 and all s, ‖D(s)‖ ≤ Cδρ|s|δ . Hence,

∞∑
s=−∞

‖D(s)‖ <∞.

Proof of Lemma 8.

Property (i) is a consequence of the fact that

εt|T = E(εt|∞|FT ) for all t and T

by virtue of the law of iterated expectations, and the standard result that an expectation con-

ditional on FT minimizes the L2-distance to the set of FT -measurable functions.
In turn, Property (ii) follows from the fact that εt|∞ is a VARMA process. Hence,

∑
|τ |>T

‖A(τ)‖ ≤ 2Cα

∞∑
τ=T+1

ρτα =
2Cα

1− ρα
ρT+1α → 0 as T →∞,

implying
∑∞

τ=−∞ ‖A(τ)‖ <∞.
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To establish property (iii), note that ‖Ds‖ ≤ ‖H‖‖F‖s‖M‖ ≤
√
M‖H‖‖M‖|λF|s, where we

have denoted by λF the largest eigenvalue of F. By assumption, |λF| < 1, so Cδ =
√
M‖H‖‖M‖

and ρδ = |λF|. Finally,∑
|s|>S

‖D(s)‖ ≤ 2Cδ

∞∑
s=S+1

ρsδ =
2Cδ

1− ρδ
ρS+1δ → 0 as S →∞,

implying
∑∞

s=−∞ ‖D(s)‖ <∞. �
Proof of Proposition 8.

Fix some ε > 0 and k = 1, . . . ,K and define the event

Ek,T ≡


∣∣∣∣∣∣
∑
|t|≤T

(εk,t|∞ − εk,t|T )

∣∣∣∣∣∣ > √T ∗ε


By Chebyshev-Bienaymé’s inequality,

Pr(Ek,T ) ≤ 1

T ∗ε2
V

∑
|t|≤T

(εk,t|∞ − εk,t|T )

 ≤ 1

T ∗ε2
E

∥∥∥∥∥∥
∑
|t|≤T

(εt|∞ − εt|T )

∥∥∥∥∥∥
2 .

Further, Lemma 8.i implies that for any FT -measurable function ε̃T ,

Pr(Ek,T ) ≤ 1

T ∗ε2
E

∥∥∥∥∥∥
∑
|t|≤T

εt|∞ − ε̃T

∥∥∥∥∥∥
2 .

Therefore, the proof will be completed if we establish that, for some suitable choice of ε̃T ,

E

∥∥∥∥∥∥
∑
|t|≤T

εt|∞ − ε̃T

∥∥∥∥∥∥
2 = o(T ).

To do so, consider the linear FT -measurable variable

ε̃T =
∑
|t|≤T

∑
|τ |≤T

A(τ)yt−τ .

We have

∆T =
∑
|t|≤T

εt|∞ − ε̃T =
∑
|t|≤T

∑
|τ |>T

A(τ)yt−τ =
∞∑

r=−∞
ΦT (r)yr,

where ΦT (0) = 0,

ΦT (r) =

r∑
j=max{1,r−2T}

A[−(T + j)], for r > 0,

ΦT (r) =

r∑
j=max{1,r−2T}

A(T + j), for r < 0,

implying that

‖ΦT (r)‖ ≤ CαρT+1α /(1− ρα), for |r| ≤ 2T + 1, and

‖ΦT (r)‖ ≤ Cαρr−Tα /(1− ρα), for |r| > 2T + 1,
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whence it follows immediately that
∑∞

r=−∞ ‖ΦT (r)‖ < CφTρ
T
α for some constant Cφ > 0.

Finally,

√
E(‖∆T ‖2) =

√√√√ ∞∑
r=−∞

∥∥∥∥∥
∞∑

s=−∞
ΦT (r)Ψ(s− r)

∥∥∥∥∥
2

≤
∞∑

r=−∞

∞∑
s=−∞

‖ΦT (r)‖‖D(s− r)‖

≤
( ∞∑
r=−∞

‖ΦT (r)‖
)( ∞∑

s=−∞
‖D(s)‖

)
<∞,

where the last inequality follows from Lemma 8.ii and 8.iii. As a consequence of this, E(‖∆T ‖2) =

o(T ). �

C An algorithm for computing the asymptotic variance

Consider a Varma process with scalar Var part for the Kx-dimensional process xt,

φ(L)xt = Θ(L)ut

where φ(z) = 1 − φ1z − · · · − φpzp and Θ(z) = Θ0 + Θ1z + . . .Θqz
q. The error process ut is

assumed to be K-dimensional white noise, i.e. E(ut) = 0, E(utu
′
t) = Σ, E(utu

′
t−j) = 0 for

j 6= 0. Next, write the Varma process in companion Var(1) form as

Xt = AXt−1 + Qut,

where Xt = (xt, ...,xt−p+1,ut, ...,ut−p+1)′,

A =

(
Φ̄⊗ IKx e1 ⊗ Θ̄

0 Jq ⊗ IK

)
, Q =


Θ0

0
IK
0

 ,

with e1 being the first vector of the canonical basis in Rp,

Φ̄ =


φ1 · · · φp−1 φp
1 0 · · · 0

. . .
...

0 1 0

 , Θ̄ =
(

Θ1 · · · Θq

)
, and Jq =

(
0 0

Iq−1 0

)
.

Suppose we can find an invertible matrix C and a block diagonal matrix Λ (with Jordan blocks)

such that A = CΛC−1. Then, we can transform the original system by defining Zt = C−1Xt,

a possibly complex-valued stochastic process that satisfies

Zt = ΛZt−1 + ηt,

with ηt = C−1Qut being white-noise (and possibly complex-valued). Then, it can be shown

that a computationally convenient decomposition of A is given by

A = CΛC−1, (C13)
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where

C =

(
C̄⊗ IKx −(Φ̄

−q ⊗ IKx)Θ∗

0 IKq

)
, Λ =

(
Λ̄⊗ IKx 0

0 Jq ⊗ IK

)
and

C−1 =

(
C̄−1 ⊗ IKx (C̄−1Φ̄

−q ⊗ IKx)Θ∗

0 IKq

)
,

with Φ̄ = C̄Λ̄C̄−1 providing the Jordan decomposition of Φ̄, and

Θ∗ =

q∑
h=1

(Φ̄
q−h

e1 ⊗ Θ̄)(Jh−1q ⊗ IK).

Notice that the decomposition outlined above is convenient to handle large systems because it

reduces substantially the size of the matrices for which the Jordan decomposition needs to be

performed.

We can also show that the autocovariance function of the Wiener-Kolmogorov filter derived

in Lemma 4 is the autocovariance function of the stable solution to the difference equation

embodied in its Varma representation. For that reason, we decompose A as in (C13), with the

absolute values of the eigenvalues in decreasing order. But since we have assumed no unit roots,

we will have that KS = Kxp+Kq−KU, where KU is the number of roots outside the unit circle

and KS the number of roots inside the unit circle.

Let R = CQQ
′
C
′
denote the variance-covariance matrix of ηt. We can partition the system

into its unstable and stable parts as follows:

Zt =

(
ZUt
ZSt

)
, ηt =

(
ηUt
ηSt

)
, Λ =

(
ΛUU 0

0 ΛSS

)
, and R =

(
RUU RUS

RSU RSS

)
.

Next, if we write

ZUt = Λ−1UU(ZUt+1 − ηUt+1) and ZSt = ΛSSZSt−1 + ηSt,

and partition

ΓZ(j) =

[
ΓUU(j) ΓUS(j)
ΓSU(j) ΓSS(j)

]
=

[
E(ZUtZ̄

′
Ut−j) E(ZUtZ̄

′
St−j)

E(ZStZ̄
′
Ut−j) E(ZStZ̄

′
St−j)

]
,

we can show that the autocovariance function of Zt can be computed from

vec[ΓUU(0)] = [IK2
U
− (Λ−1UU ⊗Λ−1UU)]−1vec[Λ−1UURUU(Λ

−1
UU)′],

ΓUU(j) = ΓUU(0)(Λ
−j
UU)′, for j > 0

ΓUU(j) = Γ
′
UU(−j), for j < 0

vec[ΓSS(0)] = [IK2
S
− (ΛSS ⊗ΛSS)]

−1vec (RSS) ,

ΓSS(j) = Λj
SSΓSS(0), for j > 0

ΓSS(j) = Γ
′
SS(−j), for j < 0

ΓSU(j) = −
j∑

h=1

(Λ
j−h
SS )′RSU(Λ

−h
UU)′, for j > 0

ΓSU(j) = 0, for j ≤ 0, and

ΓUS(j) = Γ
′
SU(−j).
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Finally, we can recover the autocovariance function of Xt from

ΓX(j) = E[XtX
′
t−j ] = E[(CZt)(CZt−j)

′] = CΓZ(j)C
′
.

Obviously, the autocovariance function of xt is the first block of ΓX.

D AGibbs sampler algorithm for the common trend model with
asymmetric Student t innovations

In this section, we develop a Gibbs sampler for the model we use in the empirical application

in section 7.3, namely

yt = Hξt,

ξt = c(θ) + F(θ)ξt−1 + M(θ)εt,

εt = α(ϕ) + ζ−1t Υ(ϕ)β + ζ
−1/2
t Υ1/2(ϕ)zt,

ζt|θ,ϕ ∼ iid Γ(ν/2, 1/2),

zt|θ,ϕ ∼ iid N(0, IK),

where θ are mean-variance parameters and ϕ = (ν,β′)′ are shape parameters describing the

asymmetric Student t distribution (a member of the GH family of distributions). More specifi-

cally, θ = (µ, δ, ρx, ρεE , ρεI , σ
2
x, σ

2
vE
, σ2vI )

′,

yt =

(
yEt
yIt

)
, ξt =


xt
xt−1
εEt
εIt

 , εt =

 ft
vEt
vIt

 , H =

(
1 0 1 0
1 0 0 1

)
,

c(θ) =


(1− ρx)µ

0
(1− ρεE )δ/2
−(1− ρεI )δ/2

 , F(θ) =


1 + ρx −ρx 0 0

1 0 0 0
0 0 ρεE 0
0 0 0 ρεE

 , M(θ) =


σx 0 0
0 0 0
0 σvE 0
0 0 σvI

 ,

α(ϕ) = −a(ϕ)β, and Υ(ϕ) = (ν − 2)

{
IK +

[a(ϕ)− 1]

β′β
ββ′

}
, with

a(ϕ) =
−(ν − 4) +

√
(ν − 4)2 + 8(ν − 4)β′β

4β′β
.

We produce draws from the posterior distribution by means of a Gibbs sampler in which we aug-

ment the original parameter space, consisting of θ and ϕ, with the state variables ξ0:T = {ξt}Tt=0
and the mixing variables ζ1:T = {ζt}Tt=1. Throughout, we implicitly assume prior independence
between θ and ϕ.

Given y1:T and initial values (θ0,ϕ0, ξ00:T ), we draw, for s = 1, . . . , S, in the following way:
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Block I: ζs1:T ∼ p(ζ1:T |θs−1, ξs−10:T ,ϕ
s−1,y1:T ), which is given by

ζt|θ,ϕ, ξ0:T ,y1:T ∼ GIG
(
K + ν

2
,
√

(ν − 2)a(ϕ)β′β,
√

qt + 1

)
,

qt = p′tΥ
−1(ϕ)pt,

pt = [M′(θ)M(θ)]−1M′(θ)[ξt − c(θ)− F(θ)ξt−1] + a(ϕ)β.

Dapugnar (1989) developed a generator of GIG pseudo-random numbers based on the ratio-

of-uniforms method. In our practical implementation, we switch to a generator of gamma

pseudo-random numbers whenever the norm of β is below the square root of βtolerance = 10−3

as the generator may become ineffi cient and unstable when the GIG distribution approaches the

gamma. We also set a(ϕ) = 1 and Υ(ϕ) = (ν − 2)IK for small values of the norm of β.

Block II: ξs0:T ∼ p(ξ0:T |θs−1,ϕs−1, ζs1:T ,y1:T ), which is obtained from a modified version of the

simulation smoother in Durbin and Koopman (2002) (see also Koopman and Durbin (1998)).

Specifically, we proceed as follows. First of all, we note that, conditional on θ, ϕ and ζ1:T , the

system above admits the following representation as a Gaussian linear state space model:

yt = Hξt,

ξt = ct(θ,ϕ) + F(θ)ξt−1 + Mt(θ,ϕ)zt,

where

ct(θ,ϕ) = c(θ) + M(θ)[α(ϕ) + ζ−1t Υ(ϕ)β],

Mt(θ,ϕ) = ζ
−1/2
t M(θ)Υ1/2(ϕ).

The algorithm has three parts:

1. We draw {z+t }Tt=1 from z+t ∼ iid N(0, IK) and ξ+0 ∼ N(ξ0|0,P0|0). We compute {y+t }Tt=1
and {ξ+t }Tt=1 by means of the recursion

ξ+t = ct(θ,ϕ) + F(θ)ξ+t−1 + Mt(θ,ϕ)z+t ,

y+t = yt −Hξ+t .

2. We run the Kalman filter followed by the Kalman smoother, storing the sequence of

smoothed states {ξ̂t}Tt=0, where we denote ξ̂t = ξt|T . Specifically, for t = 1, . . . , T we

first compute

Kt = Pt|t−1H
′(HPt|t−1H

′)−1,

Pt|t = (IM −KtH)Pt|t−1,

Pt+1|t = F(θ)Pt|tF(θ)′ + Mt+1(θ,ϕ)M′
t+1(θ,ϕ),

ξt|t = ξt|t−1 + Kt(y
+
t −Hξt|t−1),

ξt+1|t = F(θ)ξt|t.
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Then, for τ = 1, . . . , T − 1 we compute

JT−τ = PT−τ |T−τF(θ)′P−1T−τ+1|T−τ ,

ξ̂T−τ = ξT−τ |T−τ + JT−τ (ξ̂T−τ+1 − ξT−τ+1|T−τ+1).

Notice that we have neglected the time-varying constants in the state-transition equation

(see Jarocinski (2015) for details).

3. We compute {ξ∗t }Tt=0 as ξ∗t = ξ+t + ξ̂t for t = 0, . . . , T .

It turns out ξ∗0:T is a draw from p(ξ0:T |θ,ϕ, ζ1:T ,y1:T ) as desired.

Block III: ϕs ∼ p(ϕ|θs−1, ξs0:T , ζs1:T ,y1:T ), which we obtain by implementing an Adaptive

Rejection Metropolis Sampler (ARMS, see Gilks and Wild (1992) and Gilks, Best, and Tan

(1995)). We note that εs−11:T = {εs−1t }Tt=1, where

εs−1t = [M′(θs−1)M(θs−1)]−1M′(θs−1)[ξs−1t − c(θs−1)− F(θs−1)ξs−1t−1 ],

has the suffi ciency property ϕ|θs−1, ξs−10:T , ζ
s
1:T ,y1:T ∼ ϕ|εs−11:T , ζ

s
1:T . In addition,

p(ϕ|ε1:T , ζ1:T ) ∝
[
T∏
t=1

p(εt|ε1:t−1,ϕ, ζ1:t)p(ζt|ε1:t−1,ϕ, ζ1:t−1)
]
p(ϕ),

εt|ε1:t−1,ϕ, ζ1:t ∼ N [α(ϕ) + ζ−1t Υ(ϕ)β, ζ−1t Υ(ϕ)],

ζt|ε1:t−1,ϕ, ζ1:t−1 ∼ Γ (ν/2, 1/2) .

Thus, the log-likelihood we employ (up to an additive term constant in ϕ) is

L(ϕ) = −T
2

log{det[Υ(ϕ)]} − 1

2

T∑
t=1

ε̃′tε̃t − T
[ν

2
log(2) + log Γ

(ν
2

)]
+
ν

2

T∑
t=1

log(ζt),

where

ε̃t ≡ ζ1/2t Υ−1/2(ϕ)[εt −α(ϕ)− ζ−1t Υ(ϕ)β].

We apply ARMS to each parameter in turn. Let ϑ be the result of applying a certain trans-

formation to the specific entry of ϕ being updated. In particular, for the parameter ν we let

ϑ = νmin/ν (we take νmin = 4) while for βj we use ϑ = [1 + exp(−βj)]−1, j = x, 1, 2. The

transformation is chosen in all cases to ensure ϑ ∈ [0, 1].

Let ϑ0 be the starting value and L0 its log-posterior. ARMS updates ϑ0 to ϑ1 as follows:

1. Construct a grid ϑ1, . . . , ϑnARMS and compute their log-posteriors L1, . . . ,LnARMS .

2. Form the piecewise-linear function h given by

h(ϑ) = max {Lj(ϑ),min [Lj−1(ϑ),Lj+1(ϑ)]} , ϑj < ϑ ≤ ϑj+1,

Lj(ϑ) = Lj + Lj+1
(ϑ− ϑj)

(ϑj+1 − ϑj)
.
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Next, draw ϑ∗ from the piecewise exponencial distribution with density proportional to

exp[h(ϑ)]. In other words, draw first a sub-interval and, conditioning on it, from a scaled

truncated exponential distribution. Compute the associated log-posterior L∗.

3. Draw uARS ∼ U[0, 1]. If log(uARS) > L∗ − h(ϑ∗), augment the grid of ϑ by ϑ∗ and that of

L by L∗ and go back to 2. Otherwise, move on to 4.

4. Draw uMH ∼ U[0, 1]. If log(uMH) > L∗ − L0, set ϑ1 = ϑ0. Otherwise, set ϑ1 = ϑ∗.

In the implementation, each draw ϕs is obtained by repeating the algorithm above nMH

times before proceeding with the Gibbs sampler.

We have also considered Slice Sampling (SS, see Neal (2003)) as an alternative method to

update ϑ0 to ϑ1. The alternative sampling is done as follows:

1. Draw e ∼ exp(1) (so that y = exp(L0 − e) ∼ U[0, exp(L0)]).

2. Given a positive real number w, draw u ∼ U[0, 1] and let ϑL = max{ϑ0 − uw, 0} and
ϑR = min{L + w, 1}. Let LL and LR be their respective log-posteriors.
Given an integer mSS, draw v ∼ U[0, 1] and form mL = vmSS and mR = mSS − 1 −mL.

While LL > L0 − e and mL > 0 update ϑL to max{ϑL − w, 0} (recomputing LL) and mL

to mL − 1. Likewise, update ϑR to min{ϑR + w, 1} (recomputing LR) and mR to mR − 1

while LR > L0 − e and mR > 0.

3. Draw ϑ∗ ∼ U[ϑL, ϑR] and let L∗ be its log-posterior. While L∗ < L0 − e, either ϑ∗ < ϑ0,

in which case update ϑL to ϑ∗, or ϑ∗ ≥ ϑ0, in which case update ϑR to ϑ∗. Re-draw

ϑ∗ ∼ U[ϑL, ϑR] and re-compute L∗. When this process terminates, set ϑ1 = ϑ∗.

We report the output of the algorithm based on ARMS but our results are robust to the

sampling method.

Block IV: θs ∼ p(θ|ξs0:T ,ϕs, ζs1:T ,y1:T ), which is obtained in blocks. First, we note the suf-

ficiency property θ|ξs0:T ,ϕs, ζs1:T ,y1:T ∼ θ|ξs0:T ,ϕs, ζs1:T . Next, we partition θ = (θ′c,θ
′
ρ,θ
′
γ)′,

with θc = (µ, δ)′, θρ = (ρx, ρεE , ρεI )
′ and θσ = (σ2x, σ

2
vE
, σ2vI )

′. We proceed as follows:

1. We set a Gaussian prior on θc given by θc ∼ N(c,Sc) and we draw from the posterior

θc|θs−1ρ ,θs−1σ , ξs0:T ,ϕ
s, ζs1:T , which is

θc|θρ,θσ, ξ0:T ,ϕ, ζ1:T ∼ N
(
c̄, S̄c

)
, with c̄ = S̄c(S

−1
c c + Ŝ−1c ĉ) and S̄c = (S−1c + Ŝ−1c )−1,

where

Ŝc =

[
T∑
t=1

ζt

]−1
[DcM(θ)Υ(ϕ)M(θ)Dc] , and ĉ =

[
T∑
t=1

ζt

]−1 [ T∑
t=1

√
ζtYct

]
,
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with

Dc =

[
1− ρx 0 0 0

0 0 1− ρεE −(1− ρεI )

]
and

Yct = Dc{ξt − F(θ)ξt−1 −M(θ)[α(ϕ) + ζ−1t Υ(ϕ)β]}.

2. We set a Gaussian prior on θρ given by θρ ∼ N(ρ,Sρ) and we draw from the posterior

θρ|θsc,θs−1σ , ξs0:T ,ϕ
s, ζs1:T , which is

θρ|θc,θσ, ξ0:T ,ϕ, ζ1:T ∼ N
(
ρ̄, S̄ρ

)
, with ρ̄ = S̄ρ(S

−1
ρ ρ+ Ŝ−1ρ ρ̂) and S̄ρ = (S−1ρ + Ŝ−1ρ )−1,

where

Ŝρ =

[
T∑
t=1

X2
ρt

]−1
and ρ̂ =

[
T∑
t=1

X2
ρt

]−1 [ T∑
t=1

XρtYρt

]
,

with

Xρt = ζ
1/2
t diag[WρDρ{ξt−1 − [IK −DρF(θ)]−1C(θ)}],

Yρt = ζ
1/2
t WρDρ{ξt − [IK −DρF(θ)]−1C(θ)−M(θ)[α(ϕ) + ζ−1t Υ(ϕ)β]},

Wρ = [DρM(θ)Υ1/2(ϕ)]−1 and Dρ ≡

1 −1 0 0
0 0 1 0
0 0 0 1

 .
3. We set an inverse gamma prior on θσ given by σ−2j ∼ Γ(νj/2, ςj/2), for j = x, vE , vI , with

these parameters being prior-independent across j. However, for the purposes of generating

draws from the posterior distribution θσ|θsc,θsρ, ξs0:T ,ϕs, ζs1:T , we need to consider two
separate cases.

If β = 0, the three parameters are posterior-independent and direct sampling can be

implemented because the prior conjugates with the likelihood. More formally,

σ−2j |θc,θρ, ξ0:T ,ϕ, ζ1:T ∼ Γ

[
T + νj

2
,
1

2

(
T∑
t=1

η2jt + ςj

)]
, for j = x, vE , vI ,

where

ηt =

 ηxtηvEt
ηvI t

 = ζ
1/2
t Υ−1/2(θ)Dρ[ξt −C(θ)− F(θ)ξt−1].

On the other hand, if β 6= 0, direct sampling is not available. In this case, we generate

draws from the posterior distribution by componentwise application of ARMS. The log-

likelihood that we employ (up to an additive term constant in θσ) is

L(θσ) = −T
2

[log(σ2x) + log(σ2vE ) + log(σ2vI )]−
1

2

T∑
t=1

η̃′tη̃t,

with

η̃t = ζ
1/2
t Υ−1/2(ϕ)diag(σ−1x , σ−1vE , σ

−1
vI

)Dρ

×[ξt −C(θ)− F(θ)ξt−1 −α(ϕ)− ζ−1t Υ(ϕ)β].
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The procedure is exactly as explained above. Again, we also employed slice sampling, with

our results being robust to this variation.
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E Additional Monte Carlo results (HAC)

Table E1: Monte Carlo rejection rates (in %) under null and alternative hypotheses for the
bivariate cointegrated, dynamic single factor model (T = 100)

Panel A: Null Panel B: Alternative hypotheses (5%)
hypothesis Student t asymmetric Student t

1% 5% 10% J Sf Sv J Sf Sv

Kt 0.17 1.71 4.56 24.76 2.29 15.76 30.25 2.94 19.88
HJ Sk 2.75 9.55 16.99 8.60 9.67 8.55 20.60 12.29 15.96

GH 2.20 7.98 14.20 15.89 8.31 12.47 34.06 10.92 23.73

Kt 0.17 1.67 4.62 5.14 3.75 2.13 9.13 4.50 2.94
HSf Sk 1.35 6.37 12.77 6.16 6.34 6.13 11.00 12.46 6.39

GH 0.75 4.06 9.02 6.07 5.31 4.34 13.72 11.78 5.19

Kt 0.17 1.64 4.77 18.89 1.73 17.50 24.15 2.00 20.95
HSv Sk 1.67 7.55 13.97 6.65 7.33 7.06 14.73 7.91 17.73

GH 1.17 5.80 11.44 12.19 5.74 11.72 25.37 5.83 27.46

Kt 0.25 1.89 5.13 24.17 2.51 13.68 28.05 3.40 17.73
Red Sk 1.52 6.57 13.12 6.80 7.07 6.41 15.39 8.46 6.81

GH 1.00 5.21 10.87 14.35 5.94 9.68 28.67 7.84 12.08

Notes: Results based on 10,000 samples of size T = 100 from model (16) with ρx = .5, ρεE = .2, ρεI = .8,
σ2f = 1 and σ2vi chosen such that qE = 2 and qI = .5, where qi = σ2x/σ

2
εi represents the signal-to-noise ratio

for yit for i = E, I. The column labels J , Sf , Sv refer to the alternative εt ∼ GH(η, ψ,β) (i.e. R = 3),
ft ∼ GH(η, ψ, β), vt ∼ N(0, IN ) (R = 1) and vt ∼ GH(η, ψ,β), ft ∼ N(0, 1) (R = 2), respectively.
The row labels HJ , HSf , and HSv refer to the score tests in Propositions 4 and 7 corresponding to the
J , Sf , and Sv alternative hypotheses, while Red denotes the reduced form tests discussed in section
5.4.2. In Panel B, Student t refers to the DGP for the GH being symmetric Student t with 8 degrees of
freedom and, analogously, asymmetric Student t to the asymmetric Student t with 8 degrees of freedom
and skewness vector β = −`R. For each of those labels, Kt and Sk refer to the kurtosis and skewness
components of the corresponding test statistics, while GH indicates the sum of the two.
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Table E2: Monte Carlo rejection rates (in %) under null and alternative hypotheses for the
bivariate cointegrated, dynamic single factor model (T = 250)

Panel A: Null Panel B: Alternative hypotheses (5%)
hypothesis Student t asymmetric Student t

1% 5% 10% J Sf Sv J Sf Sv

Kt 0.12 1.79 5.15 61.57 3.57 42.37 65.21 5.22 49.08
HJ Sk 1.61 7.05 12.87 6.15 7.45 6.23 43.14 14.99 29.48

GH 1.17 5.77 10.80 27.25 6.48 18.65 68.37 14.98 52.18

Kt 0.13 1.73 4.97 11.68 6.51 2.35 20.10 8.69 4.21
HSf Sk 1.13 6.06 12.15 5.64 5.42 5.90 18.32 27.79 7.48

GH 0.56 3.94 8.70 8.23 5.77 4.21 27.72 28.67 6.26

Kt 0.12 1.48 4.86 50.02 1.99 46.26 58.78 2.45 52.70
HSv Sk 1.31 5.94 11.84 4.88 6.36 4.98 32.34 6.23 39.44

GH 0.95 4.38 9.29 22.91 4.98 21.18 59.80 5.03 63.81

Kt 0.15 1.85 5.65 59.11 3.96 34.63 61.54 5.98 43.07
Red Sk 1.29 6.14 11.61 5.63 6.12 5.25 35.12 12.29 6.82

GH 0.85 4.70 9.70 28.61 5.47 16.30 62.18 12.54 24.03

Notes: Results based on 10,000 samples of size T = 250 from model (16) with ρx = .5, ρεE = .2, ρεI = .8,
σ2f = 1 and σ2vi chosen such that qE = 2 and qI = .5, where qi = σ2x/σ

2
εi represents the signal-to-noise ratio

for yit for i = E, I. The column labels J , Sf , Sv refer to the alternative εt ∼ GH(η, ψ,β) (i.e. R = 3),
ft ∼ GH(η, ψ, β), vt ∼ N(0, IN ) (R = 1) and vt ∼ GH(η, ψ,β), ft ∼ N(0, 1) (R = 2), respectively.
The row labels HJ , HSf , and HSv refer to the score tests in Propositions 4 and 7 corresponding to the
J , Sf , and Sv alternative hypotheses, while Red denotes the reduced form tests discussed in section
5.4.2. In Panel B, Student t refers to the DGP for the GH being symmetric Student t with 8 degrees of
freedom and, analogously, asymmetric Student t to the asymmetric Student t with 8 degrees of freedom
and skewness vector β = −`R. For each of those labels, Kt and Sk refer to the kurtosis and skewness
components of the corresponding test statistics, while GH indicates the sum of the two.
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Table E3: Monte Carlo rejection rates (in %) under the null and alternative hypotheses for the
local-level model

Panel A: Null Panel B: Alternative hypotheses (5%)
hypothesis Student t asymmetric Student t

1% 5% 10% J Sf Sv J Sf Sv

Kt 0.08 1.52 4.77 23.84 7.06 3.41 35.64 11.68 6.77
HJ Sk 1.33 6.15 12.01 4.90 5.70 5.38 41.94 24.15 11.18

GH 0.73 4.65 9.57 11.60 6.60 4.98 57.08 29.14 12.57

Kt 0.10 1.60 5.08 17.91 8.72 2.24 27.32 12.57 3.53
HSf Sk 0.96 6.01 11.76 5.29 5.49 5.44 47.23 33.42 5.09

GH 0.52 3.64 8.25 10.89 6.60 3.79 57.18 36.83 4.49

Kt 0.17 1.67 4.78 14.25 2.95 4.71 31.21 5.41 8.68
HSv Sk 1.03 5.41 10.78 3.94 5.18 4.61 24.47 4.22 15.97

GH 0.51 3.44 7.72 8.27 3.95 4.41 41.34 4.47 18.39

Kt 0.05 1.46 5.20 22.68 6.98 2.85 33.28 11.69 5.45
Red Sk 1.07 5.75 11.45 4.65 5.50 5.01 55.45 28.16 6.84

GH 0.53 3.48 8.12 12.35 6.38 4.02 64.79 31.23 6.66

Notes: Results based on 10,000 samples of size T = 250 from the local-level model discussed in section 5.3
in which the signal-to-noise ratio q = σ2f/σ

2
v is set to 2. The column labels J , Sf , Sv refer to the alternative

εt ∼ GH(η, ψ,β) (R = 2), ft ∼ GH(η, ψ, β), vt ∼ N(0, 1) (R = 1) and vt ∼ GH(η, ψ, β), ft ∼ N(0, 1)
(R = 1), respectively. The row labels HJ , HSf , and HSv refer to the score tests in Propositions 4 and 7
corresponding to the J , Sf , and Sv alternative hypotheses, Red denotes the reduced form tests discussed
in section 5.4.2, while HK denotes the original Harvey and Koopman (1992) tests discussed in section
5.4.1. In Panel B, Student t refers to the DGP for the GH being symmetric Student t with 8 degrees of
freedom and, analogously, asymmetric Student t to the asymmetric Student t with 8 degrees of freedom
and skewness vector β = −`R. For each of those labels, Kt and Sk refer to the kurtosis and skewness
components of the corresponding test statistics, while GH indicates the sum of the two.
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Table E4: Monte Carlo rejection rates (in %) under null and alternative hypotheses for the
multivariate local-level model

Panel A: Null Panel B: Alternative hypotheses (5%)
hypothesis Student t asymmetric Student t

1% 5% 10% J Sf Sv J Sf Sv

Kt 0.23 3.15 7.37 96.21 6.69 95.78 93.94 10.63 95.13
HJ Sk 8.95 21.52 31.50 18.46 20.76 18.73 69.96 33.29 40.30

GH 8.63 20.71 30.31 75.83 21.25 74.13 92.99 35.27 85.33

Kt 0.06 1.78 5.56 32.25 30.09 1.68 35.83 34.12 2.19
HSf Sk 1.18 5.73 11.57 4.49 4.44 5.59 44.24 60.98 5.06

GH 0.62 3.68 8.33 17.26 16.19 3.77 58.05 68.64 3.65

Kt 0.29 2.82 7.06 95.86 3.07 95.80 95.52 2.90 95.60
HSv Sk 7.73 18.94 28.70 16.00 18.45 16.05 63.85 19.16 40.45

GH 7.42 18.34 27.33 74.66 17.18 74.22 93.08 18.06 86.57

Kt 0.25 3.13 7.36 96.71 6.96 95.77 93.87 11.11 95.14
Red Sk 7.74 18.94 28.44 16.14 18.56 16.26 62.83 31.52 26.57

GH 7.11 17.91 27.21 75.61 19.07 73.54 91.69 33.83 79.37

Notes: Results based on 10,000 samples of size T = 250 from a 10-variate version of the local-level model
with π = 0, c =`10 and γ = q−1`10, where q reflects the signal-to-noise ratio, which we set to 2. The
column labels J , Sf , Sv refer to the alternative εt ∼ GH(η, ψ,β) (i.e. R = 11), ft ∼ GH(η, ψ, β),
vt ∼ N(0, IN ) (R = 1) and vt ∼ GH(η, ψ,β), ft ∼ N(0, 1) (R = 10), respectively. The row labels
HJ , HSf , and HSv refer to the score tests in Propositions 4 and 7 corresponding to the J , Sf , and Sv
alternative hypotheses. In Panel B, Student t refers to the DGP for the GH being symmetric Student
t with 8 degrees of freedom and, analogously, asymmetric Student t to the asymmetric Student t with
8 degrees of freedom and skewness vector β = −`R. For each of those labels, Kt and Sk refer to the
kurtosis and skewness components of the corresponding test statistics, while GH indicates the sum of the
two.
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F Inferring real output from GDP and GDI over a long sample

Table F1: Parameter estimates and normality tests over the postwar period

Panel A: ML estimates
Param. estimate std. err.
µ 0.755 0.110
δ 0.304 0.031
αx 0.493 0.059
αεE 0.265 0.196
αεI 0.939 0.024
σ2f 0.526 0.054
σ2vE 0.076 0.021
σ2vI 0.093 0.019

Panel B: Normality tests
statistic p-value

Kt 19.061 0.000
HSf Sk 1.161 0.281

GH 20.221 0.000

Kt 6.537 0.005
HSv Sk 3.859 0.145

GH 10.396 0.011

Kt 13.266 0.000
HR Sk 1.232 0.540

GH 14.498 0.002

Notes: Data: Quarterly real GDP and GDI from 1952Q1 to 2015Q2. Model: Bivariate cointegrated,
dynamic single factor model (16); see section 7 for parameter definitions. In Panel A, estimates are
Gaussian ML of the bivariate Gaussian likelihood of the stationary transformation ∆yEt + ∆yIt and
yEt − yIt in the time domain. Standard errors are obtained from the asymptotic information matrix,
which is computed using its frequency domain closed-form expression. In Panel B, the row labels HSf

and HSv refer to the score tests in Propositions 4 and 7 corresponding to the Sf and Sv alternative
hypotheses, respectively, while Red denotes the reduced form tests discussed in section 5.4.2. For each of
those labels, Kt and Sk refer to the kurtosis and skewness components of the corresponding test statistics,
while GH indicates the sum of the two.
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Figure F1: Smoothed innovations and influence functions for the kurtosis and skewness tests:
Sample 1952Q1 to 2015Q2.

Figure F1a: Smoothed innovations Figure F1b: Smoothed innovations
for the underlying factor for the measurement errors
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Figure F1c: Influence functions Figure F1d: Influence functions
for the underlying factor (kurtosis) for the measurement errors (kurtosis)
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Figure F1e: Influence functions Figure F1f: Influence functions
for the underlying factor (skewness) for the measurement errors (skewness)
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Notes: Smoothed innovations and influence functions were obtained from fitting the bivariate coin-
tegrated, dynamic single factor model (16) to the quarterly real GDP and GDI from 1952Q1 to 2015Q2;
see Table F1 for parameter estimates. Shaded areas represent NBER recessions.
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Figure F2: Posterior densities of shape parameters under the asymmetric Student t alterna-
tive: Sample 1952Q1 to 2015Q2
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Figure F2c: βvE
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Notes: Model: Bivariate cointegrated, dynamic single factor model (16) with multivariate asymmetric
Student t innovations; see Section 7 for parameter definitions. η refers to the reciprocal of degrees of
freedom while βx (βvE ) [βvI ] refers to the skewness parameter of the “true GDP”(expenditure) [income]
measure. Solid vertical lines refer to the median values while dashed lines report the 2.5% and 97.5%
quantiles.
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