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1 Introduction

Finite mixture distributions play an important role in economics and many other disciplines,

where they are often used to model unobserved heterogeneity. For example, they have been

extensively employed for identifying �convergence clubs�of countries based on per capita GDP,

as well as within-country clustering in household income and wealth distributions (see Johnson

and Papageorgiou (2020) and Cowell and Flachaire (2015) for some recent surveys describing

the use of mixtures in each of those areas).

Classical tests (i.e. Likelihood ratio, Wald and score or Lagrange Multiplier (LM)) for the

number of components in a mixture are a devilish problem even if one assumes that the distrib-

ution of the components belongs to a speci�c parametric family because there are multiple paths

converging to the null along which di¤erent parameters become increasingly underidenti�ed (see

Amengual, Bei, Carrasco and Sentana (2025) and the references therein for a detailed discussion

of these unusual features when the null contains a single univariate Gaussian component).

By comparison, testing Gaussianity of the underlying components against a more �exible

family of parametric distributions while maintaining that the number of components is cor-

rect would be relatively straightforward if one relied on the Expectation - Maximisation (EM)

principle to obtain expressions for the scores and information matrix of the model under the

alternative evaluated under the null along the lines of Almuzara, Amengual and Sentana (2019).

In this paper, in contrast, we study in detail a speci�cation test for �nite Gaussian mixtures

that is not a priori targeted to either the number of components or their normality. Speci�cally,

we follow Boldea and Magnus (2009), who discussed the information matrix (IM) test as part

of their illustration of the usefulness of the formulas for the score vector and Hessian matrix of

the log-likelihood function of �nite mixtures of multivariate normals that they obtained using

the tools of matrix di¤erential calculus.

As is well known, the IM test introduced by White (1982) directly assesses the IM equality,

which states that the sum of the Hessian matrix and the outer product of the score vector should

be zero in expectation when the estimated model is correctly speci�ed. This result, also known

as the second Barlett identity, justi�es the calculation of the information matrix as either the

(minus) expected value of the Hessian or the variance of the score, so that when it fails because

the model is misspeci�ed, it can have important consequences on the reliability of the reported

standard errors.

Unlike Boldea and Magnus (2009), though, we rely on the EM principle to show that the

moments involved in the IM test are the expectation given the data of the moments the IM

test would assess if one knew the identity of the latent component to which each observation
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belongs. But given that the in�uence functions underlying those moment tests for each compo-

nent of the mixture e¤ectively coincide with the list of all the distinct third- and fourth-order

multivariate Hermite polynomials, as shown by Amengual, Fiorentini and Sentana (2024) for

observed multivariate Gaussian random vectors, the IM test for Gaussian mixtures is e¤ectively

testing that the expected value of those polynomials weighted by the posterior probability that

each observation belongs to the corresponding component is simultaneously 0 for each and every

underlying component of the mixture. This interpretation has two important advantages. First,

it allows us to obtain the right number of degrees of freedom for the IM test,1 which in turn

avoids the numerical calculation of Moore-Penrose inverses. Second, it may prove particularly

useful for the purposes of indicating in which speci�c directions modelling e¤orts to enrich �nite

mixture models should focus.

In fact, our approach to deriving the IM test and its interpretation is relevant for any model

in which the observations can be viewed as incomplete data, in the sense of Dempster, Laird

and Rubin (1977), so it has a much wider applicability. Microeconometric examples include

the limited dependent variable models that Gouriéroux, Monfort, Renault and Trognon (1987)

and Smith (1987) tackled with the same approach, while dynamic factor models and Markov

switching ones are two important class of time series processes in which our approach yields

useful insights too. The EM principle also leads to interpretable expressions for the asymptotic

covariance matrix of the scaled sample averages of the relevant in�uence functions adjusted for

sampling variability in the parameter estimators under the null of correct speci�cation.

Importantly, we explicitly address the widespread and often justi�ed concern that the as-

ymptotic distribution of the IM test o¤ers a poor guide in �nite samples (see Horowitz (1994)

and the reference therein) by relying on bootstrap procedures. In this respect, our Monte Carlo

simulations indicate that the parametric bootstrap, in combination with theoretical expressions

for the asymptotic covariance matrices of the in�uence functions, provides reliable �nite sample

sizes and good power against various empirically relevant misspeci�cation alternatives.

Finally, we apply our procedures to assess the adequacy of �nite Gaussian mixtures in the

empirical applications in Pittau, Zelli and Johnson (2010) and Battisti, Delgado and Parmeter

(2015) that look at the univariate distribution of per capita income across countries and its joint

distribution with per capita carbon dioxide (CO2) emissions, respectively.

The rest of the paper is organised as follows. In Section 2, we formally introduce the IM

test, show its numerical invariance to reparametrisations, and derive its expression in a general

context with incomplete data. Next, in Section 3, we apply our general result to �nite mixtures

1Boldea and Magnus (2024) explicitly acknowledge that they became aware of the singularity that a¤ects the
number of degrees of freedom in their Theorem 2 thanks to Proposition 4 below.
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of multivariate normals in which the latent variables are the mixture component indicators.

Then, we present the results of some Monte Carlo exercises looking at the size and power of the

tests in �nite samples in Section 4, and assess the suitability of �nite mixtures for cross-country

distributions of GDP per capita in Section 5. We conclude in Section 6 mentioning some avenues

for further research, with proofs and auxiliary results relegated to appendices.

2 The information matrix test

In this section, we begin by quickly reviewing the IM test and then we obtain two new

results that will prove useful for the analysis of Gaussian mixtures in section 3, namely the

numerical invariance of the test statistic to reparametrisations and the relationship between the

IM test in the complete and incomplete data contexts considered by Dempster, Laird and Rubin

(1977).

2.1 The test statistic

Consider a parametric model that fully characterises y, a random vector of dimensionM , as

a function of �, a p-dimensional vector of parameters, with p �nite, by means of its probability

distribution in the discrete case or its density in the continuous one, both of which we will simply

call f(y;�) henceforth.

Assuming for simplicity that sampling is random, the log-likelihood function of a sample of

size N on y will be given by

LN (�) =
NX
i=1

ln f(yi;�) =
NX
i=1

li(�):

Consequently, the average score and Hessian of this model will be given by

�sN (�) =
1

N

@LN (�)

@�
=
1

N

NX
i=1

@li(�)

@�
=
1

N

NX
i=1

si(�)

and

�hN (�) =
1

N

@2LN (�)

@�@�
=
1

N

NX
i=1

@2li(�)

@�@�0
=
1

N

NX
i=1

hi(�);

respectively. If we call �̂N the unrestricted maximum likelihood estimators of the parameters

of interest, we will have that �sN (�̂N ) = 0 and �hN (�̂N ) negative de�nite.

In what follows, we maintain the regularity conditions White (1982) assumed to prove his

Theorem 4.1 on the IM test, which among other things guarantee the consistency of the maxi-

mum likely estimators (MLE) of the model parameters, �̂T , and their asymptotic normality with

a full-rank information matrix when we centre them around their true values, �0, and suitably
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scale them by
p
T .

In this context, the IM test directly assesses the IM equality, which states that the sum of

the Hessian matrix and the outer product of the score (OPS) vector should be zero in expected

value when the estimated model is correctly speci�ed.

As Newey (1985) and Tauchen (1985) showed, the information matrix test can be regarded

as a moment test based on the following in�uence functions:

vech[hi(�) + si(�)s
0
i(�)] = D

+
p vec[hi(�) + si(�)s

0
i(�)]; (1)

where Dp is the duplication matrix of order p, which is the unique p2 � p(p+ 1)=2 matrix that

satis�es Dpvech(A) = vec(A) for any p � p symmetric matrix A, and D+ its Moore-Penrose

inverse (see Magnus (1988)).

In practice, we need to evaluate the in�uence functions in (1) at �̂N , so we need to compute

the asymptotic covariance matrix of

p
N

N

NX
i=1

vech[hi(�̂N ) + si(�̂N )s
0
i(�̂N )]: (2)

In his original paper, White (1982) obtained a �rst-order expansion of (2) around the true

parameter values, which e¤ectively required the expected value of the third-order derivatives

of li(�). However, Chesher (1983) and Lancaster (1984) realised that in a likelihood context

such as this, the generalised information matrix equality implies that the expected value of the

Jacobian of (1) with respect to � coincides with the (minus) covariance matrix between (1)

and si(�) evaluated at the true values of the parameters, �0. Under our i:i:d: assumption, this

implies that to obtain the asymptotic covariance matrix of (2), we simply need to compute the

residual covariance matrix from the least squares projection of (1) onto the linear span of si(�0),

which is given by

R(�0)� U(�0)I�1(�0)U 0(�0); (3)

where �
R(�0) U(�0)
U 0(�0) I(�0)

�
= V

�
vech[hi(�0) + si(�0)s

0
i(�0)]

si(�0)

�
: (4)

Therefore, the infeasible IM test statistic will be given by the following quadratic form

N

(
1

N

NX
i=1

vech0[hi(�̂N ) + si(�̂N )s
0
i(�̂N )]

)
[R(�0)� U(�0)I�1(�0)U(�0)]+

�
(
1

N

NX
i=1

vech[hi(�̂N ) + si(�̂N )s
0
i(�̂N )]

)
; (5)

where we have relied on a Moore-Penrose generalised inverse because some of the in�uence
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functions in (1) may be an exact linear combination of si(�0) or appear multiple times.

On this basis, Chesher (1983) and Lancaster (1984) also realised that a feasible version of

the quadratic form (5) could be computed as the sample size N times the R2 in the regression of

a vector of N ones onto si(�̂N ) and vech[hi(�̂N ) + si(�̂N )s
0
i(�̂N )] using an OLS routine robust

to multicollinearity. E¤ectively, the inclusion of si(�̂N ) as additional regressors makes the test

statistic robust to the fact that the in�uence functions (1) are evaluated at �̂N . Nevertheless,

as explained by Horowitz (1994) and the references therein, this OPS regression has very poor

�nite sample properties, so in our work below we will rely on the parametric bootstrap applied

to a feasible version of (5) which evaluates the theoretical expression (3) at the MLE �̂N , as

forcefully argued by Orme (1990). The theoretical results in Beran (1988) imply that given

that the asymptotic distribution of the test statistic (5) is chi-square, and therefore pivotal,

the bootstrapped critical values should not only be valid, but also their errors should be of a

lower order of magnitude under additional regularity conditions that guarantee the validity of a

higher-order Edgeworth expansion.

2.2 Numerical invariance to reparametrisations

Let us now study the e¤ect on the IM test of reparametrising the model from � to ' by

means of the one-to-one mapping ' = t(�), which we assume is a second-order continuous

di¤eomorphism in a neighbourhood of �0 whose inverse is given by � = r(').

The chain rules for �rst and second derivatives imply that the in�uence functions underlying

the IM test of the reparametrised model will be�
@r0(')

@'

 @r0(')

@'

�
vec

�
hi(�) + si(�)s

0
i(�)

�
+ vec

�
si(�)
 Ip

@vec[@r0(')=@']

@'0

�
: (6)

Then, we can show that:

Lemma 1 The infeasible IM test statistic in (5) which uses the in�uence functions (1) written in
terms of � numerically coincides with the analogous IM test statistic that relies on the in�uence
functions (6) written in terms of '.

Intuitively, the sample average of the second summand in (6) is exactly zero when evaluated

at '̂N , so e¤ectively, the in�uence functions (6) are a linear transformation of (1). Besides,

given that si(�) is one of the regressors, adding a linear combination of it to the regressand does

not alter the residual covariance matrix.

Interestingly, the same numerical identity also holds for the feasible OPS version suggested by

Chesher (1983) and Lancaster (1984) because they e¤ectively use the sample second moments

in computing the relevant residual covariance matrices. Naturally, the numerical invariance
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also applies to the alternative feasible version that replaces �0 by �̂N in the evaluation of the

asymptotic covariance matrices.

2.3 The case of incomplete data

We follow Dempster, Laird and Rubin (1977) in using the term �incomplete data�to denote

situations in which it is convenient to think of the observed data y as the output of a mapping

g(:) from the complete sample space Z to the observed sample space Y , so that the complete

data � is only known to lie in R, the subset of Z implicitly de�ned by the equation y = g(�).

Let f(�;�) denote the joint density of � given a vector of parameters �. We know from

basic probability theory that

f(y;�) =

Z
R
f(�;�)d�: (7)

Throughout, we maintain the following regularity condition:

Assumption 1 The boundary of R does not depend on the model parameters �.

Our next result provides a general approach to computing the information matrix test when

the observations y can be viewed as incomplete data:

Proposition 1 The in�uence functions (1) of the IM test of model (7) are

E

�
vech

�
@2 ln f(�;�)

@�@�0
+
@ ln f(�;�)

@�

@ ln f(�;�)

@�0

�����y� ; (8)

with the expectation taken with respect to the conditional distribution of � given y over R.

Proposition 1, which is straightforward application of the law of iterated expectations, implies

we can write the in�uence functions underlying the IM test as the expected value conditional

on the observed variables of the in�uence functions underlying the IM test of the complete

log-likelihood. This interpretation is very convenient in those set ups in which the complete log-

likelihood function adopts a particularly simple form, such as in the limited dependent variable

models considered by Gouriéroux et al. (1987), who proved a special case of this expression when

f(�;�) belongs to what they called a �bilinear� exponential family. These include univariate

probit and Tobit models among others, as well as their simultaneous equation versions studied

by Smith (1987). The Gaussian mixtures in the next section provide another case in point.

To compute (5), though, we also need expressions for the di¤erent elements that appear

in the theoretical expression (3). To obtain the required expressions, we �nd it convenient to

obtain �rst a general result that applies to any conceivable in�uence function that one may want

to use in a moment test. Let n(�;�) denote a vector in�uence functions of the complete data �
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such that

E� [n(�;�)] = 0

when both the expectation and the in�uence function are evaluated at the same value of the

model parameters, �. In addition, let

m(y;�) = E�jy[n(�;�)jy];

where the subscript �jy denotes an expectation E or variance V taken with respect to the

conditional density of the �complete data�� given the �incomplete data�y de�ned over R, while

the subscripts y and � represent analogous moments with respect to the marginal distributions

of y and �, respectively. The law of iterated expectations implies that Ey[m(y;�)] = 0, which

con�rms the suitability of (8) to test for the correct speci�cation of the likelihood model for the

observed data. In this general context, we can use the law of iterated covariances to prove the

following result, which nests Lemma 4 in Gouriéroux et al. (1987), who focused on the case in

which the latent in�uence functions n(�;�) coincide with @ ln f(�;�)=@� when f(�;�) belongs

to a �bilinear�exponential family:

Proposition 2
Vy[m(y;�)] = V� [n(�;�)]� EyfV�jy[n(�;�)jy]g (9)

and

Ey

�
@m(y;�)

@�0

�
= �E

�

�
n(�;�)

@ ln f(�;�)

@�

�
+ Ey

�
cov�jy

�
n(�;�);

@ ln f(�;�)

@�

����y�� : (10)

On this basis, we can compute the di¤erent elements that appear in the theoretical expression

(3) by applying Proposition 2 to the vector�
vech0

�
@2 ln f(y;�)

@�@�0
+
@ ln f(y;�)

@�

@ ln f(y;�)

@�0

�
;
@ ln f(y;�)

@�0

�0
; (11)

whose elements are the conditional expected values of�
vech0

�
@2 ln f(�;�)

@�@�0
+
@ ln f(�;�)

@�

@ ln f(�;�)

@�0

�
;
@ ln f(�;�)

@�0

�0
: (12)

Corollary 1 The application of Proposition 2 to (11) yields

I(�) = Vy

�
@ ln f(y;�)

@�

�
= V�

�
@ ln f(�;�)

@�

�
� Ey

�
V�jy

�
@ ln f(�;�)

@�

����y��
= �E�

�
@2 ln f(�;�)

@�@�0

�
� Ey

�
V�jy

�
@ ln f(�;�)

@�

����y�� ; (13)
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U(�) = Ey

�
vech

�
@2 ln f(y;�)

@�@�0
+
@ ln f(y;�)

@�

@ ln f(y;�)

@�0

�
@ ln f(y;�)

@�0

�
= cov�

�
vech

�
@2 ln f(�;�)

@�@�0
+
@ ln f(�;�)

@�

@ ln f(�;�)

@�0

�
;
@ ln f(�;�)

@�

�
�Ey

�
cov�jy

�
vech

�
@2 ln f(�;�)

@�@�0
+
@ ln f(�;�)

@�

@ ln f(�;�)

@�0

�
;
@ ln f(�;�)

@�

����y�� ; (14)

and

R(�) = Vy

�
vech

�
@2 ln f(y;�)

@�@�0
+
@ ln f(y;�)

@�

@ ln f(y;�)

@�0

��
= V�

�
vech

�
@2 ln f(�;�)

@�@�0
+
@ ln f(�;�)

@�

@ ln f(�;�)

@�0

��
�Ey

�
V�jy

�
vech

�
@2 ln f(�;�)

@�@�0
+
@ ln f(�;�)

@�

@ ln f(�;�)

@�0

�����y�� : (15)

Once again, the advantage of this procedure is that, in many instances, the complete model

is much simpler to work with than the observed one, something that we illustrate in the next

section with normal mixtures.

3 Finite Gaussian mixtures

3.1 De�nition

Let � = (�1; : : : ; �k; : : : ; �K) denote a categorical random variable of dimension K, which

is nothing other than a collection of K mutually exclusive Bernoulli random variables with

Pr(�k = 1) = �k such that
PK
k=1 �k = 1. If "j� � N(0; IM ), �k is an M � 1 vector and �k an

M �M positive de�nite matrix with 
k = vech(�k), then

y =
KP
k=1

�k(�k + �
1=2
k ") (16)

is an M -variate, K-component mixture of normals, whose �rst two unconditional moments are

� = E(y) =
KP
k=1

�k�k = E�[Eyj�(y)]; and (17)

	=V (y)=
KP
k=1

�k[(�k�
0
k)+�k]�

�
KP
k=1

�k�k

��
KP
k=1

�k�
0
k

�
=E�[Vyj�(y)]+V�[Eyj�(yy

0)]: (18)

The natural model parameters are the mean vectors and covariance matrices of the compo-

nents � = (�1; : : : ;�k; : : : ;�K)0 and 
 = (
1; : : : ;
k; : : : ;
K)
0, respectively, and their probabil-

ities � = (�1; : : : ; �k; : : : ; �K), which are subject to the unit simplex restrictions �k � 0 8k andPK
k=1 �k = 1. These restrictions can be imposed in di¤erent ways. For example, one could use

the multinomial logit parametrisation

�k =
e�kPK�1

l=1 e�l + 1
(k = 1; : : :K � 1); �K =

1PK�1
l=1 e�l + 1

; (19)
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or one could make

�k = �k, k = 1; : : : ;K � 1 and �K = 1�
PK�1
l=1 �l (20)

and impose the inequality restrictions �k � 0 (k = 1; : : : ;K�1) and
PK�1
l=1 �l � 1 in estimation.

Nevertheless, many of the expressions below are considerably simpler if we �rst work with the

K elements of � as if they were unrestricted, and then use the chain rules for �rst and second

derivatives to obtain the relevant expressions for the underlying K � 1 parameters that impose

the adding up constraint. As a result, the Jacobian matrices @�=@�0 for (19) or (20) that

appear at the end of Appendix C play an important role in the practical implementation of

our IM tests. However, whether we use parametrisation (19) or (20) is inconsequential because

Lemma 1 implies that the IM test statistics are numerically invariant.2 For that reason, in a

slight abuse of notation we shall use � = (� 0;
 0;�0)0 to denote the model parameters.

3.2 In�uence functions

The log-density for y is given by

l(y;�) = ln

�
KP
k=1

�kj�kj�1=2�M ["�(�k)]
�
; (21)

where "�(�k) = �
�1=2
k (y � �k), with �k = (� 0k;
 0k)0, and �M (:) the M -variate spherical normal

density. The identi�cation of �nite mixtures of Gaussian distributions from this log-likelihood is

proved in Proposition 1 of Teicher (1963) for the univariate case and Proposition 3 of Yakowitz

and Spragins (1968) for the multivariate one. Of course, one can always include additional

components to a Gaussian mixture that either simply replicate some of the existing ones or are

assigned 0 probability, but those components would be redundant. For that reason, identi�abil-

ity focuses on the mixing distribution. As a result, the true number of components is e¤ectively

understood to be the smallest number of components that generate the true distribution, ex-

cluding those with 0 probability. Under those circumstances, a �nite Gaussian mixture model

is a regular one, with a full-rank information matrix and parameter estimators that converge at

the usual N1=2 rate.

Theorem 1 in Boldea and Magnus (2009) contains detailed expressions for the score and

Hessian of (21) when the mixing probabilities are parametrised as in (20) (see also Appendix C

for details). Arguably, a more intuitive way of obtaining the required expressions for (1) is by

using the EM-based formulas in Proposition 1, with the observed data being yi for i = 1; : : : ; N

2 In addition, the choice of excluded category in both (19) and (20) is arbitrary, so Lemma 1 is also useful to
show that the IM test is not afected by it. Consequently, the IM test that we derive below will also be numerically
invariant to a relabelling of the components of the mixture, as this only involves a reordering of the parameters.
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and the complete data �i = (y
0
i; �

0
i). Thus, we can show that:

Proposition 3 The sum of the Hessian and the outer product of the scores corresponding to a
single observation y is a block diagonal matrix whose only non-zero elements are

@�k@�
0
k : wk(�)�

0�1=2
k ["�(�k)"

�0(�k)� IM ]��1=2k ; (22)

@�k@

0
k : wk(�)

1

2
�
0�1=2
k "�(�k)vec

0["�(�k)"
�0(�k)� IM ](��1=2k 
 ��1=2k )DM

�wk(�)["�0(�k)��1=2k 
 ��1k ]DM ; (23)

@�k@�k : wk(�)
1

�k
�
0�1=2
k "�(�k); (24)

@
k@

0
k : wk(�)

1

4
D0
M (�

0�1=2
k 
 �0�1=2k )vec["�(�k)"

�0(�k)� IM ]

�vec0["�(�k)"�0(�k)� IM ](��1=2k 
 ��1=2k )DM

�wk(�)
1

2
D0
Mf2[(��1k 
 �0�1=2k "�(�k)"

�0(�k)�
�1=2
k ]� (��1k 
 ��1k )gDM ; (25)

@
k@�k : wk(�)
1

2�k
D0
M (�

0�1=2
k 
 �0�1=2k )vec["�(�k)"

�0(�k)� IM ]; (26)

where wk(�) represents the posterior probability that y comes from the kth component given the
parameter values, so that

wk(�) = E(�kjy;�) = Pr(�k = 1jy;�) =
�kj�kj�1=2�M ["�(�k)]PK
l=1 �lj�lj�1=2�M ["�l (�l)]

: (27)

However, not all those elements can be used as in�uence functions of the IM test. First,

as noted by Boldea and Magnus (2009), (24) will be zero at the ML estimators because this

vector is proportional to the score with respect to �k, whose expression appears in the proof of

the proposition. Similarly, (22) and (26) will also be zero because they are linear combinations

of the score vector with respect to 
k presented in the same proof. Finally, there is no term

for @�k@�k or indeed any second derivatives involving parameters from di¤erent components.

Therefore, we are left with (23) and (25), which contain 1
2M

2(M + 1) and 1
8M(M + 1)(M2 +

M + 2) distinct in�uence functions, respectively. Unfortunately, those expressions still include

redundant elements, which suggests the use of generalised inverses, as acknowledged by Boldea

and Magnus (2024). Nevertheless, the calculation of the strictly necessary in�uence functions,

its asymptotic covariance matrix and the correct number of degrees of freedom can be further

simpli�ed on the basis of the following result, which avoids generalised inverses:

Proposition 4 1. The IM matrix test based on (23) and (25) evaluated at the MLEs of
the model parameters numerically coincides with a moment test based on the in�uence
functions:

wk(�)

�
H3["

�(�k)]
H4["

�(�k)]

�
; k = 1; : : : ;K (28)
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evaluated at the same estimators, where

Hj("
�) =

26664
Hj;0;��� ;0("�)
Hj�1;1;��� ;0("�)

...
H0;��� ;0;j("�)

37775 =
26664

Hj("
�
1)

Hj�1("�1)H1("
�
2)

...
Hj("

�
M )

37775
is the

�
M+j�1

j

�
vector containing the distinct multivariate Hermite polynomials of order j

of a standardised random vector "� in Appendix B, which can be expressed as products of
the corresponding univariate Hermite polynomials of its elements.

2. The asymptotic covariance matrix of (28) corrected for the sampling uncertainty in es-
timating the model parameters under the null is the residual covariance matrix in the
multivariate theoretical regression of (28) on

wk(�)

8<:
1

H1["
�(�k)]

H2["
�(�k)]

9=; ; k = 1; : : : ;K: (29)

3. If the e¤ective number of components is K, then the asymptotic distribution of the IM test
will be a �2 random variable with degrees of freedom equal to

KM(M + 1)(M + 2)(M + 7)

24
: (30)

Although the IM test is often regarded as a black box, Proposition 4 provides a simple and

intuitive moment test interpretation in which the in�uence functions are the distinct multivariate

Hermite polynomials of orders 3 and 4 of y standardised using the mean vector and covariance

matrix of the kth component of the mixture and weighted by the posterior probability that it

belongs to that component. Thus, this result provides a direct generalisation of Proposition 1

in Amengual, Fiorentini and Sentana (2024), which corresponds to the special case in which y

is Gaussian (K = 1).

To provide additional intuition, let us focus on the univariate case. It is easy to see that the

sum of the Hessian and OPS yields

@�k@

2
k : wk(�)

1

2
3k
["�3(�k)� 3"�(�k)] =

1

2
3k
E(�kjy;�)H3["�(�k)]; (31)

(@
2k)
2 : wk(�)

1

4
4k
["�4(�k)� 6"�2(�k) + 3] =

1

4
4k
E(�kjy;�)H4["�(�k)]; (32)

so the in�uence functions the IM test checks coincide with the third and fourth Hermite poly-

nomials of the observed variable y standardised as if it belonged to the kth component of the

mixture, as shown by White (1982) for K = 1, but weighted by wk(�), the posterior probability

that it belongs to that component.

The ease of interpretation of the in�uence functions in Proposition 4 allows one to immedi-

ately derive tests that focus on a subset of them, such as those involving the third- or fourth-order

11



Hermite polynomials of a single component, which may prove particularly useful for the purposes

of indicating in which speci�c directions modelling e¤orts to enrich the estimated model should

focus. By choosing the relevant elements of the residual covariance matrix, the computation of

the corresponding test statistics would be straightforward.

3.3 The asymptotic covariance matrix

Proposition 4 states the asymptotic covariance matrix of the in�uence functions involved,

but it does not explain how we can compute it. Given that we can obtain in closed form the

covariance matrix of multivariate Hermite polynomials using the results in Rahman (2017), we

can use the law of iterated variances implicit in (13), (14) and (15) to obtain expressions for the

three elements of (3). Speci�cally, we can use expression (9) to write

Rkj(�) = covy

�
wk(�)

�
H3["

�(�k)]
H4["

�(�k)]

�
; wj(�)

�
H3["

�(�j)]
H4["

�(�j)]

��
(33)

= cov�

�
�k

�
H3["

�(�k)]
H4["

�(�k)]

�
; �j

�
H3["

�(�j)]
H4["

�(�j)]

��
�Ey

�
cov

�
�k

�
H3["

�(�k)]
H4["

�(�k)]

�
;�j

�
H3["

�(�j)]
H4["

�(�j)]

������y� ;
where

Ey

�
cov

�
�k

�
H3["

�(�k)]
H4["

�(�k)]

�
; �j

�
H3["

�(�j)]
H4["

�(�j)]

�����y��
= Ey

�
cov(�k; �j jy)

�
H3["

�(�k)]H
0
3["

�(�j)] H3["
�(�k)]H

0
4["

�(�j)]
H4["

�(�k)]H
0
3["

�(�j)] H4["
�(�k)]H

0
4["

�(�j)]

��
;

with cov(�k; �j jy) = [I(j = k)wk(�)� wk(�)wj(�)].

In turn, we also know that at the true values

cov�

�
�k

�
H3["

�(�k)]
H4["

�(�k)]

�
; �j

�
H3["

�(�j)]
H4["

�(�j)]

��
= E�

�
�k�j

�
H3["

�(�k)]H
0
3["

�(�j)] H3["
�(�k)]H

0
4["

�(�j)]
H4["

�(�k)]H
0
3["

�(�j)] H4["
�(�k)]H

0
4["

�(�j)]

��
= I(j = k)�k

�
M3 0
0 M4

�
because �k�j = 0 when k 6= j, �2k = �k, "

�
k(�k) = " when �k = 1 from (16), which is independent

of �k, and the third and fourth multivariate Hermite polynomials of a standard normal variable

have zero means, are uncorrelated, and have covariances matrices M3 and M4, respectively,

which adopt a particularly simple form regardless of the model parameters, as shown in Lemma

12



1 in Amengual, Fiorentini and Sentana (2024). As a result, it must be the case that

Rkj(�) = I(j = k)�k

�
M3 0
0 M4

�
�Ey

�
[I(j=k)wk(�)�wk(�)wj(�)]

�
H3["

�(�k)]H
0
3["

�(�j)] H3["
�(�k)]H

0
4["

�(�j)]
H4["

�(�k)]H
0
3["

�(�j)] H4["
�(�k)]H

0
4["

�(�j)]

��
: (34)

In principle, one might expect the sample version of (34) to be less noisy than the sample

version of (33) in �nite samples. Nevertheless, both expressions involve the same weighted

averages of the sixth, seventh and eighth powers of the elements of "�(�k), the only di¤erence

being whether they are scaled by [I(j = k)wk(�)�wk(�)wj(�)] or wk(�)wj(�). In addition, a

combination of the sample version of (34) with the theoretical values ofM3 andM4 could lead

to inde�nite estimated covariance matrices. For that reason, our suggestion would be either to

compute the above expressions analytically using quadrature, in which case both calculations

yield the same result up to machine precision, or to rely on the centred or uncentred sample

versions of (33), as Chesher (1983) and Lancaster (1984) suggested.

We can use a similar procedure to obtain the covariances of (28) with (29), which we can use

to purge those in�uence functions from the sampling variability arising from the ML estimation

of the mixture model parameters. Speci�cally, we can exploit the fact that

E�

�
�k

�
H3["

�(�k)]
H4["

�(�k)]

�
�j
�
1 H0

1["
�(�j)] H0

2["
�(�j)]

��
= 0

for all k and j to show that

Ukj(�) = covy

24wk(�)� H3["
�(�k)]

H4["
�(�k)]

�
; wj(�)

0@ 1
H1["

�(�j)]
H2["

�(�j)]

1A35
=�Ey

�
cov(�k; �j jy)

�
H3["

�(�k)] H3["
�(�k)]H

0
1["

�(�k)] H3["
�(�k)]H

0
2["

�(�k)]
H4["

�(�k)] H4["
�(�k)]H

0
1["

�(�k)] H4["
�(�k)]H

0
2["

�(�k)]

��
;

but again, it is not clear which expression leads to less noisy estimates in �nite samples.

Finally, we can use an entirely analogous procedure to compute

Ikj(�) = covy

24wk(�)
0@ 1
H1["

�(�k)]
H2["

�(�k)]

1A ; wj(�)

0@ 1
H1["

�(�j)]
H2["

�(�j)]

1A35
= I(j = k)�k

0@ 1 0 0
0 IM 0
0 0 M2

1A
�Ey

24cov(�k; �j jy)
0@ 1 H0

1["
�(�j)] H0

2["
�(�j)]

H1["
�(�k)] H1["

�(�k)]H
0
1["

�(�j)] H1["
�(�k)]H

0
2["

�(�j)]
H2["

�(�k)] H2["
�(�k)]H

0
1["

�(�j)] H2["
�(�k)]H

0
2["

�(�j)]

1A35 ;
where M2 = D0

M (IM2 + KMM )DM and Kmn is the commutation matrix of orders m and
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n, which is such that vec(B0) = Kmnvec(B) for any m � n matrix B (see e.g. Magnus and

Neudecker (2019)). In this respect, one important thing to note is that the expected value of

wk(�) is not 0 but �k, which explains why we should compute the expected value of the second

moments of (29) rather than their covariance matrix. However, this is inconsequential because

working with the second moment matrix of thoseK vectors is e¤ectively adding a constant to the

theoretical regression mentioned in Proposition 4, which makes no di¤erence to the theoretical

calculations because both (28) and the remaining elements of (29) have all 0 mean under the

null. In fact, the same argument implies that in the list of regressors we can replace without

loss of generality the K components corresponding to the zero-order Hermite polynomials times

the posterior probabilities by the K � 1 scores of the underlying parameters � that characterise

the prior probabilities in (19) or (20). Intuitively, given that both regressands and regressors

have 0 means under the null of correct speci�cation, the regression residuals with and without

constant are identical, and therefore so is their covariance matrix.

The expressions we have derived in this section also con�rm that (4) will be singular when

the number of estimated components exceeds the number of true components, which prevents

the use of the IM matrix test in a general-to-speci�c search for K.

3.4 Computational considerations

3.4.1 Initial values

To maximise (21) numerically, it is usually convenient to start the recursions from sensibly

chosen values. In this respect, the EM algorithm discussed by Dempster, Laird and Rubin (1977)

allows us to obtain initial values as close to the MLEs as desired. The recursions are as follows:

�̂
(h)
k =

1

�̂
(h)

k

1

N

NX
i=1

wki(�
(h�1);
(h�1);�(h�1))yi; (35a)

�̂
(h)
k =

1

�̂
(h)

k

1

N

NX
i=1

wki(�
(h�1);
(h�1);�(h�1))yiy

0
i � �̂

(h)
k �̂

(h)0
k ; and (35b)

�̂
(h)

k =
1

N

XN

i=1
wki(�

(h�1);
(h�1);�(h�1)); (35c)

Given that (27) is homogeneous of degree zero in �, in principle these posterior probabilities are

compatible with values of � outside the unit simplex. Nevertheless, a useful property of the EM

algorithm is that it automatically imposes the relevant inequality restrictions on the estimators

of � because
PK
k=1wk(�) = 1 for all y and for all �.

Still, the EM algorithm might get stuck in at least two situations. First, when one starts

the recursions up with � = �� 
 �K and 
 = �
 
 �K , where �� is M � 1, �
 M(M + 1)=2, and �K

a vector of K ones, in which case wk(�� 
 �K ; �
 
 �K ;�) = �k for all k, so the parameter values
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will not get updated because priors and posteriors coincide. One way of avoiding this problem

is to use a fast numerical clustering algorithm to choose the initial values of the � 0ks with which

to start the EM recursions. The second undesirable situation arises when a linear combination

of the mean vector of one component coincides with the same linear combination of yi for some

i. Given that the corresponding linear combination of yi � �k will be zero in that case, if we

choose it as the eigenvector associated to the smallest eigenvalue of �k, and take this to zero

while �k goes to 1=N , the log-likelihood function will become unbounded. To avoid those poles,

we systematically impose that �k � 2=N for all k.

Unfortunately, the EM algorithm slows down considerably in the neighbourhood of the op-

timum, so it makes sense to switch to a quadratically convergent algorithm based on �rst and

possibly second derivatives or the expected values of the latter, whose analytical expressions we

provide in the proof of Proposition 3. In this context, it is convenient to work with the Cholesky

decomposition of the �k matrices to ensure that they remain positive de�nite.

3.4.2 Invariance to a¢ ne transformations

Consider the following full-rank a¢ ne transformation x = c+Dy with jDj 6= 0. It is clear

that the transformed random vector continues to be a �nite mixture of K multivariate normals

with mean vectors c +D�k and covariance matrices D�kD0 (k = 1; : : : ;K). Our next result

shows that the IM statistic is numerically invariant to the values of c and D:

Lemma 2 The IM test statistics of model (16) and the analogous one for x numerically coin-
cide.

This numerical invariance is not only a desirable property in itself, but it also implies that the

sample mean vector and covariance matrix of the observations do not a¤ect the null distribution

of our proposed test in �nite samples. In fact, we can exploit Lemma 2 to simplify the calculation

of the IM statistic as follows. First, as we explain in Appendix D, we can always reparametrise

the model in terms of the unconditional mean vector and covariance matrix on the one hand,

and the shape parameters of a standardised version of the mixture distribution on the other.

One computational advantage of this procedure is that we reduce the number of parameters

to be estimated by M(M + 3)=2 because the results in Day (1969) imply that the joint ML

estimators of � and 	 numerically coincide with the sample mean and covariance matrix (with

denominator N) of the observations. As a result, the criterion function maximized with respect

to the shape parameters � , @ and � keeping � and 	 �xed at those restricted ML estimators

coincides with the criterion function maximized over all �ve groups of parameters.
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4 Monte Carlo simulations

4.1 Size

As stated in Proposition 4, the asymptotic distribution of our proposed IM test is �2 with

degrees of freedom equal to (30). However, this asymptotic approximation might not be very

reliable in �nite samples. For that reason, we assess its validity by means of Monte Carlo

simulations in a sequence of quadrupling sample sizes, namely N = 100, 400, 1,600, 6,400,

25,600 and 102,400. For each of the data generating processes (DGPs) we describe below, we

generate 10; 000 samples under the null and compare the version of the IM statistic that relies

on a feasible version of the theoretical expression (34) that replaces the true parameter values

�0 with their MLEs �̂T with the OPS version proposed by Chesher (1983) and Lancaster (1984)

and employed by Boldea and Magnus (2024), with the only di¤erence that instead of relying

on numerical generalised inverses, we exploit the rank de�ciencies we highlight in the discussion

that follows Proposition 3. Furthermore, for the empirically realistic sample sizes of N = 100,

400 and 1; 600, we also consider parametric bootstrap versions of these two procedures in which

we simulate B = 99 samples from the mixture model estimated under the null. A formal

justi�cation of parametric bootstrap procedures for IM tests in regular models like the ones we

consider in our experiments follows from the results in section 2.2 of Horowitz (1994), which in

turn rely on earlier results by Beran (1988). Given the number of Monte Carlo replications is

10,000, the 95% asymptotic con�dence intervals for the Monte Carlo rejection probabilities under

the null are (9.41,10.59), (4.57,5.43) and (.80,1.20) at the 10%, 5% and 1% levels, respectively.

Given that the true model parameters are unknown, it is important to estimate them ac-

curately. For that reason, we �rst run the EM algorithm up to a pre-speci�ed convergence

level starting with � = K�1�K , �k = dg[V̂T (y)], and initial values for �k which maximise the

log-likelihood function among those obtained from multiple runs of the k-means++ algorithm

of Arthur and Vassilvitskii (2007) with random initial draws for the cluster centres. Next, we

switch to a quadratically convergent quasi-Newton routine written in terms of the �0s in (20)

and the Cholesky factors of the �0ks with a tighter convergence level, ensuring that we avoid the

log-likelihood poles we mentioned in section 3.4.1 by imposing 2=N � �k � 1� 2=N for all k.

We can then use Propositions 3 and 4 to compute the feasible version of the IM test statistic in

(5) that takes into account the sampling uncertainty in estimating the mixture model parameters

under the null of correct speci�cation. In this respect, Proposition 2 and Corollary 1 allow us to

obtain �closed-form�expressions for the covariance matrix of the in�uence functions involved,

as well as their covariances with the log-likelihood scores, and the information matrix, where by

�closed-form�we mean �up to a de�nite integral�that we obtain by Gaussian quadrature.
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In the univariate case, we consider Gaussian mixtures of two and three components as null

hypotheses. For the 2-component case, we follow Robertson and Fryer (1969) in generating

the mixture with the �bitangential� probability density function (pdf) in Figure 1a, which

coincides with the borderline case between unimodal and bimodal densities. Speci�cally, we set

the means and variances of the components to 1=4 and 1=2, and 1=256 and 3=64, respectively,

with a mixing probability for the �rst component of 0:646. The rejection rates we obtain

using asymptotic critical values (see Panel A of Table 1) con�rm the need for �nite sample

size adjustments, especially for the OPS version of the IM test. As Orme (1990) found for

limited dependent models, the quality of the asymptotic approximation is much better when

one uses the theoretical expressions for the weighting matrix instead even in very large samples.

In contrast, Panel B of Table 1, which contains the bootstrap-based rejection rates, gives a

completely di¤erent picture: sizes are very accurate and almost all Monte Carlo rejection rates

fall within the relevant 95% con�dence set.

As our second univariate null hypothesis, we consider a mixture of three normals whose

parameter values are in line with the estimates we obtain in the empirical application in sec-

tion 5.1 (see Figure 1e). Speci�cally, we set the means of the underlying components to 3, 1

and 1/4, their variances to 2/5, 1/5 and 1/100, and the mixing probabilities for the �rst and

second components to 0.25 and 0.45, respectively. As Panels A and B of Table 2 indicate, the

same qualitative comments apply regarding the size of the di¤erent versions of the IM test in

�nite samples. Nevertheless, the quality of the asymptotic approximation to the �nite sample

distribution of the parameter estimators is lower for the 3-component mixture than for the 2-

component one for any given sample size, which is perhaps not surprising given that the number

of estimated parameters is larger.

As for the bivariate case, given that the bootstrap takes considerable more CPU time, we

only consider as null hypothesis the two-component Gaussian mixture in Boldea and Magnus

(2009), which is fully characterised by

�1 = 0; �2 = 5�2; �1 = I2; �2 = I2 + �2�
0
2;

and a mixing probability of 1=2. The pdf and contours of this density are depicted in Figures 2a

and 2e, respectively. In Panels A and B of Table 3 we report the rejection rates under the null

based on asymptotic critical values and bootstrapped ones, respectively. The same comments as

in the univariate examples apply, but with the OPS version performing noticeably worse in this

case. Interestingly, the size distortions of the other versions of the IM test are of the same order

of magnitude as in the univariate examples despite the higher number of estimated parameters
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and much higher number of in�uence functions involved. Presumably, the reason is that the two

components are much more clearly separated in the Boldea and Magnus (2009) design than in

the univariate design in Figure 1a, which makes both the asymptotic covariance matrix of the

in�uence functions and the information matrix closer to being block diagonal.

In summary, one can conclude that the chi-square asymptotic distribution in Proposition 4

is adequate for both versions of the test even though the �nite sample rejection rates do not

necessarily converge monotonically to their limiting values, but the �nite sample reliability of

our preferred version is notably higher than the NR2 version used so far even after taking into

account the singularity of the asymptotic covariance matrix of the sample means of the in�uence

functions underlying the test evaluated at the MLEs. At the same time, the use of theoretical

expressions does not completely eliminate the �nite sample distortions of the IM test, and for

that reason we recommend using the parametric bootstrap in combination with our proposed

version.

4.2 Power

We also investigate the power properties of our test by considering three types of alterna-

tives:

1. mixtures with the same number of non-Gaussian components,

2. mixtures with a larger number of Gaussian components, and

3. non-mixture distributions.

We do so by looking at the rejection rates from 2; 500 samples of size N = 100 and N = 400

because power is e¤ectively 1 for the larger sample sizes. In view of the results in the previous

subsection, we focus on the bootstrap version of the IM test statistic that relies on the theoretical

expression for the asymptotic covariance matrix evaluated at the MLEs to correct the �nite

sample size distortions, as forcefully argued by Horowitz and Savin (2000).

As the �rst alternative hypothesis to the 2-component Gaussian mixture in Figure 1a, we

consider a mixture of two asymmetric Student t�s with the same means, variances and mixing

probability as under the null, but with shape parameters �1 = �2 = 1=12, �1 = 5 and �2 = �5

(see Mencía and Sentana (2012) for details). Given that asymmetric Student t�s distributions can

be understood as location-scale mixtures of normals, we can regard this alternative as an example

of unobserved cross-sectional heterogeneity in the means and variances of the components, which

is in line with the interpretation of the IM test in Chesher (1984). In addition, we consider a

symmetric mixture of three normals that represents a borderline case between unimodal and

trimodal density. Speci�cally, we set the means of the underlying components to �0:47, 0:47

and 0, their variances to 0:047, 0:047 and 0:018, and the mixing probabilities for the �rst
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two components to 0:18. Once again, this three component mixture can be regarded as an

example of a mixture of one normal component with a second component in which the means

and variances take two possible values. Finally, the empirical application to �convergence clubs�

in cross-country GDP per capita in section 5 suggests a lognormal distribution with parameters

� = �1=4 and �2 = 1 as our third alternative. Interestingly, this alternative can be regarded as

an example of a distribution in which there are fewer components than in the estimated model,

but those components are not Gaussian. Figures 1b-d show the corresponding densities (solid

lines), as well as the pdf of the closest (in the usual Kullback-Leibler sense) mixture of two

normals (dashed lines). As can be seen from Panel C of Table 1, the IM test is able to detect

with reasonable power these three deviations from the null, especially for the larger sample size.

In turn, the �rst alternative hypothesis we consider to the 3-component Gaussian case is a

mixture of two asymmetric Student t�s and a symmetric one with the same degrees of freedom

and skewness parameters as in Figure 1b for the �rst two components, and with the same mixing

probabilities we use for the null. In addition, we consider a mixture of four normals with means

4, 2, 1, and 1/3, variances 2, 1/2, 1/10 and 0.015, and mixing probabilities 0.075, 0.25 and 0.325

for the �rst three components. Finally, we retain the same lognormal as in the 2-component

mixture as an example of a non-Gaussian distribution that can only be replicated by a Gaussian

mixture with a countable number of components. Figures 1f-h show the corresponding densities

(solid lines) as well as the pdf of the closest mixture of three normals (dashed lines). The

rejection rates reported in Panel C of Table 2 show that the IM test continues to have good

power, although there is a clear decrease when the true distribution is lognormal relative to the

2-component case. The reason is twofold. First, the number of degrees of freedom increases. And

second, Gaussian mixtures with an increasing number of components are able to approximate

many distributions (see Hamdan (2006) for scale mixtures of normals, Nguyen et al (2020) for

general ones, and Norets (2010) for conditional models). We would expect the same conclusions

to apply in more complex examples in which the true DGP is a mixture of two non-Gaussian

distributions and the estimated model is the mixture of three or more Gaussian components.

Finally, in the bivariate case, we �rst consider a mixture of two asymmetric bivariate Student

t�s with the same means, variances and mixing probability as under the null, but with shape

parameters �1 = �2 = 1=16, and �1 = �2 = �(1; 1)0 (see again Mencía and Sentana (2012) for

details).3 In addition, we consider a discrete mixture of three normals with

�1 = 3�2; �2 = �2; �3 =
1

4
�2; �1 =

2

5
I2; �2 =

1

5
I2; �3 =

1

10
I2;

3 If we chose the same shape parameters as in the univariate alternative in Figure 1b, then we would system-
atically obtain rejection rates close to 100% even for N = 100.
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and mixing probabilities 0:25 and 0:45 for the �rst two components. Finally, as an example of

a bivariate non-Gaussian distribution which cannot be expressed as a Gaussian mixture with

a �nite number of components we simulate two independent (standardised) univariate skew

normals with a skewness parameter such that its skewness and kurtosis coe¢ cients are �0:85

and 3:71, respectively (see Azzalini (1985) for details). Once again, this alternative can be

regarded as an example of a distribution in which there are fewer components than in the

estimated model, but those components are not Gaussian. Figures 2b-d show the corresponding

pdfs while in Figures 2f-h we report their contours (solid lines) as well as those of the Gaussian

mixtures of two components that best match those densities in the usual Kullback-Leibler sense

(dashed lines). The rejections rates displayed in Panel C of Table 3 indicate that the IM test is

also able to detect deviations from the null in all these bivariate experiments. As can be seen,

the highest power is obtained when the alternative is a mixture of three normals and the lowest

under the bivariate skew normal alternative. In addition, power is always quite close to one for

the larger sample size.

In summary, our results indicate that the IM test has power to detect empirically plausible

deviations of the null in which the number of components is correctly speci�ed but their distri-

bution is not, the number of components is too low even though their distribution is correctly

speci�ed, or the number of components is too large but their distribution is not Gaussian.

5 Empirical applications

In this section we use the IM test to assess the validity of Gaussian mixtures in two pub-

lished empirical applications that look at the univariate distribution of per capita income across

countries and its joint distribution with per capita CO2 emissions.

5.1 Convergence clubs

As mentioned in the introduction, Gaussian mixtures feature pre-eminently in the empirical

literature on �convergence clubs�in cross-country GDP per capita comparisons. In this section,

we revisit the empirical application in Pittau et al. (2010), who found that a Gaussian mixture

with three components provides a very good �t for the distributions of per capita income in

version 6.1 of the Penn World Tables for 1960, 65, 70, etc. all the way to the year 2000. This

covers 102 countries, of which 90 have data over the entire sample span.

In addition, they found that the within-group variances of both the rich and poor groups

of countries decreased over time, while the distance between their means increased, especially

between the middle-income and high-income groups.

20



Finally, they found that the sizes of the di¤erent groups �uctuated somewhat, but with little

movements across components, as judged by the posterior probabilities. These features can be

seen in Panel A of Table 4 in which we report the parameter estimates, and also in Figure 3,

which displays the temporal evolution of those cross-sectional distributions.

However, the validity of the results in Pittau et al. (2010) and their interpretation crucially

depend on �nite Gaussian mixtures with three components providing an accurate description

of those distributions. For that reason, we apply the IM test that we have studied in previous

sections to their data set, whose p-values, both based on asymptotic critical values and 9,999

bootstrapped samples, we report in Panel B of Table 4. As can be seem, the null hypothesis of

correct speci�cation is never rejected, which provides formal empirical support to their claim.4

5.2 GDP growth and CO2 emissions

As part of their extensive cross-country analysis of CO2 emissions and their relationship to

economic development, Battisti, Delgado and Parmeter (2015) estimate two-component mixtures

of bivariate Gaussian distributions using data on (log) per capita emissions and (log) per capita

GDP. Speci�cally, they consider a balanced panel data set of 84 countries that combines real GDP

per capita from the Penn World Table 7.1 with fossil fuel-based CO2 emissions from Marland,

Boden and Andres (2003) at �ve year intervals for the period 1960-2005. Our estimates are

somewhat di¤erent from theirs because we do not impose the restriction that the eigenvectors

of the covariance matrices of the two underlying components are the same (see Bensmail and

Celeux (1996)).5 Nevertheless, we con�rm their main result, which is that there is a low GDP-

low emissions component and a high GDP-high emissions component, as can be seen from

Figure 4 and Panel A of Table 5. Our results also con�rm that the �rst group of countries is

larger but stable, and that there are noticeable changes in means, variances and correlations

over the sample period. Speci�cally, the rate of growth in average GDP per capita is larger for

rich countries than for poor ones, while the opposite happens for the rate of growth in average

CO2 per capita. In addition, the dispersion within components is larger for emissions than

for income, and while the standard deviations of both variables increase over time for the low

GDP-low emissions group of countries, they decrease over time for the high GDP-high emissions

one. Finally, the correlations between those two variables also follow di¤erent trends for the two

groups: from medium (.64) to high (.74) for the poor countries and from high (.84) to low (.37)

for the rich ones.
4 In contrast, the IM test applied to 2-component mixtures estimated with the same data systematically rejects

at the 5% level.
5As we explain in our concluding remarks, the modi�cation required to deal with such parametric restrictions

is tedious but otherwise straightforward.
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In this case, though, the bootstrap version of the IM matrix tests rejects the null of correct

speci�cation at the 5% signi�cance level for 1970 and 1980 but not for the other years. To provide

further insights into the nature of the rejections, we have carried out two additional tests that

separately look at the (co-)skewnes and (co-)kurtosis components of the in�uence functions (28)

for those two years. Interestingly, we �nd that the source of the rejections is related to the

fourth-order moments (bootstrap p-values of 1.64% and 3.37% in 1970 and 1980, respectively)

rather than the third-order ones (bootstrap p-values of 25.08% and 22.24%), which suggests that

a mixture of elliptical distributions, such as the Student t, might be more appropriate.

6 Conclusions and directions for further research

We explain how the EM principle applied to incomplete data can also be used to obtain

the moments underlying the IM test as the expectation given the observed data of the moments

tested if the complete data were observed. This principle also leads to interpretable expressions

for the asymptotic covariance matrix of those in�uence functions adjusted for the sampling

uncertainty in the parameter estimators under the null of correct model speci�cation.

We then apply these results to �nite mixtures of Gaussian random vectors, showing that

the IM test statistic can be easily computed as a quadratic form in the sample means of the K

vectors that contain the distinct third- and fourth-order multivariate Hermite polynomials of the

observations standardised with respect to the vector of means and covariance matrix of each of

the underlying components multiplied by the posterior probability of those components, with a

weighting matrix which is the inverse of the residual covariance matrix in the regression of those

in�uence functions on the K vectors that contains the distinct zero-, �rst-, and second-order

multivariate Hermite polynomials of the same standardised variables multiplied again by the

posterior probability of the components.

Our Monte Carlo exercises clearly indicate that one can substantially reduce size distortions

in �nite samples by using the theoretical expressions for the aforementioned weighting matrix

that we have developed evaluated at the MLEs rather than the OPS version of the IM test

statistic put forward by Chesher (1983) and Lancaster (1984), and that a parametric bootstrap

procedure practically eliminates them. Our results also con�rm the non-trivial power of the IM

tests against many empirically plausible alternatives.

Nevertheless, like any moment test based on a �nite number of in�uence functions, the IM test

is not consistent. As White (1982) indicated, it will have trivial power against misspeci�cations

that do not a¤ect the validity in large samples of standard errors computed from either the

OPS or the average Hessian matrix. We conjecture that this low power is likely to be relevant in
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admittedly contrived alternatives with the right number of components in which the distribution

of some of the mixture components is not Gaussian but the expected value of all their third-

and fourth-order Hermite polynomials are 0.

Finally, we employ the IM test to assess the adequacy of �nite Gaussian mixtures to capture

the univariate distribution of per capita income across countries and its joint distribution with

per capita CO2 emissions. In this respect, we con�rm that a Gaussian mixture with three

components provides a very good �t for the cross-sectional distributions of per capita income

in the Penn World Tables between 1960 and 2000, as argued by Pittau et al. (2010). Our

results also suggest that the two-component mixtures of bivariate normals considered Battisti,

Delgado and Parmeter (2015) provide a good �t to the joint distribution of income and emissions

except for a couple of years in which a mixture of elliptical distributions would have been more

appropriate.

From a theoretical point of view, it would interesting to extend the Bartlett identities tests

proposed by Chesher, Dhaene, Gouriéroux and Scaillet (1999) to incomplete data situations. In

the context of �nite Gaussian mixtures, in particular, we would expect the in�uence functions to

coincide with the �fth- and higher-order multivariate Hermite polynomials of the observations

standardised with respect to the vector of means and covariance matrix of each of the underlying

components multiplied by the posterior probability of those components.

In contrast, the model we have considered in this paper may be excessively general for

some purposes. For example, an empirical researcher might have good reasons to restrict some

elements of �k or 
k to be common across regimes. Nevertheless, the chain rules for �rst

and second derivatives would immediately give us the score, Hessian and relevant in�uence

functions and their asymptotic covariance matrix in those restricted models as a function of the

corresponding elements in the unrestricted model that we have considered.

At the same time, the IM tests that we present in this paper can also be extended in at least

three empirically relevant directions. First, we could deal with switching regression models in

which the linear regression coe¢ cients depend of a set of predetermined variables x. The main

di¤erence is that for each component of the mixture, we would have in�uence functions related

to the conditional heteroskedasticity of the (multivariate) regression, the conditional skewness

of its residuals, as well as their unconditional asymmetry and kurtosis. Second, we could allow

the probabilities of the di¤erent regimes to be a function of some exogenous indicators using a

multinomial logit model speci�cation. And third, we could allow the regimes to have a Markovian

structure, as in Hamilton (1989), which would force us to rely on a smoother rather than a �lter,

as in Almuzara et al. (2019). In Amengual, Fiorentini and Sentana (2025a,b,c), we explore these
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interesting research avenues.

In fact, the IM tests considered in this paper can be extended to a much wider class

of dynamic models with discrete and continuous latent variables that are routinely used in

macroeconometric and empirical �nance applications, including dynamic factor models (see Ren

(2025)) and non-linear state space models with stochastic volatility and non-Gaussian shocks,

as long as they can be written in the incomplete data framework of Dempster, Laird and Ru-

bin (1977) after a suitable data augmentation. The main di¤erence would be that numerical

techniques, such as Markov chain Monte Carlo or particle �lters, would often be required for

smoothing purposes.
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Appendices

A Proofs

A.1 Proof or Lemma 1

The following relationships will prove useful:

g(yi;') = f [yi; r(')];

@ ln g(yi;')

@'
=

@r0(')

@'

@li(�)

@�
=
@r0(')

@'
si(�) (A1)

and

@2 ln g(yi;')

@'@'0
=

@r0(')

@'

@2li(�)

@�@�0
@r(')

@'0
+

�
@li(�)

@�0

 Ip

�
@vec[@r0(')=@']

@'0

=
@r0(')

@'
hi(�)

@r(')

@'0
+
�
s0i(�)
 Ip

� @vec[@r0(')=@']
@'0

:

As a result, the in�uence functions underlying the IM test of the reparametrised model will

be

@2 ln g(yi;')

@'@'0
+
@ ln g(yi;')

@'

@ ln g(yi;')

@'0

=
@r0(')

@'

�
hi(�) + si(�)s

0
i(�)

� @r(')
@'0

+
�
s0i(�)
 Ip

� @vec[@r0(')=@']
@'0

;

which after vectorisation become (6).

But

vec

��
s0i(�)
 Ip

� @vec[@r0(')=@']
@'0

�
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�
@vec0[@r0(')=@']

@'

 Ip

�
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�
s0i(�)
 Ip

�
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�
@vec0[@r0(')=@']
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 Ip

�
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 Ip)

�
vec

�
s0i(�)

�

 vec(Ip)

	
=

�
@vec0[@r0(')=@']

@'

 Ip

�
fsi(�)
 vec(Ip)g

=

�
@vec0[@r0(')=@']

@'

 Ip

�
[Ip 
 vec(Ip)]si(�) (A2)

by virtue of theorem 3.10 in Magnus and Neudecker (2019) and the fact that si(�) is already a

vector, Kp1 = Ip, and

fsi(�)
 vec(Ip)g = vec
�
vec(Ip)s

0
i(�)

	
= [Ip 
 vec(Ip)]si(�):

Therefore, (6) can be written as an (admittedly complex) linear combination of (6) and

si(�0).

In fact, if we ignored the additional term (A2), the residual covariance matrix in the least
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squares projection of �
@r0('0)

@'

 @r0('0)

@'

�
vec

�
hi(�0) + si(�0)s

0
i(�0)

�
onto the linear span of (A1) evaluated at '0 will be given by�

@r0('0)

@'

 @r0('0)

@'

�
[R(�0)� U(�0)I�1(�0)U(�0)]

�
@r('0)

@'0

 @r('0)

@'0

�
:

The inclusion of the additional term (A2), though, does not a¤ect this residual covariance

matrix because it is a linear combination of si(�0), and consequently, of (A1) evaluated at '0

too. �
Lemma 1 is perhaps not entirely surprising given Chesher�s (1984) re-interpretation of the

IM test as an LM test against neglected parameter heterogeneity, because LM tests computed

with either the information matrix or the OPS are numerically invariant to reparametrisation,

as explained in section 17.4 of Ruud (2000).

Example: Assume that y is normally distributed with mean � and variance �2 so that, in

terms of the notation above, we would have � = (�; �2)0,

s(�) =

�
(y � �)=�2

(y � �)2=(2�4)� 1=�2
�

and

h(�) = �
�

1=�2 (y � �)=�4
(y � �)=�4 (y � �)2=(2�6)� 1=(2�4)

�
:

Now consider reparametrising the distribution of y in terms of its Sharpe ratio � = �=� and

standard deviation  = �, so that ' = (� ;  )0 and r(') = (� ;  2)0. Then, direct calculations

deliver
@ ln g(y;')

@'
=

�
y= � �

(y2 � � y +  2)= 3
�

and
@ ln g(y;')

@'@'0
= �

�
1 y= 2

y= 2 (3y2 � 2� y �  2)= 4
�
:

Alternatively, starting from the score and Hessian written in terms of ', namely

s[r(')] =

�
(y � � )= 2

(y � � )2=(2 4)� 1= 2
�

and

hi[r(')] = �
�
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(yi � � )= 4 (yi � � )2=(2 6)� 1=(2 4)
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;

and using the fact that

@r0(')
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=

�
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0 2 

�
and

@vec0[@r0(')=@']

@'
=

�
1 0 0 2
0 1 0 0

�
;
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we can easily verify through straightforward calculations that the result (6) is indeed correct.

A.2 Proof of Proposition 1

Given that Assumption 1 allows us to interchange integration and di¤erentiation, we can

immediately combine expressions (3.1) and (3.2) in Louis (1982) to show that (8) holds. �

A.3 Proof or Proposition 2

First of all, note that E� [n(�;�)] = 0 combined with the law of iterated expectations

applied to second moments implies that

V� [n(�;�)] = E� [n(�;�)n
0(�;�)]

= EyfE�jy[n(�;�)n0(�;�)]g = EyfV�jy[n(�;�)]g+ EyfE�jy[n(�;�)]E�jy[n0(�;�)]g

= EyfV�jy[n(�;�)]g+ Vy[m(y;�)];

whence (9) follows.

In turn,
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:

But given that both Ey [m(y;�)] and Ey [@ ln f(y;�)=@�] are zero, we can write this last

expression as

E�
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:

We also know from the generalised information matrix equality applied to the log-likelihood

functions of the complete and observed data that
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respectively, where, once gain, Assumption 1 has allowed us to interchange integration and

di¤erentiation. Therefore, we can �nally write

Ey
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m(y;�)
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��
;

which coincides with (10). �

A.4 Proof or Proposition 3

To prove this result, we need expressions for the scores and Hessian, which we derive

using the EM principle. The complete log-likelihood function of a random sample of size N on

� = (y0; �0)0 is given by

NX
i=1

lnf(�i;�) =
NX
i=1

KX
k=1

�ki lnf(yij�ki=1;�k) +
NX
i=1

lnf(�i;�); (A3)

where

lnf(yj�k=1;�k)=�
1

2

KX
k=1

�
M ln�+ln j�kj+ "�0(�k)"�(�k)

�
; (A4)

lnf(�;�)=

KX
k=1

�k ln�k: (A5)

The sequential cut in (A3), (A4) and (A5) considerably simpli�es the required expressions.

Speci�cally,

@ ln f(y; �;�)

@�k
= �k

@ ln f(yj�k=1;�k)
@�k

= �k�
0�1=2
k "�(�k);

@ ln f(y; �;�)

@
k
= �k

@ ln f(yj�k=1;�k)
@
k

= ��k
1

2
D0
M (�

0�1=2
k 
 �0�1=2k )vec["�(�k)"

�0(�k)� IM ];

@ ln f(y; �;�)

@�k
=

@ ln f(�;�)

@�k
= �k

1

�k
:

Hence, the second derivatives will be

@2 ln f(y; �;�)

@�k@�
0
k

= �k
@2 ln f(yj�k=1;�k)

@�k@�
0
k

= ��k��1k ;

@2 ln f(y; �;�)

@�k@

0
k

= �k
@2 ln f(yj�k=1;�k)

@�k@

0
k

= ��k["�0(�k)�
�1=2
k 
 ��1k ]DM

@2 ln f(y; �;�)

@
k@

0
k

= �k
@2 ln f(yij�k=1;�k)

@
k@

0
k

= ��k
1

2
D0
Mf2[(��1k 
 �0�1=2k "�(�k)"

�0(�k)�
�1=2
k ]� (��1k 
 ��1k )gDM ;
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and
@2 ln f(y; �;�)

(@�k)2
=
@2 ln f(�;�)

(@�k)2
= ��k

1

�2k
;

with all other cross-derivatives being zero.

The assumption of random sampling implies that the joint distribution of �1; : : : ; �i; : : : ; �N

given y1; : : : ; yi; : : : ; yN is the product of the N distributions of �i given yi, which are also

categorical but with probabilities wki(�) given by (27). On this basis, we can use expression

(3.1) in Louis (1982) to write

@ ln f(y;�)

@�k
= E

�
�k
@ ln f(yj�k=1;�k)

@�k

����y� = wk(�)�
0�1=2
k "�(�k);

@ ln f(y;�)

@
k
= E

�
�k
@ ln f(yij�k=1;�k)

@
k

����y� = �wk(�)12D0
M (�

0�1=2
k 
 �0�1=2k )

�vec["�(�k)"�0(�k)� IM ];
@ ln f(y;�)

@�k
= E

�
@ ln f(�;�)

@�k

����y� = wk(�)
1

�k
:

Similarly, the only non-zero elements of the �rst term of expression (3.2) in Louis (1982) will

be

E

�
�k
@2 ln f(yj�k=1;�k)

@�k@�
0
k

����y� = �wk(�)��1k ;

E

�
�k
@2 ln f(yj�k=1;�k)

@�k@

0
k

����y� = �wk(�)["�0(�k)��1=2k 
 ��1k ]DM ;

E

�
�k
@2 ln f(yj�k=1;�k)

@
k@

0
k

����y�
= �wk(�)

1

2
D0
Mf2[(��1k 
 �0�1=2k "�(�k)"

�0(�k)�
�1=2
k ]� (��1k 
 ��1k )gDM ;

E

�
@2 ln f(�;�)

(@�k)2

����y� = � 1

�2k
wk(�):

In contrast, the second term of expressions (3.2) in Louis (1982) is slightly more complex.

Speci�cally, we get

V

�
�k
@ ln f(yj�k=1;�k)

@�k

����y� = wk(�)[1� wk(�)]�0�1=2k "�(�k)"
�0(�k)�

�1=2
k

= wk(�)�
0�1=2
k "�(�k)"

�0(�k)�
�1=2
k � w2k(�)�

0�1=2
k "�(�k)"

�0(�k)�
�1=2
k ;

where we have used the fact that �k is a Bernoulli random variable whose variance conditional
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on y is wk(�)[1� wk(�)]. In turn,

Cov

�
�k
@ ln f(yj�k=1;�k)

@�k
; �k

@ ln f(yj�k=1;�k)
@
k

����y�
= wk(�)[1� wk(�)]

1

2
�
0�1=2
k "�(�k)vec

0["�(�k)"
�0(�k)� IM ](��1=2k 
 ��1=2k )DM

= wk(�)
1

2
�
0�1=2
k "�(�k)vec

0["�(�k)"
�0(�k)� IM ](��1=2k 
 ��1=2k )DM

�w2k(�)
1

2
�
0�1=2
k "�(�k)vec

0["�(�k)"
�0(�k)� IM ](��1=2k 
 ��1=2k )DM ;

Cov

�
�k
@ ln f(yj�k=1;�k)

@�k
;
@ ln f(�;�)

@�k

����y� = wk(�)[1� wk(�)]
1

�k
�
0�1=2
k "�(�k)

= wk(�)
1

�k
�
0�1=2
k "�(�k)� w2k(�)

1

�k
�
0�1=2
k "�(�k);

V

�
�k
@ ln f(yj�k=1;�k)

@
k

����y�
= wk(�)[1� wk(�)]

1

4
D0
M (�

0�1=2
k 
 �0�1=2k )vec["�(�k)"

�0(�k)� IM ]

�vec0["�(�k)"�0(�k)� IM ](��1=2k 
 ��1=2k )DM

= wk(�)
1

4
D0
N (�

0�1=2
k 
 �0�1=2k )vec["�(�k)"

�0(�k)� IM ]

�vec0["�(�k)"�0(�k)� IM ](��1=2k 
 ��1=2k )DM

�w2k(�)
1

4
D0
M (�

0�1=2
k 
 �0�1=2k )vec["�(�k)"

�0(�k)� IM ]

�vec0["�(�k)"�0(�k)� IM ](��1=2k 
 ��1=2k )DM ;

Cov

�
�k
@ ln f(yj�k=1;�k)

@
k
;
@ ln f(�;�)

@�k

����y�
= wk(�)[1� wk(�)]

1

2�k
D0
M (�

0�1=2
k 
 �0�1=2k )vec["�(�k)"

�0(�k)� IM ]

= wk(�)
1

2�k
D0
M (�

0�1=2
k 
 �0�1=2k )vec["�(�k)"

�0(�k)� IM ]

�w2k(�)
1

2�k
D0
M (�

0�1=2
k 
 �0�1=2k )vec["�(�k)"

�0(�k)� IM ]

and

Cov

�
@ ln f(�;�)

@�k

����y� = wk(�)[1� wk(�)]
1

�2k

= wk(�)
1

�2k
� w2k(�)

1

�2k
:

Interestingly, the second terms in the previous expressions are nothing other than the minus

products of the corresponding scores.

In addition, we must also compute all the other conditional covariances between the di¤erent
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components of the score. Speci�cally,

Cov

�
�k
@ ln f(yj�k=1;�k)

@�k
; �l

@ ln f(yj�l=1;�k)
@�l

����y�
= �wk(�)wl(�)

1


2k
�
0�1=2
k "�(�k)"

�0(�l)�
�1=2
l ;

where we have used the fact that �k and �l are elements of a multinomial random vector whose

covariance conditional on y is �wk(�)wl(�). Similarly,

Cov

�
�k
@ ln f(yj�k = 1;�k)

@�k
; �l

@ ln f(yj�l = 1;�k)
@
l

����y�
= �wk(�)wl(�)

1

2
�
0�1=2
k "�(�k)

�vec0["�(�l)"�0(�l)� IM ](��1=2k 
 ��1=2k )DM ;

Cov

�
�k
@ ln f(yj�k = 1;�k)

@�k
;
@ ln f(�;�)

@�l

����y� = �wk(�)wl(�) 1�l�0�1=2k "�(�k);

Cov

�
�k
@ ln f(yj�k=1;�k)

@
k
; �l

@ ln f(yj�l=1;�k)
@
l

����y�
= �wk(�)wl(�)

1

4
D0
M (�

0�1=2
k 
 �0�1=2k )vec["�(�k)"

�0(�k)� IM ]

�vec0["�(�l)"�(�l)� IM ](��1=2l 
 ��1=2l )DM ;

Cov

�
�k
@ ln f(yj�k=1;�k)

@
k
;
@ ln f(�;�)

@�l

����y�
= �wk(�)wl(�)

1

2�l
D0
M (�

0�1=2
k 
 �0�1=2k )vec["�(�k)"

�0(�k)� IM ]

and

cov�jy

�
@ ln f(�;�)

@�k
;
@ ln f(�;�)

@�l

�
= �wk(�)wl(�)

1

�k�l
;

which also coincide with the outer products of the scores involved. Thus, to compute the Hessian

we simply need to add to the minus OPS the terms that appear in Proposition 3. �

A.5 Proof or Proposition 4

Given that joint log-likelihood function of the complete data can be written as the sum of the

marginal log-likelihood function of the multinomial random vector � and a linear combination

with weights �k of multivariate Gaussian log-likelihood functions with parameters �k and 
k, we

can exploit Proposition 1 in Amengual, Fiorentini and Sentana (2024) to express the scores of the

complete log-likelihood with respect to �k, �k and 
k as linear combinations of 1,H1["
�(�k)] and

H2["
�(�k)] scaled by �k and the sum of the outer product of those scores and the corresponding

Hessian as �k times linear combinations of H2["
�(�k)] for the �k�k term, H3["

�(�k)] for the

�k
k term, and H4["
�(�k)] for the 
k
k one. Therefore, we can avoid generalised inverses by

using as in�uence functions the terms Ef�kjygH3["
�(�k)] and Ef�kjygH4["

�(�k)], which we
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can purge from sampling uncertainty resulting from the estimation of the model parameters by

regressing on E(�kjy), Ef�kjygH1["
�(�k)] and Ef�kjygH2["

�(�k)], k = 1; : : : ;K.

As for the number of degrees of freedom, in principle they correspond to the dimensions of

H3["
�(�k) and H4["

�(�k)] times the number of components, namely

K

�
M(M + 1)(M + 2)

6
+
M(M + 1)(M + 2)(M + 3)

24

�
=
KM(M + 1)(M + 2)(M + 7)

24
:

However, if the true value of one or more of the �0ks is zero, then Ef�kjyg = 0 for the corre-

sponding elements. Similarly, if two or more underlying components are such that �k = �l at

the true values, then H3["
�(�k)] = H3["

�(�l)] and H4["
�(�k)] = H4["

�(�l)]. Nevertheless, in

both cases the number of degrees of freedom will continue to be given by (30) as long as we

interpret K as the e¤ective number of components of the mixture. �

A.6 Proof or Lemma 2

The proof is entirely analogous to the proof of Lemma 2 in Amengual, Fiorentini and

Sentana (2024), but on a component by component basis.

More formally, we have seen that the IM test statistic can be easily computed as a quadratic

form in the sample means of the K vectors that contain the distinct third- and fourth-order

multivariate Hermite polynomials of the observations standardised with respect to the vector of

means and covariance matrix of each of the underlying components multiplied by the posterior

probability of those components, with a weighting matrix which is the inverse of the residual

covariance matrix in the regression of those in�uence functions on theK vectors that contains the

distinct zero-, �rst-, and second-order multivariate Hermite polynomials of the same standardised

variables multiplied again by the posterior probability of the components.

But the EM recursions (35a), (35b) and (35c) imply that the MLEs of the mean vectors and

covariance matrices of the di¤erent components will satisfy c +D�̂j and D�̂jD0, respectively,

while the ML estimators of the mixing probabilities will not be a¤ected. This implies in turn

that the observations on x standardised with respect to the vector of means and covariance

matrix of each of the underlying components multiplied by the posterior probability of those

components will be numerically identical than the corresponding standardised values of y, and

the same will be true of their Hermite polynomials of arbitrary order, whence the result follows.

�
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B Multivariate Hermite polynomials

Let us follow Barndor¤-Nielsen and Petersen (1979) in de�ning the (centred) multivariate

Hermite polynomials of order j = j1 + : : : + jM � 0 associated to the M -dimensional random

vector y as

Hj1:::jM ["(�);�] � e�
1
2
(y��)0�(y��) = (�1)j @j

(@y1)j1 : : : (@yM )jM

h
e�

1
2
(y��)0�(y��)

i
; (B6)

where "(�) = (y��). As is well known, the mean of any Hermite polynomial of positive degree

is zero when y � N(�;�), with � = ��1, so they constitute a basis for testing multivariate

normality (see e.g. Amengual, Fiorentini and Sentana (2024) and the references therein).

The symmetry of the higher-order partial derivatives in (B6), however, implies that some of

theM j multivariate Hermite polynomials of order k will be replicated several times. Speci�cally,

there are only
�
M+j�1

k

�
di¤erent polynomials for a given order, so we can avoid generalised inverse

matrices by eliminating the redundant ones. For that reason, we de�ne

Hj(";�) =

26664
Hk;0;��� ;0(";�)
Hk�1;1;��� ;0(";�)

...
H0;��� ;0;k(";�)

37775 ; (B7)

as the
�
M+j�1

k

�
�1 vector that contains all the non-redundant multivariate Hermite polynomials

of order j, which we will simply denote by Hj("
�) for the special case of � = IM , so that

H1("
�) = "� with V [H1("

�)] = IM .

The usefulness of multivariate Hermite polynomials in our context results from Proposition

1 in Amengual, Fiorentini and Sentana (2024), which implies that:

1. The scores with respect to � and 
 = vech(�) of the log-likelihood function associated

to the multivariate random vector x can be written as linear combinations of H1("
�) and

H2("
�), where "� = ��1=2"(�) = ��1=2(y � �).

2. The sum of the outer product of those scores and the corresponding Hessian matrix can

be written as linear combinations of H2("
�) for the �� term, H3("

�) for the �
 term, and

H4("
�) for the 

 one.

C Scores and Hessian expressions in Boldea and Magnus (2009)

Theorem 1 in Boldea and Magnus (2009) provides analytical expressions for the contribu-

tion of a single observation on y to score and Hessian matrix. As we mentioned before, they

reparametrise � so that �k = �k for k = 1; : : : ;K � 1, and �K = 1 �
PK�1
k=1 �k. Then, they
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introduce some additional notation. First,

ak = ��1k ek k = 1; : : : ;K � 1; aK = �(1�
PK�1
k=1 �k)

�1�K�1;

where ek is the kth column of IK�1 and �K�1 a vector of K � 1 ones. Next, they de�ne

bk = �
�1=20
k "�(�k);

Bk = ���1=20k ["�(�k)"
�0(�k)� IM ]��1=2k ;

ck =

"
�
�1=20
k "�(�k)

1
2D

0
Mvecf�

�1=20
k ["�(�k)"

�0(�k)� IM ]��1=2k g

#

and

Ck =

(
��1k

D0
M [�

�1=20
k "�(�k)
 ��1k ]

["�0(�k)�
�1=2
k 
 ��1k ]DM

1
2D

0
M [f�

�1
k + 2[�

�1=20
k ["�(�k)"

�0(�k)� IM ]��1=2k g 
 ��1k ]DM

)

for k = 1; : : : ;K.

In this notation, Theorem 1 in Boldea and Magnus (2009) states that the contribution to

the scores of a single observation are given by

@ ln f(y;�)

@�
=
K�1P
k=1

wk(�)

�k
ek �

wK(�)

1�
PK�1
k=1 �k

�K�1 (C8)

and
@ ln f(y;�)

@�k
= wk(�)

(
�
�1=20
k "�(�k)

1
2D

0
M (�

�1=20
k 
 ��1=20k )vec["�(�k)"

�0(�k)� IM ]

)
: (C9)

In addition, the same theorem also says that its contribution to the Hessian will be given by

the following blocks:

@2 ln f(y;�)

@�@�0
= �@ ln f(y;�)

@�

@ ln f(y;�)

@�0
;

@2 ln f(y;�)

@�k@�0
= wk(�)

(
�
�1=20
k "�(�k)

1
2D

0
M (�

�1=20
k 
 ��1=20k )vec["�(�k)"

�0(�k)� IM ]

)

�
�
1

�k
ek �

@ ln f(y;�)

@�

�0
;

@2 ln f(y;�)

@�K@�0
= �wK(�)

"
�
�1=20
K "�(�K)

1
2D

0
Mvecf�

�1=20
K ["�(�K)"

�0(�K)� IM ]��1=2K g

#

�
"

1

1�
PK�1
k=1 �k

�K�1 +
@ ln f(y;�)

@�

#0
;
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@2 ln f(y;�)

@�k@�
0
k

= �wk(�)

266664
Ck

�[1� wk(�)]
(

�
�1=20
k "�(�k)

1
2D

0
M (�

�1=20
k 
 ��1=20k )vec["�(�k)"

�0(�k)� IM ]

)
�
n
["0(�k)�

�1=2
k

1
2vec

0["�(�k)"
�0(�k)� IM ](��1=2k 
 ��1=2k )DM

o
377775

and

@2 ln f(y;�)

@�k@�
0
l

= �wk(�)wl(�)
(

�
�1=20
k "�(�k)

1
2D

0
M (�

�1=20
k 
 ��1=20k )vec["�(�k)"

�0(�k)� IM ]

)
�
n
["�0(�l)�

�1=2
l

1
2vec

0["�(�l)"
�0(�l)� IM ](��1=2l 
 ��1=2l )DM

o
for k 6= l.

On this basis, they show that the sum of the Hessian and the outer product of the scores

corresponding to a single observation is given by the matrix

W =

0BBB@
0 A01 : : : A0K
A1 W1 0
...

. . .
AK 0 WK

1CCCA
where Ak is a 1

2M (M + 3)� (K�1) matrix whose kth column contains the following equations�
(22)
(26)

�
whileWk is a square matrix of order 12M (M + 3) consisting of the following ones�

(22) (23)
(23)0 (25)

�
They also note that Ak is 0 when evaluated at the MLE. These expressions di¤er slightly from

ours because they work with � rather than �. Nevertheless, given that

� =

0BBB@
�1
...

�K�1
�K

1CCCA =

0BBB@
0
...
0
1

1CCCA+
0BBB@

1 : : : 0
...
. . .

...
0 : : : 1

�1 : : : �1

1CCCA
0B@ �1

...
�K�1

1CA = eK +

�
IK�1

��0K�1

�
�; (C10)

so that
@�

@�0
=

�
IK�1

��0K�1

�
;

it is easy to see that

@ ln f(y;�)

@�
=
@�0

@�

@ ln f(y;�)

@�
= ( IK�1 ��0K�1 )

@ ln f(y;�)

@�

coincides with (C8).
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Similarly, given that (C10) is a¢ ne, so that its second Jacobian is 0, it follows that

@2 ln f(y;�)

@�@�0
= ( IK�1 ��0K�1 )

@2 ln f(y;�)

@�@�0

�
IK�1

��0K�1

�
:

It is tedious but straightforward to show that analogous calculations applied to the other

terms we have derived in the proof of Proposition 3 yield the results in Theorem 1 in Boldea

and Magnus (2009).

Nevertheless, the advantage of deriving the scores and Hessian matrices in terms of � is that

they are also useful for alternative reparametrisations of those probabilities. For example, in the

multivariate logit case in (19), the Jacobian would be instead

@�k
@�k

=
e�kPK�1

l=1 e�l + 1

 
1� e�kPK�1

k=1 e
�k + 1

!
= �k(1� �k) for k = 1; : : : ;K � 1;

@�K
@�k

= � e�kPK�1
l=1 e�l + 1

1PK�1
k=1 e

�k + 1
= ��k�K for k = 1; : : : ;K � 1;

@�k
@�l

= � e�kPK�1
l=1 e�l + 1

e�lPK�1
k=1 e

�k + 1
= ��k�l for l 6= k; k = 1; : : : ;K � 1:

D Standardised multivariate discrete mixtures of normals

Consider the following mixture of two multivariate normals

y �
�
N(�1;�1) with probability �;
N(�2;�2) with probability 1� �: (D11)

Given (17) and (18), this random vector will be standardised if and only if

��1 + (1� �)�2 = 0

and

�(1� �)(�1 � �2)(�1 � �2)0 + ��1 + (1� �)�2 = IM ;

in which case we will denote it by "�.

Let us initially assume that �1 = �2 = 0, so that a fortiori � = �1 � �2 = 0. Let �1L�01L
and �2L�02L denote the lower triangular Cholesky decompositions of the covariance matrices of

the two components. Then, we can write

��1 + (1� �)�2 = �1L[�IM + (1� �)��11L�2L�
0
2L�

�10
1L ]�

0
1L = �1L[�IM + (1� �)@L@0L]�01L:

Thus, it is not di¢ cult to see that by choosing

�1L = [�IM + (1� �)@L@0L]�1
0

U and �2L = �1L@L; (D12)
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where @L is a lower triangular matrix and [�IM + (1 � �)@L@0L]U [�IM + (1 � �)@L@0L]
0
U is

the upper triangular Cholesky decomposition of [�IM + (1 � �)@L@0L], we can indeed obtain a

standardised vector "� because of the relationship between the upper Cholesky decomposition

of a matrix and the lower Cholesky decomposition of its inverse.

Now consider the case � 6= 0, and let

� = �(1� �)��0 + IM :

Then, it is easy to see that if we call �U�
0
U the upper triangular Cholesky decomposition of �,

then

��1 = �
�10
U (1� �)�, ��2 = ���10

U ��, ��1 = �
�10
U �1�

�1
U , and ��2 = �

�10
U �2�

�1
U ;

with �1 and �2 as in (D12), continue to generate another standardised vector.

In summary, we can generate a standardised, multivariate, two-component Gaussian mixture

as

"� = ��10
U f(� � �)� + [�2L + �(�1L � �2L)]"g ;

where � denotes a Bernoulli variable which takes the value 1 with probability � and 0 with

probability 1 � �, and "j� � N(0; I2). The intuition is as follows. First, note that (� � �)�

is a vector version of a shifted and scaled Bernoulli random variable with 0 mean and rank 1

covariance matrix �(1� �)��0. But since

[�2L + �(�1L � �2L)]";

with �1L and �2L given by (D12), is a multivariate discrete scale mixture of normals with 0

unconditional mean and unit unconditional covariance matrix that is orthogonal to (� � �)�

because of the independence between � and ", the sum of the two random variables will have

variance IM + �(1� �)��0, which explains the �� 1
2 in front of the curly brackets.

Consequently, we can think of an alternative parametrisation with two sets of parameters:

the ones that capture the �rst two unconditional moments of the distribution, namely � and

vech(	), and the ones that characterise the shape of the standardised distribution, which are

given by � = (�0; vech0(@L); �)0.

Therefore, two equivalent ways of de�ning and simulating y with mean � and variance 	

are as follows. First, we can consider

y = � +	L"
�, where "� =

�
N [��1(�);�

�
1(�)] with probability �

N [��2(�);�
�
2(�)] with probability 1� �

; (D13)
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where 	L	
0
L denotes the lower triangular Cholesky decomposition of 	,

��1(�) = [�(1� �)��0 + IM ]�10U �(1� �)

��2(�) = �[�(1� �)��0 + IM ]�10U ��

and

��1L(�) = [�(1� �)��0 + IM ]�10U [�IM + (1� �)@L@0L]�10U

��2L(�) = [�(1� �)��0 + IM ]�10U [�IM + (1� �)@L@0L]�10U @L

Alternatively, we can use

y =

�
N(�1;�1L�

0
1L) with probability �

N(�2;�2L�
0
2L) with probability 1� �

where

�k = � +	L�
�
k(�)

and

�kL = 	L�
�
kL(�)

for k = 1; 2.

To illustrate the procedure in the bivariate case, let

� =

�
�1
�2

�
; and @L =

�
{11 0
{21 {22

�
;

so that the vector of shape parameters of "� becomes � = (�1; �2;{11;{21;{22; �)0.

In this set up, the means of the components will be given by �1 = (�
(1
1 ; �

(1
2 )

0 with

�
(1
1 = �1 +

(1� �) 11�1q
1 + �(1� �)�21

and

�
(1
2 = �2 +

(1� �) 21�1q
1 + �(1� �)�21

+
(1� �) 22�2
1 + �(1� �)�21

s
1 + �(1� �)�21

1 + �(1� �)(�21 + �22)
;

and �2 = (�
(2
1 ; �

(2
2 )

0 with

�
(2
1 = �1 �

� 11�1q
1 + �(1� �)�21

and

�
(2
2 = �2 �

� 11�1q
1 + �(1� �)�21

� � 22�2

1 + �(1� �)�21

s
1 + �(1� �)�21

1 + �(1� �)(�21 + �22)
:

As for the the lower triangular decompositions of the covariance matrices of the two components,

41



namely

�1L =

"


(1
11 0



(1
21 


(1
22

#
and �2L =

"


(2
11 0



(2
21 


(2
22

#
;

we will have



(1
11 =

1q
[1 + �(1� �)�21][� + (1� �){211]

 11;



(1
22 =

s
[1 + �(1� �)�21][� + (1� �){211]

[1 + �(1� �)(�21 + �22)]f�[({211 + {221)(1� �)� �] + (1� �)�{222 + (1� �)2{211{222g
 22;



(1
21 = 


(1
11

 21
 11

� 
(122
(1� �){11{21
� + (1� �){211

�
(122(1� �)��1�2
p
�[({211 + {221)(1� �)� �] + (1� �)�{222 + (1� �)2{211{222

[1 + �(1� �)�21][� + (1� �){211]
;



(2
11 = {11


(1
11;



(2
22 = {22


(1
22;

and



(2
21 = 


(2
11

 21
 11

� 
(122
�{21

[� + (1� �){211]{22

�
(122(1� �)��1�2{11
p
{211{222 + (1� �)[{222 + {221 + {211(1� {222)]� �{211({222 � �) + �2

[1 + �(1� �)�21][� + (1� �){211]{22
:

Similar calculations can be applied for general M , although the number of free parameters

of 	L and @L increase with the square of the cross-sectional dimension. Extensions to mixtures

with K > 2 components are also feasible by recursively applying the above procedures to the

mixture of a spherical Gaussian random vector and a standardised Gaussian mixture with K�1

components.

It is of some interest to obtain the scores with respect to � , vech(	) and � from the scores

with respect to �1, �2, vech(�1), vech(�2) and �. The delta method immediately implies that

the former can be written as a linear combination of the latter, whose expressions we have

derived in the proof of Proposition 3.

First of all, note that the fact that w2 = 1 � w1 for any parameter con�guration and data

implies that

�1
w1
�1
+ �2

w2
�2
= 1;

so there is a linear combination of the scores with respect to the ��s which is identically equal to

1. Note also that the sample average of wk=�k evaluated at the MLE of the model parameters
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will be identically equal to 1 rather than 0 for all k.

Let us know try to �nd the score with respect to � : We know from (17) that

@�

@� 0k
= �kIM ,

@�

@
 0k
= 0 and

@�

@�k
= �k.

We also know that

�1 = � +	L[�(1� �)��
0
+ IM ]

�10
U �(1� �)

�2 = � �	L[�(1� �)��
0
+ IM ]

�10
U ��

which means that
@�k
@�

= IM

Hence, given that no other parameter of the natural parametrisation depends on � , the delta

method immediately implies that the score with respect to � will be given by

@l(y;�)

@�
=

KX
k=1

@� 0k
@�

@l(y;�)

@�k

KX
k=1

�kwk(�)�
0�1=2
k "�(�k) = �

@l(y;�)

@y
.

Similarly, we would expect

@l(y;�)

@vech(	)
= vech

�
IM � @l(y;�)

@y
(y � � )0	�1=2

L

�
.

But we know that the score with respect to � evaluated at the sample mean is 0.
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Table 1: Finite sample properties of the IM test. Null hypothesis: Mixture of two univariate
normals

Panel A: Size properties (asymptotic)

Test version
OPS IM

Sample size 10% 5% 1% 10% 5% 1%

100 80.59 76.37 68.60 5.21 2.86 0.95
400 47.35 40.84 30.16 8.55 4.99 1.86

1,600 24.33 17.89 9.86 9.40 5.13 1.60
6,400 16.07 9.77 4.06 10.45 5.56 1.33
25,600 11.99 6.63 1.85 9.82 5.10 1.10
102,400 10.62 5.55 1.26 9.99 4.98 1.04

Panel B: Size properties (bootstrap)

Test version
OPS IM

Sample size 10% 5% 1% 10% 5% 1%

100 10.41 4.92 0.92 11.46 6.15 1.31
400 7.20 3.08 0.56 10.65 5.51 1.17

1,600 9.69 4.89 1.01 9.72 4.89 1.04

Panel C: Power properties of the IM test (bootstrap)

Sample size
100 400

DGP 10% 5% 1% 10% 5% 1%

Non-Gaussian mixture 46.00 36.84 19.24 94.60 90.52 71.08
Mixture of 3 normals 12.96 5.88 0.80 42.28 23.68 3.88
Lognormal 99.40 97.72 79.88 100.00 100.00 99.84

Notes: Monte Carlo empirical rejection rates based on 10,000 (2,500) replications in Panels A and B
(Panel C). OPS refers to the version of the statistic proposed by Chesher (1983) and Lancaster (1984)
and employed by Boldea and Magnus (2024), while IM to the feasible version that makes use of the
theoretical expression (34) replacing the true parameter values �0 by their MLEs �̂T . Panel A contains
rejection rates based on the asymptotic critical values (see Proposition 4.3) while those in Panels B and
C are based on a parametric bootstrap procedure in which we simulate B = 99 samples from the mixture
model estimated under the null. See section 4 for details about the DGPs.
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Table 2: Finite sample properties of the IM test. Null hypothesis: Mixture of three univariate
normals

Panel A: Size properties (asymptotic)

Test version
OPS IM

Sample size 10% 5% 1% 10% 5% 1%

100 80.81 76.34 68.32 2.66 1.23 0.38
400 53.15 46.82 36.72 6.79 3.79 1.37

1,600 27.12 19.64 10.49 9.74 5.46 2.04
6,400 17.55 11.15 4.38 9.91 5.40 1.48
25,600 12.26 7.28 2.32 9.90 5.15 1.15
102,400 10.68 5.47 1.43 9.84 4.93 1.09

Panel B: Size properties (bootstrap)

Test version
OPS IM

Sample size 10% 5% 1% 10% 5% 1%

100 10.74 4.74 0.58 9.21 4.23 0.76
400 9.01 4.34 0.97 10.02 4.89 0.97

1,600 8.51 3.59 0.55 10.35 5.17 1.15

Panel C: Power properties of the IM test (bootstrap)

Sample size
100 400

DGP 10% 5% 1% 10% 5% 1%

Non-Gaussian mixture 49.52 37.64 16.40 96.48 93.12 70.72
Mixture of 4 normals 36.72 25.20 8.88 97.64 93.28 60.52
Lognormal 69.20 54.00 22.76 99.76 99.52 94.68

Notes: Monte Carlo empirical rejection rates based on 10,000 (2,500) replications in Panels A and B
(Panel C). OPS refers to the version of the statistic proposed by Chesher (1983) and Lancaster (1984)
and employed by Boldea and Magnus (2024), while IM to the feasible version that makes use of the
theoretical expression (34) replacing the true parameter values �0 by their MLEs �̂T . Panel A contains
rejection rates based on the asymptotic critical values (see Proposition 4.3) while those in Panels B and
C are based on a parametric bootstrap procedure in which we simulate B = 99 samples from the mixture
model estimated under the null. See section 4 for details about the DGPs.
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Table 3: Finite sample properties of the IM test. Null hypothesis: Mixture of two bivariate
normals

Panel A: Size properties (asymptotic)

Test version
OPS IM

Sample size 10% 5% 1% 10% 5% 1%

100 99.66 99.46 98.26 8.03 5.53 3.06
400 80.56 74.50 60.67 10.41 6.76 3.01

1,600 42.72 33.70 18.83 9.96 5.64 1.73
6,400 21.50 14.12 5.90 10.37 5.47 1.35
25,600 14.19 7.91 2.07 10.68 5.31 1.35
102,400 10.79 5.84 1.36 10.11 5.32 1.10

Panel B: Size properties (bootstrap)

Test version
OPS IM

Sample size 10% 5% 1% 10% 5% 1%

100 8.44 4.11 0.67 10.39 5.04 0.91
400 9.71 4.66 0.87 9.69 4.96 1.10

1,600 9.84 5.09 1.11 9.52 4.70 0.77

Panel C: Power properties of the IM test (bootstrap)

Sample size
100 400

DGP 10% 5% 1% 10% 5% 1%

Non-Gaussian mixture 57.96 47.32 24.92 94.12 88.92 62.72
Mixture of 3 normals 85.00 68.12 23.16 96.84 96.28 83.40
Skew normal 42.16 27.48 8.76 97.12 91.36 63.32

Notes: Monte Carlo empirical rejection rates based on 10,000 (2,500) replications in Panels A and B
(Panel C). OPS refers to the version of the statistic proposed by Chesher (1983) and Lancaster (1984)
and employed by Boldea and Magnus (2024), while IM to the feasible version that makes use of the
theoretical expression (34) replacing the true parameter values �0 by their MLEs �̂T . Panel A contains
rejection rates based on the asymptotic critical values (see Proposition 4.3) while those in Panels B and
C are based on a parametric bootstrap procedure in which we simulate B = 99 samples from the mixture
model estimated under the null. See section 4 for details about the DGPs.
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Figure 1: Univariate distributions under null hypotheses and di¤erent alternatives

Fig. 1a: Mixture of two normals Fig. 1e: Mixture of three normals
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Fig. 1b: Mixture of two asymmetric t�s Fig. 1f: Mixture of three asymmetric t�s
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Fig. 1c: Symmetric mixture of three normals Fig. 1g: Mixture of four normals
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Fig. 1d: Lognormal Fig. 1h: Lognormal
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normals. See section 4 for details about the DGPs.
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Figure 2: Bivariate distributions under the null hypothesis and di¤erent alternatives

Fig. 2a: Density of a bivariate Fig. 2e: Contours of a bivariate
mixture of two normals mixture of two normals
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Fig. 2b: Density of a bivariate Fig. 2f: Contours of a bivariate
mixture of two asymmetric t�s mixture of two asymmetric t�s
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Fig. 2c: Density of a bivariate Fig. 2g: Contours of a bivariate
mixture of three normals mixture of three normals
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Fig. 2d: Density of a bivariate Fig. 2h: Contours of a bivariate
skew normal skew normal
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Notes: In �gures 2f-h the dashed lines represent the contour of the closest mixture of two normals.
See section 4 for details about the DGPs.
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Figure 3: �Convergence clubs�in cross-country GDP per capita comparisons

Fig. 3a: All waves

Fig. 3b: 1960, 1965, 1970

Fig. 3c: 1975, 1980, 1985

Fig. 3d: 1990, 1995, 2000

Notes: Data: Per capita income from version 6.1 of the Penn World Tables; pdfs of the closest mixture
(using MLE estimates) of three univariate normals.
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