Multivariate Hermite polynomials
and information matrix tests*

Dante Amengual
CEMFI, Casado del Alisal 5, E-28014 Madrid, Spain
<amengual@cemfi.es>

Gabriele Fiorentini
Universita di Firenze and RCEA, Viale Morgagni 59, 1-50134 Firenze, Italy
<gabriele.fiorentini@Qunifi.it >

Enrique Sentana
CEMFI, Casado del Alisal 5, E-28014 Madrid, Spain
<sentana@cemfi.es>

June 2021
Revised: January 2024

Abstract

The information matrix test for a normal random vector is shown to coincide with the sum
of the moment tests for all third- and fourth-order multivariate Hermite polynomials. The
statistic is decomposed as the sum of the marginal information matrix test for a subvector,
the conditional information matrix test for the complementary subvector, and a third leftover
component. It is also shown that exact finite sample distributions can be obtained by drawing
spherical Gaussian vectors and orthogonalising them using sample moments. These tests are
applied to assess the implications of Gibrat’s law for US city sizes using the three most recent
censuses.

Keywords: City size distribution, Exact tests, Hessian matrix, Likelihood factorisation,
Multivariate normality, Outer product of the score.

JEL: C30, C46, C52, R12

*Corresponding author:  Enrique Sentana, CEMFI, Casado del Alisal 5, 28014 Madrid, Spain.
<sentana@cemfi.es>



1 Introduction

The information matrix (IM) test introduced by White (1982) constitutes a rather general
procedure for examining the specification of models estimated by maximum likelihood (ML).
It directly assesses the IM equality, which states that the sum of the Hessian matrix and the
outer product of the score vector should be zero in expected value when the estimated model
is correctly specified. As an illustration, White (1982) derived the IM test for a univariate
normal random variable, proving that it simply checks that the third- and fourth-order Hermite
polynomials of the standardised variable have zero means in the population. Therefore, it is
equivalent to the version of the popular Jarque and Bera (1980) test proposed by Kiefer and
Salmon (1983) among many others.

The theoretical properties and interpretation of the IM test as part of the general class of
moment tests in Newey (1985) and Tauchen (1985) (see White (1994)), as well as its applications
and finite sample behaviour, have been extensively investigated. Multivariate normality tests
have also been studied extensively. The intersection is limited to Smith (1987), who related the
IM test to a normality test against a multivariate Edgeworth-type A series expansion truncated
to the fourth order in the context of linear simultaneous limited dependent variable models.
Given both the univariate precedent in White (1982) and the results in Smith (1987), it is not
surprising that we can prove that the IM test for a multivariate normal random vector coincides
with the sum of the two moment tests that look at the means of all the third- and fourth-order
multivariate Hermite polynomials. As a result, the IM test statistic is also equivalent to the
smooth test against a fourth-order Hermite polynomial expansion of the multivariate normal
density in Koziol (1987), which is in turn equivalent to Mardia and Kent’s (1991) score test of
multivariate normality against exponential distributions whose sufficient statistics depend not
only on the levels and cross-products of the observations, but also on all possible products of three
and four elements. The neglected heterogeneity interpretation of the IM test in Chesher (1984)
provides a completely different justification, which might be more relevant in some empirical
applications.

The numerical equivalence between the IM test and the moment test based on Hermite
polynomials is important because, on the one hand, it allows the IM test, which is often regarded
as a black box, to be reinterpreted in this context as a moment test of a set of rather natural
influence functions. On the other hand, it provides a likelihood-based justification for using the
third- and fourth-order multivariate Hermite polynomials to test normality.

Rather than in unconditional models, often the interest is in conditional models in which a

subset of dependent variables is modelled as a multivariate linear regression of another subset of



exogenous variables. For that reason, we deconstruct the multivariate normality test by showing
that it can be computed as the sum of three asymptotically orthogonal components: a marginal
IM test for the regressors, a conditional IM test for the distribution of the dependent variables
given those regressors, and a third component that collects the missing terms. In turn, we show
that the conditional component can be computed as the sum of the aforementioned multivariate
skewness and kurtosis tests applied to the regression residuals, a multivariate regression version
of White’s (1980) test for conditional heteroskedasticity in those residuals, and an additional
component that looks at the conditional skewness of residuals given regressors, which we call a
test for conditionally heteroclicity following Bera and Lee (1993). Similarly, we also prove that
the remaining component of the joint test focuses on both the conditional heteroskedasticity
and heteroclicity of the regressors given the regression residuals.

We explicitly address the widespread and often justified concern that the IM test is unreliable
in finite samples (see Horowitz (1994) and the reference therein) by explaining how to simulate
its exact, parameter-free, finite sample distribution, as well as that of its components, to any
desired degree of accuracy for any dimension of the random vector and sample size. In this
respect, we exploit the numerical invariance of the different components of the IM test to affine
transformations of the observed variables to simulate draws extremely quickly.

Finally, we apply our procedures to analyse the joint and conditional normality of the size
of US cities and their rates of growth using data from the 2000, 2010, and 2020 censuses.
As is well known, Gibrat’s law says that if the (continuously compounded) rates of growth of
the populations of cities are independent of their initial size, the cross-sectional distribution of
city sizes in the steady state should be log-normal (see Bottazzi, Dosi, Lippi, Pammolli, and
Riccaboni (2001) for a related analysis of the pharmaceutical industry).

The rest of the paper is organised as follows. Section 2 includes our results on the joint
IM test. Section 3 provides the decomposition of the IM test that results from factorisation of
the joint distribution into a marginal and a conditional component. The results of some Monte
Carlo exercises that examine the size and power of the tests in finite samples are presented in
Section 4, and that assess the joint and conditional normality of US city sizes are presented in
Section 5. The conclusion in Section 6 mentions some avenues for further research. Proofs and

auxiliary results are relegated to appendices.

2 The information matrix test

Our null hypothesis is that the M x 1 vector is

x ~ i.i.d. N(v,T) with [T| > 0, (1)



and v and T unknown. Given a random sample on x of dimension N, {x,}»_,  the maximum

likelihood estimators of v and I' coincide with the sample mean vector ) and the covariance
matrix T'y (with denominator N). If v and T' are known, then there are no parameters to
estimate under the null and, therefore, no gradient or information matrix. However, the test
statistic in Proposition 1 in Section 2.3 with estimators replaced by true values would continue
to be valid as a multivariate normality test. Similarly, we use the i.i.d. assumption mainly
for computing the asymptotic variance of the influence functions, which, in principle, could be

robustified for the presence of serial correlation.

2.1 Multivariate Hermite polynomials and moment tests

To enable a generalization of White’s (1982) result to the multivariate context, let us follow
Barndorff-Nielsen and Petersen (1979) in defining the (centred) multivariate Hermite polynomi-

alsof x of order Kk =k1 +...+kpr >0 as

LY Al(x—v 8k —lx—v)A(x—v
Hiy . ky [e(v), A] - e 30TV AKY) = (_1)k(8x1)k1 o (Oxpp )l s )] @

where A = I'"! and e(v) = (x — v). The mean of any Hermite polynomial of positive degree
is known to be zero when model (1) is correctly specified, so it constitutes a basis for testing
multivariate normality.

The symmetry of the higher-order partial derivatives in (2), however, implies that some of the
MPF multivariate Hermite polynomials of order k will be replicated several times. Specifically,
there are only (M +kk71) different polynomials for a given order, so we can avoid generalised
inverse matrices by eliminating the redundancies from the list of moments to test. In the
third- and fourth-order cases, we can use the triplication and quadruplication matrices in Meijer
(2005), which generalise the duplication matrix (see also Smith (1987) for third- and fourth-order

generalisations of the duplication and elimination matrices).

For that reason, we define

Hjp...0(e;A)
Hk_ EZ;A

H, (e A) 11, .,0( ) 3)
Hy,... o1(e;A)

as the (M +kk71) x 1 vector that contains all the non-redundant multivariate Hermite polynomials
of order k, which we simply denote by Hy (e*) for the special case of A = Iy, so that Hy(e*) = &*
with V[H;(e*)] = Ips. Thus, we end up with M (M +1)(M +2)/6 and M (M +1)(M +2)(M +
3)/24 distinct third- and fourth-order moment conditions, respectively, which coincide with the

degrees of freedom of the asymptotic chi-square distributions under the Gaussian null of the



corresponding multivariate skewness and kurtosis tests defined by

hay = Ny (O, 4 5){V[Hs(e")]} Mgy (On,9y) (4)
and
han = Ny (O, 4 5){VIHa(e)]} ' mun (D5, ), (5)

where v = vech(T'), msy(v,7) and myy (v, ) denote the sample averages of Hsle*(v,~)] and
H,[e*(v,7)], respectively, over the random sample of size N, with e*(v,~v) = I'"Y/2¢(v), and
V[Hgz(e*)] and V[H4(e*)] denote their covariance matrices, whose theoretical expressions we

provide in Lemma 2 in Section 2.3.

2.2 IM influence functions for testing multivariate normality

The contribution of one observation on x to the log-likelihood function is
M 1 1
3 In2m — B In|T| — iz’(l/,'y)Aflz(u,'y),

where z(v,v) = Ae(v) = I'"'!(x — v). The scores of this component with respect to the vector

of mean parameters are
su(x;v,7) = z(v,7),

which coincide with the first-order Hermite polynomials of x. Similarly, the scores with respect

to the covariance matrix parameters are given by

1
Sy(xv,7) = 5 Disvecla(v, 7)7 (v, 7) - Al,

which coincide with the product of the (transposed) duplication matrix D s and the second-order
Hermite polynomials. Therefore, the Hessian matrix is given by
hI/V(X;Va'-Y) = _Aa
hy(x3v,7) = —Diylz(v,v) ® A,
and
1
by (xiv,7) = =5 D {2[(A @ 2(v, )2 (v,7)] - (A @ A)} D

Hence, the sum of the outer product of the score and the Hessian, which constitute the basis

for the IM test, yields the terms

duo(x3v,7) = SVV(X5 v, ’Y)S:JV(XS v,y) +hy (x50, 'Y) (6)

= Z<V’7)Z/(V77) - A7



dy(x;0,7) = sy(xv,7)s,,(xv,7) + hy(x50,7) (7)

1
= §D§\/]U€C[Z(V)7)Z/(V77) - A]z/(’/a’Y) - DM[Z(U,')’) ® A]a
and

dyy (X50,7) = Sy (X50,7)8,, (X5 1,7) + hoy(x50,7) (8)

= iD'Mvec[z(u, vz (v,y) — Aved [z(v,v)z (v,7) A — A]Dyy,

5D {2n(v, )7 (v, 7)) — (A © A)}Dyy.

When model (1) is correctly specified, the IM equality holds and the mean of

duu(x§ v, '7)
d(X;V,"}’) = dV‘)’(X;V77)
dyy (x50,7)

is zero. Hence, if we denote by dy(Dxn,4,y) the sample average of d(x;v,v) evaluated at the
ML estimators, by V[d(x;v,~)] the covariance matrix of those influence functions adjusted for
the sampling uncertainty in estimating v and « under the null, and by 4+ the Moore-Penrose

inverse of a square matrix, then the IM test of multivariate normality is simply
IMy = N dy(@n, An){VI[d(x; v, )]} dy @y, Ay), (9)

which has an asymptotic chi-square distribution under the Gaussian null, with the number of
degrees of freedom equal to the rank of V[d(x;v,~)], whose singularity reflects the symmetric
nature of the Hessian matrix and the corresponding outer product of the scores, the redundant
nature of some of the influence functions involved, and the fact that some of them are linear

functions of the scores.

2.3 Reinterpretation of the IM test

Our first result, which generalizes the example in White (1982) to the multivariate case,
establishes the numerical equivalence between directly relying on (9) or using the sum of (4) and

(5) for the purpose of testing the correct specification of (1).

Proposition 1 The IM test statistic (9), which compares the outer product of the score with the
Hessian of model (1) evaluated at the sample mean vector and covariance matriz, numerically
coincides with the sum of the two asymptotically independent moment tests (4) and (5), which
check whether the expected values of all the distinct third- and fourth-order multivariate Hermite

polynomials of x are zero.

Although we prove Proposition 1 from first principles for pedagogical reasons, it could also be

derived using the results in Section 4 and Appendices A and B of Smith (1987) for the limiting



case in which there are no regressors in the linear simultaneous equation limited dependent
variable model that he considers, but the limited dependent variables are in fact unlimited.

Multivariate Hermite polynomials of different orders are known to be uncorrelated (see, e.g.,
Holmquist (1996) or Rahman (2017)), which justifies the additive decomposition of the test
statistic in Proposition 1. In addition, Holly and Gardiol (1995), building on the formulas for
the higher order moments of the multivariate normal in Balestra and Holly (1990), which in turn
generalises Magnus and Neudecker (1979) and Phillips and Park (1988), explain how to obtain
matrix expressions for the covariance matrices of the entire vector of polynomials of any given
common order.

On the basis of their results, we derive computationally simple closed-form expressions for the
asymptotic covariance matrices of the sample moments underlying our tests effectively adjusted
for parameter uncertainty under the null of Gaussianity, which should improve the finite sample
performance of our testing procedures, as forcefully argued by Orme (1990) (see also Horowitz
(1994) and the references therein). Specifically, the next result contains detailed expressions for
the covariances between two arbitrary first-, second-, third-, and fourth-order Hermite polyno-

mials, thereby generalising the results in Amengual, Fiorentini, and Sentana (2022a).

Lemma 2 Let ;; denote the (i,7)" element of A. When model (1) is correctly specified,

cov(H;, Hj) = 04,
cov(Hyj, Hyrjr) = 00050 + 05500,
cov(Hji, Hyjirr) = 043041 Opkr + 04ir O jar Opjr + 030 0 jir O
+ 0310k Ot + O30 4irOpjr + g0 0pir,  and
cov(Hyjen, Hyjrirn) = 83100451 OkktOnnr + 04050 Ophs Onky + 043t 0 i Ogejr Sy + 043 O s Shepr O v

+ 04310 jn Ot Ot + 0430 s Ot Opjr = 04510 it Okt Oy + 04510 it Oy O
+ 04510k Ot Oy + 04510 1 Oty Onar + 04570 it Ot Opgr + 030 O Ok Oy
+ 0ikr0irOjr Onns + Ok 0 it Okt Onjr + Oikr 05 Okir Oy + ik 051 O eh Opir
+ 03k 0 jnr Ogir Onjr =+ Okt O jp O Onir + im0 4ir Opejr Ongr + Oiny O it Ok O
+ 0301 Okir Okt + Oinr 051 Okks Oyt + im0 it Okir Ot + Oinr O et Ogejr Ot -

When T' = I, the components of x are stochastically independent and the multivariate
Hermite polynomial Hy, , [e(v),A] simplifies to the product of the univariate polynomials
Hy, le1(v1)],-...Hiy, lem(var)]. Moreover, Lemma 2 implies that different multivariate Hermite
polynomials of the same order become orthogonal to each other, so the IM test of model (1)
effectively becomes the sum of the individual moments tests for all possible distinct multivariate
Hermite polynomials of orders 3 and 4. Consequently, if we considered a sequence of local
departures from a multivariate spherically normal distribution, the non-centrality parameter of

the asymptotic distribution of the skewness and kurtosis tests in Proposition 1 would be the



M; 2) + (MI 3) asymptotically independent

sum of the non-centrality parameters of each of the (
moment tests, which is easy to compute.

In addition, the expressions for the variance terms that appear in Lemma 2 simplify consid-
erably. Specifically, for the special case of A = I/, so that H;(e*) = e* with V[H;(e*)] = Iy,
the diagonal elements of V[Ha(e*)] are V(ej? — 1) = 2 and V(efel) = 1 for i/ # i, while
those of V[Hj(e*)] are V(e}® — 3ef) = 6, V(ei%e} —efy) = 2 for i # 4, and V(efehel,) = 1
for i # i’ # i. Finally, the diagonal elements of V[Hy(e*)] are V[(e?2 — 3¢})? — 6] = 24,
Viere? —ef? —ei?+1) =4 for i # i, V(ef3eh — 3efel) = 6 for i # i, V(ei2ehel, —eheh) =2
for i # i' # i, and V(efelelieh,) = 1 for i" # i" # i/ # i (see Amengual, Fiorentini, and

Sentana (2022a) for further details).

2.4 Computational considerations

Consider the full-rank affine transformation y = ¢ + Dx with |D| # 0. When (1) holds,
y ~ i.i.d. N(c + Dv,DI'D’). Our next result shows that the IM test statistic is numerically

invariant to the values of ¢ and D.

Lemma 3 The IM test statistic of model (1) numerically coincides with the analogous test

statistic fory.

This numerical invariance is a very desirable property of any multivariate normality test
(see Henze (2002)), but it also provides a very fast numerical procedure for computing the test
statistic. Specifically, given a sample of size N on x, we can subtract the sample mean from each
observation and premultiply the resulting vector by any square root of the sample covariance
matrix to create standardised random vectors for which the ML estimators of their mean vector
and covariance matrix will be 0 and I,;, respectively. Thus, the IM test statistic would be
numerically equivalent to the sum of the individual moments tests for all possible multivariate
Hermite polynomials of orders 3 and 4, which are very simple to compute because of their
factorisation as products of univariate Hermite polynomials. Asymptotically, we can obtain the
non-centrality parameter of the test for any value of I' by applying the same trick.

Lemma, 3 also implies that the sample mean vector and covariance matrix of the observations,
which set the average of the first and second multivariate Hermite polynomials to zero, do
not affect the null distribution of our proposed test in finite samples. Thus, it is possible to
simulate its exact, parameter-free, finite sample distribution to any desired degree of accuracy
for any dimension of x and sample size thanks to its pivotal nature, thereby avoiding the well-
deserved criticism that the asymptotic distribution of IM tests provides a poor approximation

in finite samples, especially when the number of moment conditions involved is large (see, e.g.,



Taylor (1987), Orme (1990), Chesher and Spady (1991), Davidson and MacKinnon (1992), and
Horowitz (1994)). Specifically, it suffices to simulate R times a random sample of size N of a
spherical Gaussian random vector of dimension M to obtain R independent draws of the IM
test statistic for multivariate normality. Given that the sample mean and covariance matrix of
a multivariate random vector take hardly any time to compute, and that the IM test statistic
for random vectors standardised in the sample can also be swiftly computed, our suggested
procedure generates very accurate simulated p-values very quickly. In fact, given that the only
characteristics of the original sample that matter are the values of N and M, a researcher could
obtain tables with exact critical values before observing the data, a very convenient strategy we

follow in Sections 4 and 5.

3 Deconstructing the IM test

As we mentioned in the introduction, in empirical research the interest is often in conditional
models in which a subset of dependent variables is expressed as a multivariate linear regression
of another subset of exogenous variables, rather than in unconditional models. For that reason,
in this section we deconstruct the multivariate normality test of Section 2 by showing that it can
be computed as the sum of three asymptotically orthogonal components: a marginal IM test for
the regressors, a conditional IM test for the distribution of the dependent variables given those
regressors, and a third component consisting of the remaining terms, which we label as “the
rest.”

Specifically, the joint test we considered in the previous section assesses the correct specifi-
cation of the multivariate normal distribution of x in (1). However, this model is known to be

equivalent to

x; ~ i.4.d. N(wy,T'1) with [T'q] > 0, (10)
Xglx1 ~ id.d. N(eg)p + Bojixi, Qgp), (11)
Qo = V2 — | OV A
By, = I'yI'y!, and

92‘1 = TI'99 — F21F1_11F’21 with ‘92.1’ > 0,

for any conceivable partition of the M elements of x into two groups x; and x5 of dimensions
M; and My, respectively, with My + Ms = M.
Trivially, the IM test of the marginal component (10) is formally identical to the joint IM

test in Proposition 1, except that it applies to x; only, so all our results in Section 2 apply.



3.1 The conditional IM test: A regression interpretation

To develop the IM test of the conditional component (11), let us define 8’ = (v,~/, '2|1),

v1 = vech(I'y), 0/2\1 = (a;‘l,,@’zu,w’m), Bap = vec(Baj1), wo1 = vech(Q1),
52\1(042|17,32|1) =Xz — Q)1 — Bzuxl,

Ay = Q;ﬁ, and 63‘1(02.1) = Q;ﬁ/2e2‘1(a2|1,ﬁz|l). The derivations in Amengual, Fiorentini,
and Sentana (2022b) or the results in Smith (1987) for the limiting case in which the limited

dependent variables are in fact unlimited allow us to prove the following result.

Proposition 4 The IM test that compares the outer product of the score with the Hessian of
the multivariate regression model (11) evaluated at the Gaussian mazimum likelihood estimators
On is asymptotically equivalent under the null hypothesis of correct specification to the sum of

the four moment tests

-1

th:Nm;zN(éN){V[HQ(ES1)]®< I(‘)l D}, (L + KM15\]41)(F1 ®T1)D}; >} v (O), (12)
hasn = N1, (On){V [Ha(e3,)]} Maon (), (13)
haen = Ny (On){V [Hz(e5,)]@T1} hgen (On), and (14)
T = N1ty (O3 )V [Ha(e3y,)] ) myn (B), (15)

where My N, Mysn, Myeny, and Mgy are the sample averages of

my,(0) = Haley,(0)] ® [(x1, — v1)', veeh (x1nxy, — 1)/, (16)
mgs(0) = Hsles,(0)], (17)
Maen(0) = Hilel,(0)] @ (x10 —v1), and (18)
my, (0) = Hyle,,(0)], (19)

which converge in distribution to four mutually independent chi-square random variables whose

degrees of freedom are (M22+1)w, (M23+2), (M23+2)M1, and (M24+3), respectively.

Intuitively, when model (11) is correctly specified, (i) the expected value of any multivariate
Hermite polynomial of positive degree k of the regression residuals conditional on the regres-
sors is zero and (ii) the conditional covariance matrices of those polynomials coincide with the
unconditional covariance mateices in Lemma 2.

In the next subsections we follow Amengual, Fiorentini, and Sentana (2022b) in providing a
simple regression interpretation for each of the moment tests in Proposition 4. These interpreta-
tions in terms of Lagrange multiplier (LM) tests may prove particularly useful for the purposes

of indicating the specific directions in which to focus our modelling efforts to enrich model (11).



3.1.1 Testing against conditional heteroskedasticity

Consider the multivariate regression of Hy [e;H(B)] onto 1, (x; —v1) and vech(x1x] —T'1).
Given that (16) effectively contains the relevant normal equations of this regression evaluated
under the null, it is straightforward to see that the test statistic (12) numerically coincides with
the LM test of zero slopes in the aforementioned auxiliary regression (see Hall (1987) for an

analogous result in the univariate case). As a consequence, if (11) holds, then the quadratic form

M2+l) Ml(M1+3)
2

in (12) will be asymptotically distributed as a chi-square random variable with ( 5

degrees of freedom.

More generally, the test statistic (12) that looks at the conditional mean of the second-order
multivariate Hermite polynomials can be understood as a test of neglected heterogeneity in the
B2 parameters that determine the conditional mean of the observations, as explained by Hall
(1987) and Bera and Lee (1993) in the univariate case, and Sentana (1995) in the multivariate
case. Nevertheless, this test will have no power to detect time variation in the constant terms
of the multivariate regression which is uncorrelated to the variation in any other of the model
parameters because the first-order conditions of the estimators On corresponding to the residual
covariance matrix elements wo|; ensure that the sample mean of Ha|[e}, (é ~)] is zero in a regression

with an intercept.
3.1.2 Testing against conditional heterocliticity and unconditional asymmetry

Consider the multivariate regression of Hg [5’2‘“(0)] onto a constant and (x; — v1). Given
that (17) and (18) effectively provide the normal equations of this regression evaluated under
the null, it is straightforward to see that (13) and (14) numerically coincide with the LM tests
of zero means and zero slopes, respectively, in this auxiliary regression. In this respect, (13)
Mo+2

3

converges in distribution to a chi-square random variable with ( ) degrees of freedom, while

(14) will converge to an independent chi-square with (M%H) M degrees of freedom under the
Gaussian null. In fact, we can exploit this asymptotic independence to interpret the sum of (12)
and (14) as a joint test of unconditional and conditional asymmetry of the regression residuals
given the regressors.

If we re-write the multivariate regression model (11) in deviation from the means form as

1/2 &
X9 = V9 + B2|1(X1 — Vl) + 92|/1 €2|1,

then the results in Chesher (1984) imply that (13) is simply testing for dependence between
random coefficient variation in the unconditional mean of the regressands vs and the elements

of the covariance matrix of the residuals €25;. Unlike in the previous subsection, the intercepts

10



provide additional degrees of freedom in this case. Similarly, the test statistic (14) that exam-
ines the conditional mean of the third-order polynomials effectively assesses dependence in the
neglected heterogeneity of the mean and covariance parameters By; and ws);, which in turn

generate what Bera and Lee (1993) called conditional heterocliticity in the univariate case.
3.1.3 Testing against unconditional kurtosis

Consider now the multivariate regression of H4[€;‘1(0)] on a constant. Given that (19)
effectively contains the normal equations of this regression evaluated under the null, it is once
more straightforward to prove that the quadratic form (15) numerically coincides with the
LM test of zero intercepts in this auxiliary regression. Therefore, this test statistic will be
asymptotically distributed as a chi-square random variable with (M24+3) degrees of freedom
under the null.

Using Chesher’s (1984) reinterpretation of the IM test as a LM test against parameter vari-
ation once again, we can also regard the moment test statistic (15) that examines the un-
conditional mean of the fourth-order multivariate Hermite polynomials as a test of neglected
heterogeneity in wy), which are the parameters that characterise the covariance matrix of the
innovations, as explained by Hall (1987) in the univariate case.

Finally, it is worth mentioning that we can further exploit the asymptotic independence of

the different test statistics in Proposition 4 to create a test of multivariate normality of the

regression residuals €3, as the sum of (13) and (15).
3.1.4 Computational considerations

From a computational point of view, it is important to emphasise that, as explained in
Section 2.4, the diagonal covariance matrices of Hk(sg‘l) for £k = 2,3,4 do not depend on any
unknown quantities under the null of correct specification. In addition, if we reconsider a full-
rank affine transformation of both the dependent and independent variables given by y = c+Dx,
with y = (y},y5) and D lower triangular of full rank, we can show the following analogue to

Lemma 3.

Lemma 5 The four components of the IM test statistic of model (11) in Proposition 4 numer-
ically coincide with the corresponding test statistics based on yo and yj.

Once again, this numerical invariance provides a very fast numerical procedure for computing
the test statistics in Proposition 4 because the recursive nature of the lower triangular Cholesky
decomposition implies that we can systematically work with

* (0 - & —-1/2 ~
[ 51n(9AN) ] _ ( :E‘llN F12N ) / < X1n — V1N > (20)

* ’ ~
€510 (ON) oy Toon Xon — VaN

11



without loss of generality. In the preceding equality, the sample mean and covariance matrix
are 0 and Ips, respectively. Similarly, it is straightforward to obtain exact critical values by
simulation for each of the components that appear in Proposition 4 using a procedure entirely
analogous to that described in Section 2.4. In the case of the multivariate normality test of the
regression residuals 6’2‘“ mentioned at the end of the previous subsection, our exact finite sample
procedure is slightly different from the analogous procedure for testing multivariate normality
of the residuals in a conditionally homoskedastic, multivariate linear regression model proposed
by Dufour, Khalaf, and Beaulieu (2003) in that they treat x2 as fixed in repeated samples, while
we also simulate x3. Nevertheless, they are both asymptotically valid.

Finally, the fact that the population mean and covariance matrix of €] and €;|1 are also 0
and I/, respectively, implies that we can easily compute the non-centrality parameters for local

deviations from the null of correct specification of model (11).

3.2 The “rest”

The sum of the IM test statistic in Proposition 1 applied to x;1, which we call the marginal
IM test, and the four components of the IM test statistic in Proposition 4.1, which we refer to
as the conditional IM test, does not coincide with the IM test statistic in Proposition 1 applied
to x, which we can call the joint IM test. At first glance, the reason may seem to be the lack
of numerical invariance of the IM to reparametrisation of the model. However, this is not the
case because Amengual, Fiorentini, and Sentana (2023) show that any IM test computed using
either the population version of the asymptotic covariance matrix of the influence functions or
the sample version suggested by Chesher (1983) and Lancaster (1984) is numerically invariant
to reparametrisation.
In fact, the real reason is that those marginal and conditional components correspond to a
specific partition of the elements of x, while the joint test considers all possible partitions.

Nevertheless, we can easily characterise the missing components.

Proposition 6 The IM test statistic in Proposition 1 applied to x numerically coincides with
the sum of the following asymptotically independent moment tests: the IM test statistic in Propo-
sition 1 applied to the marginal model for x; in (10), the IM statistic in Proposition 4 applied

to the conditional model for xa given x1 in (11), and the sum of the two moment tests

henn =N 0, 5 (On) [V [Ha(e])]@Ing,) iy (By) and

-~

hran =N m;"aN(éN) [V[Hs(e1)] ®IM2]_1mmN(0N)7
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where M,pN and M,.,N are the sample averages of

mn(0) = Hole}, (0)] © 3y, (0) and (21)

M (0) = Hylet,(0)] @3, (0), (22)

which converge in distribution to two mutually independent chi-square random variables whose

degrees of freedom are (M12+1)M2 and (M13+2)M2, respectively.

To provide intuition for this proposition, it is convenient to exploit the numerical invariances
in Lemmas 3 and 5 to focus directly on (20). The marginal component of the IM test looks at
the third and fourth multivariate Hermite polynomials of €}, Hs(e}) and Hy(e7), respectively.
In turn, the conditional component focuses on the third and fourth multivariate polynomials
of €5, H3(5;|1) and H4(s’2‘|1), the Kronecker product of its second-order polynomials H2(€;|1)
with both H(e}) and Ha(e7}), as well as the Kronecker product of its third-order polynomials
H3(€;|1) with Hj(e}). Therefore, the third- and fourth-order polynomials of the joint test
which do not appear in either the marginal or the conditional component are Ha(e]) ® H1(€§|1)
and Hz(e}) ® Hl(s;‘l), respectively, which we can interpret as focusing on the conditional
heteroskedasticity and heteroclicity of €] given 5§|1- Importantly, each of the components of the
conditional IM test in Proposition 4 is asymptotically independent from the marginal component
in Proposition 1, as well as to the two remaining components introduced in Proposition 6, which

in principle offers multiple additive aggregations.

4 Monte Carlo evidence

We conduct an extensive simulation exercise to enable an evaluation of the performance of
the different tests that we discussed in previous sections. Further, we compare them with the
multivariate normality tests considered by Dufour, Khalaf, and Beaulieu (2003), namely those
proposed by Mardia (1970) and Kilian and Demiroglu (2000) (KD). The skewness component
of Mardia’s (1970) test is known to coincide with (4), while its kurtosis component is based
on his proposed multivariate excess kurtosis coefficient. Given the independence of these two
components in large samples in the Gaussian case, the asymptotic distribution of their sum
under the null is a chi-square random variable with M (M + 1)(M +2)/6 + 1 degrees of freedom.
In turn, the skewness and kurtosis components of the KD test are based on the cross-sectional
sum of H3(ef) and Hy(e)), respectively, which means that each of them will be asymptotically
distributed under normality as a chi-square random variable with M degrees of freedom. We
also report their joint version, which is simply the sum of these two aggregate statistics, whose

asymptotic distribution is a chi-square with 2M degrees of freedom.
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For each design we generate 20,000 samples and consider four cross-sectional dimensions
(M = 2, 4, 8, and 16) and three sample lengths (N = 100, 400, and 1,600). To save space,
we report the Monte Carlo rejection rates at the conventional 5% significance level only. We
also make use of Lemmas 3 and 5 to fix the population mean vector to zero and the covariance

matrix to the identity matrix, which are nevertheless freely estimated in the sample.

4.1 Size

The discussion in Sections 2.4 and 3.1.4 indicates that the finite sample size of the tests
we analyse should be accurate given that we approximate the finite sample critical values with
R = 105 Monte Carlo replications. Nevertheless, it is also interesting to gauge the small sample
size distortions that arise when asymptotic critical values are used instead. For completeness, we
also report the rejection rates obtained with simulated critical values, whose differences with the
nominal values are merely due to Monte Carlo variability. In this respect, the 95% confidence
interval for those rejection rates is (4.70%, 5.30%) for 20,000 simulated samples.

The results with asymptotic critical values reported in Table 1 confirm the need for finite
sample size adjustments, especially for the IM and Mardia tests when the cross-sectional dimen-
sion is large. As expected, KD is the test that shows the smallest size distortions because the
number of moment conditions is linear in M, rather than cubic or quartic. When the sample
length is moderately large (N = 1,600), the size of all tests becomes rather accurate except
for the kurtosis component of the IM test. In contrast, Table 2 provides a completely different
picture: Monte Carlo sizes are very accurate, with the vast majority of rejection rates within
the 95% confidence set. We observe no differences across sample lengths or cross-sectional di-
mensions, which confirms the accuracy of the simulation-based critical values that we propose.

Finally, Table 3 reports the results on the size of the components of the IM test in Propo-
sitions 4 and 6 for the bivariate case with N = 400 (a sample length representative of those
in our empirical application in Section 5). As explained in Section 3.1.4, we simultaneously
draw x; and x2 in each Monte Carlo simulation. The results reported in Panel A indicate that
tests based on the asymptotic critical values show little size distortions, which, in any event, are

corrected by the simulation-based critical values in Panel B.

4.2 Power

To assess the power properties of the several testing procedures, we generate 20,000 samples
from three multivariate non-Gaussian distributions whose mean vector and covariance matrix
are 0 and Iy, respectively: the asymmetric Student ¢ distribution, the two-component location-

scale mixture of normals (LSMN) discussed by Mencia and Sentana (2009), and the multivariate
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skew normal distribution in Azzalini and Dalla Valle (1996). Our results complement those in
Best and Rayner (1988), who studied the finite sample power of Koziol’s (1987) test in the
bivariate case.

We again make use of Lemmas 3 and 5 to exploit skewness as a common feature for these three
distributions (see Engle and Kozicki (1993)); hence, orthogonal rotations of the original random
vectors in which only one variable is asymmetric can always be found. Specifically, Theorem
5.12 in Azzalini and Capitanio (2014) provides a canonical representation of the multivariate
skew normal with this property. Similarly, the LSMN representation in Mencia and Sentana
(2009) allows us to do the same for the other two distributions. Thus, the non-normality of the
multivariate distributions is effectively governed by two parameters: the skewness and kurtosis
coefficients of the only asymmetric random variable. We choose a skewness coefficient of —%
for all three distributions and a kurtosis coefficient of 4.5 for the two LSMNs, as the kurtosis
of the skew normal is a function of its skewness parameter only (see Appendix B.3). The main
difference between the skew normal distribution and the other two is that in the former, the
other M — 1 variables are Gaussian and independent, so that all the remaining third and fourth
multivariate cumulants are zero, while in the latter, those variables are symmetric but neither
normal nor independent of each other or of the first asymmetric component.

Table 4 reports the results corresponding to the asymmetric ¢ distribution. As expected,
power increases with the sample size N. Similarly, power increases with M except for the KD
test, which does not exploit any cross third- and fourth-order moment of the non-Gaussian
multivariate distribution. As we mentioned before, the IM test and the test in Mardia (1970)
share the same (co-) skewness component, while the (co-) kurtosis component of the former is
more powerful in all cases, except when M is small and N is simultaneously large.

The results for the LSMN distribution in Table 5 are qualitatively rather similar to those of
the previous table: the KD test is the worst, while both the IM and the Mardia tests perform
reasonably well. It is interesting that the IM test benefits the most from the increases in the
cross-sectional dimension M.

In turn, Table 6 displays the results of the simulations with the skew normal. When the
sample length is small, all tests fail to reject the null. Of more interest is that power system-
atically decreases with M for all sample lengths. The reason is simple. Given the canonical
representation of the skew normal mentioned above, the only thing that increasing M does is to
add more independent Gaussian components, which in turn add more (co-) skewness and (co-)
kurtosis terms. As a result, the non-centrality parameter does not change, while the number

of degrees of freedom increases. It is, therefore, not surprising that the KD test is the best
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performer in this case.

Finally, Table 7 displays the results of the different components of the IM test detailed in
Section 3 for the case M = 2 and N = 400. Given that skewness is a common feature for the
three distributions that we simulate, it is not entirely surprising that most of the power comes
from the skewness component of the marginal tests. This is especially so when the distribution
is skew normal, which, as expected, leads to power equal to size in all the conditional bivariate

tests.

5 The distribution of US city sizes and their growth rates

We apply our procedures to analyse the joint, conditional, and marginal normality of the
size of US cities and their rates of growth using the 2000, 2010, and 2020 census data. Gibrat’s
law says that if the (continuously compounded) rates of growth of the populations of cities are
independent of their initial size, the cross-sectional distribution of city sizes in the steady state
should be log-normal.

In marked contrast to earlier studies, Eeckhout (2004) forcefully argued that if one looked at
the entire non-truncated sample of cities and places in the 2000 US census, their size distribution
would be approximately log-normal. On the other hand, Amengual, Bei, and Sentana (2022)
found that the non-normality of the joint distribution of US (log) city sizes in the 2000 and
2010 censuses was very clearly seen in their growth rates (see also Ramos (2017), and Massing,
Puente-Ajovin, and Ramos (2020) for further evidence for other countries).

We extend their analysis to include the recent 2020 US census data, identifying zs and x3
with the continuously compounded rates of growth between 2000 and 2010, and 2010 and 2020,
respectively, and x1 with the log city size in the 2000 census. Thus, we can simultaneously study
not only the joint distribution of initial city sizes and their rates of growth, whose independence
is at the core of Gibrat’s law, but also the relationship between two consecutive growth rates.

We follow the extant literature and treat Alaska, Hawaii, and the remaining off-shore insular
territories like Puerto Rico separately from the remaining contiguous 48 states. Changes in
boundaries and city names, as well as the creation of new entities and the dissolution of others,
imply that there is no one-to-one relationship between the entity names and codes of the Census
Designated Places (CDPs) in the 2000, 2010, and 2020 censuses files. For that reason, we look
at the joint distribution of the matched cities with a population of at least one in each of the
censuses, as in Eeckhout (2004). Some CDPs were redefined or merged during our sample period,
which results in anomalously high rises or drops in the population figures. Moreover, the values

reported by the US Census Bureau are incorrect for a handful of CDPs, but we could not find
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reliable figures from other sources. For these reasons, we removed 32 outlier observations from
the merged sample, so that the effective sample size contains 23,830 observations. Consequently,
the average number of observations across states is equal to 496. The median value is 383 and
the interquartile range is 381, with a minimum of 22 CDPs in Rhode Island and maximum of
1,443 in Texas.

Figure 1 displays scatter plots for the three different pairs that we can form with xq, xo,
and x3 for the 48 contiguous states. We also include kernel density estimates of the marginal
distributions for these three variables, together with the best normal approximations to them,
which share their sample means and standard deviations. As highlighted by Eeckhout (2004),
the estimated density of (log) city sizes for the contiguous states in 2000 does not differ much
from its normal approximation. Specifically, there is little evidence of kurtosis and only some
evidence of asymmetry around the mode of the distribution rather than at the tails. The
marginal normality test for this univariate distribution confirms both these impressions, with a
kurtosis coefficient of 3.02, which is not statistically significantly different from 3, and a skewness
coefficient of 0.27, which is nevertheless statistically significant in view of the large number of
observations.

In contrast, the joint bivariate distributions look rather non-normal. In fact, the joint IM
tests for each pair, as well as for the three variables together, reject massively, with p-values on
the order of 1073, Part of the reason is probably that the variables are significantly positively
correlated with each other (0.15, 0.26, and 0.24 in Figures la, 1b, and 1lc, respectively), which
contradicts the main assumption underlying Gibrat’s law (see also Ishikawa et al. (2020)).

Given that in the last few decades interstate migrations in the US have become less frequent
than in the past, we also conducted the analysis at the state level. Table 3 reports the number
of states that reject the various components of the IM statistics that we discussed in Section
3 at the 5% level, with exact critical values computed for each test statistic using one million
simulated samples for the appropriate number of cities. Specifically, by sequentially conditioning
T9 on x1, and x3 on x1 and x2, we can look at the following:

1. normality of (log) city sizes in 2000 (Panel A), which in turn, we decompose into its skewness
and kurtosis components;

2. normality of the rate of growth between 2010 and 2000 conditional on (log) city sizes in 2000
(Panel B), which we also decompose into the different components highlighted in Proposition 4;
3. the residual of the joint normality test for z; and zo in Proposition 6 (Panel C);

4. joint normality of the rate of growth between 2010 and 2000 conditional on (log) city sizes in
2000 (Panel D);
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5. normality of the rate of growth between 2020 and 2010 conditional on the rate of growth
between 2010 and 2000 and (log) city sizes in 2000 (Panel E), which once again we decompose
along the lines of Proposition 4;

6. the residual of the joint normality test for the three variables in Proposition 6 (Panel F); and
7. joint normality of the three variables (Panel G).

Panel A confirms that (log) city sizes within states differ from normality mainly through
asymmetry, with weaker evidence of kurtosis. In contrast, when we analyse the conditional
distribution of the rate of growth between 2010 and 2000 given (log) city size in 2000 in Panel B
using the conditionally homoskedastic, linear regression model of z2 on a constant and z1, the
different null hypotheses are rejected in almost all states, except for conditional homoskedasticity
and conditional symmetry, against which we find little evidence in a few states. Interestingly,
the leftover component in Proposition 6 reported in Panel C does not reject for more than half
the states, so the joint normality results in Panel D are mainly driven by those in Panel B.

In turn, the pattern of rejections for the conditional distribution of the rate of growth between
2020 and 2010 given both the rate of growth between 2010 and 2000 and (log) city sizes in 2000
in Panel E is qualitatively similar to that in Panel B, indicating the presence of non-normality,
conditional heteroskedasticity and conditional heteroclicity in the residuals of the conditionally
homoskedastic, linear regression model of 3 on a constant, 1 and x3. Moreover, the leftover
term of Proposition 6 reported in Panel F leads to conclusions similar to those in Panel C.
Finally, the conclusions for the bivariate and trivariate normality tests in Panel D and Panel G,
respectively, also agree, which is not entirely surprising given that they reflect the sum of all the

other components.

6 Conclusions

We have shown that the IM test for a normal random vector coincides with the sum of the
moment tests for all third- and fourth-order multivariate Hermite polynomials. We have also
decomposed this joint test as the sum of the marginal IM test for a subvector, the conditional IM
test for the complementary subvector, and a third leftover component. In turn, the conditional
IM test is the sum of an analogous multivariate normality test for the regression residuals, the
multivariate version of White’s test for conditional homoskedasticity, and a test for conditionally
homoclicity which assesses the potential dependence of the third-order multivariate Hermite
polynomials of those residuals on the regressors. Finally, we decompose the leftover component
as the sum of analogous tests for conditional homoskedasticity and conditional homoclicity of

the regressors given the regression residuals.
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We also show that all these tests are numerically invariant to affine transformations of the
variables involved, which considerably simplifies their calculation and also implies that they are
pivotal in finite samples. As a result, we can simulate exact finite sample distributions in no time
by drawing many spherical Gaussian vectors and orthogonalising them using sample moments.

Finally, we use all these tests to assess the implications of Gibrat’s law for US city sizes
using the three most recent censuses, finding that although the marginal distribution of (log)
city sizes is reasonably close to a normal, their (continuously compounded) growth rates are not
independent of either past growth rates or initial city sizes.

Our Monte Carlo exercises confirm the non-trivial power of the IM tests against empirically
plausible alternatives, even though they are not consistent, because in arbitrary large samples
they would fail to reject with probability one departures from normality such that all third- and
fourth-order cumulants are zero. Unlike in the univariate case, the construction mechanism for
distributions with this characteristic is not obvious because it is difficult to ensure the global
positivity of multivariate Hermite expansions of the Gaussian density.

The IM test can be extended to examine the correct specification of more general multivariate
distributions. Amengual, Fiorentini, and Sentana (2023) are currently exploring this interesting

research avenue for finite Gaussian mixtures.

Acknowledgements

We would like to thank Xinyue Bei, Alberto Holly and Richard Smith for helpful comments
and discussions, and Grant Hillier for his useful suggestions regarding the proofs of Proposition
1 and Lemma 2, as well as Appendix B.1. We are also grateful to Jan Eeckhout and Rafael
Gonzélez-Val for sharing their data with us, and to Tao Wang for able research assistance. An
associate editor and two anonymous referees provided valuable feedback too, but, of course, the
usual caveat applies. The first and third authors gratefully acknowledge financial support from
the Spanish Ministry of Science and Innovation through grant PID2021-128963NB-100, while
the second one is thankful to MIUR through the PRIN project “High-dimensional time series

for structural macroeconomic analysis in times of pandemic”.

19



References

Amengual, D., Bei, X. and Sentana, E. (2022): “Normal but skewed?”, Journal of Applied
Econometrics 37, 1295-1313.

Amengual, D., Fiorentini, G. and Sentana, E. (2022a): “Moment tests of independent compo-
nents”, SERIEs 13, 429-474.

Amengual, D., Fiorentini, G. and Sentana, E. (2022b): “Tests for random coefficient variation
in vector autoregressive models”, in J.J. Dolado, L. Gambetti and C. Matthes (eds.) Essays in
honour of Fabio Canova, Advances in Econometrics 44B, 1-35, Emerald.

Amengual, D., Fiorentini, G. and Sentana, E. (2023): “Information matrix tests for Gaussian
mixtures”, mimeo, CEMFI.

Azzalini, A. and Capitanio, A. (2014): The skew-normal and related families, IMS monographs.
Cambridge University Press.

Azzalini, A. and Dalla Valle, A. (1996): “The multivariate skew-normal distribution”, Bio-
metrika 83, 715-726.

Balestra, P. and Holly, A. (1990): “A general Kronecker formula for the moments of the multi-
variate normal distribution”, DEEP Cahier 9002, University of Lausanne.

Barndorff-Nielsen, O. and Petersen, B.V. (1979): “The bivariate Hermite polynomials up to
order six”, Scandinavian Journal of Statistics 6, 127—128.

Bera, A. and Lee, S (1993): “Information matrix test, parameter heterogeneity and ARCH: a
synthesis”, Review of Economic Studies 60, 229-240.

Best, D.J. and Rayner, J.C.W. (1988): “A test for bivariate normality”, Statistics and Probability
Letters 6, 407—412.

Bottazzi, G., Dosi, G., Lippi, M., Pammolli, F. and Riccabon, M. (2001): “Innovation and
corporate growth in the evolution of the drug industry”, International Journal of Industrial
Organization 19, 1161-1876.

Chesher, A. (1983): “The information matrix test: simplified calculation via a score test inter-
pretation”, Economics Letters 13, 45-48.

Chesher, A. (1984): “Testing for neglected heterogeneity”, Econometrica 52, 865-872.
Chesher, A. and Spady, R. (1991): “Asymptotic expansions of the information matrix test
statistic”, Fconometrica 59, 787-815.

Davidson, R. and MacKinnon, J.G. (1992): “A new form of the information matrix test”,
Econometrica 60, 145-157.

Dufour, J.-M., Khalaf, L. and Beaulieu, M.-C. (2003) “Exact skewness-kurtosis tests for multi-
variate normality and goodness-of-fit in multivariate regressions with application to asset pricing
models”, Oxford Bulletin of Economics and Statistics 65, 891-906.

Eeckhout, J. (2004): “Gibrat’s law for (all) cities 7, American Economic Review 94, 1429-1451.

20



Engle, R.F. and Kozicki, S. (1993): “Testing for common features”, Journal of Business and
Economic Statistics 11, 369-380.

Fiorentini, G. and Sentana, E. (2021): “Specification tests for non-Gaussian maximum likelihood
estimators”, Quantitative Economics 12, 683-742.

Hall, A. (1987): “The information matrix test for the linear model”, Review of Economic Studies
54, 257-263.

Henze, N. (2002): “Invariant tests for multivariate normality: a critical review”, Statistical
Papers 43, 467-506.

Holly, A. and Gardiol, L. (1995): An asymptotic expansion for the distribution of test crite-
ria which are asymptotically distributed as chi-squared under contiguous alternatives”, chap 5
in G. S. Maddala, P.C.B. Phillips and T. N. Srinivasan (eds) Advances in Econometrics and
Quantitative Economics: Essays in honor of Professor C. R. Rao, Blackwells.

Holmquist, B. (1996): “The d-variate vector Hermite polynomial of order k”, Linear Algebra
and its Applications 237/238, 155-190.

Horowitz, J. (1994): “Bootstrap-based critical values for the information matrix test”, Journal
of Econometrics 61, 395-411.

Ishikawa, A., Fujimoto, S., Ramos, A. and Mizuno, T. (2020): “Initial value dependence of
urban population’s growth-rate distribution and the long-term growth”, Frontiers in Physics 8,
1-10.

Jarque, C.M. and Bera, A.K. (1980): “Efficient tests for normality, heteroskedasticity, and serial
independence of regression residuals”, Economic Letters 6, 255-259.

Kiefer, N.M. and Salmon, M. (1983): “Testing normality in econometric models”, Economic
Letters 11, 123-127.

Kilian, L., and Demiroglu, U. (2000): “Residual-based test for normality in autoregressions:
asymptotic theory and simulation evidence”, Journal of Business and Economic Statistics 18,
40-50.

Koziol, J.A. (1987): “An alternative formulation of Neyman’s smooth goodness of fit tests under
composite alternatives”, Metrika 34, 17-24.

Lancaster, A. (1984): “The covariance matrix of the information matrix test”, Econometrica
52, 1051-1053.

Magnus, J.R. (1988): Linear structures, Oxford University Press.

Magnus, J.R. and Neudecker, H. (1979): “The commutation matrix: some properties and ap-
plications”, Annals of Statistics 7, 381-394.

Magnus, J.R. and Neudecker, H. (2019): Matriz differential calculus with applications in Statis-
tics and Econometrics, 3rd edition, Wiley.

Mardia, K.V. (1970): “Measures of multivariate skewness and kurtosis with applications”, Bio-

21



metrika 57, 519-530.

Mardia, K. V. and Kent, J.T. (1991): “Rao score tests for goodness of fit and independence”,
Biometrika 78, 355-363.

Massing, T., Puente-Ajovin, M. and Ramos, A. (2020): “On the parametric description of log-
growth rates of cities’ sizes of four European countries and the USA”, Physica A 551, 1-11.
Meijer, E. (2005): “Matrix algebra for higher order moments”, Linear Algebra and its Applica-
tions 410, 112-134.

Mencia, J. and Sentana, E. (2009): “Multivariate location-scale mixtures of normals and mean-
variance-skewness portfolio allocation”, Journal of Econometrics 153, 105—121.

Newey, W.K. (1985): “Maximum likelihood specification testing and conditional moment tests”,
Econometrica 53, 1047-70.

Orme, C. (1990): “The small-sample performance of the information-matrix test”, Journal of
Econometrics 46, 309-331.

Phillips, P. C. B. and Park, J.Y. (1988): “On the formulation of Wald tests of nonlinear restric-
tions”, Econometrica 56, 1065—1083.

Rahman, S. (2017): “Wiener-Hermite polynomial expansion for multivariate Gaussian proba-
bility measures”, Journal of Mathematical Analysis and Applications 454, 303-334.

Ramos, A. (2017): “Are the log-growth rates of city sizes distributed normally? Empirical
evidence for the USA”, Empirical Economics 53, 1109-1123.

Sentana, E. (1995): “Quadratic ARCH models”, Review of Economic Studies 62, 639-661.
Smith, R.J. (1987): “Testing the normality assumption in multivariate simultaneous limited
dependent variable models”, Journal of Econometrics 34, 105—-123.

Tauchen, G. (1985): “Diagnostic testing and evaluation of maximum likelihood models”, Journal
of Econometrics 30, 415-443.

Taylor, L.W. (1987): “The size bias of White’s information matrix test”, Fconomics Letters 24,
63-67.

White, H. (1980): “A heteroscedasticity-consistent covariance matrix estimator and a direct test
for heteroscedasticity”, Econometrica 48, 817-838.

White, H. (1982): “Maximum likelihood estimation of misspecified models”, Econometrica 50, 1—
25.

White, H. (1994): Estimation, inference and specification analysis, Cambridge University Press.

22



A Proofs
A.1 Proof of Proposition 1

If we vectorise the expressions (6)—(8) before we premultiply or postmultiply them by the
duplication matrix or its transpose and ignore the dependence of z(v,4) on v and = for nota-
tional simplicity, then we obtain that the vv block of the sum of the outer product of the score
with the Hessian will be

vec(zz' — A) = (z®1z) — 4, (A1)

where § = vec(A), because
vec(zz') = (z @ z).

Similarly, the v block will be related to
veclvec(zz' — A)z' —2(z@ A)| = (z2@z2®2z) — (22 6§) — 2Ky @ Iy)(z® 6), (A2)
where Ky is the commutation matrix of orders M and M, because

veclvec(zz')z'] = [z ®@vec(zz')] = (222 @ z),
veclvec(A)z'] = (z® §) and

vec(z@A) = 10Ky Iy)(z®d8) = (Kyy @1Iy)(z®4§),

in view of Theorem 3.10 in Magnus and Neudecker (2019).
Finally, the 4+ block will depend on

vec{vec(zz' — A)ved (zz' — A) — [4(A ®zZ') — 2(A ® A)]}

=(z0z2RzRz2)—(20200)-500z2R2z)+(6®00)+2(Iy Ky @Iy)(d @) (A3)

because
veclvec(zz' Yved (zz')] = [vec(zz) @ vec(zz')| = (2@ 2Rz ® z),
vec[dved (z2)] = [vec(zz) @8] = (zR2z® &),
veclvec(zz')d'] = [d @ vec(zz')] = (§ @z @ z),
vec(68') = (6®6),
vec(A®zz') = (In @ Kiy @ Iy)[d @ vec(zz')] = (6 ® z® z) and
vec(A®A) = (I @Ky @Iy)(6®6).

Holly and Gardiol (1995) express the vectors of first, second, third and fourth centred mul-
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tivariate Hermite polynomials of z in matrix notation as

S,z

S, |(z ® z) — 6], (A4)
Smus[(z®2z®2z) —3(z®d)] and (A5)
Suul(z0z0z292)—6(z02®8)+ 3(8 Q)] (A6)

where Sy, (K = 1,...,4) are the symmetrisation operators discussed by Holmquist (1996),
whose detailed expressions we provide in Supplemental Appendix B.1. In this respect, the
vectors Hy, in (3) for k =1,...,4 contain the non-redundant elements of these expressions.

As the detailed analysis of the bivariate case in Appendix B.2.2 illustrates, the sum of the
outer product of the scores and the Hessian matrix contains either duplicated elements or others
which are multiples of each other. Premultiplying or postmultiplying by the (transpose of the)
duplication matrix eliminates some of those duplicities, but not all of them. For that reason, in
the rest of the proof we will show that the symmetrised values of (A1), (A2) and (A3) are 0 in
expectation by showing that they coincide with (A4), (A5) and (A6), respectively.

It is easy to see that the vv term coincides with the second-order Hermite polynomials
because Sy, applied to (z®z) has no effect and Kjrps0 = d by the symmetry of A. However, a
comparison of this term with s (x;v,7) confirms that these cannot be used for testing purposes
because they will be identically 0 when evaluated at the ML estimators when the mean and
variance parameters are freely estimated.

Let us now look at the v block. Clearly, Sy, applied to (z ® z ® z) has no effect either.
In contrast, if we apply 6Sas,, to (z ® §) we obtain

Tas + (I @ Kprnr) + (Karr @ Ing) + (Tng @ Korar) (K @ Ing)
(K @ Ing) (T @ Karar) + (Karar @ Tng) (Tar @ Korar) Karar @ Iar))(z @ 9)
=(2z®0)+(z2268)+ (Kun @Iy)(z6) + (§ ®2)
+(Kyy @In)(z®90) + (6 @ z)

=2((z®68)+ (6 ®2z) + (Kynm ® In)(z ® 5)],

so that
(IM®KMM)(Z®5) = (Z®5) and

(IM (024 KMM)(KMM ®IM)(Z X 5) = KMzM(Z ®5) = ((s ®Z)
by virtue of Theorems 3.7 (iii) and 3.1 in Magnus (1988), and
(KMM ®IM)(IM ®KMM)(KMM ®IM)](Z & 5) = (KMM ®IM)(5® Z) = (6®Z).
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Similarly,

6Snr (0 ®2z) = [Ty + (Tar @ Kornr) + (Karar @ Ing) + (T @ Krar ) (Karnr @ Inv)
+(Karvr @ Ing)(Tnr @ Karar) + (Karar @ Ing) (Tns @ Karar ) (Karar @ Ing)] (0 @ z)
=(0®2z) + Iy @Kyum)(0@2) + (8 @2) + (I @ Ky (0 @ 2)
+(z®0)+ (2®0)

=2((z®6) + (6 ®2) + (In @ Karnr) (6 @ 2)],

because
Ky @In)(0®z) = (6 ®z) and

and his

by virtue of expression (3.3) in Magnus (1988), which implies that K 2 = Kﬁz e

Theorem 3.1.

Finally,
6S a1y (Knrnr @ Ing) (2@ 6) = Ty + (Ing @ Krr) + (Ko @ Ing) + (T @ Korar) (K @ Ing)

(K @ Ing) (T @ Kgar) + (K @ Tng ) (Tnr @ Kogr) (K @ o) (K @ Ing)(z @ 6)
=Kupm@Iy)(zR0)+(022)+ (2®6) + (z®9)
+(0 ®2) + Ky @ Inr) (2 ® 9)
=2((z®0)+(0®2z)+ (Kum @Iy)(z®6)].
because
(Knrv @ Ing ) (K @ Ing) = Iygs.
Hence,

Sres[(z2® 6) + 2(Kpnm @ Ing)(z ® 6)]

= [2©0) + (0 ®@2) + (Kun @ In) (2 ® 6)] = 3Sar,(2 @ 9),

so that Sjps,, times (A2) does indeed coincide with (A5). In effect, the proof is exploiting
expression (B16) in Appendix B.1 below.
An entirely analogous procedure confirms that if one premultiplies (A3) by Sjs,,, one ends

up with (A6) by virtue of expression (B17) and the fact that
SMu, (0 ®2z2®2) =Sy,(202R46)

because both the left- and right-hand side expressions involve all possible permutations of the

same vectors. O
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A.2 Proof of Lemma 2
It follows directly from Proposition 8 in Rahman (2017). O

A.3 Proof of Lemma 3

Given that the mapping from x to y is affine, its first-order Jacobian will be B while all
other higher-order Jacobians will be 0. As a result, the application of Faa di Bruno’s generalised
chain rule to (2) implies that the vector of multivariate Hermite polynomials of order k for y

will be B®* = B B ® ... ® B times the vector of multivariate Hermite polynomials of order

k times
k for x. The numerical invariance of moment tests to linear transformations of the influence

functions with constant coefficients yields the desired result. [l

A.4 Proof of Proposition 4

Given (11), the conditional mean vector and covariance matrix of xo given x; will be
Ho(021) = a9 + Boix1 = Ilypwy and  32(0) = Q1

respectively, where wy = (1,x}), Ty = (ag|Byy) and my; = vec(Ily), so that Oy =
(77’2|1, w'Z‘l). For simplicity of notation, we shall drop the 2|1 subscripts in what follows. Conse-
quently, the contribution from a single observation n to the conditional log-likelihood function
is

1

M- 1 1 M 1
2 In(27) — 5 In Q94| — §(X2n —TIwy,) QY (xg, — Iwy,) = 5 In(27) — 5 In |Q2] — ign(a),

2
where ¢, (0) = X/ (0)e(0).
The maximum likelihood estimators of the model parameters are known in closed-form with-

out the need to conduct any numerical optimisation. Specifically,

N N -1
(&n,By) =1IIy = (Z X2nW’1n> (Z Wlnwlln>
n=1 n=1

and
. 1 [& . .
Qy = N [;(X% —IInwip)(X2n — HNWm)/] .

Nevertheless, we need expressions for the score and Hessian matrix to be able to derive the
IM test.

To compute the score, we first differentiate p,,(6) and 3,,(0) with respect to the ¢ = Ma(Mq+
1) + Ma(Ms + 1)/2 model parameters in 6. Specifically, the first derivatives are given by

o, (0
877(/ ) = Wlln ®IM2 and
dvec[X,,(0)]
oo = Dm
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Thus, the conditional log-likelihood score is

sn(0) = Win(0)7,(0) + Zsn(0)vecle;, (0)€7(6) — Tag),

where
—%
Zln(e) = |:W1n®ﬂ : :| and
0
0
an 0 = _1 _1
6) 1D, (27 @ Q2

As a result, the scores will be

sen(0) = (Wi, ® Q*%’s;ﬁb(@)] = [( Xin ) ® Qfl(xzn — len)]
= vec[Q Y (x9, — w1, )x),] (AT)
and
sun(0) = D4 (@3 @ @ F)uecle; (0)e(6) ~ T
= %DI]\/&UeC[Qil(Xgn — TIwy,)(x2, — wy,)'Q7 1 — Q71 (A8)

Consequently, the outer product of the scores will be

Srn(0)hn(8) = [Winw), © Q 2ek(0)er (0)Q 2]

= [Wlnwlln ® Q_l(XQn - len)(XQn - len)lﬂ_l]v

1
Sun(0)57,(0) = 5Dy, (272 © Q2 Jveclel,(0)e71(0) — Tufl[wh, @ €3/ (0)22]
1
= 5D']\bz)(ac[frl(:)(gn — Twy,) (X2, — Owy,) Q7 — Q7Y [wl, ® (%2, — MTwy,)' Q7
and
1
Sun(0)5un(0) = Dl (72 © Q2 vecle}, (0)<7(6) — Tag

xvec[e¥ (8)e”(0) — In,] (272 @ Q7 2')Dyy,

n

1
— ZDM2U60[Q_1(X2,L — IIwy,)(x2, — Owy,)'Q7 — Q71

XU@C,[Q_l(Xgn — HWln)(XQn — HWln)IQ_l — Q_l]DM2.

To compute the Hessian, it is convenient to use the general expressions for elliptical distrib-

utions in Supplementary Appendix C of Fiorentini and Sentana (2021), namely

82dn(0) i 829 [$n(0),m] 05,(0) 05, (0) i 99 [cn(0), 7] 82§n(0)
0000’ (0¢)? 00 00’ s 00060’ ’

hgon(¢) =
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where

24,(8)/0006 = 27..,(6)Z...(8) — 1{vec 2:1(0)] ®1,} dvec {dvec [$,(6)] /08 /06"

and

+4Z1,(0)[e7,(0) @ Inp,)Zi,, (0) + 4Z5,(0)[e7,(0) @ 1n,]Z;,,(0)
—2[¥(0)%,(0) @ L,)0vec|dy, (0)/06]06'
()< (0)e (0)S0 2 (0)] © L, }dvec|dved [, (0)]/00) /06

0%60(0)/0000" = 2Z4,(0)Z;,,(0) + 8Zsn(0)[Ias, @ €7,(0)e}, ()] 2L, ()
(6

1
2

—{ved [,

In the case of model (11), d,(0) = —3 In 2| and

) 0 0
60/0000' =3 | § 1y, 01 Dy, |

Similarly, we have that g [, (0),n] = —3¢,(6) under normality, so that dg [c,(8),n] /Os = —3
and 02g [, (0),m] /(0s)? = 0. Finally,
/ -1
2.(8)/0006 — 2 < XinXj, ® 2710 )
0 0
0 0
+2 / —= 771 * */ -1 -1
0 DMQ(Q 2’ 0 2NIr, @€ (0)e(0)](R272 @ Q72)Dyy,
+2{0 @mﬁwrvwaﬁm@uMA«r%®n—bDMz}
0 0

0 0
*Q{D%uz ®Q”M(®®hm&m®9_)0}

(Wlnwlln @ Q! ) [Wln(Xgn — HW1n>Qfl ® Qfl]D]\/[2 }
]DMz ’

pu— 2 _ _ _ _ _

{ Dlj\/[2 [Q 1(X2n - len)wlln ® Q 1] D,]M2 [Q loQ 1(X2n - HWln)(Xgn — HWln)/Q 1
where we have exploited the fact that the second derivatives of the conditional mean and co-
variance functions with respect to the model parameters are all zero.

Therefore, we can write the Hessian matrix as

B (Winw), @ Q1)
D), [Q7 (x2n — TIwy,) W, @ Q7]

[Wln(XQn — w1, @ Q7 1Dy, }
D/J\/IQ{Q 1 & [Q (Xgn HWln)(Xgn — HWln),Q_l — %Q_l]}D]\@

The sum of the outer product of the score and the Hessian yields the following three terms:
7w [Winwh, @ Q7 (x2, — TIwy,) (X2, — Owy,) Q7Y — (wi,wh, @ Q71), (A9)
wr : LD Q Hxg, — 1T — Iwy,) Q7 — Q Y[w) — Iwy,) Q7!
L 9 M2U€C[ (X2n Wln)(XQn Wln) len & (X2n Wln) ]
11\42 [Qil(XQn - len)wlln ® Qil]v (AlO)
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and

1 _ _ _
Www: ZD']\@vec[Q 1(x2n — Iwy,) (x2, — Hwy,)'Q '-q 1]
x ved [ (xgn — TIw1,) (X2n — TIwy,)' Q71 — 71Dy,

1
/]\/[2 {Q_l X [Q_I(XQn — HWln)(Xgn — HWln)/Q_l — 59_1]}DM2. (All)

When x31, = 1, these formulas reduce to those in the proof of Proposition 1. In fact, a
straightforward application of the arguments in that proof eventually show that the expressions
for the symmetrised version of the sum of the Hessian and the outer product of the scores coincide
with the influence functions mp,(0), Mmgs,(0), Mgyen(0) and my,(0). Therefore, the only task
left is to derive expressions for the asymptotic covariance matrices of the sample averages of
those influence functions. But since we are maintaining the assumption of ¢.:.d. sampling, and
the conditional distribution of the standardised regression residuals does not depend on the

regressors under the null, we can easily prove that

im VIVNmyn ()] = V{Haleh), (0)]} @ 8 191 ?) , (A12)
e 0 0 Dy, (Lye+Kauyu)(Ti@T1)Dy,
NlijnooV[\/N ey (On)] =V {Hales, (0)]}, (A13)
I&@MV[WmMN(éN)] =V{Hs[e3,(0)]} ® Ty and (A14)
Nh_{noov[\/ﬁmkzv(éfv)] =V {Ha[e5,(0)]}, (A15)

where the only slight complication is to prove that

0 0/ 0/
V{[17 (Xl - Vl)’, Uech/(XI)(& _Fl)]/}: 0 Fl 0 :
0 0 Dy (L +Kayu)(Ti@T1)Dyy,

which follows directly from the expressions for the third- and fourth-order central moments of a

multivariate normal random vector with zero mean and covariance matrix I';. O

A.5 Proof of Lemma 5

The proof follows immediately from well-known numerical invariance properties of multi-
variate regression residuals to lower triangular affine transformations of the regressors and the

regressands. U

A.6 Proof of Proposition 6

Given the numerical invariance of the test statistics in Lemmas 2 and 5, the proof of this
statement can be obtained by comparing the influence functions involved in Propositions 1 and

4 after transforming the observations using the population version of (20). O
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B Auxiliary results and computational details

B.1 The symmetrisation operators

The correct expressions for the first four symmetrisation operators discussed by Holmquist

(1996) are

S, = I,

1
Sn, = §(IM2 + Kunm),
1
=

Sn = 5 Ins + (I @ Ky ) + (K @ Ing) + (T @ Kprnr) (Karve @ Ing)

+(Karar @ Ing)(Ins @ Kpgar) + (Karar @ Ing) (Tar @ K ) (Karar ® Ing)] and
1

Q[IM4 + (Ine @ Kprar) + (Ing @ Karar @ Ing) + (Tnpe @ Krar) (Ing @ Karar @ Ing)
+(Inr @ Kprar @ Ing) (e @ Kgar) + (Tng @ Kagr @ Ing) (Tne @ Kogar) (T @ Kprr @ Ing)

SML4 =

+(Kanvr @) + (K @ Karar) + (Inr @ Kyrar @ Ing ) (Karar @ Inp2)
+(Tnre @ Kprar) (Inr @ Ko @ Ing ) (Karar @ Ipge) + (I @ K @ Ing) (Karar @ Karar)
+(Tnr @ Kprar @ Ing ) Tprz @ Krar) (Ing @ Krar @ Ing) (Karar @ Ipg2)
+(Kpnr @ Ine2) (I @ Karnr @ Ing) + Tz @ Krag ) (Karar @ L) (T @ Kprar @ Ing)
+(Iar @ Kprar @ Ing) (Karar @ Ing2) (Ing @ Karar @ Ing)
+(Ipe @ Knrar) Tns @ Krr @ Ing ) (Karar @ Iy ) (Ing @ K @ Ing)
+K 22 + (T2 @ Ko Kppzpre + (K @ In2)(Tng @ Kyrar @ Ing) (Tng2 @ Karar)
+(Knrm @ Ipp2) (T @ Kprnr @ Tng ) (Tpge @ K ) (T @ Ky @ Toy)
+(Knrnr @ Iy ) (I @ Kprr @ Ing) (K @ Krar)
+Tarz @ Ky ) (K @ Tngz) (T @ K @ Ty ) (K @ Kprr)

+(Kpny @ In2)Kpyzyz + (Iy2 @ Ky ) (Kyy @ Iy2 ) Kyzpye.

The adjectival noun “symmetrisation” reflects the fact that when one applies these operators
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to the arbitrary vectors a, b, ¢ and d of dimension M, one ends up with
SML1a =a,
1
Sy, (a®b) = 5[(a® b) + (b® a)],

1
Suis(a®@b®c)==-[a®@b®c)+(a®c®b)+ (b®a®c)
6

+(b®c®a)+(c®a®b)+ (c®b®a),

Svuu,(a@becad)= 24[(a®b®c®d) (aeb®d®c)+(a®c®bd)+(a®c®d®b)
+a®d@b®c)+(a®d®c®b)+ (ba®c®d)+(b®a®d®-c)
+(bc®awd)+(bc®d®a)+(bdd®a®c)+(bod®c®a)
+cwa®bd)+(c®a®d®b)+(c®b®a®d)+(c®b®d® a)

+(c®d®a®b)+(c®d®b®a)+(d®a®b®c)+(d®a®c®b)
+de®ba®e)+(db®c®a)+(d®c®a®b)+ (d®c®b®a).

Two very useful properties of these operators that Grant Hillier has shared with us are

Snes Ky @ Ing) = Sap, and

Svea(Int @ Ky @ Ing) = San,,

(B16)
(B17)

which effectively follow from the fact that postmultiplying by (Kasp®1Ia7) and (Iny @K @1Iny)

just rearranges the terms in Sys,, and Sy, , respectively.

B.2 Special cases

B.2.1 The univariate case

The contribution of x to the log-likelihood function is

e*(v)

272

1 1
——In2r — = In~? —
2 g
The score of this component with respect to the mean parameter is
su(z;v,7%) = 2(,7%),
while the score with respect to the variance parameter is given by

1
572(37?%'7) = 5[22(V772) - 52]7

where §2 = 2

In turn, the Hessian matrix is given by

b (50,7%) B(sv,72) | 52 8*z(v,7?)
how (250,7%)  hyy(ziv,y) | | 6%2(v,92) 872 (vy?) - 67 |
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while the covariance matrix of the score will be the expected value of the outer product matrix

lZV Z7\V — 2
1 222(5’72)2 52 2 (;”V;)[ 2(2 7_72)2 25]
32,7925 (v, 7?) — 67 122 (v, 7%) — 7]

Therefore, the sum of the outer product of the score and the Hessian yields the following
three terms

A (VR R

P s e AN ] = 8a7%) = L 0,77) — 30%2(,0?)]

and

1 1
Vs B y?) = 81 = 6222 (v,07) = 7] = [N (v, 77) — 66%2% (v, 77) + 367).

Under the null of correct specification, the expected value of these three terms should be zero.
However, the expected value of the first term will also be zero under misspecification, so the test
should only be based on the other two terms, which coincide with the third- and fourth-order

Hermite polynomials of z(v,v2), as claimed.
B.2.2 The bivariate case

The contribution of x = (x1,z2)" to the log-likelihood function is
1 1
—In27 + 3 In|A| - §EI(V)A€(V),

where v = (v1,v2) and vech(A) = (11,012, d22).
If we suppress the dependence on the means for notational simplicity, the scores of this
component with respect to the vector of mean parameters are
s = (g0 e ) (2)= (g i),
which coincide with the Hig(e, A) and Ho; (e, A) bivariate Hermite polynomials of € in Barndorft-
Nielsen and Petersen (1979).
Similarly, the scores with respect to the covariance matrix parameters v = (711, V12, V22)"

are given by one half of the product of the transpose of the duplication matrix

1000
Dy=|0 110
0001

vec[< 011 012 )<€1 >(51 52)<511 512)_<511 012 )]
512 522 €2 512 522 512 522
(5%16% + 26110128162 + 5%2{:‘% — 011
6115125% + (5%2 + 511522)5152 + 5226125% — 012

01101267 + (635 + 811092)e162 + 02901262 — 612 |
(5%28% + 2(512(5228162 + (5%263 — 522

times
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which coincide with the Hag(e, A), Hii(e, A) and Hpa(e, A) bivariate Hermite polynomials of
e in Barndorff-Nielsen and Petersen (1979). Therefore, the vv term of the sum of the outer
product of the score and the Hessian matrix are identical to these polynomials.

In turn, the yv term is one half the transpose of the duplication matrix times

(52151 + 20110126162 + (51262 511)(51181 + (51282)
(61101262 + (512 + 811022)€162 + 62201283 — 012) (61161 + J12€2)
(51151261 (625 + 011022)e162 + 52251262 012)(01161 + d1282)

(51251 + 2012022e1€2 + 52252 522)(51161 + 51262)

(63,62 + 26110126162 + 02962 — 611) (01261 + S2062)
(61101263 + (512 + 011022)e1€62 + 52251262 012) (01261 + d22e2)
(51151261 (6% + 011622)e162 + 02201263 — 612) (1261 + J22e)

((51281 + 201209098162 + (52262 (522)(51251 + 52252)
011(01161 + d1262)  612(d1161 + S1262)

012(01161 + d1262)  022(d11€1 + d1262)
011(01261 + d22e2)  G12(d1261 + d2262)
012(01261 + d22e2)  O22(d12e1 + d22€2)

-2

which reduces to

(67162 + 20116126162 + 61963 — 611) (01161 + J1282)
2 (51151251 (835 + 611022)€182 + 0228123 — 612) (G161 + F1282)
((51281 + 28120296169 + 52282 — 522)((51181 + 51282)
(51151 + 25115125152 + 51282 511)(51261 + 52262)
2 (51151251 (035 + 611022)€162 + 82201263 — 612) (G1261 + S2062)
(51281 + 26120996162 + 52262 (522)((51281 + (52282)

011(01161 + d12€2) d12(01161 + d12€2)
—2 | 261101261 + (095 + 011022)e2 (695 + J11622)e1 + 209251262
d12(81261 + d22e2) d22(01261 + d22€2)

(51161 + 25116128169 + 09963 — 011) (61161 + J1262) — 2611 (d1161 + S1282)
= | 2(611012€32+ (512+511522)6162+52251262 512) (01161 +01282) —2(201101261 + (025 +011622)2)
(63562 + 20120206162 + 03923 — 22) (01161 + d1262) — 2012(d1261 + Ja2e2)

(5%15% + 20116196169 + 09963 — 011) (61261 + Fazen) — 2512(51161 + Jd12€2)
2(81161283+ (512+511522)5162+52251252—512)(512€1+ 62262) —2((639+011092)1 +2092012€2)
(51281 + 281209296169 + 52282 — 522)((51251 + (52282) — 2(522(51281 + 52282)

It is tedious but trivial to see that the (2,1) and (2,2) elements are twice as big as the (1,2)
and (3,1) ones, respectively. Therefore, the number of different elements coincides with the
number of different third moments, which is M (M + 1)(M + 2)/6 = 4 in the bivariate case.

Those four terms are

(63162 + 20110126162 + 01963 — 611) (01161 + d1262) — 2011 (01161 + J1262)

= 51151 + 3511612&152 + 35115125251 -+ 51252 3(51151 — 351151252 H3[)(€7 A),
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(63162 + 20110126162 + 01963 — 611) (01261 + Jazen) — 2012(01161 + J1262)
= 5%1(5128? + (5225%1 + 26115%2) 8%82 + (5?2 + 2511(522512)8%81 + (522(5%283

—361101261 — (2025 4 611092)e0 = Ho (e, A),

((51281 + 28120096169 + (52282 522)((51181 + 51262) — 2512(51281 + (52252)
= 5%251253 + (5115%2 + 25225%2) 6%51 + (5?2 + 2511522512) 6%52 + 5115%26?
— (2075 4 611692)e1 — 302201262 = Hia(e, A),

and

(52261 + 20190996162 + 52252 522)(51281 + (52282) — 2522((51281 + 52252)

= (532&?% + 3(5%2(5126381 + 3522(5%28%82 + 5?28? — 3(522(51261 — 3(53282 = H03(€, A),

which coincide with the four different bivariate Hermite polynomials of order three in Barndorff-

Nielsen and Petersen (1979), as expected.

Finally, the v+ term of the outer product of the score is one quarter of

(51151 + 25115125152 + 51252 - 511
2(51151281 (625 + 011022)e162 + 52251282 —012)
51261 + 2012022e1€2 + 52262 022

X 2((5115128% + (5%2 + 511(522)8162 + 5225126% — 512)
(5%26% + 2512(5225162 + (S%QE% — (522
((51181 + 26110128162 + (51252 — (511)
= 2(51151261 (512+511522)€1€2+ 52251262 512)(51181+2511512€162+51282 d11)
(67962 + 20120226162 + 6393 — 522) (03163 + 26110128162 + 03962 — 611)
(511€1+2511(512€182+512€2 511)((511(51251 ((512 + 511522)6152+522(51282—512)
(51151251 (625 + 011022)e162 + 52251262 — 812)2
2(0356% + 28190926162 + 03963 — 022) (01101267 + (8% + J11022)e169 + J2201263 — 612)
(61162 + 20110126162 + 01963 — 611) (03967 + 20120228169 + 03962 — Ja2)
2(81161283+ (512+511522)51€2+522512€2—512)(51261+2512522€1€2+52262—522)
(51261 + 20190996162 + (52252 — 522)
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To obtain the Hessian, we need the following matrix

2611(67,6% + 20110126162 + 61563) — 07,
2611 (01101282 + (615 + 011092)€182 + 622012€3) — d11012
2612(63167 + 20116128182 + 01963) — 012611
2012(01101263 4 (025 + 611092)e162 + 02201263) — 035

2811(61101262 + (835 + 611022)€189 + d2201263) — 011612
2511(5%25% + 26190925162 + (5%2&‘%) — 011022
2012(0110126% + (025 4 611092)e169 + Fa201263) — 025
2012(035€2 + 26120208182 + 059€3) — 12022

2012(0%,62 + 20118198182 + 03963) — 612011
2512(511(5126% + ((5%2 + 511(522)5152 + 5225125%) - 6%2
2692(0%162 + 26116126182 + 679€3) — d22011
2692(01101282 + (675 + 011092)€182 + 62201263) — G22012

2012(6116126% + (675 + S11022)€182 + 02201263) — 035
2012(6356% + 2012099182 + 03563) — d12022
2(522((511(5125% + (5%2 + 511522)5152 + 522512€%) — 022012
2092(0%967 + 20120906162 + 039€3) — 03

which postmultiplied by the duplication matrix and premultiplied by its transpose yields

011 (26%5%1 + 4e1€9011012 + 26%5%2 — 511)
48%6%1512 + 2(52281826%1 + 66162511(5%2 + 25226%511(512 + 26%5?2 — 2(511612
012 (2511&%512 + 28182(5%2 + 26110998162 + 2(522&‘%512 — (512)

46%5%1512 + 252261825%1 + 681525115%2 + 25228%511512 + 26%5?2 — 2611012
25%5%1(522 + 65%5115%2 + 12e1€2011012022 + 461525?2 + 28%(5115%2 + 65%(5%2(522 — 2011099 — 25%2
28%5?2 + 2(511&‘%512522 + 68182(5%2(522 + 25118182532 + 46%5125%2 — 20120992

512 (261163012 + 26162675 + 20110226162 + 262263012 — 012)
28%(5:{)2 + 25116%512(522 + 661525%2522 + 2(5118152532 + 4&‘%(512(5%2 — 2612092
0992 (28%(5%2 + 4e169012092 + 28%(532 — (522)

If we subtract twice this matrix from the compressed outer product of the score we end up
with a 3 x 3 matrix with the following elements

(1,1) : ef6; + 4e3963,012 + 62636%,035 — 6263, + 4e1£301163
*125182(5%1612 + 5421(51112 — 66%511(5%2 + 35%1,
(2,1) : 263631012 + 2092636903 4 63202162 + 6529633091012 + 6226351105,
—126%(5%1512 + 6(522618%511(5%2 + 2818%5%2 — 652281625%1
—186162511(5%2 + 25226%(5?2 — 65226%511(512 — 68%5?2 + 6(511512,
(8,1) : 302,62, + 2632902, 012092 + 26360011059 + £36302, 02, + 4626301105000 + £2630%,
—5%5%1(522 - 55%5115%2 + 2818%511512552 + 2818%(5:{’2522 — 8162011912022
—48182(5?2 + 8‘21(5%2(5%2 — 8%(511(5%2 — 56%5%2522 + 511(522 + 25%2,

(1,2) : 26303012 + 2002636203, + 6320262 + 6529633671012

+6€%€%511(5:{’2 — 126%(5%1(512 + 6(522815%(511(5%2 + 2616%(5%2 — 65226162(5%1
—186182511(5%2 + 25226%5?2 — 65228%511512 — 66%5?2 + 6511512,

(2,2) : 4e10310%5 4 8632021619092 + 8c3e0011055 + 46363091059 + 166762611099002 + 462307,
—48%(5%1(522 — 205%511(5%2 + 85183511(512(532 + 86183(5:132(522 — 326182511(512(522
— 16162039 + 46402502, — 463011059 — 2023099092 + 4611022 + 8035,
(3, 2) : 25116%5?2 + 25%525%2 + 65116?625%2522 + 68%6%5?2522
6011676361905 — 663055 — 661162512022 + 61302905 + 26116163055
—1861825%2(522 — 651161825%2 + 263512532 — 128%512(532 + 612092,
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(]_7 3) : 6%5%15 + 28152511612522 + 28182511612 + 51826 6%2
—1—46%53(5115%2522 + 6%62(512 — 81(511522 561(511(512 + 26162511(512(522 + 2616%5?2(522
—85162511512522 — 45152512 + 62522522 52511522 562512522 + (511522 + 2512,
681512 651151512522 + 65182612622 + 25118182522 - 185182512622
—6(51161625%2 + 26%(512(532 — 126%(5125%2 + 6812029 and
(3,3) : €161y + 439035090 + 6636262503, — 651512522 + 4e16361203,
—1251525125%2 + 5%632 652622 + 3(522

Once again, it is tedious but straightforward to prove that the elements (2,1), (3,1) and (3,2)
are equal to the elements (1,2), (1,3) and (2,3), respectively. In addition, the (2,2) element is
four times the (3,1) and (1,3) ones. Therefore, the number of different elements coincides with
the number of different fourth moments, which is M (M + 1)(M + 2)(M + 3)/24 = 5 in the

bivariate case. Those five terms are

51181 + 45115125152 + 65215125152 + 4511(5125152 + 51252

6(51151 12(5115125162 — 6(51151252 -+ 3511 = H40(€, A),

203101267 + 2(89203, + 36%10%5)e3e0 4 6(5920%, 012 + 011035t
+2(30920110%5 + 015)e165 + 209205565

—125%15126% — 6((522(5%1 + 35115%2)8182 — 6(522511512 + 5?2)63 + 6011012 = 2H31(€, A),

0310721 + 2 (622671612 + 6116%) 265 + (03103 + 4611035022 + 615) €363
2 ((5‘;’2522 + 511512(552) 6%51 + 6%5%2(5%2 — ((5%1(522 + 5(511(5%2) 8%

4 (5?2 + 2(511512522) £1€2 — (5(5%2(522 + 511(5%2){:‘% + (25%2 + (511522) = Hy(e,A),

25115?1)26111 + 2 (51112 + 35115225%2) 6?62 +6 (5?2522 + 511512532) E%E%
+2 (35%2532 + 511(5%2) E%El + 2(5125%2&‘% -6 ((5?2 + (511512522) E%

6 (35%2522 + 5115%2) £1€2 — 125125%26% + 6512522 = 2H13(E, A)

and

54]%2511 + 45?26228?52 + 65%25225152 + 45125%2815% + 6%28%

which are (multiples of) the five different bivariate Hermite polynomials of order four in Barndorff-

Nielsen and Petersen (1979), as expected.
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B.3 Alternative distributions

For the multivariate skew normal distribution, we use its canonical representation, choosing
0.83, 1.30 and —1.35 for the location, scale and skew, respectively, of the first component of the
random vector, which yield values of —3/4 and 3.60 for its skewness and kurtosis coefficients (see
Figure 2.2 in Azzalini and Capitanio (2014) for the feasible skewness-kurtosis combinations). In
contrast, the remaining M — 1 components are drawn from independent univariate standard
normals.

In the case of the multivariate asymmetric Student ¢, we choose n = 0.042 and b =
(—0.91,0")", which yield values of —3/4 and 4.5 for the skewness and kurtosis coefficients of
the first element (see Proposition 1 in Mencia and Sentana (2009) for details on how to obtain a
random vector whose mean vector and covariance matrix are 0 and I/, respectively). Finally,
for the discrete mixture of two normal vectors, we fix their means to (1 — A\)v and —Av, where
A = 1/4 is the probability of the first Gaussian vector and v = (—.57,0')’, and their covariance

matrices to

1 /

92 = %Ql

with s = .51, so as to achieve the same skewness and kurtosis coeflicients for the first variable

as in the case of the asymmetric Student t.
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Table 3: Marginal, conditional and remainder components of the information matrix test: Size

Monte Carlo rejection rates at the 5% significance level, N = 400

Asymptotic Simulated
df critical values critical values

Panel A: Marginal
Normality of regressor

Hs(z) (skewness) 1 4.90 4.98
Hy(z) (kurtosis) 1 4.21 5.03
Hs(z) & Hy(z) (Jarque-Bera) 2 4.77 5.06

Panel B: Conditional bivariate

Normality of residuals

Hs(u) (skewness) 1 5.08 5.22
Hy(u) (kurtosis) 1 4.33 5.18
Hs(u) & Hy(u) (Jarque-Bera) 2 4.77 5.09
Heteroskedasticity
HQ(U)Hl(:L') & HQ(U)HQ({E) 2 4.78 5.01
Asymmetry
Hs(u)Hi(x) (conditional asymmetry) 1 4.96 5.19
Hs3(u) & Hs(u)Hi(x) (total asymmetry) 2 5.34 5.17
Total

H3(u) & Hg(u)Hl(x) & H4(u)
Hg(u)Hl(l') & HQ(U)HQ(Q?) 5] 5.57 4.95

Panel C: The “rest”
Hl(u)Hg(x) & Hl(u)Hg(.’E) 2 5.29 5.20

Panel D: Joint bivariate
All of them 9 6.48 5.04

Notes: We approximate the exact finite sample critical values with R = 10° replications from a spherical
Gaussian random vector. We generate 20,000 additional samples to compute the rejection rates. df
denotes degrees of freedom and u denotes the residual of the linear regression of xo onto a constant and
xIq.
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Table 7: Marginal, conditional and remainder components of the information matrix test: Power

Monte Carlo rejection rates at the 5% significance level, N = 400

Asymmetric ~ Mixture of Skew
df Student ¢ normals normal

Panel A: Marginal
Normality of regressor

H3(x) (skewness) 1 52.62 50.59 51.66
Hy(z) (kurtosis) 1 36.81 37.40 12.70
Hs3(x) & Hy(z) (Jarque-Bera) 2 54.33 54.80 41.88

Panel B: Conditional bivariate
Normality of residuals

Hs(u) (skewness) 1 10.28 11.33 5.02
Hy(u) (kurtosis) 1 24.34 28.19 5.08
Hs(u) & Hy(u) (Jarque-Bera) 2 23.16 26.41 5.05
Heteroskedasticity
Hy(u)Hi(x) & Ha(u)Ha(x) 33.44 33.77 5.29
Asymmetry
H3(u)Hi(x) (conditional asymmetry) 1 15.33 15.68 4.98
Hs(u) & Hs(u)Hi(x) (total asymmetry) 2 16.00 16.89 4.96
Total

Hs(u) & Hay(u)Hi(x) & Ha(u)
Hg(u)Hl(.%') & HQ(’U)HQ(:U) 53 37.20 40.65 5.27

Panel C: The “rest”
Hl(u)Hg(.%') & H1<u)H3(SU) 2 19.82 17.16 7.07

Panel D: Joint bivariate
All of them 9 58.60 61.48 22.25

Notes: We approximate the exact finite sample critical values with R = 108 replications from a spherical
Gaussian random vector. We generate 20,000 samples from three multivariate non-Gaussian distribu-
tions whose mean vector and covariance matrix are 0 and I,;, respectively: the asymmetric Student ¢
distribution and the two-component location-scale mixture of normals discussed by Mencia and Sentana
(2009), and the skew normal multivariate distribution in Azzalini and Dalla Valle (1996). See Supple-
mental Appendix B.3 for details. df denotes degrees of freedom and u denotes the residual of the linear
regression of x5 onto a constant and .
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Figure 1: Distribution of (log) city sizes and their growth rates

Figure la: (log) city sizes in 2000 and growth rates between 2000 and 2010
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Notes: Scatter plot of (log) city sizes for the contiguous US states in 2000 and their (continuously

Growth rate 2000-2010
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Growth rate 2010-2020

compounded) growth rates between 2000 and 2010, and 2010 and 2020, as well as kernel density estimates
of their marginal distributions (continuous lines), together with the best normal approximation to them
(dotted lines), which share their sample means and standard deviations. Sample: 23,830 matched cities
in both censuses with a population of at least one in both years and exclude Alaska, Hawaii and the
remaining off-shore insular territories like Puerto Rico; see Section 5 for details.



