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1 Introduction

The information matrix (IM) test introduced by White (1982) constitutes a rather general

procedure for examining the speci�cation of models estimated by maximum likelihood (ML).

It directly assesses the IM equality, which states that the sum of the Hessian matrix and the

outer product of the score vector should be zero in expected value when the estimated model

is correctly speci�ed. As an illustration, White (1982) derived the IM test for a univariate

normal random variable, proving that it simply checks that the third- and fourth-order Hermite

polynomials of the standardised variable have zero means in the population. Therefore, it is

equivalent to the version of the popular Jarque and Bera (1980) test proposed by Kiefer and

Salmon (1983) among many others.

The theoretical properties and interpretation of the IM test as part of the general class of

moment tests in Newey (1985) and Tauchen (1985) (see White (1994)), as well as its applications

and �nite sample behaviour, have been extensively investigated. Multivariate normality tests

have also been studied extensively. The intersection is limited to Smith (1987), who related the

IM test to a normality test against a multivariate Edgeworth-type A series expansion truncated

to the fourth order in the context of linear simultaneous limited dependent variable models.

Given both the univariate precedent in White (1982) and the results in Smith (1987), it is not

surprising that we can prove that the IM test for a multivariate normal random vector coincides

with the sum of the two moment tests that look at the means of all the third- and fourth-order

multivariate Hermite polynomials. As a result, the IM test statistic is also equivalent to the

smooth test against a fourth-order Hermite polynomial expansion of the multivariate normal

density in Koziol (1987), which is in turn equivalent to Mardia and Kent�s (1991) score test of

multivariate normality against exponential distributions whose su¢ cient statistics depend not

only on the levels and cross-products of the observations, but also on all possible products of three

and four elements. The neglected heterogeneity interpretation of the IM test in Chesher (1984)

provides a completely di¤erent justi�cation, which might be more relevant in some empirical

applications.

The numerical equivalence between the IM test and the moment test based on Hermite

polynomials is important because, on the one hand, it allows the IM test, which is often regarded

as a black box, to be reinterpreted in this context as a moment test of a set of rather natural

in�uence functions. On the other hand, it provides a likelihood-based justi�cation for using the

third- and fourth-order multivariate Hermite polynomials to test normality.

Rather than in unconditional models, often the interest is in conditional models in which a

subset of dependent variables is modelled as a multivariate linear regression of another subset of
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exogenous variables. For that reason, we deconstruct the multivariate normality test by showing

that it can be computed as the sum of three asymptotically orthogonal components: a marginal

IM test for the regressors, a conditional IM test for the distribution of the dependent variables

given those regressors, and a third component that collects the missing terms. In turn, we show

that the conditional component can be computed as the sum of the aforementioned multivariate

skewness and kurtosis tests applied to the regression residuals, a multivariate regression version

of White�s (1980) test for conditional heteroskedasticity in those residuals, and an additional

component that looks at the conditional skewness of residuals given regressors, which we call a

test for conditionally heteroclicity following Bera and Lee (1993). Similarly, we also prove that

the remaining component of the joint test focuses on both the conditional heteroskedasticity

and heteroclicity of the regressors given the regression residuals.

We explicitly address the widespread and often justi�ed concern that the IM test is unreliable

in �nite samples (see Horowitz (1994) and the reference therein) by explaining how to simulate

its exact, parameter-free, �nite sample distribution, as well as that of its components, to any

desired degree of accuracy for any dimension of the random vector and sample size. In this

respect, we exploit the numerical invariance of the di¤erent components of the IM test to a¢ ne

transformations of the observed variables to simulate draws extremely quickly.

Finally, we apply our procedures to analyse the joint and conditional normality of the size

of US cities and their rates of growth using data from the 2000, 2010, and 2020 censuses.

As is well known, Gibrat�s law says that if the (continuously compounded) rates of growth of

the populations of cities are independent of their initial size, the cross-sectional distribution of

city sizes in the steady state should be log-normal (see Bottazzi, Dosi, Lippi, Pammolli, and

Riccaboni (2001) for a related analysis of the pharmaceutical industry).

The rest of the paper is organised as follows. Section 2 includes our results on the joint

IM test. Section 3 provides the decomposition of the IM test that results from factorisation of

the joint distribution into a marginal and a conditional component. The results of some Monte

Carlo exercises that examine the size and power of the tests in �nite samples are presented in

Section 4, and that assess the joint and conditional normality of US city sizes are presented in

Section 5. The conclusion in Section 6 mentions some avenues for further research. Proofs and

auxiliary results are relegated to appendices.

2 The information matrix test

Our null hypothesis is that the M � 1 vector is

x � i:i:d: N(�;�) with j�j > 0; (1)
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and � and � unknown. Given a random sample on x of dimension N , fxngNn=1, the maximum

likelihood estimators of � and � coincide with the sample mean vector �̂N and the covariance

matrix �̂N (with denominator N). If � and � are known, then there are no parameters to

estimate under the null and, therefore, no gradient or information matrix. However, the test

statistic in Proposition 1 in Section 2.3 with estimators replaced by true values would continue

to be valid as a multivariate normality test. Similarly, we use the i:i:d: assumption mainly

for computing the asymptotic variance of the in�uence functions, which, in principle, could be

robusti�ed for the presence of serial correlation.

2.1 Multivariate Hermite polynomials and moment tests

To enable a generalization of White�s (1982) result to the multivariate context, let us follow

Barndor¤-Nielsen and Petersen (1979) in de�ning the (centred) multivariate Hermite polynomi-

als of x of order k = k1 + : : :+ kM � 0 as

Hk1:::kM ["(�);�] � e�
1
2
(x��)0�(x��) = (�1)k @k

(@x1)k1 : : : (@xM )kM

h
e�

1
2
(x��)0�(x��)

i
; (2)

where � = ��1 and "(�) = (x � �). The mean of any Hermite polynomial of positive degree

is known to be zero when model (1) is correctly speci�ed, so it constitutes a basis for testing

multivariate normality.

The symmetry of the higher-order partial derivatives in (2), however, implies that some of the

Mk multivariate Hermite polynomials of order k will be replicated several times. Speci�cally,

there are only
�
M+k�1

k

�
di¤erent polynomials for a given order, so we can avoid generalised

inverse matrices by eliminating the redundancies from the list of moments to test. In the

third- and fourth-order cases, we can use the triplication and quadruplication matrices in Meijer

(2005), which generalise the duplication matrix (see also Smith (1987) for third- and fourth-order

generalisations of the duplication and elimination matrices).

For that reason, we de�ne

Hk(";�) =

26664
Hk;0;��� ;0(";�)
Hk�1;1;��� ;0(";�)

...
H0;��� ;0;k(";�)

37775 (3)

as the
�
M+k�1

k

�
�1 vector that contains all the non-redundant multivariate Hermite polynomials

of order k, which we simply denote byHk("
�) for the special case of� = IM , so thatH1("

�) = "�

with V [H1("
�)] = IM . Thus, we end up with M(M +1)(M +2)=6 and M(M +1)(M +2)(M +

3)=24 distinct third- and fourth-order moment conditions, respectively, which coincide with the

degrees of freedom of the asymptotic chi-square distributions under the Gaussian null of the
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corresponding multivariate skewness and kurtosis tests de�ned by

h3N = N �m0
3N (�̂N ; ̂N )fV [H3("

�)]g�1 �m3N (�̂N ; ̂N ) (4)

and

h4N = N �m0
4N (�̂N ; ̂N )fV [H4("

�)]g�1 �m4N (�̂N ; ̂N ); (5)

where  = vech(�), �m3N (�;) and �m4N (�;) denote the sample averages of H3["
�(�;)] and

H4["
�(�;)], respectively, over the random sample of size N , with "�(�;) = ��1=2"(�), and

V [H3("
�)] and V [H4("

�)] denote their covariance matrices, whose theoretical expressions we

provide in Lemma 2 in Section 2.3.

2.2 IM in�uence functions for testing multivariate normality

The contribution of one observation on x to the log-likelihood function is

�M
2
ln 2� � 1

2
ln j�j � 1

2
z0(�;)��1z(�;);

where z(�;) =�"(�) = ��1(x� �). The scores of this component with respect to the vector

of mean parameters are

s�(x;�;) = z(�;);

which coincide with the �rst-order Hermite polynomials of x. Similarly, the scores with respect

to the covariance matrix parameters are given by

s(x;�;) =
1

2
D0
Mvec[z(�;)z

0(�;)��];

which coincide with the product of the (transposed) duplication matrixDM and the second-order

Hermite polynomials. Therefore, the Hessian matrix is given by

h��(x;�;) = ��;

h�(x;�;) = �D0
M [z(�;)
�];

and

h(x;�;) = �
1

2
D0
Mf2[(�
 z(�;)z0(�;)]� (�
�)gDM :

Hence, the sum of the outer product of the score and the Hessian, which constitute the basis

for the IM test, yields the terms

d��(x;�;) = s��(x;�;)s
0
��(x;�;) + h��(x;�;) (6)

= z(�;)z0(�;)��;
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d�(x;�;) = s�(x;�;)s
0
�(x;�;) + h�(x;�;) (7)

=
1

2
D0
Mvec[z(�;)z

0(�;)��]z0(�;)�D0
M [z(�;)
�];

and

d(x;�;) = s(x;�;)s
0
(x;�;) + h(x;�;) (8)

=
1

4
D0
Mvec[z(�;)z

0(�;)��]vec0[z(�;)z0(�;)���]DM

�1
2
D0
Mf2[z(�;)z0(�;)]� (�
�)gDM :

When model (1) is correctly speci�ed, the IM equality holds and the mean of

d(x;�;) =

24 d��(x;�;)d�(x;�;)
d(x;�;)

35
is zero. Hence, if we denote by �dN (�̂N ; ̂N ) the sample average of d(x;�;) evaluated at the

ML estimators, by V [d(x;�;)] the covariance matrix of those in�uence functions adjusted for

the sampling uncertainty in estimating � and  under the null, and by + the Moore-Penrose

inverse of a square matrix, then the IM test of multivariate normality is simply

IMN = N �d
0
N (�̂N ; ̂N )fV [d(x;�;)]g+�dN (�̂N ; ̂N ); (9)

which has an asymptotic chi-square distribution under the Gaussian null, with the number of

degrees of freedom equal to the rank of V [d(x;�;)], whose singularity re�ects the symmetric

nature of the Hessian matrix and the corresponding outer product of the scores, the redundant

nature of some of the in�uence functions involved, and the fact that some of them are linear

functions of the scores.

2.3 Reinterpretation of the IM test

Our �rst result, which generalizes the example in White (1982) to the multivariate case,

establishes the numerical equivalence between directly relying on (9) or using the sum of (4) and

(5) for the purpose of testing the correct speci�cation of (1).

Proposition 1 The IM test statistic (9), which compares the outer product of the score with the

Hessian of model (1) evaluated at the sample mean vector and covariance matrix, numerically

coincides with the sum of the two asymptotically independent moment tests (4) and (5), which

check whether the expected values of all the distinct third- and fourth-order multivariate Hermite

polynomials of x are zero.

Although we prove Proposition 1 from �rst principles for pedagogical reasons, it could also be

derived using the results in Section 4 and Appendices A and B of Smith (1987) for the limiting
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case in which there are no regressors in the linear simultaneous equation limited dependent

variable model that he considers, but the limited dependent variables are in fact unlimited.

Multivariate Hermite polynomials of di¤erent orders are known to be uncorrelated (see, e.g.,

Holmquist (1996) or Rahman (2017)), which justi�es the additive decomposition of the test

statistic in Proposition 1. In addition, Holly and Gardiol (1995), building on the formulas for

the higher order moments of the multivariate normal in Balestra and Holly (1990), which in turn

generalises Magnus and Neudecker (1979) and Phillips and Park (1988), explain how to obtain

matrix expressions for the covariance matrices of the entire vector of polynomials of any given

common order.

On the basis of their results, we derive computationally simple closed-form expressions for the

asymptotic covariance matrices of the sample moments underlying our tests e¤ectively adjusted

for parameter uncertainty under the null of Gaussianity, which should improve the �nite sample

performance of our testing procedures, as forcefully argued by Orme (1990) (see also Horowitz

(1994) and the references therein). Speci�cally, the next result contains detailed expressions for

the covariances between two arbitrary �rst-, second-, third-, and fourth-order Hermite polyno-

mials, thereby generalising the results in Amengual, Fiorentini, and Sentana (2022a).

Lemma 2 Let �ij denote the (i; j)th element of �: When model (1) is correctly speci�ed,

cov(Hi;Hj) = �ij ;

cov(Hij ;Hi0j0) = �ii0�jj0 + �ij0�ji0 ;

cov(Hijk;Hi0j0k0) = �ii0�jj0�kk0 + �ii0�jk0�kj0 + �ij0�ji0�kk0

+ �ij0�jk0�ki0 + �ik0�ji0�kj0 + �ik0�jj0�ki0; and

cov(Hijkh;Hi0j0k0h0) = �ii0�jj0�kk0�hh0 + �ii0�jj0�kh0�hk0 + �ii0�jk0�kj0�hh0 + �ii0�jk0�kh0�hj0

+ �ii0�jh0�kj0�hk0 + �ii0�jh0�kk0�hj0 + �ij0�ji0�kk0�hh0 + �ij0�ji0�kh0�hk0

+ �ij0�jk0�ki0�hh0 + �ij0�jk0�kh0�hi0 + �ij0�jh0�ki0�hk0 + �ij0�jh0�kk0�hi0

+ �ik0�ji0�kj0�hh0 + �ik0�ji0�kh0�hj0 + �ik0�jj0�ki0�hh0 + �ik0�jj0�kh0�hi0

+ �ik0�jh0�ki0�hj0 + �ik0�jh0�kj0�hi0 + �ih0�ji0�kj0�hk0 + �ih0�ji0�kk0�hj0

+ �ih0�jj0�ki0�hk0 + �ih0�jj0�kk0�hi0 + �ih0�jk0�ki0�hj0 + �ih0�jk0�kj0�hi0 :

When � = IM , the components of x are stochastically independent and the multivariate

Hermite polynomial Hk1:::kM ["(�);�] simpli�es to the product of the univariate polynomials

Hk1 ["1(�1)],...,HkM ["M (�M )]. Moreover, Lemma 2 implies that di¤erent multivariate Hermite

polynomials of the same order become orthogonal to each other, so the IM test of model (1)

e¤ectively becomes the sum of the individual moments tests for all possible distinct multivariate

Hermite polynomials of orders 3 and 4. Consequently, if we considered a sequence of local

departures from a multivariate spherically normal distribution, the non-centrality parameter of

the asymptotic distribution of the skewness and kurtosis tests in Proposition 1 would be the
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sum of the non-centrality parameters of each of the
�
M+2
3

�
+
�
M+3
4

�
asymptotically independent

moment tests, which is easy to compute.

In addition, the expressions for the variance terms that appear in Lemma 2 simplify consid-

erably. Speci�cally, for the special case of � = IM , so that H1("
�) = "� with V [H1("

�)] = IM ,

the diagonal elements of V [H2("
�)] are V ("�2i � 1) = 2 and V ("�i "

�
i0) = 1 for i0 6= i, while

those of V [H3("
�)] are V ("�3i � 3"�i ) = 6, V ("�2i "

�
i0 � "�i0) = 2 for i0 6= i, and V ("�i "

�
i0"
�
i00) = 1

for i00 6= i0 6= i. Finally, the diagonal elements of V [H4("
�)] are V [("�2i � 3"�i )2 � 6] = 24,

V ("�2i "
�2
i0 � "�2i � "�2i0 +1) = 4 for i0 6= i, V ("�3i "�i0 � 3"�i "�i0) = 6 for i0 6= i, V ("�2i "�i0"�i00 � "�i0"�i00) = 2

for i00 6= i0 6= i, and V ("�i "
�
i0"
�
i00"

�
i000) = 1 for i000 6= i00 6= i0 6= i (see Amengual, Fiorentini, and

Sentana (2022a) for further details).

2.4 Computational considerations

Consider the full-rank a¢ ne transformation y = c + Dx with jDj 6= 0. When (1) holds,

y � i:i:d: N(c +D�;D�D0). Our next result shows that the IM test statistic is numerically

invariant to the values of c and D.

Lemma 3 The IM test statistic of model (1) numerically coincides with the analogous test

statistic for y.

This numerical invariance is a very desirable property of any multivariate normality test

(see Henze (2002)), but it also provides a very fast numerical procedure for computing the test

statistic. Speci�cally, given a sample of size N on x, we can subtract the sample mean from each

observation and premultiply the resulting vector by any square root of the sample covariance

matrix to create standardised random vectors for which the ML estimators of their mean vector

and covariance matrix will be 0 and IM , respectively. Thus, the IM test statistic would be

numerically equivalent to the sum of the individual moments tests for all possible multivariate

Hermite polynomials of orders 3 and 4, which are very simple to compute because of their

factorisation as products of univariate Hermite polynomials. Asymptotically, we can obtain the

non-centrality parameter of the test for any value of � by applying the same trick.

Lemma 3 also implies that the sample mean vector and covariance matrix of the observations,

which set the average of the �rst and second multivariate Hermite polynomials to zero, do

not a¤ect the null distribution of our proposed test in �nite samples. Thus, it is possible to

simulate its exact, parameter-free, �nite sample distribution to any desired degree of accuracy

for any dimension of x and sample size thanks to its pivotal nature, thereby avoiding the well-

deserved criticism that the asymptotic distribution of IM tests provides a poor approximation

in �nite samples, especially when the number of moment conditions involved is large (see, e.g.,
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Taylor (1987), Orme (1990), Chesher and Spady (1991), Davidson and MacKinnon (1992), and

Horowitz (1994)). Speci�cally, it su¢ ces to simulate R times a random sample of size N of a

spherical Gaussian random vector of dimension M to obtain R independent draws of the IM

test statistic for multivariate normality. Given that the sample mean and covariance matrix of

a multivariate random vector take hardly any time to compute, and that the IM test statistic

for random vectors standardised in the sample can also be swiftly computed, our suggested

procedure generates very accurate simulated p-values very quickly. In fact, given that the only

characteristics of the original sample that matter are the values of N and M , a researcher could

obtain tables with exact critical values before observing the data, a very convenient strategy we

follow in Sections 4 and 5.

3 Deconstructing the IM test

As we mentioned in the introduction, in empirical research the interest is often in conditional

models in which a subset of dependent variables is expressed as a multivariate linear regression

of another subset of exogenous variables, rather than in unconditional models. For that reason,

in this section we deconstruct the multivariate normality test of Section 2 by showing that it can

be computed as the sum of three asymptotically orthogonal components: a marginal IM test for

the regressors, a conditional IM test for the distribution of the dependent variables given those

regressors, and a third component consisting of the remaining terms, which we label as �the

rest.�

Speci�cally, the joint test we considered in the previous section assesses the correct speci�-

cation of the multivariate normal distribution of x in (1). However, this model is known to be

equivalent to

x1 � i:i:d: N(�1;�1) with j�1j > 0; (10)

x2jx1 � i:i:d: N(�2j1 +B2j1x1;
2j1); (11)

�2j1 = �2 � �21��111 �1;

B2j1 = �21�
�1
11 , and


2j1 = �22 � �21��111 �021 with j
2:1j > 0;

for any conceivable partition of the M elements of x into two groups x1 and x2 of dimensions

M1 and M2, respectively, with M1 +M2 =M .

Trivially, the IM test of the marginal component (10) is formally identical to the joint IM

test in Proposition 1, except that it applies to x1 only, so all our results in Section 2 apply.
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3.1 The conditional IM test: A regression interpretation

To develop the IM test of the conditional component (11), let us de�ne �0 = (� 01;
0
1;�

0
2j1),

1 = vech(�1), �
0
2j1 = (�

0
2j1;�

0
2j1;!

0
2j1), �2j1 = vec(B2j1), !2j1 = vech(
2j1),

"2j1(�2j1;�2j1) = x2 ��2j1 �B2j1x1;

�2j1 = 
�12j1, and "
�
2j1(�2:1) = 


�1=2
2j1 "2j1(�2j1;�2j1). The derivations in Amengual, Fiorentini,

and Sentana (2022b) or the results in Smith (1987) for the limiting case in which the limited

dependent variables are in fact unlimited allow us to prove the following result.

Proposition 4 The IM test that compares the outer product of the score with the Hessian of

the multivariate regression model (11) evaluated at the Gaussian maximum likelihood estimators

�̂N is asymptotically equivalent under the null hypothesis of correct speci�cation to the sum of

the four moment tests

hhN =N �m
0
hN (�̂N )

�
V [H2("

�
2j1)]


�
�1 0
0 D+

M1
(IM2

1
+KM1M1)(�1 
 �1)D+0

M1

���1
�mhN (�̂N );(12)

hasN =N �m
0
asN (�̂N )fV [H3("

�
2j1)]g

�1 �masN (�̂N ); (13)

hacN =N �m
0
acN (�̂N )fV [H3("

�
2j1)]
�1g

�1 �macN (�̂N ); and (14)

hkN =N �m
0
kN (�̂N )fV [H4("

�
2j1)]g

�1 �mkN (�̂N ); (15)

where �mhN , �masN , �macN , and �mkN are the sample averages of

mhn(�) = H2["
�
2j1n(�)]
 [(x1n � �1)

0; vech0(x1nx
0
1n � �1)]0; (16)

masn(�) = H3["
�
2j1n(�)]; (17)

macn(�) = H3["
�
2j1n(�)]
 (x1n � �1); and (18)

mkn(�) = H4["
�
2j1n(�)]; (19)

which converge in distribution to four mutually independent chi-square random variables whose

degrees of freedom are
�
M2+1
2

�M1(M1+3)
2 ,

�
M2+2
3

�
,
�
M2+2
3

�
M1, and

�
M2+3
4

�
, respectively.

Intuitively, when model (11) is correctly speci�ed, (i) the expected value of any multivariate

Hermite polynomial of positive degree k of the regression residuals conditional on the regres-

sors is zero and (ii) the conditional covariance matrices of those polynomials coincide with the

unconditional covariance mateices in Lemma 2.

In the next subsections we follow Amengual, Fiorentini, and Sentana (2022b) in providing a

simple regression interpretation for each of the moment tests in Proposition 4. These interpreta-

tions in terms of Lagrange multiplier (LM) tests may prove particularly useful for the purposes

of indicating the speci�c directions in which to focus our modelling e¤orts to enrich model (11).
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3.1.1 Testing against conditional heteroskedasticity

Consider the multivariate regression of H2["
�
2j1(�)] onto 1, (x1 � �1) and vech(x1x

0
1 � �1).

Given that (16) e¤ectively contains the relevant normal equations of this regression evaluated

under the null, it is straightforward to see that the test statistic (12) numerically coincides with

the LM test of zero slopes in the aforementioned auxiliary regression (see Hall (1987) for an

analogous result in the univariate case). As a consequence, if (11) holds, then the quadratic form

in (12) will be asymptotically distributed as a chi-square random variable with
�
M2+1
2

�M1(M1+3)
2

degrees of freedom.

More generally, the test statistic (12) that looks at the conditional mean of the second-order

multivariate Hermite polynomials can be understood as a test of neglected heterogeneity in the

�2j1 parameters that determine the conditional mean of the observations, as explained by Hall

(1987) and Bera and Lee (1993) in the univariate case, and Sentana (1995) in the multivariate

case. Nevertheless, this test will have no power to detect time variation in the constant terms

of the multivariate regression which is uncorrelated to the variation in any other of the model

parameters because the �rst-order conditions of the estimators �̂N corresponding to the residual

covariance matrix elements !2j1 ensure that the sample mean ofH2["
�
n(�̂N )] is zero in a regression

with an intercept.

3.1.2 Testing against conditional heterocliticity and unconditional asymmetry

Consider the multivariate regression of H3["
�
2j1(�)] onto a constant and (x1 � �1). Given

that (17) and (18) e¤ectively provide the normal equations of this regression evaluated under

the null, it is straightforward to see that (13) and (14) numerically coincide with the LM tests

of zero means and zero slopes, respectively, in this auxiliary regression. In this respect, (13)

converges in distribution to a chi-square random variable with
�
M2+2
3

�
degrees of freedom, while

(14) will converge to an independent chi-square with
�
M2+2
3

�
M1 degrees of freedom under the

Gaussian null. In fact, we can exploit this asymptotic independence to interpret the sum of (12)

and (14) as a joint test of unconditional and conditional asymmetry of the regression residuals

given the regressors.

If we re-write the multivariate regression model (11) in deviation from the means form as

x2 = �2 +B2j1(x1 � �1) +

1=2
2j1 "

�
2j1;

then the results in Chesher (1984) imply that (13) is simply testing for dependence between

random coe¢ cient variation in the unconditional mean of the regressands �2 and the elements

of the covariance matrix of the residuals 
2j1. Unlike in the previous subsection, the intercepts

10



provide additional degrees of freedom in this case. Similarly, the test statistic (14) that exam-

ines the conditional mean of the third-order polynomials e¤ectively assesses dependence in the

neglected heterogeneity of the mean and covariance parameters �2j1 and !2j1, which in turn

generate what Bera and Lee (1993) called conditional heterocliticity in the univariate case.

3.1.3 Testing against unconditional kurtosis

Consider now the multivariate regression of H4["
�
2j1(�)] on a constant. Given that (19)

e¤ectively contains the normal equations of this regression evaluated under the null, it is once

more straightforward to prove that the quadratic form (15) numerically coincides with the

LM test of zero intercepts in this auxiliary regression. Therefore, this test statistic will be

asymptotically distributed as a chi-square random variable with
�
M2+3
4

�
degrees of freedom

under the null.

Using Chesher�s (1984) reinterpretation of the IM test as a LM test against parameter vari-

ation once again, we can also regard the moment test statistic (15) that examines the un-

conditional mean of the fourth-order multivariate Hermite polynomials as a test of neglected

heterogeneity in !2j1, which are the parameters that characterise the covariance matrix of the

innovations, as explained by Hall (1987) in the univariate case.

Finally, it is worth mentioning that we can further exploit the asymptotic independence of

the di¤erent test statistics in Proposition 4 to create a test of multivariate normality of the

regression residuals "�2j1 as the sum of (13) and (15).

3.1.4 Computational considerations

From a computational point of view, it is important to emphasise that, as explained in

Section 2.4, the diagonal covariance matrices of Hk("
�
2j1) for k = 2; 3; 4 do not depend on any

unknown quantities under the null of correct speci�cation. In addition, if we reconsider a full-

rank a¢ ne transformation of both the dependent and independent variables given by y = c+Dx,

with y = (y01;y
0
2)
0 and D lower triangular of full rank, we can show the following analogue to

Lemma 3.

Lemma 5 The four components of the IM test statistic of model (11) in Proposition 4 numer-

ically coincide with the corresponding test statistics based on y2 and y1.

Once again, this numerical invariance provides a very fast numerical procedure for computing

the test statistics in Proposition 4 because the recursive nature of the lower triangular Cholesky

decomposition implies that we can systematically work with"
"�1n(�̂N )

"�2j1n(�̂N )

#
=

�
�̂11N �̂12N
�̂012N �̂22N

��1=2�
x1n � �̂1N
x2n � �̂2N

�
(20)

11



without loss of generality. In the preceding equality, the sample mean and covariance matrix

are 0 and IM , respectively. Similarly, it is straightforward to obtain exact critical values by

simulation for each of the components that appear in Proposition 4 using a procedure entirely

analogous to that described in Section 2.4. In the case of the multivariate normality test of the

regression residuals "�2j1 mentioned at the end of the previous subsection, our exact �nite sample

procedure is slightly di¤erent from the analogous procedure for testing multivariate normality

of the residuals in a conditionally homoskedastic, multivariate linear regression model proposed

by Dufour, Khalaf, and Beaulieu (2003) in that they treat x2 as �xed in repeated samples, while

we also simulate x2. Nevertheless, they are both asymptotically valid.

Finally, the fact that the population mean and covariance matrix of "�1 and "
�
2j1 are also 0

and IM , respectively, implies that we can easily compute the non-centrality parameters for local

deviations from the null of correct speci�cation of model (11).

3.2 The �rest�

The sum of the IM test statistic in Proposition 1 applied to x1, which we call the marginal

IM test, and the four components of the IM test statistic in Proposition 4.1, which we refer to

as the conditional IM test, does not coincide with the IM test statistic in Proposition 1 applied

to x, which we can call the joint IM test. At �rst glance, the reason may seem to be the lack

of numerical invariance of the IM to reparametrisation of the model. However, this is not the

case because Amengual, Fiorentini, and Sentana (2023) show that any IM test computed using

either the population version of the asymptotic covariance matrix of the in�uence functions or

the sample version suggested by Chesher (1983) and Lancaster (1984) is numerically invariant

to reparametrisation.

In fact, the real reason is that those marginal and conditional components correspond to a

speci�c partition of the elements of x, while the joint test considers all possible partitions.

Nevertheless, we can easily characterise the missing components.

Proposition 6 The IM test statistic in Proposition 1 applied to x numerically coincides with

the sum of the following asymptotically independent moment tests: the IM test statistic in Propo-

sition 1 applied to the marginal model for x1 in (10), the IM statistic in Proposition 4 applied

to the conditional model for x2 given x1 in (11), and the sum of the two moment tests

hrhN =N �m0
rhN (�̂N )[V [H2("

�
1)]
IM2 ]

�1 �mrhN (�̂N ) and

hraN =N �m0
raN (�̂N )[V [H3("

�
1)]
IM2 ]

�1 �mraN (�̂N );

12



where �mrhN and �mraN are the sample averages of

mrhn(�) = H2["
�
1n(�)]
 "�2j1n(�) and (21)

mran(�) = H3["
�
1n(�)]
 "�2j1n(�); (22)

which converge in distribution to two mutually independent chi-square random variables whose

degrees of freedom are
�
M1+1
2

�
M2 and

�
M1+2
3

�
M2, respectively.

To provide intuition for this proposition, it is convenient to exploit the numerical invariances

in Lemmas 3 and 5 to focus directly on (20). The marginal component of the IM test looks at

the third and fourth multivariate Hermite polynomials of "�1, H3("
�
1) and H4("

�
1), respectively.

In turn, the conditional component focuses on the third and fourth multivariate polynomials

of "�2j1, H3("
�
2j1) and H4("

�
2j1), the Kronecker product of its second-order polynomials H2("

�
2j1)

with both H1("
�
1) and H2("

�
1), as well as the Kronecker product of its third-order polynomials

H3("
�
2j1) with H1("

�
1). Therefore, the third- and fourth-order polynomials of the joint test

which do not appear in either the marginal or the conditional component are H2("
�
1)
H1("

�
2j1)

and H3("
�
1) 
 H1("

�
2j1), respectively, which we can interpret as focusing on the conditional

heteroskedasticity and heteroclicity of "�1 given "
�
2j1. Importantly, each of the components of the

conditional IM test in Proposition 4 is asymptotically independent from the marginal component

in Proposition 1, as well as to the two remaining components introduced in Proposition 6, which

in principle o¤ers multiple additive aggregations.

4 Monte Carlo evidence

We conduct an extensive simulation exercise to enable an evaluation of the performance of

the di¤erent tests that we discussed in previous sections. Further, we compare them with the

multivariate normality tests considered by Dufour, Khalaf, and Beaulieu (2003), namely those

proposed by Mardia (1970) and Kilian and Demiroglu (2000) (KD). The skewness component

of Mardia�s (1970) test is known to coincide with (4), while its kurtosis component is based

on his proposed multivariate excess kurtosis coe¢ cient. Given the independence of these two

components in large samples in the Gaussian case, the asymptotic distribution of their sum

under the null is a chi-square random variable with M(M +1)(M +2)=6+1 degrees of freedom.

In turn, the skewness and kurtosis components of the KD test are based on the cross-sectional

sum of H3("�i ) and H4("
�
i ), respectively, which means that each of them will be asymptotically

distributed under normality as a chi-square random variable with M degrees of freedom. We

also report their joint version, which is simply the sum of these two aggregate statistics, whose

asymptotic distribution is a chi-square with 2M degrees of freedom.
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For each design we generate 20,000 samples and consider four cross-sectional dimensions

(M = 2, 4, 8, and 16) and three sample lengths (N = 100, 400, and 1; 600). To save space,

we report the Monte Carlo rejection rates at the conventional 5% signi�cance level only. We

also make use of Lemmas 3 and 5 to �x the population mean vector to zero and the covariance

matrix to the identity matrix, which are nevertheless freely estimated in the sample.

4.1 Size

The discussion in Sections 2.4 and 3.1.4 indicates that the �nite sample size of the tests

we analyse should be accurate given that we approximate the �nite sample critical values with

R = 106 Monte Carlo replications. Nevertheless, it is also interesting to gauge the small sample

size distortions that arise when asymptotic critical values are used instead. For completeness, we

also report the rejection rates obtained with simulated critical values, whose di¤erences with the

nominal values are merely due to Monte Carlo variability. In this respect, the 95% con�dence

interval for those rejection rates is (4:70%; 5:30%) for 20,000 simulated samples.

The results with asymptotic critical values reported in Table 1 con�rm the need for �nite

sample size adjustments, especially for the IM and Mardia tests when the cross-sectional dimen-

sion is large. As expected, KD is the test that shows the smallest size distortions because the

number of moment conditions is linear in M , rather than cubic or quartic. When the sample

length is moderately large (N = 1; 600), the size of all tests becomes rather accurate except

for the kurtosis component of the IM test. In contrast, Table 2 provides a completely di¤erent

picture: Monte Carlo sizes are very accurate, with the vast majority of rejection rates within

the 95% con�dence set. We observe no di¤erences across sample lengths or cross-sectional di-

mensions, which con�rms the accuracy of the simulation-based critical values that we propose.

Finally, Table 3 reports the results on the size of the components of the IM test in Propo-

sitions 4 and 6 for the bivariate case with N = 400 (a sample length representative of those

in our empirical application in Section 5). As explained in Section 3.1.4, we simultaneously

draw x1 and x2 in each Monte Carlo simulation. The results reported in Panel A indicate that

tests based on the asymptotic critical values show little size distortions, which, in any event, are

corrected by the simulation-based critical values in Panel B.

4.2 Power

To assess the power properties of the several testing procedures, we generate 20,000 samples

from three multivariate non-Gaussian distributions whose mean vector and covariance matrix

are 0 and IM , respectively: the asymmetric Student t distribution, the two-component location-

scale mixture of normals (LSMN) discussed by Mencía and Sentana (2009), and the multivariate
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skew normal distribution in Azzalini and Dalla Valle (1996). Our results complement those in

Best and Rayner (1988), who studied the �nite sample power of Koziol�s (1987) test in the

bivariate case.

We again make use of Lemmas 3 and 5 to exploit skewness as a common feature for these three

distributions (see Engle and Kozicki (1993)); hence, orthogonal rotations of the original random

vectors in which only one variable is asymmetric can always be found. Speci�cally, Theorem

5.12 in Azzalini and Capitanio (2014) provides a canonical representation of the multivariate

skew normal with this property. Similarly, the LSMN representation in Mencía and Sentana

(2009) allows us to do the same for the other two distributions. Thus, the non-normality of the

multivariate distributions is e¤ectively governed by two parameters: the skewness and kurtosis

coe¢ cients of the only asymmetric random variable. We choose a skewness coe¢ cient of �3
4

for all three distributions and a kurtosis coe¢ cient of 4:5 for the two LSMNs, as the kurtosis

of the skew normal is a function of its skewness parameter only (see Appendix B.3). The main

di¤erence between the skew normal distribution and the other two is that in the former, the

other M � 1 variables are Gaussian and independent, so that all the remaining third and fourth

multivariate cumulants are zero, while in the latter, those variables are symmetric but neither

normal nor independent of each other or of the �rst asymmetric component.

Table 4 reports the results corresponding to the asymmetric t distribution. As expected,

power increases with the sample size N . Similarly, power increases with M except for the KD

test, which does not exploit any cross third- and fourth-order moment of the non-Gaussian

multivariate distribution. As we mentioned before, the IM test and the test in Mardia (1970)

share the same (co-) skewness component, while the (co-) kurtosis component of the former is

more powerful in all cases, except when M is small and N is simultaneously large.

The results for the LSMN distribution in Table 5 are qualitatively rather similar to those of

the previous table: the KD test is the worst, while both the IM and the Mardia tests perform

reasonably well. It is interesting that the IM test bene�ts the most from the increases in the

cross-sectional dimension M .

In turn, Table 6 displays the results of the simulations with the skew normal. When the

sample length is small, all tests fail to reject the null. Of more interest is that power system-

atically decreases with M for all sample lengths. The reason is simple. Given the canonical

representation of the skew normal mentioned above, the only thing that increasing M does is to

add more independent Gaussian components, which in turn add more (co-) skewness and (co-)

kurtosis terms. As a result, the non-centrality parameter does not change, while the number

of degrees of freedom increases. It is, therefore, not surprising that the KD test is the best
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performer in this case.

Finally, Table 7 displays the results of the di¤erent components of the IM test detailed in

Section 3 for the case M = 2 and N = 400. Given that skewness is a common feature for the

three distributions that we simulate, it is not entirely surprising that most of the power comes

from the skewness component of the marginal tests. This is especially so when the distribution

is skew normal, which, as expected, leads to power equal to size in all the conditional bivariate

tests.

5 The distribution of US city sizes and their growth rates

We apply our procedures to analyse the joint, conditional, and marginal normality of the

size of US cities and their rates of growth using the 2000, 2010, and 2020 census data. Gibrat�s

law says that if the (continuously compounded) rates of growth of the populations of cities are

independent of their initial size, the cross-sectional distribution of city sizes in the steady state

should be log-normal.

In marked contrast to earlier studies, Eeckhout (2004) forcefully argued that if one looked at

the entire non-truncated sample of cities and places in the 2000 US census, their size distribution

would be approximately log-normal. On the other hand, Amengual, Bei, and Sentana (2022)

found that the non-normality of the joint distribution of US (log) city sizes in the 2000 and

2010 censuses was very clearly seen in their growth rates (see also Ramos (2017), and Massing,

Puente-Ajovín, and Ramos (2020) for further evidence for other countries).

We extend their analysis to include the recent 2020 US census data, identifying x2 and x3

with the continuously compounded rates of growth between 2000 and 2010, and 2010 and 2020,

respectively, and x1 with the log city size in the 2000 census. Thus, we can simultaneously study

not only the joint distribution of initial city sizes and their rates of growth, whose independence

is at the core of Gibrat�s law, but also the relationship between two consecutive growth rates.

We follow the extant literature and treat Alaska, Hawaii, and the remaining o¤-shore insular

territories like Puerto Rico separately from the remaining contiguous 48 states. Changes in

boundaries and city names, as well as the creation of new entities and the dissolution of others,

imply that there is no one-to-one relationship between the entity names and codes of the Census

Designated Places (CDPs) in the 2000, 2010, and 2020 censuses �les. For that reason, we look

at the joint distribution of the matched cities with a population of at least one in each of the

censuses, as in Eeckhout (2004). Some CDPs were rede�ned or merged during our sample period,

which results in anomalously high rises or drops in the population �gures. Moreover, the values

reported by the US Census Bureau are incorrect for a handful of CDPs, but we could not �nd

16



reliable �gures from other sources. For these reasons, we removed 32 outlier observations from

the merged sample, so that the e¤ective sample size contains 23,830 observations. Consequently,

the average number of observations across states is equal to 496. The median value is 383 and

the interquartile range is 381, with a minimum of 22 CDPs in Rhode Island and maximum of

1,443 in Texas.

Figure 1 displays scatter plots for the three di¤erent pairs that we can form with x1, x2,

and x3 for the 48 contiguous states. We also include kernel density estimates of the marginal

distributions for these three variables, together with the best normal approximations to them,

which share their sample means and standard deviations. As highlighted by Eeckhout (2004),

the estimated density of (log) city sizes for the contiguous states in 2000 does not di¤er much

from its normal approximation. Speci�cally, there is little evidence of kurtosis and only some

evidence of asymmetry around the mode of the distribution rather than at the tails. The

marginal normality test for this univariate distribution con�rms both these impressions, with a

kurtosis coe¢ cient of 3.02, which is not statistically signi�cantly di¤erent from 3, and a skewness

coe¢ cient of 0.27, which is nevertheless statistically signi�cant in view of the large number of

observations.

In contrast, the joint bivariate distributions look rather non-normal. In fact, the joint IM

tests for each pair, as well as for the three variables together, reject massively, with p-values on

the order of 10�5. Part of the reason is probably that the variables are signi�cantly positively

correlated with each other (0.15, 0.26, and 0.24 in Figures 1a, 1b, and 1c, respectively), which

contradicts the main assumption underlying Gibrat�s law (see also Ishikawa et al. (2020)).

Given that in the last few decades interstate migrations in the US have become less frequent

than in the past, we also conducted the analysis at the state level. Table 3 reports the number

of states that reject the various components of the IM statistics that we discussed in Section

3 at the 5% level, with exact critical values computed for each test statistic using one million

simulated samples for the appropriate number of cities. Speci�cally, by sequentially conditioning

x2 on x1, and x3 on x1 and x2, we can look at the following:

1. normality of (log) city sizes in 2000 (Panel A), which in turn, we decompose into its skewness

and kurtosis components;

2. normality of the rate of growth between 2010 and 2000 conditional on (log) city sizes in 2000

(Panel B), which we also decompose into the di¤erent components highlighted in Proposition 4;

3. the residual of the joint normality test for x1 and x2 in Proposition 6 (Panel C);

4. joint normality of the rate of growth between 2010 and 2000 conditional on (log) city sizes in

2000 (Panel D);
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5. normality of the rate of growth between 2020 and 2010 conditional on the rate of growth

between 2010 and 2000 and (log) city sizes in 2000 (Panel E), which once again we decompose

along the lines of Proposition 4;

6. the residual of the joint normality test for the three variables in Proposition 6 (Panel F); and

7. joint normality of the three variables (Panel G).

Panel A con�rms that (log) city sizes within states di¤er from normality mainly through

asymmetry, with weaker evidence of kurtosis. In contrast, when we analyse the conditional

distribution of the rate of growth between 2010 and 2000 given (log) city size in 2000 in Panel B

using the conditionally homoskedastic, linear regression model of x2 on a constant and x1, the

di¤erent null hypotheses are rejected in almost all states, except for conditional homoskedasticity

and conditional symmetry, against which we �nd little evidence in a few states. Interestingly,

the leftover component in Proposition 6 reported in Panel C does not reject for more than half

the states, so the joint normality results in Panel D are mainly driven by those in Panel B.

In turn, the pattern of rejections for the conditional distribution of the rate of growth between

2020 and 2010 given both the rate of growth between 2010 and 2000 and (log) city sizes in 2000

in Panel E is qualitatively similar to that in Panel B, indicating the presence of non-normality,

conditional heteroskedasticity and conditional heteroclicity in the residuals of the conditionally

homoskedastic, linear regression model of x3 on a constant, x1 and x2. Moreover, the leftover

term of Proposition 6 reported in Panel F leads to conclusions similar to those in Panel C.

Finally, the conclusions for the bivariate and trivariate normality tests in Panel D and Panel G,

respectively, also agree, which is not entirely surprising given that they re�ect the sum of all the

other components.

6 Conclusions

We have shown that the IM test for a normal random vector coincides with the sum of the

moment tests for all third- and fourth-order multivariate Hermite polynomials. We have also

decomposed this joint test as the sum of the marginal IM test for a subvector, the conditional IM

test for the complementary subvector, and a third leftover component. In turn, the conditional

IM test is the sum of an analogous multivariate normality test for the regression residuals, the

multivariate version of White�s test for conditional homoskedasticity, and a test for conditionally

homoclicity which assesses the potential dependence of the third-order multivariate Hermite

polynomials of those residuals on the regressors. Finally, we decompose the leftover component

as the sum of analogous tests for conditional homoskedasticity and conditional homoclicity of

the regressors given the regression residuals.
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We also show that all these tests are numerically invariant to a¢ ne transformations of the

variables involved, which considerably simpli�es their calculation and also implies that they are

pivotal in �nite samples. As a result, we can simulate exact �nite sample distributions in no time

by drawing many spherical Gaussian vectors and orthogonalising them using sample moments.

Finally, we use all these tests to assess the implications of Gibrat�s law for US city sizes

using the three most recent censuses, �nding that although the marginal distribution of (log)

city sizes is reasonably close to a normal, their (continuously compounded) growth rates are not

independent of either past growth rates or initial city sizes.

Our Monte Carlo exercises con�rm the non-trivial power of the IM tests against empirically

plausible alternatives, even though they are not consistent, because in arbitrary large samples

they would fail to reject with probability one departures from normality such that all third- and

fourth-order cumulants are zero. Unlike in the univariate case, the construction mechanism for

distributions with this characteristic is not obvious because it is di¢ cult to ensure the global

positivity of multivariate Hermite expansions of the Gaussian density.

The IM test can be extended to examine the correct speci�cation of more general multivariate

distributions. Amengual, Fiorentini, and Sentana (2023) are currently exploring this interesting

research avenue for �nite Gaussian mixtures.
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A Proofs
A.1 Proof of Proposition 1

If we vectorise the expressions (6)�(8) before we premultiply or postmultiply them by the

duplication matrix or its transpose and ignore the dependence of z(�;) on � and  for nota-

tional simplicity, then we obtain that the �� block of the sum of the outer product of the score

with the Hessian will be

vec(zz0 ��) = (z
 z)� �; (A1)

where � = vec(�), because
vec(zz0) = (z
 z):

Similarly, the � block will be related to

vec[vec(zz0 ��)z0 � 2(z
�)] = (z
 z
 z)� (z
 �)� 2(KMM 
 IM )(z
 �); (A2)

where KMM is the commutation matrix of orders M and M , because

vec[vec(zz0)z0] = [z
 vec(zz0)] = (z
 z
 z);

vec[vec(�)z0] = (z
 �) and

vec(z
�) = (1
KMM 
 IM )(z
 �) = (KMM 
 IM )(z
 �);

in view of Theorem 3.10 in Magnus and Neudecker (2019).

Finally, the  block will depend on

vecfvec(zz0 ��)vec0(zz0 ��)� [4(�
 zz0)� 2(�
�)]g

= (z
 z
 z
 z)� (z
 z
 �)� 5(� 
 z
 z) + (� 
 �) + 2(IM 
KMM 
 IM )(� 
 �) (A3)

because

vec[vec(zz0)vec0(zz0)] = [vec(zz0)
 vec(zz0)] = (z
 z
 z
 z);

vec[�vec0(zz0)] = [vec(zz0)
 �] = (z
 z
 �);

vec[vec(zz0)�0] = [� 
 vec(zz0)] = (� 
 z
 z);

vec(��0) = (� 
 �);

vec(�
 zz0) = (IM 
K1M 
 IM )[� 
 vec(zz0)] = (� 
 z
 z) and

vec(�
�) = (IM 
KMM 
 IM )(� 
 �):

Holly and Gardiol (1995) express the vectors of �rst, second, third and fourth centred mul-
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tivariate Hermite polynomials of z in matrix notation as

SM�1z

SM�2 [(z
 z)� �]; (A4)

SM�3 [(z
 z
 z)� 3(z
 �)] and (A5)

SM�4 [(z
 z
 z
 z)� 6(z
 z
 �) + 3(� 
 �)]; (A6)

where SM�k (k = 1; : : : ; 4) are the symmetrisation operators discussed by Holmquist (1996),

whose detailed expressions we provide in Supplemental Appendix B.1. In this respect, the

vectors Hk in (3) for k = 1; : : : ; 4 contain the non-redundant elements of these expressions.

As the detailed analysis of the bivariate case in Appendix B.2.2 illustrates, the sum of the

outer product of the scores and the Hessian matrix contains either duplicated elements or others

which are multiples of each other. Premultiplying or postmultiplying by the (transpose of the)

duplication matrix eliminates some of those duplicities, but not all of them. For that reason, in

the rest of the proof we will show that the symmetrised values of (A1), (A2) and (A3) are 0 in

expectation by showing that they coincide with (A4), (A5) and (A6), respectively.

It is easy to see that the �� term coincides with the second-order Hermite polynomials

because SM�2 applied to (z
z) has no e¤ect andKMM� = � by the symmetry of�. However, a

comparison of this term with s(x;�;) con�rms that these cannot be used for testing purposes

because they will be identically 0 when evaluated at the ML estimators when the mean and

variance parameters are freely estimated.

Let us now look at the � block. Clearly, SM�3 applied to (z 
 z 
 z) has no e¤ect either.

In contrast, if we apply 6SM�3 to (z
 �) we obtain

[IM3 + (IM 
KMM ) + (KMM 
 IM ) + (IM 
KMM )(KMM 
 IM )

+(KMM 
 IM )(IM 
KMM ) + (KMM 
 IM )(IM 
KMM )(KMM 
 IM )](z
 �)

= (z
 �) + (z
 �) + (KMM 
 IM )(z
 �) + (� 
 z)

+(KMM 
 IM )(z
 �) + (� 
 z)

= 2[(z
 �) + (� 
 z) + (KMM 
 IM )(z
 �)];

so that

(IM 
KMM )(z
 �) = (z
 �) and

(IM 
KMM )(KMM 
 IM )(z
 �) = KM2M (z
 �) = (� 
 z)

by virtue of Theorems 3.7 (iii) and 3.1 in Magnus (1988), and

(KMM 
 IM )(IM 
KMM )(KMM 
 IM )](z
 �) = (KMM 
 IM )(� 
 z) = (� 
 z):
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Similarly,

6SM�3(� 
 z) = [IM3 + (IM 
KMM ) + (KMM 
 IM ) + (IM 
KMM )(KMM 
 IN )

+(KMM 
 IM )(IM 
KMM ) + (KMM 
 IM )(IM 
KMM )(KMM 
 IM )](� 
 z)

= (� 
 z) + (IM 
KMM )(� 
 z) + (� 
 z) + (IM 
KMM )(� 
 z)

+(z
 �) + (z
 �)

= 2[(z
 �) + (� 
 z) + (IM 
KMM )(� 
 z)];

because

(KMM 
 IM )(� 
 z) = (� 
 z) and

(KMM 
 IM )(IM 
KMM )(� 
 z) = KMM2(� 
 z) = (z
 �)

by virtue of expression (3.3) in Magnus (1988), which implies that KMM2 = K�1
M2M

, and his

Theorem 3.1.

Finally,

6SM�3(KMM 
 IM )(z
 �) = [IM3 + (IM 
KMM ) + (KMM 
 IM ) + (IM 
KMM )(KMM 
 IM )

+(KMM 
 IM )(IM 
KMM ) + (KMM 
 IM )(IM 
KMM )(KMM 
 IM )](KMM 
 IM )(z
 �)

= (KMM 
 IM )(z
 �) + (� 
 z) + (z
 �) + (z
 �)

+(� 
 z) + (KMM 
 IM )(z
 �)

= 2[(z
 �) + (� 
 z) + (KMM 
 IM )(z
 �)]:

because
(KMM 
 IM )(KMM 
 IM ) = IM3 :

Hence,

SM�3 [(z
 �) + 2(KMM 
 IM )(z
 �)]

= [(z
 �) + (� 
 z) + (KMM 
 IM )(z
 �)] = 3SM�3(z
 �);

so that SM�3 times (A2) does indeed coincide with (A5). In e¤ect, the proof is exploiting

expression (B16) in Appendix B.1 below.

An entirely analogous procedure con�rms that if one premultiplies (A3) by SM�4 , one ends

up with (A6) by virtue of expression (B17) and the fact that

SM�4(� 
 z
 z) = SM�4(z
 z
 �)

because both the left- and right-hand side expressions involve all possible permutations of the

same vectors. �
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A.2 Proof of Lemma 2

It follows directly from Proposition 8 in Rahman (2017). �

A.3 Proof of Lemma 3

Given that the mapping from x to y is a¢ ne, its �rst-order Jacobian will be B while all

other higher-order Jacobians will be 0. As a result, the application of Faà di Bruno�s generalised

chain rule to (2) implies that the vector of multivariate Hermite polynomials of order k for y

will be B
k = B
B
 :::
B| {z }
k times

times the vector of multivariate Hermite polynomials of order

k for x. The numerical invariance of moment tests to linear transformations of the in�uence

functions with constant coe¢ cients yields the desired result. �

A.4 Proof of Proposition 4

Given (11), the conditional mean vector and covariance matrix of x2 given x1 will be

�2(�2j1) = �2j1 +B2j1x1 = �2j1w1 and �2(�) = 
2j1;

respectively, where w01 = (1;x01), �2j1 = (�2j1jB2j1) and �2j1 = vec(�2j1), so that �2j1 =

(�02j1;!
0
2j1). For simplicity of notation, we shall drop the 2j1 subscripts in what follows. Conse-

quently, the contribution from a single observation n to the conditional log-likelihood function

is

�M2

2
ln(2�)� 1

2
ln j
2:1j�

1

2
(x2n��w1n)0
�1(x2n��w1n) = �

M

2
ln(2�)� 1

2
ln j
j� 1

2
&n(�);

where &n(�) = "�0n (�)"
�
n(�).

The maximum likelihood estimators of the model parameters are known in closed-form with-

out the need to conduct any numerical optimisation. Speci�cally,

(�̂N ; B̂N ) = �̂N =

 
NX
n=1

x2nw
0
1n

! 
NX
n=1

w1nw
0
1n

!�1
and


̂N =
1

N

"
NX
n=1

(x2n � �̂Nw1n)(x2n � �̂Nw1n)
0

#
:

Nevertheless, we need expressions for the score and Hessian matrix to be able to derive the

IM test.

To compute the score, we �rst di¤erentiate �n(�) and�n(�) with respect to the q =M2(M1+

1) +M2(M2 + 1)=2 model parameters in �. Speci�cally, the �rst derivatives are given by

@�n(�)

@�0
= w01n 
 IM2 and

@vec[�n(�)]

@!0
= DM2 :
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Thus, the conditional log-likelihood score is

sn(�) = wln(�)"
�
n(�) + Zsn(�)vec["

�
n(�)"

�0
n (�)� IM2 ];

where

Zln(�) =

�
w1n 

�

1
2
0

0

�
and

Zsn(�) =

"
0

1
2D

0
M2
(
�

1
2
0 

� 1

2
0)

#
:

As a result, the scores will be

s�n(�) = [w1n 

�
1
2
0"�n(�)] =

��
1
x1n

�


�1(x2n ��w1n)

�
= vec[
�1(x2n ��w1n)x01n] (A7)

and

s!n(�) =
1

2
D0
M2
(
�

1
2
0 

�

1
2
0)vec["�n(�)"

�0
n (�)� IM ]

=
1

2
D0
M2
vec[
�1(x2n ��w1n)(x2n ��w1n)0
�1 �
�1]: (A8)

Consequently, the outer product of the scores will be

s�n(�)s
0
�n(�) = [w1nw

0
1n 

�

1
2
0"�n(�)"

�0
n (�)


� 1
2 ]

= [w1nw
0
1n 

�1(x2n ��w1n)(x2n ��w1n)0
�1];

s!n(�)s
0
�n(�) =

1

2
D0
M2
(
�

1
2
0 

�

1
2
0)vec["�n(�)"

�0
n (�)� IM ][w01n 
 "�0n (�)
�

1
2 ]

=
1

2
D0
M2
vec[
�1(x2n ��w1n)(x2n ��w1n)0
�1 �
�1][w01n 
 (x2n ��w1n)0
�1]

and

s!n(�)s
0
!n(�) =

1

4
D0
M2
(
�

1
2
0 

�

1
2
0)vec["�n(�)"

�0
n (�)� IM2 ]

�vec0["�n(�)"�0n (�)� IM2 ](

� 1
2
0 

�

1
2
0)DM2

=
1

4
D0
M2
vec[
�1(x2n ��w1n)(x2n ��w1n)0
�1 �
�1]

�vec0[
�1(x2n ��w1n)(x2n ��w1n)0
�1 �
�1]DM2 :

To compute the Hessian, it is convenient to use the general expressions for elliptical distrib-

utions in Supplementary Appendix C of Fiorentini and Sentana (2021), namely

h��n(�) =
@2dn(�)

@�@�0
+
@2g [&n(�);�]

(@&)2
@&n(�)

@�

@&n(�)

@�0
+
@g [&n(�);�]

@&

@2&n(�)

@�@�0
;
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where

@2dn(�)=@�@�
0 = 2Zsn(�)Z

0
sn(�)�

1

2

�
vec0

�
��1n (�)

�

 Iq

	
@vec

�
@vec0 [�n(�)] =@�

	
=@�0

and

@2&n(�)=@�@�
0 = 2Zln(�)Z

0
ln(�) + 8Zsn(�)[IM2 
 "�n(�)"�0n (�)]Z0sn(�)

+4Zln(�)["
�0
n (�)
 IM2 ]Z

0
sn(�) + 4Zsn(�)["

�
n(�)
 IM2 ]Z

0
ln(�)

�2["�0n (�)�
� 1
2
0

n (�)
 Iq]@vec[@�0n(�)=@�]@�0

�fvec0[��
1
2

n (�)"�n(�)"
�0
n (�)�

� 1
2
0

n (�)]
 Iqg@vecf@vec0[�n(�)]=@�g=@�0:

In the case of model (11), dn(�) = �1
2 ln j
j and

@2dn(�)=@�@�
0 =

1

2

�
0 0
0 D0

M2
(
�1 

�1)DM2

�
:

Similarly, we have that g [&n(�);�] = �1
2 &n(�) under normality, so that @g [&n(�);�] =@& = �

1
2

and @2g [&n(�);�] =(@&)2 = 0. Finally,

@2&n(�)=@�@�
0 = 2

�
x1nx

0
1n 

�1 0
0 0

�
+2

(
0 0

0 D0
M2
(
�

1
2
0 

� 1

2
0)[IM2 
 "�n(�)"�0n (�)](
�

1
2 

� 1

2 )DM2

)

+2

�
0 (x1n 

�

1
2
0)["�0n (�)
 IM2 ](


� 1
2 

� 1

2 )DM2

0 0

�
+2

(
0 0

D0
M2
(
�

1
2
0 

� 1

2
0)["�n(�)
 IM2 ](x

0
1n 

�

1
2 ) 0

)

= 2

�
(w1nw

0
1n 

�1) [w01n(x2n ��w1n)
�1 

�1]DM2

D0
M2
[
�1(x2n ��w1n)w01n 

�1] D0

M2
[
�1 

�1(x2n ��w1n)(x2n ��w1n)0
�1]DM2

�
;

where we have exploited the fact that the second derivatives of the conditional mean and co-

variance functions with respect to the model parameters are all zero.

Therefore, we can write the Hessian matrix as

�
�

(w1nw
0
1n 

�1)

D0
M2
[
�1(x2n ��w1n)w01n 

�1]

[w01n(x2n ��w1n)
�1 

�1]DM2

D0
M2
f
�1 
 [
�1(x2n ��w1n)(x2n ��w1n)0
�1 � 1

2

�1]gDM2

�
The sum of the outer product of the score and the Hessian yields the following three terms:

��: [w1nw
0
1n 

�1(x2n ��w1n)(x2n ��w1n)0
�1]� (w1nw01n 

�1); (A9)

!� :
1

2
D0
M2
vec[
�1(x2n ��w1n)(x2n ��w1n)0
�1 �
�1][w01n 
 (x2n ��w1n)0
�1]

�D0
M2
[
�1(x2n ��w1n)w01n 

�1]; (A10)
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and

!!:
1

4
D0
M2
vec[
�1(x2n ��w1n)(x2n ��w1n)0
�1 �
�1]

� vec0[
�1(x2n ��w1n)(x2n ��w1n)0
�1 �
�1]DM2

�D0
M2
f
�1 
 [
�1(x2n ��w1n)(x2n ��w1n)0
�1 �

1

2

�1]gDM2 : (A11)

When x1n = 1, these formulas reduce to those in the proof of Proposition 1. In fact, a

straightforward application of the arguments in that proof eventually show that the expressions

for the symmetrised version of the sum of the Hessian and the outer product of the scores coincide

with the in�uence functions mhn(�), masn(�), macn(�) and mkn(�). Therefore, the only task

left is to derive expressions for the asymptotic covariance matrices of the sample averages of

those in�uence functions. But since we are maintaining the assumption of i:i:d: sampling, and

the conditional distribution of the standardised regression residuals does not depend on the

regressors under the null, we can easily prove that

lim
N!1

V [
p
N �mhN (�̂N )]=V fH2["

�
2j1(�)]g


240 00 00

0 �1 0
0 0 D+

M1
(IM2

1
+KM1M1)(�1
�1)D+0

M1

35; (A12)
lim
N!1

V [
p
N �masN (�̂N )]=V fH3["

�
2j1(�)]g; (A13)

lim
N!1

V [
p
N �macN (�̂N )]=V fH3["

�
2j1(�)]g 
 �1 and (A14)

lim
N!1

V [
p
N �mkN (�̂N )]=V fH4["

�
2j1(�)]g; (A15)

where the only slight complication is to prove that

V f[1; (x1 � �1)0; vech0(x1x01��1)]0g=

24 0 00 00

0 �1 0
0 0 D+

M1
(IM2

1
+KM1M1)(�1
�1)D+0

M1

35;
which follows directly from the expressions for the third- and fourth-order central moments of a

multivariate normal random vector with zero mean and covariance matrix �1. �

A.5 Proof of Lemma 5

The proof follows immediately from well-known numerical invariance properties of multi-

variate regression residuals to lower triangular a¢ ne transformations of the regressors and the

regressands. �

A.6 Proof of Proposition 6

Given the numerical invariance of the test statistics in Lemmas 2 and 5, the proof of this

statement can be obtained by comparing the in�uence functions involved in Propositions 1 and

4 after transforming the observations using the population version of (20). �
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B Auxiliary results and computational details

B.1 The symmetrisation operators

The correct expressions for the �rst four symmetrisation operators discussed by Holmquist

(1996) are

SM�1 = IM ;

SM�2 =
1

2
(IM2 +KMM );

SM�3 =
1

6
[IM3 + (IM 
KMM ) + (KMM 
 IM ) + (IM 
KMM )(KMM 
 IM )

+(KMM 
 IM )(IM 
KMM ) + (KMM 
 IM )(IM 
KMM )(KMM 
 IM )] and

SM�4 =
1

24
[IM4 + (IM2 
KMM ) + (IM 
KMM 
 IM ) + (IM2 
KMM )(IM 
KMM 
 IM )

+(IM 
KMM 
 IM )(IM2 
KMM ) + (IM 
KMM 
 IM )(IM2 
KMM )(IM 
KMM 
 IM )

+(KMM 
 IM2) + (KMM 
KMM ) + (IM 
KMM 
 IM )(KMM 
 IM2)

+(IM2 
KMM )(IM 
KMM 
 IM )(KMM 
 IM2) + (IM 
KMM 
 IM )(KMM 
KMM )

+(IM 
KMM 
 IM )(IM2 
KMM )(IM 
KMM 
 IM )(KMM 
 IM2)

+(KMM 
 IM2)(IM 
KMM 
 IM ) + (IM2 
KMM )(KMM 
 IM2)(IM 
KMM 
 IM )

+(IM 
KMM 
 IM )(KMM 
 IM2)(IM 
KMM 
 IM )

+(IM2 
KMM )(IM 
KMM 
 IM )(KMM 
 IM2)(IM 
KMM 
 IM )

+KM2M2 + (IM2 
KMM )KM2M2 + (KMM 
 IM2)(IM 
KMM 
 IM )(IM2 
KMM )

+(KMM 
 IM2)(IM 
KMM 
 IM )(IM2 
KMM )(IM 
KMM 
 IM )

+(KMM 
 IM2)(IM 
KMM 
 IM )(KMM 
KMM )

+(IM2 
KMM )(KMM 
 IM2)(IM 
KMM 
 IM )(KMM 
KMM )

+(KMN 
 IN2)KN2N2 + (IN2 
KNN )(KNN 
 IN2)KN2N2 :

The adjectival noun �symmetrisation�re�ects the fact that when one applies these operators
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to the arbitrary vectors a, b, c and d of dimension M , one ends up with

SM�1a = a;

SM�2(a
 b) =
1

2
[(a
 b) + (b
 a)];

SM�3(a
 b
 c) =
1

6
[(a
 b
 c) + (a
 c
 b) + (b
 a
 c)

+(b
 c
 a) + (c
 a
 b) + (c
 b
 a)];

SM�4(a
 b
 c
 d)=
1

24
[(a
 b
 c
 d)+(a
 b
 d
 c)+(a
 c
 b
 d)+(a
 c
 d
 b)

+(a
 d
 b
 c) + (a
 d
 c
 b) + (b
 a
 c
 d) + (b
 a
 d
 c)

+(b
 c
 a
 d) + (b
 c
 d
 a) + (b
 d
 a
 c) + (b
 d
 c
 a)

+(c
 a
 b
 d) + (c
 a
 d
 b) + (c
 b
 a
 d) + (c
 b
 d
 a)

+(c
 d
 a
 b) + (c
 d
 b
 a) + (d
 a
 b
 c) + (d
 a
 c
 b)

+(d
 b
 a
 c) + (d
 b
 c
 a) + (d
 c
 a
 b) + (d
 c
 b
 a)]:

Two very useful properties of these operators that Grant Hillier has shared with us are

SM�3(KMM 
 IM ) = SM�3 and (B16)

SM�4(IM 
KMM 
 IM ) = SM�4 ; (B17)

which e¤ectively follow from the fact that postmultiplying by (KMM
IM ) and (IM
KMM
IM )

just rearranges the terms in SM�3 and SM�4 , respectively.

B.2 Special cases

B.2.1 The univariate case

The contribution of x to the log-likelihood function is

�1
2
ln 2� � 1

2
ln 2 � "

2(�)

22

The score of this component with respect to the mean parameter is

s�(x; �; 
2) = z(�; 2);

while the score with respect to the variance parameter is given by

s2(x; �; ) =
1

2
[z2(�; 2)� �2];

where �2 = �2, so they coincide with the �rst and second Hermite polynomials of z(�; 2).

In turn, the Hessian matrix is given by�
h��(x; �; 

2) h�(x; �; 
2)

h�(x; �; 
2) h(x; �; )

�
= �

�
�2 �2z(�; 2)

�2z(�; 2) �2[z2(�; 2)� �2]

�
;

31



while the covariance matrix of the score will be the expected value of the outer product matrix�
z2(�; 2) 1

2z(�; 
2)[z2(�; 2)� �2]

1
2z(�; 

2)[z2(�; 2)� �2] 1
4 [z

2(�; 2)� �2]2
�
:

Therefore, the sum of the outer product of the score and the Hessian yields the following

three terms

�� : z2(�; 2)� �2;

2� :
1

2
z(�; 2)[z2(�; 2)� �2]� �2z(�; 2) = 1

2
[z3(�; 2)� 3�2z(�; 2)]

and

22 :
1

4
[z2(�; 2)� �2]2 � �2[z2(�; 2)� �2] = 1

4
[z4(�; 2)� 6�2z2(�; 2) + 3�4]:

Under the null of correct speci�cation, the expected value of these three terms should be zero.

However, the expected value of the �rst term will also be zero under misspeci�cation, so the test

should only be based on the other two terms, which coincide with the third- and fourth-order

Hermite polynomials of z(�; 2), as claimed.

B.2.2 The bivariate case

The contribution of x = (x1; x2)0 to the log-likelihood function is

� ln 2� + 1
2
ln j�j � 1

2
"0(�)�"(�);

where � = (�1; �2)0 and vech(�) = (�11; �12; �22).

If we suppress the dependence on the means for notational simplicity, the scores of this

component with respect to the vector of mean parameters are

s�(x;�;) =

�
�11 �12
�12 �22

��
"1
"2

�
=

�
�11"1 + �12"2
�12"1 + �22"2

�
;

which coincide with theH10(";�) andH01(";�) bivariate Hermite polynomials of " in Barndor¤-

Nielsen and Petersen (1979).

Similarly, the scores with respect to the covariance matrix parameters  = (11; 12; 22)
0

are given by one half of the product of the transpose of the duplication matrix

D02 =

0@ 1 0 0 0
0 1 1 0
0 0 0 1

1A
times

vec

��
�11 �12
�12 �22

��
"1
"2

��
"1 "2

�� �11 �12
�12 �22

�
�
�
�11 �12
�12 �22

��

=

2664
�211"

2
1 + 2�11�12"1"2 + �

2
12"

2
2 � �11

�11�12"
2
1 + (�

2
12 + �11�22)"1"2 + �22�12"

2
2 � �12

�11�12"
2
1 + (�

2
12 + �11�22)"1"2 + �22�12"

2
2 � �12

�212"
2
1 + 2�12�22"1"2 + �

2
22"

2
2 � �22

3775 ;
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which coincide with the H20(";�), H11(";�) and H02(";�) bivariate Hermite polynomials of

" in Barndor¤-Nielsen and Petersen (1979). Therefore, the �� term of the sum of the outer

product of the score and the Hessian matrix are identical to these polynomials.

In turn, the � term is one half the transpose of the duplication matrix times2664
(�211"

2
1 + 2�11�12"1"2 + �

2
12"

2
2 � �11)(�11"1 + �12"2)

(�11�12"
2
1 + (�

2
12 + �11�22)"1"2 + �22�12"

2
2 � �12)(�11"1 + �12"2)

(�11�12"
2
1 + (�

2
12 + �11�22)"1"2 + �22�12"

2
2 � �12)(�11"1 + �12"2)

(�212"
2
1 + 2�12�22"1"2 + �

2
22"

2
2 � �22)(�11"1 + �12"2)

(�211"
2
1 + 2�11�12"1"2 + �

2
12"

2
2 � �11)(�12"1 + �22"2)

(�11�12"
2
1 + (�

2
12 + �11�22)"1"2 + �22�12"

2
2 � �12)(�12"1 + �22"2)

(�11�12"
2
1 + (�

2
12 + �11�22)"1"2 + �22�12"

2
2 � �12)(�12"1 + �22"2)

(�212"
2
1 + 2�12�22"1"2 + �

2
22"

2
2 � �22)(�12"1 + �22"2)

3775

�2

2664
�11(�11"1 + �12"2) �12(�11"1 + �12"2)
�12(�11"1 + �12"2) �22(�11"1 + �12"2)
�11(�12"1 + �22"2) �12(�12"1 + �22"2)
�12(�12"1 + �22"2) �22(�12"1 + �22"2)

3775 ;
which reduces to24 (�211"

2
1 + 2�11�12"1"2 + �

2
12"

2
2 � �11)(�11"1 + �12"2)

2
�
�11�12"

2
1 + (�

2
12 + �11�22)"1"2 + �22�12"

2
2 � �12)(�11"1 + �12"2

�
(�212"

2
1 + 2�12�22"1"2 + �

2
22"

2
2 � �22)(�11"1 + �12"2)

(�211"
2
1 + 2�11�12"1"2 + �

2
12"

2
2 � �11)(�12"1 + �22"2)

2
�
�11�12"

2
1 + (�

2
12 + �11�22)"1"2 + �22�12"

2
2 � �12)(�12"1 + �22"2

�
(�212"

2
1 + 2�12�22"1"2 + �

2
22"

2
2 � �22)(�12"1 + �22"2)

35
�2

24 �11(�11"1 + �12"2) �12(�11"1 + �12"2)
2�11�12"1 + (�

2
12 + �11�22)"2 (�212 + �11�22)"1 + 2�22�12"2

�12(�12"1 + �22"2) �22(�12"1 + �22"2)

35
=

24 (�211"
2
1 + 2�11�12"1"2 + �

2
12"

2
2 � �11)(�11"1 + �12"2)� 2�11(�11"1 + �12"2)

2(�11�12"
2
1+(�

2
12+�11�22)"1"2+�22�12"

2
2��12)(�11"1+�12"2)�2(2�11�12"1+(�212+�11�22)"2)

(�212"
2
1 + 2�12�22"1"2 + �

2
22"

2
2 � �22)(�11"1 + �12"2)� 2�12(�12"1 + �22"2)

(�211"
2
1 + 2�11�12"1"2 + �

2
12"

2
2 � �11)(�12"1 + �22"2)� 2�12(�11"1 + �12"2)

2(�11�12"
2
1+(�

2
12+�11�22)"1"2+�22�12"

2
2��12)(�12"1+ �22"2)�2((�212+�11�22)"1+2�22�12"2)

(�212"
2
1 + 2�12�22"1"2 + �

2
22"

2
2 � �22)(�12"1 + �22"2)� 2�22(�12"1 + �22"2)

35
It is tedious but trivial to see that the (2,1) and (2,2) elements are twice as big as the (1,2)

and (3,1) ones, respectively. Therefore, the number of di¤erent elements coincides with the

number of di¤erent third moments, which is M(M + 1)(M + 2)=6 = 4 in the bivariate case.

Those four terms are

(�211"
2
1 + 2�11�12"1"2 + �

2
12"

2
2 � �11)(�11"1 + �12"2)� 2�11(�11"1 + �12"2)

= �311"
3
1 + 3�

2
11�12"

2
1"2 + 3�11�

2
12"

2
2"1 + �

3
12"

3
2 � 3�211"1 � 3�11�12"2 = H30(";�);
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(�211"
2
1 + 2�11�12"1"2 + �

2
12"

2
2 � �11)(�12"1 + �22"2)� 2�12(�11"1 + �12"2)

= �211�12"
3
1 +

�
�22�

2
11 + 2�11�

2
12

�
"21"2 + (�

3
12 + 2�11�22�12)"

2
2"1 + �22�

2
12"

3
2

�3�11�12"1 � (2�212 + �11�22)"2 = H21(";�);

(�212"
2
1 + 2�12�22"1"2 + �

2
22"

2
2 � �22)(�11"1 + �12"2)� 2�12(�12"1 + �22"2)

= �222�12"
3
2 +

�
�11�

2
22 + 2�22�

2
12

�
"22"1 +

�
�312 + 2�11�22�12

�
"21"2 + �11�

2
12"

3
1

�(2�212 + �11�22)"1 � 3�22�12"2 = H12(";�);

and

(�212"
2
1 + 2�12�22"1"2 + �

2
22"

2
2 � �22)(�12"1 + �22"2)� 2�22(�12"1 + �22"2)

= �322"
3
2 + 3�

2
22�12"

2
2"1 + 3�22�

2
12"

2
1"2 + �

3
12"

3
1 � 3�22�12"1 � 3�222"2 = H03(";�);

which coincide with the four di¤erent bivariate Hermite polynomials of order three in Barndor¤-

Nielsen and Petersen (1979), as expected.

Finally, the  term of the outer product of the score is one quarter of24 �211"
2
1 + 2�11�12"1"2 + �

2
12"

2
2 � �11

2(�11�12"
2
1 + (�

2
12 + �11�22)"1"2 + �22�12"

2
2 � �12)

�212"
2
1 + 2�12�22"1"2 + �

2
22"

2
2 � �22

35
�

24 �211"
2
1 + 2�11�12"1"2 + �

2
12"

2
2 � �11

2(�11�12"
2
1 + (�

2
12 + �11�22)"1"2 + �22�12"

2
2 � �12)

�212"
2
1 + 2�12�22"1"2 + �

2
22"

2
2 � �22

350

=

24 (�211"
2
1 + 2�11�12"1"2 + �

2
12"

2
2 � �11)2

2(�11�12"
2
1+(�

2
12+�11�22)"1"2+ �22�12"

2
2��12)(�211"21+2�11�12"1"2+�212"22��11)

(�212"
2
1 + 2�12�22"1"2 + �

2
22"

2
2 � �22)(�211"21 + 2�11�12"1"2 + �212"22 � �11)

2(�211"
2
1+2�11�12"1"2+�

2
12"

2
2��11)(�11�12"21+(�212 + �11�22)"1"2+�22�12"22��12)

4(�11�12"
2
1 + (�

2
12 + �11�22)"1"2 + �22�12"

2
2 � �12)2

2(�212"
2
1 + 2�12�22"1"2 + �

2
22"

2
2 � �22)(�11�12"21 + (�212 + �11�22)"1"2 + �22�12"22 � �12)

(�211"
2
1 + 2�11�12"1"2 + �

2
12"

2
2 � �11)(�212"21 + 2�12�22"1"2 + �222"22 � �22)

2(�11�12"
2
1+(�

2
12+�11�22)"1"2+�22�12"

2
2��12)(�212"21+2�12�22"1"2+�222"22��22)

(�212"
2
1 + 2�12�22"1"2 + �

2
22"

2
2 � �22)2

35 :
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To obtain the Hessian, we need the following matrix2664
2�11(�

2
11"

2
1 + 2�11�12"1"2 + �

2
12"

2
2)� �211

2�11(�11�12"
2
1 + (�

2
12 + �11�22)"1"2 + �22�12"

2
2)� �11�12

2�12(�
2
11"

2
1 + 2�11�12"1"2 + �

2
12"

2
2)� �12�11

2�12(�11�12"
2
1 + (�

2
12 + �11�22)"1"2 + �22�12"

2
2)� �212

2�11(�11�12"
2
1 + (�

2
12 + �11�22)"1"2 + �22�12"

2
2)� �11�12

2�11(�
2
12"

2
1 + 2�12�22"1"2 + �

2
22"

2
2)� �11�22

2�12(�11�12"
2
1 + (�

2
12 + �11�22)"1"2 + �22�12"

2
2)� �212

2�12(�
2
12"

2
1 + 2�12�22"1"2 + �

2
22"

2
2)� �12�22

2�12(�
2
11"

2
1 + 2�11�12"1"2 + �

2
12"

2
2)� �12�11

2�12(�11�12"
2
1 + (�

2
12 + �11�22)"1"2 + �22�12"

2
2)� �212

2�22(�
2
11"

2
1 + 2�11�12"1"2 + �

2
12"

2
2)� �22�11

2�22(�11�12"
2
1 + (�

2
12 + �11�22)"1"2 + �22�12"

2
2)� �22�12

2�12(�11�12"
2
1 + (�

2
12 + �11�22)"1"2 + �22�12"

2
2)� �212

2�12(�
2
12"

2
1 + 2�12�22"1"2 + �

2
22"

2
2)� �12�22

2�22(�11�12"
2
1 + (�

2
12 + �11�22)"1"2 + �22�12"

2
2)� �22�12

2�22(�
2
12"

2
1 + 2�12�22"1"2 + �

2
22"

2
2)� �222

3775
which postmultiplied by the duplication matrix and premultiplied by its transpose yields24 �11

�
2"21�

2
11 + 4"1"2�11�12 + 2"

2
2�
2
12 � �11

�
4"21�

2
11�12 + 2�22"1"2�

2
11 + 6"1"2�11�

2
12 + 2�22"

2
2�11�12 + 2"

2
2�
3
12 � 2�11�12

�12
�
2�11"

2
1�12 + 2"1"2�

2
12 + 2�11�22"1"2 + 2�22"

2
2�12 � �12

�
4"21�

2
11�12 + 2�22"1"2�

2
11 + 6"1"2�11�

2
12 + 2�22"

2
2�11�12 + 2"

2
2�
3
12 � 2�11�12

2"21�
2
11�22 + 6"

2
1�11�

2
12 + 12"1"2�11�12�22 + 4"1"2�

3
12 + 2"

2
2�11�

2
22 + 6"

2
2�
2
12�22 � 2�11�22 � 2�212

2"21�
3
12 + 2�11"

2
1�12�22 + 6"1"2�

2
12�22 + 2�11"1"2�

2
22 + 4"

2
2�12�

2
22 � 2�12�22

�12
�
2�11"

2
1�12 + 2"1"2�

2
12 + 2�11�22"1"2 + 2�22"

2
2�12 � �12

�
2"21�

3
12 + 2�11"

2
1�12�22 + 6"1"2�

2
12�22 + 2�11"1"2�

2
22 + 4"

2
2�12�

2
22 � 2�12�22

�22
�
2"21�

2
12 + 4"1"2�12�22 + 2"

2
2�
2
22 � �22

�
35

If we subtract twice this matrix from the compressed outer product of the score we end up

with a 3� 3 matrix with the following elements
(1;1) : "41�

4
11 + 4"

3
1"2�

3
11�12 + 6"

2
1"
2
2�
2
11�

2
12 � 6"21�311 + 4"1"32�11�312

�12"1"2�211�12 + "42�412 � 6"22�11�212 + 3�211;
(2;1) : 2"41�

3
11�12 + 2�22"

3
1"2�

3
11 + 6"

3
1"2�

2
11�

2
12 + 6�22"

2
1"
2
2�
2
11�12 + 6"

2
1"
2
2�11�

3
12

�12"21�211�12 + 6�22"1"32�11�212 + 2"1"32�412 � 6�22"1"2�211
�18"1"2�11�212 + 2�22"42�312 � 6�22"22�11�12 � 6"22�312 + 6�11�12;

(3;1) : "41�
2
11�

2
12 + 2"

3
1"2�

2
11�12�22 + 2"

3
1"2�11�

3
12 + "

2
1"
2
2�
2
11�

2
22 + 4"

2
1"
2
2�11�

2
12�22 + "

2
1"
2
2�
4
12

�"21�211�22 � 5"21�11�212 + 2"1"32�11�12�222 + 2"1"32�312�22 � 8"1"2�11�12�22
�4"1"2�312 + "42�212�222 � "22�11�222 � 5"22�212�22 + �11�22 + 2�212;

(1;2) : 2"41�
3
11�12 + 2�22"

3
1"2�

3
11 + 6"

3
1"2�

2
11�

2
12 + 6�22"

2
1"
2
2�
2
11�12

+6"21"
2
2�11�

3
12 � 12"21�211�12 + 6�22"1"32�11�212 + 2"1"32�412 � 6�22"1"2�211

�18"1"2�11�212 + 2�22"42�312 � 6�22"22�11�12 � 6"22�312 + 6�11�12;
(2;2) : 4"41�

2
11�

2
12 + 8"

3
1"2�

2
11�12�22 + 8"

3
1"2�11�

3
12 + 4"

2
1"
2
2�
2
11�

2
22 + 16"

2
1"
2
2�11�

2
12�22 + 4"

2
1"
2
2�
4
12

�4"21�211�22 � 20"21�11�212 + 8"1"32�11�12�222 + 8"1"32�312�22 � 32"1"2�11�12�22
�16"1"2�312 + 4"42�212�222 � 4"22�11�222 � 20"22�212�22 + 4�11�22 + 8�212;

(3;2) : 2�11"
4
1�
3
12 + 2"

3
1"2�

4
12 + 6�11"

3
1"2�

2
12�22 + 6"

2
1"
2
2�
3
12�22

+6�11"
2
1"
2
2�12�

2
22 � 6"21�312 � 6�11"21�12�22 + 6"1"32�212�222 + 2�11"1"32�322

�18"1"2�212�22 � 6�11"1"2�222 + 2"42�12�322 � 12"22�12�222 + 6�12�22;
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(1;3) : "41�
2
11�

2
12 + 2"

3
1"2�

2
11�12�22 + 2"

3
1"2�11�

3
12 + "

2
1"
2
2�
2
11�

2
22

+4"21"
2
2�11�

2
12�22 + "

2
1"
2
2�
4
12 � "21�211�22 � 5"21�11�212 + 2"1"32�11�12�222 + 2"1"32�312�22

�8"1"2�11�12�22 � 4"1"2�312 + "42�212�222 � "22�11�222 � 5"22�212�22 + �11�22 + 2�212;
(2;3) : 2�11"

4
1�
3
12 + 2"

3
1"2�

4
12 + 6�11"

3
1"2�

2
12�22 + 6"

2
1"
2
2�
3
12�22 + 6�11"

2
1"
2
2�12�

2
22

�6"21�312 � 6�11"21�12�22 + 6"1"32�212�222 + 2�11"1"32�322 � 18"1"2�212�22
�6�11"1"2�222 + 2"42�12�322 � 12"22�12�222 + 6�12�22 and

(3;3) : "41�
4
12 + 4"

3
1"2�

3
12�22 + 6"

2
1"
2
2�
2
12�

2
22 � 6"21�212�22 + 4"1"32�12�322

�12"1"2�12�222 + "42�422 � 6"22�322 + 3�222:

Once again, it is tedious but straightforward to prove that the elements (2,1), (3,1) and (3,2)

are equal to the elements (1,2), (1,3) and (2,3), respectively. In addition, the (2,2) element is

four times the (3,1) and (1,3) ones. Therefore, the number of di¤erent elements coincides with

the number of di¤erent fourth moments, which is M(M + 1)(M + 2)(M + 3)=24 = 5 in the

bivariate case. Those �ve terms are

�411"
4
1 + 4�

3
11�12"

3
1"2 + 6�

2
11�

2
12"

2
1"
2
2 + 4�11�

3
12"1"

3
2 + �

4
12"

4
2

�6�311"21 � 12�211�12"1"2 � 6�11�212"22 + 3�211 = H40(";�);

2�311�12"
4
1 + 2(�22�

3
11 + 3�

2
11�

2
12)"

3
1"2 + 6(�22�

2
11�12 + �11�

3
12)"

2
1"
2
2

+2(3�22�11�
2
12 + �

4
12)"1"

3
2 + 2�22�

3
12"

4
2

�12�211�12"21 � 6(�22�211 + 3�11�212)"1"2 � 6(�22�11�12 + �312)"22 + 6�11�12 = 2H31(";�);

�211�
2
12"

4
1 + 2

�
�22�

2
11�12 + �11�

3
12

�
"2"

3
1 +

�
�211�

2
22 + 4�11�

2
12�22 + �

4
12

�
"22"

2
1

+2
�
�312�22 + �11�12�

2
22

�
"32"1 + "

4
2�
2
12�

2
22 �

�
�211�22 + 5�11�

2
12

�
"21

�4
�
�312 + 2�11�12�22

�
"1"2 � (5�212�22 + �11�222)"22 +

�
2�212 + �11�22

�
= H22(";�);

2�11�
3
12"

4
1 + 2

�
�412 + 3�11�22�

2
12

�
"31"2 + 6

�
�312�22 + �11�12�

2
22

�
"21"

2
2

+2
�
3�212�

2
22 + �11�

3
22

�
"32"1 + 2�12�

3
22"

4
2 � 6

�
�312 + �11�12�22

�
"21

�6
�
3�212�22 + �11�

2
22

�
"1"2 � 12�12�222"22 + 6�12�22 = 2H13(";�)

and

�412"
4
1 + 4�

3
12�22"

3
1"2 + 6�

2
12�

2
22"

2
1"
2
2 + 4�12�

3
22"1"

3
2 + �

4
22"

4
2

�6�212�22"21 � 12�12�222"1"2 � 6�322"22 + 3�222 = H04(";�);

which are (multiples of) the �ve di¤erent bivariate Hermite polynomials of order four in Barndor¤-

Nielsen and Petersen (1979), as expected.
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B.3 Alternative distributions

For the multivariate skew normal distribution, we use its canonical representation, choosing

0:83, 1:30 and �1:35 for the location, scale and skew, respectively, of the �rst component of the

random vector, which yield values of �3=4 and 3:60 for its skewness and kurtosis coe¢ cients (see

Figure 2.2 in Azzalini and Capitanio (2014) for the feasible skewness-kurtosis combinations). In

contrast, the remaining M � 1 components are drawn from independent univariate standard

normals.

In the case of the multivariate asymmetric Student t, we choose � = 0:042 and b =

(�0:91;00)0, which yield values of �3=4 and 4:5 for the skewness and kurtosis coe¢ cients of

the �rst element (see Proposition 1 in Mencía and Sentana (2009) for details on how to obtain a

random vector whose mean vector and covariance matrix are 0 and IM , respectively). Finally,

for the discrete mixture of two normal vectors, we �x their means to (1� �)� and ���, where

� = 1=4 is the probability of the �rst Gaussian vector and � = (�:57;00)0, and their covariance

matrices to


1 =
1

�+ {(1� �)
�
IM � ��0 (1� �)�

�
and


2 = {
1

with { = :51, so as to achieve the same skewness and kurtosis coe¢ cients for the �rst variable

as in the case of the asymmetric Student t.
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Table 3: Marginal, conditional and remainder components of the information matrix test: Size

Monte Carlo rejection rates at the 5% signi�cance level, N = 400

Asymptotic Simulated
df critical values critical values

Panel A: Marginal
Normality of regressor

H3(x) (skewness) 1 4.90 4.98
H4(x) (kurtosis) 1 4.21 5.03
H3(x) & H4(x) (Jarque-Bera) 2 4.77 5.06

Panel B: Conditional bivariate
Normality of residuals

H3(u) (skewness) 1 5.08 5.22
H4(u) (kurtosis) 1 4.33 5.18
H3(u) & H4(u) (Jarque-Bera) 2 4.77 5.09

Heteroskedasticity
H2(u)H1(x) & H2(u)H2(x) 2 4.78 5.01

Asymmetry
H3(u)H1(x) (conditional asymmetry) 1 4.96 5.19
H3(u) & H3(u)H1(x) (total asymmetry) 2 5.34 5.17

Total
H3(u) & H2(u)H1(x) & H4(u)
H3(u)H1(x) & H2(u)H2(x) 5 5.57 4.95

Panel C: The �rest�
H1(u)H2(x) & H1(u)H3(x) 2 5.29 5.20

Panel D: Joint bivariate
All of them 9 6.48 5.04

Notes: We approximate the exact �nite sample critical values with R = 106 replications from a spherical
Gaussian random vector. We generate 20,000 additional samples to compute the rejection rates. df
denotes degrees of freedom and u denotes the residual of the linear regression of x2 onto a constant and
x1.
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Table 7: Marginal, conditional and remainder components of the information matrix test: Power

Monte Carlo rejection rates at the 5% signi�cance level, N = 400

Asymmetric Mixture of Skew
df Student t normals normal

Panel A: Marginal
Normality of regressor

H3(x) (skewness) 1 52.62 50.59 51.66
H4(x) (kurtosis) 1 36.81 37.40 12.70
H3(x) & H4(x) (Jarque-Bera) 2 54.33 54.80 41.88

Panel B: Conditional bivariate
Normality of residuals

H3(u) (skewness) 1 10.28 11.33 5.02
H4(u) (kurtosis) 1 24.34 28.19 5.08
H3(u) & H4(u) (Jarque-Bera) 2 23.16 26.41 5.05

Heteroskedasticity
H2(u)H1(x) & H2(u)H2(x) 33.44 33.77 5.29

Asymmetry
H3(u)H1(x) (conditional asymmetry) 1 15.33 15.68 4.98
H3(u) & H3(u)H1(x) (total asymmetry) 2 16.00 16.89 4.96

Total
H3(u) & H2(u)H1(x) & H4(u)
H3(u)H1(x) & H2(u)H2(x) 5 37.20 40.65 5.27

Panel C: The �rest�
H1(u)H2(x) & H1(u)H3(x) 2 19.82 17.16 7.07

Panel D: Joint bivariate
All of them 9 58.60 61.48 22.25

Notes: We approximate the exact �nite sample critical values with R = 106 replications from a spherical
Gaussian random vector. We generate 20,000 samples from three multivariate non-Gaussian distribu-
tions whose mean vector and covariance matrix are 0 and IM , respectively: the asymmetric Student t
distribution and the two-component location-scale mixture of normals discussed by Mencía and Sentana
(2009), and the skew normal multivariate distribution in Azzalini and Dalla Valle (1996). See Supple-
mental Appendix B.3 for details. df denotes degrees of freedom and u denotes the residual of the linear
regression of x2 onto a constant and x1.
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Figure 1: Distribution of (log) city sizes and their growth rates

Figure 1a: (log) city sizes in 2000 and growth rates between 2000 and 2010

0 5 10 15
2000 census

2

0

2

4

G
ro

w
th

 ra
te

 2
00

0
20

10

Figure1b: (log) city sizes in 2000 and growth rates between 2010 and 2020
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Figure 1c: Growth rates between 2000 and 2010, and between 2010 and 2020
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Notes: Scatter plot of (log) city sizes for the contiguous US states in 2000 and their (continuously
compounded) growth rates between 2000 and 2010, and 2010 and 2020, as well as kernel density estimates
of their marginal distributions (continuous lines), together with the best normal approximation to them
(dotted lines), which share their sample means and standard deviations. Sample: 23,830 matched cities
in both censuses with a population of at least one in both years and exclude Alaska, Hawaii and the
remaining o¤-shore insular territories like Puerto Rico; see Section 5 for details.
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