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Abstract

We provide a pedagogical proof that the information matrix test for a multivariate normal
random vector coincides with the sum of the two moment tests that look at the means of
all the different third- and fourth-order multivariate Hermite polynomials evaluated at the
sample mean and covariance matrix. We also show that its finite sample distribution does
not depend on either the true values of the mean vector and covariance matrix or their
sample counterparts, so it can be obtained to any degree of accuracy by simulating spherical
Gaussian vectors and creating orthogonalized residuals using the first two sample moments.
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1 Introduction

The information matrix test introduced by White (1982) constitutes a rather general pro-
cedure for examining the specification of models estimated by maximum likelihood (ML). As
is well known, it directly assesses the information matrix equality, which states that the sum
of the Hessian matrix and the outer product of the score vector should be 0 in expected value
when the estimated model is correctly specified. As an illustration, White (1982) looked at the
information matrix test for a univariate normal random variable, which simply checks that the
third- and fourth-order Hermite polynomials of the standardised variable have 0 means in the
population. Therefore, it is equivalent to the version of the popular Jarque and Bera (1980)
test proposed by Kiefer and Salmon (1981) among many others. In this note, we show that the
information matrix test for a multivariate normal random vector coincides with the sum of the
two moment tests that look at the means of all the third- and fourth-order multivariate Hermite
polynomials, respectively, thereby generalising the univariate result.

There is an extensive literature in econometrics on the theoretical properties and interpre-
tation of the information matrix test, as well as on its applications and finite sample behaviour.
There is also a huge literature in statistics on multivariate normality tests. To the best of our
knowledge, though, the intersection is void. Given the univariate precedent, it is not surprising
that the information matrix test statistic is equivalent to the smooth test against a fourth-order
Hermite polynomial expansion of the multivariate normal density in Koziol (1987), which is in
turn equivalent to Mardia and Kent’s (1991) score test of multivariate normality against expo-
nential distributions whose sufficient statistics depend not only on the levels and cross-products
of the observations but also on all possible products of three and four elements. The neglected
heterogeneity interpretation of the information matrix test in Chesher (1984) provides a com-
pletely different justification, which might be more relevant in some empirical applications.

Importantly, we explicitly address the widespread and often justified concern that the infor-
mation matrix is unreliable in finite samples by explaining how to simulate its exact, parameter-
free, finite sample distribution to any desired degree of accuracy for any dimension of the random
vector and sample size. In this respect, we exploit the numerical invariance of the test statistic
to affine transformations of the observed variables to simulate draws extremely quickly.

The rest of the note is organised as follows. We include our theoretical results in section
2 and discuss computational issues in section 3. Next, we present the results of some Monte
Carlo exercises looking at the power of the test in finite samples, and finish by mentioning some

avenues for further research. Proofs and auxiliary results are relegated to appendices.



2 The information matrix test

Our null hypothesis is that
x¢ ~ i.4.d. N(v,T') with [T'| > 0, (1)

with v, T unknown.! Let A = I'"! and e(v) = (x — v). Barndorff-Nielsen and Petersen (1979)

define the (centred) multivariate Hermite polynomials of x of order k = k1 + ...+ ky >0 as

H

k
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As is well known, when model (1) is correctly specified, the mean of any Hermite polynomial

of positive degree is 0. We can then state our main result:

Proposition 1 The information matriz test that compares the outer product of the score with
the Hessian of model (1) evaluated at the sample mean vector and covariance matriz numerically
coincides with the sum of the two asymptotically independent moment tests that check whether
the expected values of all the distinct third- and fourth-order multivariate Hermite polynomials
of x; are 0.

Following Chesher (1984), we can interpret the moment test of the fourth-order multivariate
Hermite polynomials as a test of neglected heterogeneity in the covariance matrix of the obser-
vations. Similarly, the test that looks at the third-order ones effectively assesses dependence in
the neglected heterogeneity of the mean and covariance parameters. In contrast, neglected het-
erogeneity in the vector of mean parameters is untestable because the means of the second-order
multivariate Hermite polynomials are always 0 when the covariance matrix I' is freely estimated.

Multivariate Hermite polynomials of different orders are uncorrelated (see Holmquist (1996)),
which justifies the additive decomposition of the test statistic in Proposition 1. Following the
lead of Phillips and Park (1988), Holly and Gardiol (1995) explain how to obtain matrix expres-
sions for the covariance matrices of the entire vector of polynomials of any given common order.
But the symmetry of the higher-order partial derivatives in (2) implies that some of the N*
multivariate Hermite polynomials of order k£ will be replicated several times. Specifically, there

N +,f_1) different polynomials, so we can avoid generalised inverse matrices by elimi-

are only (
nating the redundant ones from the list of moments to test. In the third- and fourth-order cases,
we can use the triplication and quadruplication matrices in Meijer (2005), which generalise the
duplication matrix. Thus, we end up with N(N +1)(N +2)/6 and N(N +1)(N +2)(N +3)/24

distinct third- and fourth-order moment conditions, respectively, which coincide with the de-

grees of freedom of the asymptotic chi-square distributions of the corresponding multivariate

'If v and T were known, there would be no parameters to estimate under the null, and therefore no gradient or
information matrix. Still, the test statistic in Proposition 1 would continue to be valid as a multivariate normality
test. Similarly, we use the i.7.d. asumption mainly for computing the asymptotic variance of the influence functions,
which in principle could be robustified for the presence of serial correlation.



skewness and kurtosis tests. The next result contains detailed expressions for the covariances

between two arbitrary third- and fourth-order polynomials:
Lemma 1 Let §;; denote the (i, )" element of A. When model (1) is correctly specified
cov(Hyjp, Hy jigr) = 0430 6 s Oprr + 04t O i O + 05510 jir Opegr + 0o 6 i Opeir + Sr 6 jir Ot + O 01 Ot
cov(Hjpn, Hyrjigrnt) = 04306 o Okt Sty 4 84301 Oor Skt + 043t O s Ojr Oy + 03ir 6 it Opopr O

+04470jn Ojr Onkr + 043 O s Ophs Opjr =+ 04510 jir Opoer Oy + 04510 it Oph O s
+04570 1 Okir Onny + 04570kt Opnr Ot + 04510 it Ogir Oty + 0310 s O Ot
+0i105ir Ok jr Onny + Oiny 0 it Ophy Onjr + Oitr 057 Onir Oy + i 01 oy O e
+0i10 1 Okir Opjr + Oiny Ot Ogejr Onir + Ot 0 5ir Okjr Opasr + Oiny 0 jir O O e
+0in10 410t Oty + Oinr 0557 Okks Opir + Ot O jas Opir O + Oinyr 6 et Ogejr O -

When T' = Iy, the components of x; are stochastically independent and the multivariate

Hermite polynomial H [e(v), A] simplifies to the product of the univariate polyno-

1%11.. . N*NN

mials H y, [e1(v1)].... H

iy v EN(VN)]. Moreover, Lemma 1 implies that different multivariate

Hermite polynomials of the same order become orthogonal to each other, so the information
matrix test of model (1) effectively becomes the sum of the individual moments tests for all
possible distinct multivariate Hermite polynomials of orders 3 and 4. Consequently, if we con-
sidered a sequence of local departures from a multivariate spherically normal distribution, the
non-centrality parameter of the asymptotic distribution of the skewness and kurtosis tests in

N+2) + (N—i-S)

Proposition 1 would be the sum of the non-centrality parameters of each of the ( 3 1

asymptotically independent moment tests, which would be easy to compute.

3 Computational considerations

Consider the following full-rank affine transformation y; = a + Bx; with |B| # 0. As is well
known, y; ~ i.i.d. N(a+Bv, BI'B’) when (1) holds. Our next result shows that the information

matrix test statistic is numerically invariant to the values of a and B:

Proposition 2 The information matriz test statistic of model (1) numerically coincides with
the analogous test statistic for yy.

This numerical invariance is a very desirable property of any multivariate normality test
(see Henze (2002)), but it also provides a very fast numerical procedure for computing the test
statistic. Specifically, given a sample of size T' on x;, we can subtract the sample mean from each
observation and premultiply the resulting vector by any square root of the sample covariance
matrix to create standardised random vectors for which the ML estimators of their mean vector
and covariance matrix will be 0 and Iy, respectively. Thus, the information matrix test statistic
would be numerically equivalent to the sum of the individual moments tests for all possible
multivariate Hermite polynomials of orders 3 and 4, which are very simple to compute because
of their factorisation as products of univariate Hermite polynomials. Asymptotically, we can

obtain the non-centrality parameter of the test for any value of I" by applying the same trick.



Proposition 2 also implies that the sample mean vector and covariance matrix of the observa-
tions, which set to 0 the average of the first and second multivariate Hermite polynomials, do not
affect the null distribution of our proposed test in finite samples. Thus, it is possible to simulate
its exact, parameter-free, finite sample distribution to any desired degree of accuracy for any
dimension of x; and sample size. In fact, it suffices to simulate R times a random sample of size
T of a spherical Gaussian random vector of dimension IV to obtain R independent draws of the
information matrix test statistic for multivariate normality. Although this can be regarded as a
parametric bootstrap procedure that provides the exact p-value of the test statistic obtained in
a real sample as the number of bootstrap replications R grows without bound, the fact that the
only characteristics of the original sample that matter are the values of N and T implies that a
researcher could obtain tables with exact critical values before observing the data.

Given that the sample mean and covariance matrix of a multivariate random vector take
hardly any time to compute, and that the information matrix test statistic for random vectors
standardised in the sample can also be swiftly computed, our suggested procedure generates

very accurate simulated p-values very quickly.

4 Monte Carlo evidence

The discussion in the previous section indicates that assessing the finite sample size of our
proposed test only makes sense if R were small. For that reason, in this section we focus
on the small sample power of the information matrix test by means of an extensive Monte
Carlo simulation exercise in which we generate 20,000 samples from three multivariate non-
Gaussian distributions whose mean vector and covariance matrix are 0 and Iy, respectively:
the asymmetric Student ¢ distribution and the two-component location-scale mixture of normals
(LSMN) discussed by Mencia and Sentana (2009), and the multivariate skew normal distribution
in Azzalini and Dalla Valle (1996). Our results complement those in Best and Rayner (1988),
who studied the finite sample power of Koziol (1987) test in the bivariate case.

We make use of Proposition 2 not only in fixing the population mean vector and covariance
matrix, which are nevertheless freely estimated in the sample, but also in exploiting that for
these three distributions skewness is a common feature (see Engle and Kozicki (1993)), so that
one can always find orthogonal rotations of the original random vectors in which only one
variable is asymmetric. Specifically, Theorem 5.12 in Azzalini and Capitanio (2014) provides
a canonical representation of the multivariate skew normal with this property. Similarly, the
LSMN representation in Mencia and Sentana (2009) allows us to do the same for the other two
distributions. The main difference between the skew normal distribution and the other two,

though, is that in the former the other N—1 variables are Gaussian and independent, so that all



the remaining third and fourth multivariate cumulants are 0, while in the latter, those variables
are symmetric but neither normal nor independent. Thus, the non-normality of the multivariate
distributions is effectively governed by two parameters: the skewness and kurtosis coefficients
of the only asymmetric random variable. We choose a skewness coefficient of —% for all three
distributions, and a kurtosis coefficient of 4.5 for the two LSMNs.?

We accurately approximate the finite sample critical values with R = 108 replications and
report the rejection rates at the 5% significance level for three dimensions (N = 2,4,8) and
three sample lengths (T' = 64,256,1024) in Table 1. As expected, power increases with the
sample size T'. Similarly, power increases with N for the two LSMNs but it decreases for the
skew normal. The reason is simple. Given the canonical representation of the skew normal
mentioned above, the only thing that increasing N does is to add more independent Gaussian
components, which in turn add more 0 (co-)skewness and (co-)kurtosis terms. As a result, the

non-centrality parameter does not change while the number of degrees of freedom increases.

5 Directions for future research

Our Monte Carlo exercises confirm the non-trivial power of the information matrix test
against empirically plausible alternatives, even though it is not consistent because in arbitrary
large samples it would fail to reject with probability one departures from normality such that all
third- and fourth-order cumulants are 0. Unlike in the univariate case, though, it is not obvious
how to construct distributions with this characteristic because it is difficult to ensure the global
positivity of multivariate Hermite expansions of the Gaussian density.

The information matrix test could be extended to multivariate, conditionally heteroskedas-
tic, dynamic regression models with Gaussian innovations, but the number of moments involved
would increase very quickly. Nevertheless, our proposed test continues to be asymptotically
valid as a test of multivariate normality for the standardised residuals of such a model when its
parameters have been estimated under the null because the Gaussian scores are conditionally
linear transformations of the first and second multivariate Hermite polynomials of the innova-
tions. Unfortunately, exact finite sample distributions only seem feasible for the multivariate
linear regression model with fixed regressors analysed by Dufour, Khalaf and Beaulieu (2003).
In more general models, though, a parametric bootstrap would usually offer a higher-order
approximation to the finite sample distribution.

The information matrix test could also be extended to examine the specification of more
general multivariate distributions. We are currently exploring some of these interesting research

avenues.

?The kurtosis of a skew normal is a function of its skewness parameter only (see Suplemental Appendix C).
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Appendix
Proof of Proposition 1

The contribution of x to the log-likelihood function is
N 1 1
—Eln 27 — 3 In|T| — iz'(u,’y)A_lz(u,'y),

where z(v,v) = Ae(v) = I'"}(x — v) and 4 = vech(T'). The scores of this component with

respect to the vector of mean parameters are

SU(X;Va’Y) = Z(V77)7

which coincide with the first-order Hermite polynomials of x. Similarly, the scores with respect

to the covariance matrix parameters are given by
1 / /
S5(xiv,) = 5 Diyvecla(v, 7)2 (v, ) - Al,

which coincide with the product of the (transposed) duplication matrix D and the second-order
Hermite polynomials.

Therefore, the Hessian matrix is given by
hI/V(X;’/a'-Y) = _Aa
h—yu(x; V77) = 7D§V[Z(V7’7) ® A]a
and
1
by (xiv,7) = =5 DN {2((A @ 2(v, )7 (v,7)] - (A @ A)}Dy.
Hence, the sum of the outer product of the score and the Hessian yields the following three
terms
vv : z(v,y)Z(v,y) - A

wo %Dﬁv{WC[AZ(M v)Z (v,7) — Alz(v, )z (v,7) - 2[z(v,7)z' (v,7) © A}
and

1
vy i JDiyvecla(v, )2 (v,7) - Alvec'[a(v,7)7 (v,7)A — A]Dy

D20, )4 (v,7)] ~ (A @ A))Dy.

If we vectorise the expressions above before we premultiply or postmultiply them by the
duplication matrix and ignore the dependence of z(r,~) on v and - for notational simplicity,

then we obtain that the vv block of the sum of the outer product of the score with the Hessian



will be given by
vec(zz' — A) = (z®z) — 6,

where § = vec(A), because
vec(zz') = (z @ z).

Similarly, the yv block will be
veclvec(zz' — A)z —2(z@ A)]| = (z0z2®2z) — (20 6) — 2(Kyy @ Iy)(z® §), (1)
where Ky is the commutation matrix of orders N and IV, because

veclvec(zz)z'] = [z ®@vec(zz)] = (222 ® z),
veclvec(A)Z'] = (z®4),
vec(z®@A) = (19Kyv®In)(z®6) = (Kyy ®@1Iy)(z®9),

in view of Theorem 3.10 in Magnus and Neudecker (2019).

Finally, the v+ block will be

vec{vec(zz' — A)ved (zz' — A) — [4(A ® zz') — 2(A ® A)]}

=(zRzRzR2z)—(202®0)-5(00z202)+(0®0)+2(INKyyRIN)(0®6) (2)

because
vecvec(zz' yved (z2)] = |vec(zz) @ vec(zz')] = (2© 2 ® 2 @ 2),
vecldved (zz)] = [vec(zz) ® 6] = (z®2® b),
veclvec(zz')8'] = [6 @ vec(zz')] = (6 ® 2 ® z),
vec(68') = (6 ®96),
vec(A®zz') = (In@KiyQIy)[0®vec(zz')] = (6 @z ® z),
vec(A®A) = (IN@Kyy®Iy)(6®0)

Holly and Gardiol (1995) express the first, second, third and fourth centred multivariate

Hermite polynomials of z in matrix notation as

SN,z
SN, [(z® z) — 4],
Snis[(z®z®z) — 3(6 ®2)], (3)

Svu,[(z®zRzR2z)—-6(zR2z®J)+ 3(d ®J)], (4)



where Sy,, (k = 1,...,4) are the symmetrisation operators discussed by Homlquist (1996),
whose detailed expressions we provide in Supplemental Appendix A.

It is easy to see that the vv term coincides with the second-order Hermite polynomials
because Sy, applied to (z®z) has no effect and Kyyd = by the symmetry of A. However, a
comparison of this term with s (x;v,~) confirms that these cannot be used for testing purposes
because they will be identically 0 when evaluated at the ML estimators when the mean and
variance parameters are freely estimated.

Let us now look at the yv block. Clearly, Sy,, applied to (z ® z ® z) has no effect either.
In contrast, if we apply 6Sy,, to (z® §) we obtain

Iys + Iy @ Knn) + (Kyy @ Iy) + (Iv @ Kyn) (Kyy @ Iy)
+(Kny @ In) Iy @ Kyy) + (Kvy @ In)(Iv @ Kyn) (Kyy © Iy)](z ® 9)
=(z®0)+(2z®08)+ (Kyv®Iy)(z®0)+ (6 ®2)
+EKyy RIN)(z®6)+ (0 ® 2)

=2((z®d)+ (0®z)+ (Kyy ®@In)(z® d)),
so that
Iy @Kyn)(z®6) = (z2®9),
(INQKNN)(Kyy @IN)(z®60) = Kyen(z®460) = (6 ®2)
by virtue of Theorems 3.7 (iii) and 3.1 in Magnus (1986), and

(Knn @ In)(In @ Kyn)(Kvn @ In)|(z®@ ) = (Kyy @ In)(0 @ z) = (§ ® 2).

Similarly,

6SN.3(0 @2) = [Iys + (Iy @ Kyn) + (Kvy @ In) + (In @ Kyy) (Kyy @ In)
+Kyy @ Iy)(Iy @ Kyn) + (Kyy @ Iy)(Iy @ Kyn) (Kvy @ In)](6 © 2)
=(0®z)+ (INOKyN)(0®2z)+(d®2z) + (In @ Kyn)(0 @ 2)
+(z®d)+ (z®9)

=2((z®68)+ (6®z)+ (In ® Kyn)(d ®@2)],

because

(Knv@Iy)(0®z) = (6®2z),

(Kyy @Iy)(In @ Kyn)(0 ©2) = Kyy2(0®2) = (2 96)

10



by virtue of expression (3.3) in Magnus (1986), which implies that Kyy2 = Kb, and his

N2N?
Theorem 3.1.

Finally,

6Snuy (Kny @ In)(2® 6) = [Iys + (In @ Kyn) + (Kyy @ In) + (Iv @ Kyny) (Kvy @ Iy)
+(Kny @ In)(Inv @ Kyy) + (Kyvy @ In)(Iv @ Kyn) (Kyvy @ In) | (Kvy @ In)(z ® 6)
— Ky @ Iy)(z08)+ (6 ©2)+ (20 8) + (20 6)
+(0®z)+ (Kyy ®1In)(z®6)
—2(z©6) + (6®2) + (Kyy © Iy)(z® 8)).

because
(Kyy @In)(Kyy @ Iy) = Iys.

Hence,

Snus[(z®8) +2(Kyy @ In)(z @ 8))

= [(2©0) + (0 @2) + (Kyy @ In)(2® 6)] = 3Snus(2 @ 9),

so that (1) does indeed coincide with (3).

A very tedious but entirely analogous procedure confirms that Sy,, applied to (2) coincides
with (4). O
Proof of Lemma 1

The proof is a careful but straightforward implemented using a computer algebra system of
the procedure described in Holly and Gardiol (1995), who rely on the formulas for the higher

order moments of the multivariate normal in Balestra and Holly (1990), which in turn generalised

Magnus and Neudecker (1979) and Phillips and Park (1988). O

Proof of Proposition 2

Given that the mapping from x; to y; is affine, its first-order Jacobian will be B while all
other higher-order Jacobians will be 0. As a result, the application of Faa di Bruno’s generalised
chain rule to (2) implies that the vector of multivariate Hermite polynomials of order k for y,

will be B®* = B@ B® ... ® B times the vector of multivariate Hermite polynomials of order

k times
k for x;. The numerical invariance of moment tests to linear transformations of the influence

functions with constant coefficients yields the desired result. O

11



Table 1: Monte Carlo rejection rates at the 5% significance level

Panel A: Joint test of (co-)skewness components

Asymmetric t Mixture of normals Skew normal
N\T df 64 256 1,024 64 256 1,024 64 256 1,024
2 4 4442 96.17 100.00 64.52  98.45 100.00 37.44 97.90 100.00

4 20 45.86 96.72 100.00 83.30  99.82 100.00 17.75 80.80 100.00
8 120 55.67 98.56 100.00 98.80 100.00 100.00 8.935 38.06 99.78

Panel B: Joint test of (co-)kurtosis components

Asymmetric ¢ Mixture of normals Skew normal
N\T df 64 256 1,024 64 256 1,024 64 256 1,024
2 5 3177 69.41  99.12 58.21  97.61 100.00 14.78 30.57  69.53
4 35  39.06 80.91 99.87 84.09  99.97 100.00 9.62 19.47  48.37
8 330 56.48 96.77 100.00 99.41 100.00 100.00 721 11.69 25.34

Panel C: Joint test of (co-)skewness and (co-)kurtosis components

Asymmetric ¢ Mixture of normals Skew normal
N\T df 64 256 1,024 64 256 1,024 64 256 1,024
2 9 3893 91.52 100.00 66.12  99.59 100.00 24.01 88.25 100.00
4 55  43.15 9219 100.00 87.27  99.99 100.00 12.07 46.47  99.99
8 450 58.06 98.40 100.00 99.50 100.00 100.00 7.59 17.64 81.86

Notes: df denotes degrees of freedom. We approximate the exact finite sample critical values with R = 10°
replications from a spherical Gaussian random vector. We generate 20,000 samples from three multivariate
non-Gaussian distributions whose mean vector and covariance matrix are 0 and Iy, respectively: the
asymmetric Student ¢ distribution and the two-component location-scale mixture of normals discussed
by Mencia and Sentana (2009), and the skew normal multivariate distribution in Azzalini and Dalla Valle
(1996). See Supplemental Appendix C for details.
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A The symmetrisation operators
The first four symmetrisation operators discussed by Homlquist (1996) are
Sne, =1In,
SNe, = %(IN’-’ +Knn),
! Ins + (In @ Kyn) + (Knvy @ In) + (Iv @ Kvny ) (Kvy @ 1)

[
6
+(Kyy @In)Iy @ Kyy) + (Kyy @ In)(Ivy @ Kyny) (Kyny @ In)),

SNL3 =

SNu, = i[I]\H + (I 9KNN) +(INQKnn @In) + (In2 @ Kyn)(Iv @ Ky @ In)
+(Iv O Kyn QIN)In2 @ Knn) + (In @ Kyn @ In)(In2 @ Kyw)(Inv @ Kyny @ Iv)
+(EKnyn @In2) + (Kyy @ Kyy) + (In @ Kyy @ In)(Kyy @ Iyz2)
+(In> @ Knn)(Inv @ Kyny @ In)(Kyy @ In2) + (In @ Kyy @ In)(Kyy @ Kyw)
+(In @ Kny @ In)(Inz: @ Kyn)(Iv @ Kny @ In) (Kyy @ Iyz)
+(EKny @ Inz)(In @ Ky @ In) + (In2: @ Kyn)(Kvy @ In2)(In @ Kny @ In)
+(In @ Kny @ In)(Kyy @ In2)(In @ Kny @ Iy)
+(In2 @ Kyn)(In @ Kyy @ In)(Kny @ In2)(In @ Kny @ Iy)
+Kpyz2nz + (In: @ Ky ) Knene + (Kvy @ In2 ) (Iv @ Ky @ Iv)(Ine @ Kyw)
+HEKyy @ In2)(Iv @ Kny @ In)(In: @ Kyn)(Iv @ Kny ® Iy)

HEKyy @ In2)(Iv @ Kny @ In)(Kyy @ Kyy)
+(In2 @ Kyn)(Kny @ In2)(In @ Ky @ In)(Kvy @ Kyw)

+(KNN X INQ)KN2N2 + (INZ X KNN)(KNN (24 INz)KNzNz,
which applied to the arbitrary vectors of dimension N a, b, ¢ and d yield

Sn,a=a,

%[(a@b) +(b®a),

1
SNLS(a®b®c):6[(a®b®c)+(a®c®b)+(b®a®c)

SNLz(a®b) =

+(b®c®a)+(c®a®b)+ (c®b®a),

Sy, (a@b®cad) = 24[(a®b®c®d) (a@b®d®c)+(a®c®bed)+(a®kc®d®b)
+a®d®b®c)+(a®d®c®b)+ (b®a®c®d)+(bakd®c)
+(bec®a®d)+(b®ced®a)+ (b®d®a®c)+(b®d®c®a)
+craeb®d) +(cka®d®b)+(c®b®a®d) +(cebrd®a)

+(ced®a®b)+(c®wd®b®a)+ (d®a®b®c)+(d®a®c®b)
+(de®b®a®c)+ (do®brc®a)+(d®c®a®b)+(d®c®b®a)l.



B Special cases
B.1 The univariate case

The contribution of = to the log-likehood function is

e’ (v)

272

1 1
——In27 — = In~? —
2 2 7
The score of this component with respect to the mean parameter is

su(z;v,7?) = 2(v,7%),

while the score with respect to the variance parameter is given by

1
o (w37) = 31220, 7%) — ),

2

where 6% = 72, so they coincide with the first and second Hermite polynomials of z(v,~?).

In turn, the Hessian matrix is given by

[ﬁﬁﬁﬁ%@ﬁﬁ@}:{f£;%f[”§)ﬂy

while the covariance matrix of the score will be the expected value of the outer product matrix

[ 2 (v,7?) l( = (r,77) — ]}
32, PP, ?) =87 3P () - 8P

Therefore, the sum of the outer product of the score and the Hessian yields the following three terms
A (VR R

Pt A0 — ] ol 7) = 5[0 A7) — 3822, 77)]

and

1 1
197 11 (007) = 0 = 27 (0,9%) = 0] = [ (v, 07) — 60727 (v,7%) + 367,

Under the null of correct specification, the expected value of these three terms should be 0. However, the
expected value of the first term will also be 0 under misspecification, so the test should only be based on
the other two terms, which coincide with the third- and fourth-order Hermite polynomials of z(v,~?), as

claimed.

B.2 The bivariate case

The contribution of x = (x1,x2)" to the log-likehood function is
N 1 1
Y In27 + 3 In|A| — 55'(1/)A£—:(1/)7

where v = (Vl,VQ)/ and vech(A) = (511,512,(522).

If we suppress the dependence on the means for notational simplicity, the scores of this component



with respect to the vector of mean parameters are

Ty 011 012 €1 ) _ 011€1 + 01262
v 012 022 €2 01261 + 02262 )’
which coincide with the Hqg(e, A) and Hoi (e, A) bivariate Hermite polynomials of € in Barndorff-Nielsen
and Petersen (1979).

Similarly, the scores with respect to the covariance matrix parameters v = (711, 7V12,Vo2) are given

by one half of the product of the transpose of the duplication matrix

Dy =

OO =
o = O
o = O
—_— o O

times

vec[( 011 012 ) < €1 >(E1 o )<511 012 )(511 012 )}
012 022 €2 012 022 012 022
(5%15% + 26110126169 + (5%263 — 011
61101262 + (835 + 011022)€182 + 02261263 — 12

61101267 + (835 + 011022)€182 + d9261263 — 12
83963 + 20120208162 + 03963 — 022

)

which coincide with the Hao(e, A), Hii(e, A) and Hoz(e, A) bivariate Hermite polynomials of e in
Barndorff-Nielsen and Petersen (1979). Therefore, the vv term of the sum of the outer product of the
score and the Hessian matrix are identical to these polynomials.

In turn, the yv term is one half the transpose of the duplication matrix times

(6%16% + 20110126169 + 5%263 — 611)(51151 + 61262)
(5115126% + (5%2 + 011022)e162 + 52251253 — 012)(01181 + 01262)
(61101263 + (025 + 011092)e162 + G9201263 — 812) (81161 + G1262)

((5?26% + 26120926169 + 5%253 — (522)(51181 + (51262)

(67163 + 20110126169 + 03963 — 011) (01261 + Janen)
(61101263 + (5%2 + 011022)e182 + 62201265 — 012) (01281 + G20€2)
(61161267 + (5%2 + 811022)e182 + 82201263 — 012) (1261 + 2262)

(5%26% + 2012022e162 + 5326% — 022) (01261 + 02262)
011(01161 + b1282)  612(d1161 + 01262)

9 012(01161 + d1262)  O22(01161 + d1262)
511551251 + 522523 512551251 + 52252; ’

012(01261 + d22€2)  J22(d12e1 + b2262



which reduces to

(5%1% + 20110126162 + 5?285 —611)(01181 + 01262)
2 (81101262 + (875 + 011022)€162 + 62201263 — 612) (J1161 + S1282)
(62563 4+ 20120206169 + 0393 — 022) (81161 + 61262)
(67163 + 20110126169 + 03963 — 011) (01261 + Jazen)
2 (5115128% + (532 + 611022)e162 + 62201263 — d12) (01261 + 52252)
(5%26% + 26125226162 + 5326% — 622)(51261 + 52262)

011(011€1 + d12€2) 012(01161 + d1262)
-2 2511(51261 + ((5%2 + 511522)62 ((5?2 + (511522)51 + 2(52251252
012(01261 + d2262) 022(d1261 + d2262)

((5%182% + 2(5115128152 + (5%283 — (511)((51151 + (51282) — 2511((51181 =+ (512282)
= | 2(61101263+(819+011022)e1824 09201265 —812) (81181 4+01262) —2(281181281 4 (675 +011022)e2)
(07267 + 20120208169 + 03963 — 092) (01161 + S1262) — 2612(81261 + Fazen)

(5%52% + 20118198162 + 01963 — 011) (01261 + Jazen) — 25122(51161 + d1262)
2(5115126%+(612+511522)€1€2+522512€%7512)(512614* 52252)72((512+511522)61 +2522(51262)
(5%26% + 25125226182 + 532{:‘% — 522)((51261 + 52262) — 2522((51281 + 52262)

It is tedious but trivial to see that the (2,1) and (2,2) elements are twice as big as the (1,2) and (3,1)
ones, respectively. Therefore, the number of different elements coincides with the number of different

third moments, which is N(N + 1)(IN +2)/6 = 4 in the bivariate case. Those four terms are

(07162 + 20110196169 + 039e2 — 011) (01161 + O1262) — 2011 (81161 + 01262)

= (5?15? + 3(5%15128382 + 3511(5%26381 + 5?252 — 35%161 — 3511(51262 = H3(](€, A),

(83163 + 26110196162 + 03963 — 611) (J1261 + Fazea) — 2012(01161 + d1262)
= (5?1(5125? + (5226?1 + 2511(5%2) E?&Q + ((5?2 + 2511(522(512)5%81 + (5225?263

—301161261 — (2035 + 011092)e2 = Ha (g, A),

((5?28% + 25125225152 + 53283 — 622)(51151 + 61282) — 2512(51261 + (52282)
= 532(51253 + (5115%2 + 2(522(5?2) E%El + ((5?2 + 2(511(522512) 8352 + (5115?28?

—(20%5 + 611022)€1 — 302201262 = Hiz(e, A),
and

((5?25% + 2(512(5226162 + (53263 — (522)((51251 + (52252) — 2(522((51251 + (52252)

= 53253 + 3(5;2(5128381 + 35225%2&'?82 + (5?26? — 3(52251281 — 363282 = H03(€, A),

which coincide with the four different bivariate Hermite polynomials of order three in Barndorff-Nielsen

and Petersen (1979), as expected.



Finally, the v+ term of the outer product of the score is one quarter of

53163 4 20116126182 + 07563 — 611
2(01161263 + (6?2 + 611022)e182 + 52201263 — 012)
83963 + 20120206182 + 03963 — 622

83163 + 26110126182 + 67983 — 01
x | 2(81101267 + (035 + 011092)e162 + 02281263 — S12)
83967 + 20120208182 + 03963 — 022

) (03163 + 20110128162 + 5%523 —611)? )
= 2(6115125%+(512+611522)6162+ 5225128%—612)(5115%—|—2511§125152+51255_511)
(63267 + 20120002180 + 963 — 822) (87,7 + 26118128189 + 61523 — O11)

2(83,63 420110196162 +07963 —011) (01101267 + (835 4 011022)e162 4+ 02201265 —12)
4(51101263 + (035 + 011022)e162 + J2901265 — 812)?
2(03963 + 20120226162 + 05963 — 022) (01101267 + (675 + 611022)€162 + F2001263 — 012)

(62,62 + 20110108169 4 03963 — 611) (02963 4 20120906162 + 0293 — H22)
2(61101265+ (025 +011092)e1604+ 02201963 —012) (07967 + 20190206160 + 02965 — 022)
(07263 + 26120206162 + 03963 — 022)?

To obtain the Hessian, we need the following matrix

2011 (63,63 + 20116126182 + 61563) — 61,
2611 (81101262 + (075 + 011022)€162 + 62201263) — 611612
2612(07,6% + 28110126162 + 03963) — G12011
2012(6110126% + (675 + 611022)€182 + 02261263) — 639

2611 (01101262 + (075 + 011022)e162 + 62261263) — 611612
2011 (07263 + 20120206169 + 03963) — 611022
2012(0110126% + (875 + 611622)162 + 02261263) — 07,
2612(07263 + 28120206162 + 055€3) — G12022
2012(03,6% + 28116126162 + 03563) — 812011
2012(6110126% + (675 + 611022)€162 + 02261263) — 61y
2092(0712 + 26110126182 + 039€3) — J22011
2022(01101262 + (875 + 611622)€182 + 62201263) — d22012

2512(5115126% + (5%2 + 511522)5182 + 5225125%) — 5%2
2(512((5?26% + 28120926162 + (5326%) — 012029
2022(01101267 4 (675 + 611022)e162 + 62201263) — 522612
2(522((5%25% + 2(512(5225152 + 53253) - 5%2

which postmultiplied by the duplication matrix and premultiplied by its transpose yields

011 (25%5%1 4 4€1€9011012 + 25%5%2 — 511)
45%6?1(512 + 2(52251526%1 + 66162511(5%2 + 2(5226%511(512 + 28%(5?2 — 2011912
612 (261163012 + 26162075 + 20110926162 + 202063012 — 812)

, 48%5%1(512;— 2(52281825%1 + 66182(511(5%2 —g 2(5226%(511(5;2 + 28%(5‘;2 — 2011012 ,
26%511(522 + 65%511512 + 128162511612522 + 45182512 + 25%511522 + 65%(512(522 — 2(511522 — 2(512
26%(5?2 + 25116%512522 + 66162532522 + 26116162532 + 46%512632 — 2012029
012 (201163012 + 2616207, + 20110208182 + 202263612 — 612)

26%5?2 + 25116%512622 + 381626%2522 + 251181825232 + 46%5125%2 — 2012029
099 (26‘%(512 + 4e1€9012029 + 26%(522 — (522)

If we subtract twice this matrix from the compressed outer product of the score we end up with a



3 x 3 matrix with the following elements

(1,1) : eto, + 48:1382(3?1(512 + geiegéfléﬁg - (235%6:{’1 —21—415153(511(5%2
_128182611512 + 82512 - 652(511512 + 3611
(2,1) : 26405019 + 209063205, + 6636907 ,07 + 6090676307 ,010 + 626301105,
7125%5%1612 + 662251535116%2 + 2816%6[112 — 652261625%1
—185152511(5%2 + 2(522535%2 — 6(5228%(511612 — 66%(5?2 + 6011012
(3,1) : €367,0%, + 2632207, 012020 + 2636001105 + £36307, 050 + 46763011079022 + €76307,
—5%6%1522 — 55%5116?22+22616%5115122632 + 2612635?2522 — 86162(5121512(522
*45152512 + 8%512522 — 5%511622 — 56%512522 + 611092 + 2512

(1,2) : 26163, 012 + 209263007, + 6edeadi 07 + 65208763075 ,012
+66%6%5115?2 — 128%5%1512 + 6(52251535115%2 + 2616%(5112 — 652261825%1
—185152511(5%2 + 2(522535?2 — 6(522&‘%(511512 — 68%(5?2 + 6(511(512
(2,2) : 4616267, + 836903012000 + 8322011055 + 4636307, 05 + 166263011039020 + 42367,
—46%5%1522 - 205%5115?2 + 8516%(5115125%2 + 8515%6?2522 — 32e162011012022
—16e1690%, + 4e30%,0%, — 42011059 — 2063675095 + 4611092 + 852,
(3, 2) : 25118411(5?2 + 25‘;’82(51112 + 6(5116%62(5%2622 + 66?6%(5?2(522
+6§11€%€%(512(5§2 — 68%5?2 — 6(5115%612(522 + 6818%(5?2632 + 2511618%6%2
—1861525%2522 — 651161525%2 + 26%512(5%2 — 126%512632 + 6512522

(1,8) : €303,0%, + 2636007, 012020 + 2636901105 + £36303, 05,
—|—4E%E%(5116%2(522 + 8%8%(5%2 — 5%5%1(522 — 58%(5116%2 + 2616%(511512632 + 2616%(5?2522
—8c169011012022 — 481825?2 + 8%(5?2532 — 83511(5%2 — 58%5?2522 + 611092 + 2(5?2
(2, 3) : 25115%5?2 + 26?625%2 + 65115?52532522 + 66%6%5?2522 + 6(5116%6%512632
*66%5?2 — 65116%612522 + 6515%5%2632 + 2611515%532 — 1861625%2522
—65118182(532 + 283512532 — 126%(512(5%2 + 6512029
(8,3) : €107y + 4c3e003y000 + 6273075055 — 63099020 + 4516301205,
—1251825125%2 + 53(5%2 — 66%(5%2 + 35%2

Once again, it is tedious but straightforward to prove that the elements (2,1), (3,1) and (3,2) are
equal to the elements (1,2), (1,3) and (2,3), respectively. In addition, the (2,2) element is four times the
(3,1) and (1,3) ones. Therefore, the number of different elements coincides with the number of different

fourth moments, which is N(N + 1)(N + 2)(N + 3)/24 = 5 in the bivariate case. Those five terms are

(5‘1115‘1L + 46‘;’16126i’62 + 65%15%26%5‘% + 45115‘;’2515‘;’ + 6‘1*26‘21

—6(5?18% — 12(5%1(5126162 — 6(511(5%285 + 35%1 = 1"[40(87 A),

20 0196 + 2(0020%, + 302,0%,)e3e9 + 6(0220%, 812 + 01105, )e2e2
“!‘2(3(522(5115?2 + (5112)6153 + 2(522(5?26%

—12(5%1(5128% — 6((522(5?1 =+ 3(511(5%2)8182 — 6((522(511612 + 6?2)53 + 6(511612 = 2H31 (E, A),

07107561 + 2 (022671012 + 01105, €26t + (671635 + 4611035020 + 015) €37
+2 ((5:;)2622 + (511512(532) 65’81 + 535%2(532 — ((5%1(522 + 5511(5%2) E%

—4 (895 + 2011012022) €182 — (5035002 + 611035)e5 + (2675 + 611022) = Haa(e, A),



2(511(511))2841l + 2 ((54112 + 3(511522(5%2) 811352 +6 ((5?2522 + (511(512(532) 8?6%
+2 (3035055 + 011055 €561 + 201205565 — 6 (835 + 611612022) €7

—6 (3(5%2522 + 511(5%2) E1€2 — 12(512(53283 + 6512522 = 2H13(€, A),
and

010et + 4035000639 + 60250306262 + 40120556165 + O30ca

—6(5%2(5226% — 12(512(5%25152 — 653265 + 3(5%2 = 1104(&?7 A),

which are (multiples of ) the five different bivariate Hermite polynomials of order four in Barndorff-Nielsen

and Petersen (1979), as expected.

C Alternative distributions

For the multivariate skew normal distribution, we use its canonical representation, choosing .83, 1.30
and —1.35 for the location, scale and skew, respectively, of the first component of the random vector,
which yield values of —3/4 and 3.596 for its skewness and kurtosis coefficients (see Figure 2.2 in Azzalini
and Capetiano (2014) for the feasible skewness-kurtosis combinations). In contrast, the remaining N — 1
components are drawn from independent univariate standard normals.

In the case of the multivariate asymmetric Student ¢, we choose n = .042 and b = (—.91,0’)’, which
yield values of —3/4 and 4.5 for the skewness and kurtosis coefficients of the first element (see Proposition
1 in Mencia and Sentana (2009) for details on how to obtain a random vector whose mean vector and
covariance matrix are 0 and I, respectively). Finally, for the discrete mixture of two normal vectors,
we fix their means to (1 —A)d and —Ad, where A = 1/4 is the probability of the first Gaussian vector and

d = (—.57,0"); and their covariance matrices to

1 /
Q = m[m—&s (1—A)A]

QQ = J{Ql,

with s = .51, so as to achieve the same skewness and kurtosis coefficients for the first variable as in the

case of the asymmetric Student t.



