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1 Introduction

The econometric literature on serial correlation tests, which can be traced back at least to

Durbin and Watson (1950, 1951) and the references therein, is vast. Although in principle one

could use any of the triad of classical hypothesis tests, given that Rao�s (1948) score test and

Silvey�s (1959) numerically equivalent Lagrange multiplier (LM) statistic only require estimation

of the model parameters under the null, they became the preferred choice for neglected serial

correlation tests in econometric applications following Breusch (1978) and Godfrey (1978a,b),

to the extent that they are nowadays routinely reported by all the popular regression packages.

In addition to computational considerations, which continue to be very relevant for resampling

procedures with relatively small sample sizes, two other important advantages of LM tests are

that (i) rejections provide a clear indication of the speci�c directions along which modelling

e¤orts should focus, and (ii) they are often easy to interpret as moment tests, so they remain

informative for alternatives they are not designed for. Furthermore, under standard regularity

conditions, they are asymptotically equivalent to the Likelihood ratio (LR) and Wald tests under

the null and sequences of local alternatives, and thus they share their optimality properties.

One of those standard regularity conditions is a full rank information matrix of the unre-

stricted model parameters evaluated under the null. However, Fiorentini and Sentana (2016)

highlighted some examples of neglected serial correlation tests in which this condition does not

hold despite the fact that the model parameters are locally identi�ed both under the null and

the alternative hypotheses. To tackle this problem, they applied the �extremum�tests proposed

by Lee and Chesher (1986). These authors studied situations in which one of the scores of the

parameters of the model under the alternative is identically zero when evaluated under the null.

Given that this renders standard LM tests infeasible, Lee and Chesher (1986) exploited the

restrictions that the null hypothesis imposes on higher-order optimality conditions. Sometimes,

the second derivative su¢ ces, but it might be necessary to study the third or even higher-order

ones. They proved the asymptotic equivalence between their extremum tests and the corre-

sponding LR tests under the null and sequences of local alternatives in unrestricted contexts.

Using earlier results by Cox and Hinkley (1974), this equivalence intuitively follows from the

fact that the extremum tests can often be re-interpreted as standard LM tests of a suitable

transformation of the parameter whose score is zero such that the new information matrix is

no longer singular. For example, if the �rst two derivatives are identically zero when evaluated

under the null but the third one is not, a cubic root provides an appropriate transformation

which leads to a non-zero score after applying L�Hôpital�s rule twice in succession. Naturally,

the LR test is numerically invariant to this one-to-one transformation. In contrast, Wald tests
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are extremely sensitive to reparametrization under these circumstances.

Importantly, though, in all the examples Lee and Chesher (1986) and Fiorentini and Sentana

(2016) discussed, the nullity of the information matrix of the alternative model under the null

was one. The purpose of this paper is to develop tests for neglected serial correlation asymp-

totically equivalent to the LR test in some highly irregular situations in which the nullity of the

information matrix is two or higher. To do so, we rely on the generalized extremum tests (GET)

proposed in Amengual, Bei and Sentana (2023).

To understand our procedure, it is pedagogically convenient to consider the simplest possible

situation of an information matrix with a zero 2�2 diagonal block because the scores of two of the

parameters of the model under the alternative are identically zero when evaluated under the null.

For simplicity, suppose the second-order derivatives are all di¤erent from zero. Unfortunately,

a mere reparametrization will not solve the problem in this case because the number of distinct

elements of the Hessian (three) exceeds the number of parameters a¤ected by the singularities

(two). For that reason, our solution involves two steps. First, we express the two parameters

a¤ected by the singularities in polar coordinates, which e¤ectively correspond to the angle and

length of their Cartesian representation on the real plane. For a �xed value of the angle, testing

the null hypothesis is equivalent to testing that the Euclidean length of the parameter vector is

zero, a unidimensional problem to which we could apply the Lee and Chesher (1986) solution.

Unfortunately, the angle becomes underidenti�ed under the null, so the second step of our

solution relies on the supremum of their test statistic over all possible values of the angle as

likelihood ratio analogue in the spirit of Davies�(1987).

More generally, GET is an LR-type test that compares the log-likelihood function under the

null to the maximum of its lowest-order expansion under the alternative capable of identifying

the restricted parameters.

For illustrative purposes, we use as examples two classes of univariate time series models

very popular among practitioners:

1. the multiplicative seasonal Arima (Sarima) models put forward by Box and Jenkins

(1970) to capture the autocorrelation of series with strong seasonal patterns, such as their

famous airline passenger example, and

2. the unobserved components Arima (Ucarima) models, which constitute the basis of the

�structural time series�models studied by Harvey (1989) as a way of performing the classical

decomposition of a time series into trend, cyclical, seasonal and irregular components.

(see Lippi and Reichlin (1992) for an insightful comparison of some important characteristics of

these two models).
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We show that our proposed tests e¤ectively check that certain autocorrelations of the ob-

servations are zero, which in turn implies that their asymptotic distribution is standard. This

is somewhat remarkable because GET statistics typically have unusual asymptotic distributions

(see e.g. Amengual, Bei and Sentana (2022)).

We conduct Monte Carlo exercises that study the �nite sample size and power properties

of our proposal and compare it to other tests for neglected serial correlation. We �nd that our

suggested parametric bootstrap procedures yield very reliable test sizes for the small samples

typically encountered in empirical applications to macroeconomic data. In addition, we con�rm

the power superiority of our tests over their competitors. Finally, we also con�rm their substan-

tial computational advantages over the corresponding LR tests, which require the maximization

over the entire parameter space of an unrestricted log-likelihood function which is extremely

�at around its maximum when the null hypothesis is true. These computational advantages are

particularly pertinent for computing the bootstrap critical values mentioned above.

The rest of the paper is organized as follows. We derive our proposed tests for the two afore-

mentioned examples in Sections 2 and 3, respectively, studying both their asymptotic properties

and their �nite sample ones. Next, we present our conclusions in Section 4, relegating proofs

and some additional results to the appendices.

2 Multiplicative seasonal ARIMA models

The serial dependence structure of the popular multiplicative seasonal Arima models put

forward by Box and Jenkins (1970) is perfectly understood, and the same is true of the properties

of the maximum likelihood estimators (MLE) of their parameters in normal circumstances.

Moreover, LM tests for neglected serial correlation in such models have been readily available

for several decades. However, what it is far less known is that in some cases, the standard

regularity conditions that guarantee the asymptotic validity of such tests do not hold. Next, we

showcase the di¢ culties involved by means of a rather simple example.

2.1 The test statistic

Suppose that after taking regular and seasonal di¤erences of an observed time series, a

researcher would like to formally assess the need for a more complicated dependence structure.

Speci�cally, assuming the data is observed at the quarterly frequency, and letting L denote the

lag operator, one of the alternatives that a researcher might consider is the following Ar(2)-

Sar(2) process:

(1� #1L)(1� #2L)(1� #3L4)(1� #4L4)(yt � 'M ) = "t; (1)
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with E("t) = 0 and V ("t) = 'V , where yt = ��4xt with � = 1� L and �4 = 1� L4 denoting

the usual regular and seasonal di¤erence operators, and xt denoting the original data, so that

H0 : # = 0; with # = (#1; #2; #3; #4)0.

As usual, non-linear least squares estimation coincides with Gaussian ML, so that the crite-

rion function will be

TX
t=1

lt with lt = �
1

2
ln(2�)� 1

2
ln'V �

[yt � �t('M ;#)]2
2'V

; (2)

where the conditional mean under the alternative is

�t('M ;#) ='M + (#1 + #2) (yt�1 � 'M )� #1#2 (yt�2 � 'M ) + (#3 + #4) (yt�4 � 'M )

� (#1 + #2) (#3 + #4) (yt�5 � 'M ) + #1#2 (#3 + #4) (yt�6 � 'M )

� #3#4 (yt�8 � 'M ) + (#1 + #2)#3#4 (yt�9 � 'M )� #1#2#3#4 (yt�10 � 'M ) :

The model parameters under the null are 'M and 'V , whose restricted MLEs coincide

with the sample mean and variance (with denominator T ) of yt. Moreover, the MLEs of the

parameters of the alternative model, which also include #, usually converge to their true values

at the standard
p
T rate.

However, as we shall formally prove below, the information matrix of model (1) evaluated

at # = 0 has two zero eigenvalues because

@lt
@#1

� @lt
@#2

= 0 and
@lt
@#3

� @lt
@#4

= 0; (3)

which makes this testing problem a highly irregular one. This is particularly relevant for Wald

tests, which are extremely sensitive to reparametrizations in this context. For example, Fioren-

tini and Paruolo (2009) found that the rate of convergence of a sequential Cochrane-Orcutt-type

estimator of what is e¤ectively the product of the �rst two autocorrelations of yt is T rather

than T
1
2 or T

1
4 when #1 = #2 = 0 in a non-seasonal version of model (1) in which #3 = #4 = 0.

As we show in the proof of Proposition 1, we can �nd a suitable reparametrization relating

('M ; 'V ; #1; #2; #3; #4) and (�M ; �V ; �i1; �i2; �u1; �u2) that isolates the singularity in the last two

parameters in such a way that the �rst derivatives of the log-likelihood function corresponding

to �u1 and �u2 are both zero, where �0i = (�i1; �i2) contains the parameters of the alternative

model that are �rst-order identi�ed while �0u = (�u1; �u2) refers to those that are �rst-order

underidenti�ed but second-order identi�ed in the terminology of Sargan (1983).

Fortunately, the assumptions of Theorem 1 in Amengual, Bei and Sentana (2023) apply to

the second derivatives

@2lt
(@�u1)2

=
2 (yt � �M ) (yt�2 � �M )

�V
,

@2lt
@�u1@�u2

= 0 and
@2lt

(@�u2)2
=
2 (yt � �M ) (yt�8 � �M )

�V
, (4)
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because the asymptotic covariance matrix of�
@lt
@�M

;
@lt
@�V

;
@lt
@�i1

;
@lt
@�i2

; �2u1
@2lt

(@�u1)2
+ �2u2

@2lt
(@�u2)2

+ 2�u1�u2
@2lt

@�u1@�u2

�
scaled by

p
T has full rank for any (�u1; �u2) 6= (0; 0), which leads to the following result:

Proposition 1 Under H0,

LRT = GETT +Op(T
� 1
4 ); (5)

where LRT is the likelihood ratio statistic based on (2), and

GETT = T (r̂21T + r̂
2
4T + r̂

2
2T1[r̂2T � 0] + r̂28T1[r̂8T � 0]); (6)

where 1[:] is the usual indicator function and

r̂jT =
1

T

X
t

(yt � ~�M )(yt�j � ~�M )
~�V

;

with ~�M = T�1
P

t yt and ~�V = T�1
P

t(yt � ~�M )2.

Therefore, the GETT statistic is simply focusing on the �rst two regular sample autocorre-

lations and the �rst two seasonal ones, which is very intuitive in view of (1). Given that these

estimated autocorrelations are asymptotically independent under the null of white noise, the

asymptotic distribution of (6) will be a mixture of �22, �
2
3 and �

2
4 with weights

1
4 ,

1
2 and

1
4 ,

respectively. The partially one-sided nature of the test arises from the multiplicative nature of

the alternative, which forces the roots to be always real. Additive alternatives, which allow for

complex roots too, would give rise to two-sided tests.

Furthermore, we can show that the GET test statistic of white noise against the multiplicative

Ar(k)-Sar(ks) model

Qk
j=1(1� #jL)

Qk+ks
j=k+1(1� #jL

4)(yt � 'M ) = "t

for k � 3 or ks � 3 will numerically coincide with the statistic in (6). The rationale is as

follows. When the null is true, we can prove that the MLE of an additive Ar(3) is such that

all three roots of the lag polynomial are real with probability tending to zero, unless one of

the roots is forced to be zero. Consequently, the LR for multiplicative Ar(3) is asymptotically

equivalent to the LR for Ar(2), and the same applies to the corresponding GETs. Perhaps

less surprisingly, we can also show that we would obtain exactly the same test statistic if we

considered multiplicative Ma alternatives instead.

To provide the intuition for the convergence rate in (5), it is convenient to look at expression

(A3) in Appendix A. Speci�cally, given that we can write the LR test statistic in terms of
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a fourth-order Taylor expansion of the log-likelihood function whose leading terms coincide

with the ones that appear in the expression for the GET test statistic, the Op(T�
1
4 ) rate of

the remainder immediate determines the rate of convergence of the di¤erence between the two

statistics under the null.

Finally, it is important to mention that our proposed test, which is based on sample autocor-

relations, is numerically invariant to a¢ ne transformations of the observed series yt. E¤ectively,

this means that its �nite sample distribution is pivotal with respect to ' = ('M ; 'V )
0. There-

fore, one can estimate the sample mean and variance of yt, and apply our test directly to the

standardized series as if they were the observed variables.

2.2 Simulation evidence

Next, we study the �nite sample size and power properties of the testing procedures we in-

troduced in the previous subsection by means of several extensive Monte Carlo exercises. Given

that no nuisance parameters are e¤ectively involved under the null, we can set the uncondi-

tional mean and variance of the innovation "t to 0 and 1, respectively, both under the null and

alternative hypotheses without any loss of generality.

Naturally, we estimate 'M and 'V under the null with the sample mean and variance,

respectively. We recycle the sample mean as initial value for 'M under the alternative. As

for 'V and #, we use as starting values the ones we obtain by means of a minimum distance

procedure that takes as objective function the Euclidean norm of the di¤erence between the

theoretical and sample values of the variance and the four autocovariances underlying our test

statistic (6) in order to increase the chances that we obtain the right unrestricted ML estimates,

and consequently, the correct LR test. Nevertheless, our results seem insensitive to this choice

of initial values.

As alternative hypotheses we consider the covariance stationary models

(1� :1L� :1L2 � :1L3 � :1L4)yt = "t (Ha1); and

(1� :4L)(1 + :4L)(1� :4L4)(1 + :4L4)yt = "t (Ha2);

for which the �rst, second, fourth and eighth autocorrelation coe¢ cients in the population are

(0:14,0:14,0:14,0:03) and (0,0:16,0:03,0:16). Note that two of the roots of the �rst process are

complex conjugates, while our test is designed for the case of real roots.

We approximate the exact �nite sample distribution using 10,000 simulated samples under

the maintained hypothesis that the yt�s are i:i:d: as standard normals. In fact, we could thus

obtain �exact� critical values for any sample size by increasing the number of simulations.

Alternatively, one could consider a non-parametric bootstrap procedure that randomly draws
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with replacement from the observations, which would eliminate any time series dependence

while allowing for any marginal distribution. Either way, we do not need to take into account

the sensitivity of the critical values to ~' because the test statistics are numerically invariant to

the values of these estimators.

In Table 1 we compare the results of our test with three alternative procedures: LM-Ar(1)

and LM-SAr(4), which denote standard LM tests based on the score of an Ar(1) and a Wallis

(1972)-style seasonal Ar(4), respectively, and a moment test based on the �rst two regular

sample autocorrelations and the �rst two seasonal ones (MT), which is e¤ectively the two-sided

version of (6), whose asymptotic distribution is �24 under the null. Speci�cally, Panel A of Table

1 contains the rejection rates based on asymptotic critical values for T = 100 (top) and T = 400

(bottom), while in Panel B we report the ones that rely on the parametric bootstrap.

The �rst three columns of each of those panels present the rejection rates at the 1%, 5% and

10% levels under the null. Given the number of replications, the 95% asymptotic con�dence

intervals for the Monte Carlo rejection probabilities under the null are (.80,1.20), (4.57,5.43)

and (9.41,10.59) at the 1%, 5% and 10% levels. As can be seen in Panel A, all tests tend to be

undersized at the usual nominal levels, with some signi�cant size distortions across the board

when T = 100. As expected, though, the rejection rates get much closer to the nominal sizes

for T = 400. In contrast, the size of the tests becomes perfectly accurate by construction when

we use the parametric bootstrap procedure described above.

In turn, the last six columns present the rejection rates at the 1%, 5% and 10% levels for

the two alternatives we consider. The behavior of the di¤erent test statistics is in accordance

with expectations. In particular, our proposal is the most powerful for Ha2 , which is not very

surprising given that it is designed to direct power against such multiplicative alternatives with

real roots. But it is also the top performer for Ha1 even though the process has two complex

roots, which is perhaps not entirely surprising in view of the positivity of the relevant population

autocorrelations. Predictably, the rejection rates in Panel B are slightly higher, which simply

re�ects the fact that all the tests tend to be conservative with the asymptotic critical values.

The scatterplot in Figure 1 visually illustrates the asymptotic equivalence under the null

between LRT and GETT statistics stated in Proposition 1, with the Gaussian rank correlation

coe¢ cients between them being 0.932 and 0.986 across Monte Carlo samples of size T = 100

and 400, respectively. The Gaussian rank correlation coe¢ cient between two variables is the

usual Pearson correlation coe¢ cient between the Gaussian scores of those variables, which are

obtained by applying the inverse Gaussian cumulative distribution function transform to the

ranks of the observations on each variable divided by n + 1 (see Amengual, Sentana and Tian
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(2022)). Like the Spearman correlation coe¢ cient, the Gaussian one is less sensitive to outliers

than the Pearson one.

Finally, our results also indicate that the LR takes 755 (921) seconds of CPU time for 10,000

samples of length 100 (400), while computing GET only requires 0.20 (0.24) seconds, respectively,

which makes a huge di¤erence in the calculation of the bootstrap critical values.

3 UCARIMA models

These popular unobserved component models assume that the observed time series are

the superposition of two or more latent Arima time series models, whose parameters can be

estimated by maximizing the Gaussian log-likelihood function of the observed data, which can

be readily obtained either as a by-product of the Kalman �lter prediction equations or from

Whittle�s (1962) frequency domain asymptotic approximation. Once the parameters have been

estimated, �ltered values of the unobserved components can be extracted by means of the

Kalman smoother or its Wiener-Kolmogorov counterpart. These estimation and �ltering issues

are well understood (see e.g. Harvey (1989) for a textbook treatment).

In contrast, tests that assess the correct speci�cation of the parametric Arima models for the

underlying components are far less well studied, even though the various outputs of an Ucarima

model could be misleading under misspeci�ed dynamics. As mentioned in the introduction,

Fiorentini and Sentana (2016) provided a thorough discussion of such tests, highlighting the

popular local level model as an example in which the LM test cannot be computed in the usual

way because the information matrix of the alternative model is sometimes singular under the

null. Unfortunately, their solution based on Lee and Chesher (1986) cannot be applied when

the nullity of the information matrix is two or more. Next, we study in detail a simple example

of this situation.

3.1 The test statistic

The most popular Ucarima model among practitioners is the local level process:

xt = zt + ut; (7)

�zt = ft; (8)

ut = vt and (9)�
ft
vt

�
jIt�1 � N

��
0
0

�
;

�
�2f 0

0 �2v

��
; (10)

where ft and vt follow two univariate white noise processes orthogonal at all leads and lags, It�1

denotes the information set available at t�1 which contains past values of xt, and �2f and �2v are
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both strictly positive to exclude degenerate cases. Thus, the observed series is simply a random

walk plus noise, whose �rst di¤erences yt = �xt follow an Ma(1) process with coe¢ cient

�y =
1

2
(
p
q2 + 4q � 2� q) < 0; (11)

where q = �2f=�
2
v > 0 is the bounded signal to noise ratio, and residual variance �

2
a = ��2v=�y:

As is well known, this model justi�es the popular Exponentially Weighted Moving Average

(Ewma) prediction rule, which has proved remarkably successful in many applications ranging

from macro time series to volatility forecasts. However, Ewma predictions become suboptimal

if (8) or (9) are dynamically misspeci�ed, so it makes sense to test them against some more

general alternatives.

To illustrate the issues that may arise, we consider the following nesting model:

(1�  1L�  2L2)�zt = ft
(1� �L)ut = vt

�
(12)

in which the �signal�zt follows an Arima(2,1,0) process while the �noise�ut a stationary Ar(1)

process. As a result, the null hypothesis of interest is H0 : � =  1 =  2 = 0.

Once again, we can formally prove that the dimension of the nullspace of the information ma-

trix of the parameters of model (12) evaluated under the null is two because the �rst-derivatives

of the log-likelihood function corresponding to  1 and  2 are linear combinations of the ones

corresponding to �2f , �
2
v and �. In fact, we show in the proof of Proposition 2 that we can �nd a

suitable reparametrization from (�2f ; �
2
v; �;  1;  2) to (�

2y
f ; �

2y
v ; �y;  

y
1;  

y
2) that isolates the sin-

gularity in the last two parameters in such a way that the �rst-derivatives of the log-likelihood

function corresponding to  y1 and  
y
2 are both zero.

Like Fiorentini and Sentana (2016), we can explicitly relate this singularity to the identi-

�cation conditions for Ucarima models in Hotta (1989). Speci�cally, although model (12) is

generally identi�ed, it is locally equivalent around the null to the following model:

�zt = (1�  1L�  2L2)ft
ut = (1� �L)vt

�
(13)

in the sense that the (absolute value of the) scores and information matrices are identical when

H0 holds. Unlike model (12), which generates the autocorrelation structure of a restricted

Arma(3,3) for yt, model (13) generates the autocorrelation structure of an unrestricted Ma(2),

which depends on three parameters only, namely the two Ma coe¢ cients plus the variance of

the reduced form innovations. In contrast, model (13) depends on �ve parameters, namely  1,

 2 and � together with �
2
f and �

2
v, which means that the Ma(2) reduced form can only identify

a manifold of dimension two of the structural parameters.

In addition, with the aforementioned reparametrization,
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@2lt

(@ y1)
2
= 0 and

@3lt

(@ y1)
3
= 0, while

@2lt

(@ y2)
2
6= 0,

which means that these two parameters have di¤erent degrees of identi�cation. Fortunately,

the assumptions of the more general Theorem 2 in Amengual, Bei and Sentana (2023) apply,

allowing us to obtain the following result:

Proposition 2 Under H0,

LRT = GETT +Op(T
� 1
8 ); (14)

where LRT is the corresponding likelihood ratio statistic, and

GETn =
�
~r2T ~r3T ~r4T

�
V�1�a�a

0@ ~r2T
~r3T
~r4T

1A ; with

~rjT =

P
t ytyt�jP
t y
2
t

and V�a�a = lim
T!1

V

24pT
0@ ~r2T
~r3T
~r4T

1A35 : (15)

Therefore, both LRT and GETT are e¤ectively testing that the second, third and fourth

autocorrelations of yt are zero. This result is not entirely surprising in view of the fact that yt

follows an Ma(1) model under the null and an Arma(3,3) under the alternative. Unlike what

happened in the model discussed in Section 2, though, the sample autocorrelations are no longer

asymptotically independent under the null, so we need their asymptotic covariance matrix to

correct for sampling uncertainty, which is particularly simple to obtain in the frequency domain

using the expressions in Appendix B.1, as we explain in the proof of Proposition 2.

Finally, expressions (A4)�(A8) in Appendix A provide intuition on the convergence rate in

(14). Speci�cally, given that we can write the LR test statistic in terms of a eighth-order Taylor

expansion of the log-likelihood function whose leading terms coincide with the terms that appear

in the expression of the GET test, the Op(T�
1
8 ) rate of the remainder immediate determines the

rate of convergence of the two statistics under the null.

3.2 Simulation evidence

To assess the size properties of our proposed test, we generate 10,000 samples of lengths

T = 100 and T = 400 of the local level model (7)-(10). Under the null, we simulate Gaussian

shocks with �2f = 1 and �
2
v = 0:5, so that the signal to noise ratio is moderate.

We compute the spectral version of GETT in (A10) using (B14) to estimate the informa-

tion matrix (A9) and the fast Fourier transform to obtain the periodogram. It is important to

emphasize that the LRT statistic requires the estimation of model (12), which is a non-trivial

numerical task for the reasons described in the introduction. To increase the chances that we
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obtain the correct unrestricted ML estimates, and consequently, the right LR test, we keep the

maximum maximorum of the spectral log-likelihood of model (12) starting from two sets of ini-

tial values: the ones that maximize the log-likelihood function under the null, and another set

that we obtain by means of a minimum distance procedure that takes as objective function the

Euclidean norm of the di¤erence between the theoretical and sample values of the variance and

the �rst four autocovariances of the process, whose expressions we provide in Appendix B.2.

Although our main interest lies in the GETT and LRT statistics in Proposition 2, we also

consider the following two moment tests for comparison purposes:

1. no second-order serial correlation in yt,

2. no second- or third-order serial correlation in yt.

Importantly, in computing these moment tests, we use the relevant elements of (A9) to obtain

the adjusted asymptotic covariance matrix of the second and third sample autocovariances.

Unlike what happens in the multiplicative seasonal Arima model in Section 2 in which the

autocorrelations did not depend on the mean and variance of yt, the �nite sample distribution

of GETT and LRT is not pivotal with respect to the (unknown) value of the signal to noise

ratio q, even though both statistics are numerically invariant to the scale of yt. Intuitively, the

value of q a¤ects the autocorrelations on which our test is based, so we need to adjust for the

sampling variability of its estimators under the null, both asymptotically and in the bootstrap.

For that reason, we conduct a parametric bootstrap procedure whereby for each of those 10,000

simulated samples, we simulate another NB�1 samples in which we set �2f equal to one without

loss of generality and (1 + q)�1 to its estimated value, so that we can automatically compute

size-adjusted rejection rates, as forcefully argued by Horowitz and Savin (2000). In fact, the

bounded support of (1 + q)�1 allows us to compute a table of �exact�critical values for a �ne

grid of values of this reduced-form Ma coe¢ cient before running the actual simulations (see

Appendix D.1 in Amengual and Sentana (2015) for details). The same procedure works if we

replace (1 + q)�1 by either �y in (11) or the �rst-order autocorrelation of yt, which are both

between zero and minus one, but it is trickier to apply to q directly because this parameter can

take any positive real value in the sample.

We present the rejection rates under the null for the tests at the 10%, 5% and 1% in the �rst

three columns of Table 2. Once more, in Panel A we report the results based on asymptotic

critical values for samples of length 100 (top) and 400 (bottom), and in Panel B those based

on the bootstrap. Given that the number of Monte Carlo simulations is also 10,000, the 95%

asymptotic con�dence intervals for the rejection probabilities under the null are again (.80,1.20),

(4.57,5.43) and (9.41,10.59) at the 1%, 5% and 10% levels.
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In terms of size distortions, the same comments we made in the seasonal Arima example

apply here too, with only two exceptions: (i) the LR test is now slightly oversized, and (ii) the

bootstrap no longer provides exact critical values because of the need to estimate q. Neverthe-

less, all the testing procedures have reasonable sizes when we rely on bootstrap critical values

regardless of the sample length. It is also worth mentioning that in a very small fraction of

the samples of size T = 100 simulated under the null (0.62%), we encountered the �pile-up�

problem associated to a positive �rst-order sample autocorrelation for yt. In contrast, this never

happened under either of the alternatives below, or indeed when T = 400.

In particular, we simulate and estimate 10,000 samples of the same length of the following

two alternative data generation processes (DGPs):

(1 + 0:5L+ 0:4L2)�zt = ft
(1� 0:5L)ut = vt

�
(Ha1) and

(1� 0:1L+ 0:5L2)�zt = ft
(1 + 0:5L)ut = vt

�
(Ha2)

with the same �2f and �
2
v as in the null hypothesis. The �rst four autocorrelation coe¢ cients of

these processes in the population are (-0:32,-0:19,0:15,-0:04) and (-0:42,0:03,-0:15,0:15).

The corresponding rejection rates, which we report in the last six columns of Table 2, indicate

that the behavior of the di¤erent test statistics is in accordance with expectations. For both

alternatives, the GET and LR tests are more powerful than the competitors. Interestingly,

LR is slightly more powerful than our proposal for both Ha1 and Ha2 , which is in contrast

with the ranking in the example in Section 2. Nevertheless, one should keep in mind that our

equivalence result is an asymptotic one under the null and, presumably, suitable sequences of

local alternatives, while the sample sizes we use in our simulations are moderately small and we

are e¤ectively considering �xed alternatives. In this respect, the scatterplot in Figure 2 visually

illustrates the asymptotic equivalence under the null between LRT and GETT in Proposition 2,

with the Gaussian rank correlation coe¢ cients between the GET and LR test statistics across

Monte Carlo samples of size T = 100 and 400 generated under the null being 0.743 and 0.807,

respectively, re�ecting the slower rate of convergence.

The simulation results also indicate that the LR takes 1,250 (1,763) seconds for 10,000

samples of length 100 (400), while computing GET only requires 4.5 (5.5) seconds, respectively,

which once again makes a huge di¤erence in the calculation of the bootstrap critical values.

4 Conclusions

We characterize the singularity of the information matrix of a multiplicative seasonal Ar

model à la Box and Jenkins under the null of white noise, as well as of a trend plus signal
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Ucarima model that nests the popular local level process. Using the generalization in Amen-

gual, Bei and Sentana (2023) of the extremum-type tests in Lee and Chesher (1986) to models in

which the nullity of the information matrix under the null hypothesis is strictly larger than one,

we explain how to obtain a score-type test based on higher-order derivatives which is asymp-

totically equivalent to the LR despite said singularity but only requires estimation under the

null. This is particularly relevant for resampling-based inference because the fact that several

log-likelihood derivatives are zero under the null implies that the LR requires the estimation of

all the parameters that appear under the alternative in a model whose log-likelihood function is

extremely �at.

Our proposed dynamic speci�cation tests are simple to implement and even simpler to inter-

pret. And although some of our theoretical derivations make extensive use of frequency domain

methods for time series, we provide a simple time domain interpretation of the statistics, so that

empirical researchers who are not familiar with spectral analysis can still apply them easily.

We conduct Monte Carlo exercises that study the �nite sample size and power properties

of our proposals and compare them to alternative approaches. We �nd that our suggested

parametric bootstrap procedures work very well, and that our tests have more power than

alternative procedures. We also �nd that the computational advantages of our GET procedures

relative to the LR ones are very substantial.

In the two examples that we consider the model parameters are only identi�ed up to higher-

order when the null is true. As a result, a local power analysis of our proposed tests would

necessarily involve sequences of those parameters converging to zero at unusually low rates.

Nevertheless, given that in both cases our test statistics have �2-like asymptotic distributions

under the null, they would approximately follow non-central �2 distributions in large samples

if we ignore inequality constraints. Finding exact expressions for the non-centrality parameters

constitutes an interesting avenue for further research.
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Appendices

A Proofs

In this appendix, we thoroughly check that the multiplicative seasonalArima andUcarima

models that we have considered satisfy the substantive assumptions required for the application

of Theorems 1 and 2 in Amengual, Bei and Sentana (2023), respectively. For the sake of brevity,

though, we do not include a detailed veri�cation of the regularity conditions in their Assumptions

1 and 2.

Proof of Proposition 1

The scores evaluated under the null will be

@lt
@'M

=
yt � 'M
'V

,
@lt
@'V

=
(yt � 'M )2 � 'V

2'V
,

@lt
@#1

=
@lt
@#2

=
(yt � 'M ) (yt�1 � 'M )

'V
and

@lt
@#3

=
@lt
@#4

=
(yt � 'M ) (yt�4 � 'M )

'V
:

which immediately imply (3), thereby con�rming that the nullity of the information matrix is

two.

To isolate those singularities, consider the reparametrization from the original set of para-

meters % = ('M ; 'V ; #1; #2; #3; #4)
0 to a di¤erent set � = (�M ; �V ; �i1; �i2; �u1; �u2)

0 de�ned by

'M = �M , 'V = �V , #1 = �i1 � �u1, #2 = �u1, #3 = �i2 � �u2 and #4 = �u2.

The corresponding �rst-order derivatives under the equivalent null hypothesis

H0 : �i1 = �u1 = �i2 = �u2 = 0

are

@lt
@�i1

=
(yt � �M ) (yt�1 � �M )

�V
,
@lt
@�i2

=
(yt � �M ) (yt�4 � �M )

�V
,
@lt
@�u1

= 0 and
@lt
@�u2

= 0;

which veri�es Assumption 3.1 in Amengual, Bei and Sentana (2023).

In turn, the second-order derivatives involving �u1 and �u2 are given in (4). Consequently,

�
20u

@2lt

@�
2u
= �21

@2lt

@�21
+ �22

@2lt

@�22
;

where �
2u =
�
�21; �1�2; �1�2; �

2
2

�0
and

@2lt

@�
20u

=

�
@2lt

@�21
;
@2lt

@�1@�2
;
@2lt

@�1@�2
;
@2lt

@�22

�
;

@2lt

(@�u1)
2 =

2 (yt � �M ) (yt�2 � �M )
�V

;

@2lt
@�u1@�u2

= 0 and
@2lt

(@�u2)
2 =

2 (yt � �M ) (yt�8 � �M )
�V

:
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It is then easy to see that the asymptotic covariance matrix of�
@lt
@�M

;
@lt
@�V

;
@lt
@�i1

;
@lt
@�i2

;�
20u

@2lt

@�
2u

�
under the null, namely dgf'�1V ; 1=2; 1; 1; 4�21+4�

2
2g, has full rank, which veri�es Assumption 3.2

in Amengual, Bei and Sentana (2023).

As a result, their Theorem 1 immediately implies that

LRT = 2 [LT (�̂)� LT (~�)] = GETT +Op(T
� 1
4 );

where

GETT =
1

T
S0�1T (

~�;0)V �1�1�1
(~�)S�1T (

~�;0) +
1

T
sup
�r 6=0

QT (�r; ~�)1
h
�
r0r DrT (~�) � 0

i
;

S0�1t(
~�;0) =

"
TX
t=1

@lt
@�i1

(~�M ; 0);
TX
t=1

@lt
@�i1

(~�M ; 0)

#
= T (r̂1; r̂2), V �1�1�1

= I2

and

QT (�r; ~�) =
1

T

1

4�2u1 + 4�
2
u2

 
TX
t=1

�2u1
@2lt

@�2u1
+ �2u2

@2lt

@�2u2

!2
=

T

�4u1 + �
4
u2

�
�2u1r̂2 + �

2
u2r̂8

�2
: (A1)

Simple algebra then yields (6) because the value of (�u1; �u2) that maximizes (A1) is proportional

to the vector (
p
r̂21 [r̂2 � 0];

p
r̂81 [r̂8 � 0]) if r̂2 � 0 or r̂8 � 0, and to (1; 1) otherwise. �

To brie�y illustrate the main idea behind Theorem 1 in Amengual, Bei and Sentana (2023)

in this case, let us write �u1 and �u2 in polar coordinates so that �u1 = ��1 and �u2 = ��2 with

�21+�
2
2 = 1, and consider the simpli�ed null hypothesis H0 : � = 0 for a �xed value of �1 and �2

determined by the relevant polar angle. In this context, the only relevant quantity associated

to � is
@2lt
@�2

= 2�21
(yt � �M ) (yt�2 � �M )

�V
+ 2�22

(yt � �M ) (yt�8 � �M )
�V

:

Moreover, given that

E

�
@lt
@�

@lt
@�0i

�
= 0 and E

�
@lt
@�

vech0
�

@2lt
@�u@�

0
u

��
= 0

under the null, we can ignore the parameter uncertainty in estimating �M and �V , at least

asymptotically.

Next, letting

S�i(�) = [S�i1(�); S�i2(�)]
0 , H�(�; �;�) =

TX
t=1

@2lt
@�2

and

V(�;�) = V arfT�
1
2 [S0�i(�;0);H�(�; 0;�)]

0j�;0g =
�
VS(�) 0
0 VH(�;�)

�
; (A2)
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a similar argument to the one used in the proof of Theorem 1 in Amengual, Bei, Sentana (2023)

implies that

LRT = sup
(�i;�)

2

�
S�i(

~�; 0)

H�(~�; 0;�)

��
�i
�2

�
� T

�
�i
�2

�0
V�1(~�;�)

�
�i
�2

�
+Op(T

� 1
4 )

= sup
(�i;�)

2S�i(
~�; 0)�i � T�0iV�1S (~�)�i + 2H�(~�; 0;�)�

2 � TV�1H (~�;�)�4 +Op(T
� 1
4 )

= T�1S�i(
~�; 0)V�1S (~�)S�i(

~�; 0) + sup
�
T�1

H�(~�; 0;�)
2

V�1(~�;�)
1
h
H�(~�; 0;�) � 0

i
+Op(T

� 1
4 );

(A3)

where the �rst equality comes from a fourth-order Taylor expansion of the log-likelihood function

whose �rst two terms are the leading ones and the rest is included in the Op(T�
1
4 ) remainder,

the second equality follows from (A2), and the last one is trivial.

Proof of Proposition 2

We can use expression (B11) in Appendix B.1 to compute the spectral approximation to the

log-likelihood function of model (12) with gyy(!;�) given in (B15), � = (�0;�0)0, � = (�2f ; �
2
v)
0

and � = (�;  1;  2)
0.

To simplify the notation, let us de�ne the vector C(!) = [C0�(!);C
0
�(!)]

0 with

C�(!) =
2�Iyy(!)� gyy(!;
)

g2yy(!;
)

�
1

cos(!)

�
and C�(!) =

2�Iyy(!)� gyy(!;
)
g2yy(!;
)

24 cos(2!)cos(3!)
cos(4!)

35 ;
which correspond to the contribution of frequency ! to the spectral score of an Ma(4) model

parametrized in terms of its unconditional variance and �rst four autocovariances, say 
 =

(
0; 
1; 
2; 
3; 
4), evaluated at 
2 = 
3 = 
4 = 0, as can be immediately seen from (B12).

Importantly, gyy(!;�) = gyy(!;
) for all ! under the locally equivalent null hypotheses

H0 : � =  1 =  2 = 0 and H0 : 
2 = 
3 = 
4 = 0

when both �2f and �
2
v are strictly positive.

Therefore, we can write the contribution of frequency ! to the spectral score as

@l

@�2f
= ( 1 0 0 0 0 )C(!),

@l

@�2�
= ( 2 �2 0 0 0 )C(!),

@l

@�
= ( �2�2f 4�2f �2�2f 0 0 )C(!),

@l

@ 1
= ( 0 2�2f 0 0 0 )C(!)

and
@l

@ 2
= ( 0 0 2�2f 0 0 )C(!):
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We can immediately notice that the last two elements of this score belong to the linear span

of the �rst three, which con�rms that the nullity of the information matrix is again two.

To isolate those singularities, we conduct a two-step reparametrization as follows. First, we

consider

�2f = ��2f � 2��2f  �1 + ��2f  �12 � 2��2f  �2, �2� = ��2� + �
�2
f  

�
1 + 2�

�2
f  

�
2;

� = �� +
��2f
��2�

 �1
2 +

��2f
��2�

 �2,  1 =  �1 and  2 =  �2;

and then

��2f = �y2f ��
y2
�  

y
1
3, ��2� = �y2f +

1

2
�y2�  

y
1
3, �� = �y�

�y4f + 2�
y2
� �

y2
f

2�y4�
 y1

3,  �1 =  y1 and  
�
2 =  y2�

 y1
2

2
:

After this sequential reparametrization, the relevant derivatives evaluated under the null

become

@l

@�y2f
=

@l

@�2f
= ( 1 0 )C�(!) � a01C�(!),

@l

@�y2�
=

@l

@�2�
= ( 2 �2 )C�(!) � a02C�(!),

@l

@�y
=

@l

@�
= ( �2�2f 4�2f )C�(!) + ( �2�2f 0 0 )C�(!) � d01C�(!) + b

0
1C�(!)

and
@l

@ y1
=

@l

@ 02
=

@2l

(@ 01)
2
=

@3l

(@ 01)
3
= 0:

In addition, straightforward calculations deliver

@2l

(@ y2)
2
=

�
2�2f (�

2
� � 2�2f )=�2�
8�4f=�

2
�

�0
C�(!) +

24 �8�2f
�4�4f=�2�
4�2f

350C�(!)
� d02C�(!) + b

0
2C�(!);

@2l

@ y1@ 
y
2

=

�
�2�4f=�2�

�2�2f (�2� � 2�2f )=�2�

�0
C�(!) +

24 �2�2f (�2f + 2�2�)=�2�4�2f
0

350C�(!)
� d03C�(!) + b

0
3C�(!)

and

@4l

(@ y1)
4
=

�
6�2f (4�

4
f + 14�

2
f�

2
� + 9�

4
�)=�

4
�

�24�2f (2�4f + 7�2f�2� + 2�4�)=�4�

�0
C�(!)+

24 24�2f (�4f + 4�2f�2� + 2�4�)=�4��12�4f=�4�
�12�2f

350C�(!)
� d04C�(!) + b

0
4C�(!):

Next, we carry out an eighth-order Taylor expansion of the reparametrized spectral log-

likelihood function of the sample, LT (�y), around the true values of its parameters under the
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null, namely �y00 = (�
y0
0 ;0

0), which yields

LT (�
y)� LT (�y0) =

266666664
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where

H =

26666666664
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V = E(H), j is a �ve-dimensional vector of indices, for example (1,0,2,0,3), in which case

@�
0jL

@�yj
=

@�
0jL

@�y4f @�
y@ y2

; (�y � �y0)j = (�
y2
f � �

y2
f0)�

y2 y32 ;

J0 = f(2; 2; 2; 8; 0); (2; 2; 2; 2; 2); (2; 2; 2; 0; 4)g, J1 =
�
j : �0j � 8; 9j0 2 J0 such that j < j0

	
and J2 = fj : �0j � 8; j 62 J1; j 62 J0g ; with �0 = (1; 1; 1; 1; 1), are �nite sets consisting of

those indices.

On this basis, we will have that

�
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D 0
A B
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C�(!)
C�(!)

��0
�
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�
DC�(!)
C�(!)

�0 �
I2 0

AD�1 B

�0
� = S(��)0�(�y;�y);
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where I2 is the identity matrix of order two,

D =

�
a01
a02

�
, A =

0@ a03
a04
a05

1A , B =
0@ b01

b02
b03

1A , � =
0BBB@

�y

 y41
 y1 

y
2

 y22

1CCCA , S(��) =
�
DC�(!)
C�(!)

�

�(�y;�y) =

�
I2 0

AD�1 B

�0
� =

�
(�y � �y0) + ��(�y)

��(�
y)

�
, ��(�

y) =
�
AD�1�0

0BBB@
�y

 y41
 y1 

y
2

 y22

1CCCA
and

��(�
y) = B0

0BBB@
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 y41
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y
2

 y22

1CCCA =

0BB@
�2�2f�y � 4�2f 
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2 �

2�2f (�
2
f+2�

2
�)

�2�
 y1 

y
2 +

�2f (�
4
f+4�

2
f�

2
�+2�

4
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�4�
 y41

�2�4f
�2�
 y22 + 4�

2
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y
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y
2 �

�4f
2�4�

 y41
2�2f 

y2
2 � 12�2f 

y4
1

1CCA :

In addition, the interpretation of C(!) as a spectral log-likelihood score allows us to use

expression (B13) to obtain the asymptotic variance of a suitably scaled version of

ST =
T�1X
j=0

C(!j);

where !j = 2�j=T (for j = 0; : : : T � 1) are the usual Fourier frequencies. Speci�cally, if we

partition the autocovariances into 
n = (
0; 
1) and 
a = (
2; 
3; 
4), then we will have that

T�
1
2ST

d! N

��
0
0

�
;

�
I
n
n I
n
a
I 0
n
a I
a
a

��
� N(0;V); (A9)

with the di¤erent elements evaluated at 
a = 0. Consequently,

�
�y0 � �y00 �y  y41  y1 

y
2  y22

�
V

0BBBBB@
�y � �y0
�y

 y41
 y1 

y
2

 y22

1CCCCCA = �(�y;�y)0I(��)�(�y;�y):

On this basis, we can write Ln(�y)�Ln(�y0) as the local quadratic approximation in Theorem 2

of Amengual, Bei and Sentana (2023), with a remainder Rn(�y) equal to the sum of (A5)-(A8).

Next, we verify in detail Assumption 4 of that theorem.

Assumption 4.1 : It is easy to see that �(�y;�y) is continuous and �(�y0;0) = 0. In addition,

�(�y;�y) = 0 if and only if 
2�2f 

y2
2 � 12�2f 

y4
1

�2�4f
�2�
 y22 + 4�

2
f 

y
1 

y
2 �

�4f
2�4�

 y41

!
=

�
0
0

�
;
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which gives the unique solution  y1 = 0,  
y
2 = 0 if we consider a local neighborhood around (0; 0)

such that j y1j � �" for �" > 0 small enough.

Assumption 4.2 : A central limit theorem for T�1=2ST holds because the special case of the

Ma(4) process to which this spectral score corresponds is covariance stationary and contains no

discrete harmonic components. Given that the generalized spectral score is a full-rank linear

transformation of this scaled average, a central limit theorem will apply to it too.

Assumption 4.3 : The limiting variance of T�1=2ST will have full rank for analogous reasons,

as long as we exclude processes whoseMa polynomial contains unit roots. The full-rank mapping

of the spectral log-likelihood score to this scaled average guarantees that the generalized spectral

score will also have a full-rank limiting covariance matrix under the same circumstances.

Assumption 4.4 : We verify this for each term in (A5)-(A8). In particular, (A5) follows

from H + V = Op(T
� 1
2 ). As for (A6), we can easily check that: (i) the term in f:g is op(1 +

p
T jj�(�y;�y)jj), while (ii) the term in [:] is Op(1) because the derivative corresponding to j 2 J1

has zero expectation, which we can in turn verify by means of the multivariate Faa di Bruno�s

formula (see Constantine and Savits (1996) for details) or by calculating the required expectation

directly. In turn, we can easily verify for (A7) that (i) the term in f:g is op(1 + T jj�(�y;�y)jj2);

while (ii) the term in [:] is Op(1). Finally, the term in f:g in (A8) is Op(1 + T jj�(�y;�y)jj2);

while the one in [:] is op(1).

Assumption 4.5 : We can immediately see that

@C(!)

@�0
=
�4�Iyy(!) + gyy(!; y)

g3yy(!; y)

266664
1

cos(!)
cos(2!)
cos(3!)
cos(4!)

377775� 1; 2[1� cos(!)]
	
:

Hence, we will have that

����@C(!)@�k

���� � 2 �����4�Iyy(!)g3yy(!; y)

����+ 2 ���� 1

g2yy(!; y)

���� � 2
�������
�4�Iyy(!)�
�2f + 4�

2
v

�3
�������+ 2

�������
1�

�2f + 4�
2
v

�2
������� � g(y);

where g2(y) is integrable. Consequently, Theorem 2 in Amengual, Bei and Sentana (2023)

implies that

LRT = GETT +Op(T
� 1
8 );
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where

GETT =sup
�

�
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h
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(A10)

=
�
~r2T ~r3T ~r4T

�
V�1�a�a

0@ ~r2T
~r3T
~r4T

1A ;

with the two equalities holding with probability approaching 1 and the second one following

from �T = f
p
T��g ! � = R3:

Assumption 4.6 : Once again, we verify this for each term in (A5)-(A8). Speci�cally, (A5)

follows from the fact that H+V = Op(T
� 1
2 ). In addition, note that T

1
2�(�T ;�T ) = O(1) implies

that

�T = O(T�
1
2 ); �T = O(T�

1
2 );  1T = O(T�

1
8 ) and  2T = O(T�

1
4 ):

Thus, the slowest convergence rate is T�
1
8 because this is the rate of the f:g terms in (A6) and

(A7) and the [:] term in (A8).

The �nal step of the proof simply involves the application of the delta method to go from

the autocovariances 
j (j = 0; :::; 4) to the autocorrelations �j = 
j=
0 (j = 1; :::; 4), which

delivers the expressions in the statement of the proposition. The intuition is that given that the

restricted MLEs for �2f and �
2
v are such that in large samples the estimated model will perfectly

match the sample variance and �rst autocovariance of yt with probability approaching one, the

�rst two components of S�;T evaluated at ~�T will be zero, which in turn implies that GETT
is e¤ectively testing that the second, third and fourth autocovariances of yt are simultaneously

zero on the basis of their sample counterparts, but taking into account the sampling uncertainty

in estimating those autocovariances when the true process is the local level model (7)-(10). �

B Additional results

B.1 Maximum likelihood estimation in the frequency domain

Henceforth, we assume that yt is a covariance stationary series, which may require taking

�rst or seasonal di¤erences of the observations, as in the examples in Sections 2 and 3.

Let

Iyy(!) =
1

2�T

TX
t=1

TX
s=1

(yt � �)(ys � �)e�i(t�s)!
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denote the periodogram of yt. If we assume that the spectral density gyy(!;�) is not zero at

any of those frequencies, the so-called Whittle (1962)�s (discrete) spectral approximation to the

log-likelihood function is

�T
2
ln(2�)� 1

2

T�1X
j=0

ln jgyy(!j ;�)j �
1

2

T�1X
j=0

2�Iyy(!j)

gyy(!j ;�)
; (B11)

where !j = 2�j=T (for j = 0; : : : T � 1) are the usual Fourier frequencies.

The MLE of �, which only enters through Iyy(!), is the sample mean, so in what follows we

focus on demeaned variables. In turn, the score with respect to all the remaining parameters is

@lt
@�

=
1

2

T�1X
j=0

@gyy(!j ;�)

@�
M(!j ;�)m(!j ;�); (B12)

where m(!;�) = 2�Iyy(!)� gyy(!;�) and M(!;�) = g�2yy (!;�):

The information matrix is block diagonal between � and the elements of �, with the (1,1)-

element being gyy(0) and the (2,2)-block

Q(�) =
1

4�

Z �

��

@gyy(!j ;�)

@�
M(!;�)

�
@gyy(!j ;�)

@�

��
d!; (B13)

where � denotes the conjugate transpose of a matrix. A consistent estimator will be provided

either by the outer product of the score or by

�(�) =
1

2

T�1X
j=0

@gyy(!j ;�)

@�
M(!j ;�)

�
@gyy(!j ;�)

@�

��
: (B14)

In fact, by selecting an arti�cially large value for T in (B14), one can approximate (B13) to any

desired degree of accuracy. In addition, the univariate nature of yt implies that both gyy(!j ;�)

and its derivatives are real.

Formal results showing the strong consistency and asymptotic normality of the resulting ML

estimators of dynamic latent variable models under suitable regularity conditions were provided

by Dunsmuir (1979), who generalized earlier results forVarmamodels by Dunsmuir and Hannan

(1976). These authors also show the asymptotic equivalence between time and frequency domain

MLEs.

B.2 The autocorrelation structure of the UCARIMA model

We can derive the autocovariance structure of yt = �xt by the usual inverse Fourier trans-

formation 
yy(k) = cov(yt; yt�k) =
R �
�� e

i!kgyy(!)d! after exploiting that gyy(!) is the sum of

the spectral densities of the signal and noise components, st = �zt and nt = �ut, respectively,

which are cross-sectionally uncorrelated at all leads and lags. Speci�cally, we know that

yt =
1

1�  1L�  2L2
ft +

1� L
1� �Lut = st + nt;
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where the �rst component, st, is an Ar(2) process while the second component, nt, is an

Arma(1,1) with a unit root on the Ma part. Thus,

gyy(!;�) = gss(!;�) + gnn(!;�)

=
�2f

(1�  1e�i! �  2e�2i!) (1�  1ei! �  2e2i!)
+
(1� e�i!)(1� ei!)�2v
(1� �e�i!)(1� �ei!)

=
�2f

(1 +  21 +  
2
2)� 2 1(1�  2) cos! � 2 2 cos 2!

+
2(1� cos!)�2v

(1 + �2)� 2� cos! : (B15)

However, the expressions for 
yy(k) are somewhat easier to obtain in the time domain as the

sum of the autocovariances of the two underlying components.

The autocovariances of the Ar(2) process for the signal are given by the usual Yule-Walker

recursion


ss(k) =  1
s(k � 1) +  2
s(k � 2); (B16)

with initial conditions


ss(0) =

�
1�  2
1 +  2

�
�2f

(1�  2)2 �  21
and 
ss(1) =

�
 1

1 +  2

�
�2f

(1�  2)2 �  21
;

which yields


ss(2) =
 21 +  2(1�  2)

1�  2

s(0), 
ss(3) =

 1[ 
2
1 +  2(2�  2)]
1�  2


s(0)

and


ss(4) =
 1[ 

3
1 +  1 2(3�  2)] +  22(1�  2)

1�  2

s(0):

To �nd the solution for general k, it is convenient to �nd the roots of the characteristic equation

(B16), which are given by �1 = 1
2 1 +

1
2

q
 21 + 4 2 and �2 =

1
2 1 �

1
2

q
 21 + 4 2:

When the roots are di¤erent (real or complex), the autocorrelation of order k will be given

by


ss(k) =
�k+11 (1� �22)� �k+12 (1� �21)

(�1 � �2)(1 + �1�2)

s(0):

Applying L�Hôpital�s rule, this simpli�es to


ss(k) =

�
1 + k

(1� �2)
(1 + �2)

�
�k
s(0)

when the two roots are equal, which happens for  2 = � 21=4 (see e.g. Fuller (1995)).

In turn, the autocovariances of the Arma(1,1) process for the noise will be


nn(0) = �2v

�
1 +

(�� 1)2
1� �2

�
=

2�2v
�+ 1

, 
nn(1) = �2v

�
(�� 1) + (�� 1)

2�

1� �2

�
=
(�� 1)�2v
�+ 1

and 
nn(k) = [�
k�1(�� 1)�2v]=(�+ 1). Finally, 
yy(k) = 
ss(k) + 
nn(k):
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C Tables and �gures

Table 1: Monte Carlo rejection rates (in %) under the null and alternative hypotheses for the
white noise versus multiplicative seasonal Ar test.

Null Alternative hypotheses
hypothesis Ha1 Ha2

1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A: Asymptotic critical values
T = 100

GET 1.1 4.1 8.2 29.8 45.9 55.2 27.3 48.7 60.9
LR 0.9 4.3 9.2 14.8 31.4 42.8 19.7 43.7 57.9
LM-Ar(1) 0.7 4.1 9.0 14.9 29.9 39.6 2.6 9.3 16.0
LM-SAr(4) 0.5 3.7 8.0 11.6 27.7 38.4 2.5 9.5 16.1
MT 0.8 3.7 7.8 25.8 40.7 49.7 20.6 39.1 50.7

T = 400

GET 1.0 4.9 9.8 87.9 94.7 96.8 92.5 97.8 99.1
LR 0.9 4.4 9.0 80.1 91.6 95.1 91.7 97.7 99.0
LM-Ar(1) 0.9 4.7 9.5 58.1 76.1 83.5 3.1 10.4 17.2
LM-SAr(4) 1.1 5.0 9.7 58.4 78.2 85.5 5.1 13.7 21.7
MT 0.9 4.4 9.4 84.6 92.9 95.5 89.0 96.3 98.0

Panel B: Bootstrap critical values
T = 100

GET 1.0 5.0 10.0 29.3 48.2 57.7 26.5 51.9 64.2
LR 1.0 5.0 10.0 15.3 33.3 44.2 20.8 46.6 59.3
LM-Ar(1) 1.0 5.0 10.0 16.8 32.3 40.9 3.1 10.8 17.0
LM-SAr(4) 1.0 5.0 10.0 15.4 31.7 41.6 3.8 11.6 18.4
MT 1.0 5.0 10.0 27.0 44.3 53.3 22.0 43.7 55.0

T = 400

GET 1.0 5.0 10.0 87.4 94.7 96.8 92.1 97.9 99.1
LR 1.0 5.0 10.0 81.0 92.3 95.3 92.2 98.0 99.1
LM-Ar(1) 1.0 5.0 10.0 60.1 76.9 84.1 3.7 10.8 17.7
LM-SAr(4) 1.0 5.0 10.0 57.3 78.2 86.0 4.9 13.7 22.1
MT 1.0 5.0 10.0 85.3 93.3 95.8 89.6 96.7 98.2

Notes: Results based on 10,000 samples. The mean and variance parameters 'M and 'V are estimated
under the null using their sample analogs. GET is computed as de�ned in section 2.1. DGPs: the true
unconditional mean and the variance of the innovations are set to 0 and 1, respectively, under both the
null and alternative hypotheses. As for the alternative hypotheses,

(1� 0:1L� 0:1L2 � 0:1L3 � 0:1L4)yt = "t (Ha1)

and
(1� 0:4L)(1 + 0:4L)(1� 0:4L4)(1 + 0:4L4)yt = "t (Ha2):

LM-Ar(1) and LM-SAr(4) denote the Lagrange multiplier tests based on the score of an Ar(1) and a
seasonal SAr(4), respectively. MT refers to the two-sided version of GET. Finite sample critical values
in Panel B are computed using a parametric bootstrap procedure.
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Table 2: Monte Carlo rejection rates (in %) under the null and alternative hypotheses for the
local level model versus the Ucarima model (12) test.

Null Alternative hypotheses
hypothesis Ha1 Ha2

1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A: Asymptotic critical values
T = 100

GET 0.7 4.2 8.9 4.6 18.9 32.0 7.5 20.5 30.4
LR 1.0 5.2 10.4 11.3 30.3 43.7 10.8 27.4 39.9
2nd autocorrelation 0.8 4.1 9.3 2.9 12.7 21.7 1.6 6.8 12.4
2nd & 3rd autocorrelation 0.8 4.1 8.8 4.1 17.2 29.0 1.5 6.6 11.9

T = 400

GET 0.8 4.8 9.5 64.0 86.7 93.0 49.4 72.1 81.8
LR 0.8 5.4 10.4 75.2 90.7 95.3 62.9 82.8 89.8
2nd autocorrelation 0.9 4.6 9.6 27.7 54.6 68.1 2.1 8.1 14.8
2nd & 3rd autocorrelation 0.9 4.5 9.6 48.4 75.4 85.6 2.0 7.8 14.0

Panel B: Bootstrap critical values
T = 100

GET 1.1 5.3 10.4 6.0 21.7 35.5 8.6 22.8 33.0
LR 1.9 5.3 10.4 11.0 27.0 38.9 10.3 24.1 35.1
2nd autocorrelation 1.2 5.3 10.2 4.5 13.6 23.6 2.3 7.2 13.7
2nd & 3rd autocorrelation 1.3 5.5 10.0 5.5 19.8 31.4 2.2 7.9 13.2

T = 400

GET 1.0 5.0 10.0 67,0 87,0 93,7 51,5 72,7 83,0
LR 1.2 5.2 10.2 71,4 88,1 92,9 59,0 78,8 86,4
2nd autocorrelation 1.0 5.0 10.0 30,3 56,0 69,1 2,4 8,9 15,3
2nd & 3rd autocorrelation 1.0 5.0 10.1 52,8 76,8 85,8 2,5 8,4 14,2

Notes: Results based on 10,000 samples. The local level parameters �2f and �
2
u are estimated under the

null. GET is computed as de�ned in section 3.1. DGPs: We simulate Gaussian shocks with �2f = 1 and
�2v = 0:5 under both the null and the alternatives. Alternative hypotheses:

(1 + 0:5L+ 0:4L2)�zt = ft
(1� 0:5L)ut = vt

�
(Ha1)

and
(1� 0:1L+ 0:5L2)�zt = ft

(1 + 0:5L)ut = vt

�
(Ha2):

2nd autocorrelation (2nd & 3rd autocorrelation) denote the moment test of no second-order (no second-
or third-order) serial correlation in yt. Finite sample critical values in Panel B are computed using a
parametric bootstrap procedure.
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Figure 1: Alignment of GET and LR under the null under null for the white noise versus

multiplicative seasonal Ar test.
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Notes: Scatter plots of the GETT and LRT test statistics. Results based on 10; 000 simulated samples
of size T of y � i:i:d: Gaussian. GET is computed as explain in section 2.1. The true mean and variance
of the simulated data are set to 0 and 1, and the elements of ' are estimated using the sample mean and
variance, respectively.
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Figure 2: Alignment of GET and LR under the null for the local level model versus the
Ucarima model (12).
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Notes: Scatter plots of the GETT and LRT test statistics. Results based on 10; 000 simulated samples
of size T of the model under the null with Gaussian shocks with �2f = 1 and �

2
v = 0:5. GET is computed

as explained in section 3.1.
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