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Abstract

Tests are developed for neglected serial correlation when the information matrix is re-
peatedly singular under the null hypothesis. Specifically, consideration is given to white
noise against a multiplicative seasonal AR model, and a local-level model against a nesting
UcARIMA one. The proposed tests, which involve higher-order derivatives, are asymptoti-
cally equivalent to the likelihood ratio test but only require estimation under the null. It
is shown that the tests effectively check that certain autocorrelations of the observations
are zero, so their asymptotic distribution is standard. Monte Carlo exercises examine finite
sample size and power properties, with comparisons made to alternative approaches.
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1 Introduction

The econometric literature on serial correlation tests, which can be traced back at least to
Durbin and Watson (1950, 1951) and the references therein, is vast. Although in principle one
could use any of the triad of classical hypothesis tests, given that Rao’s (1948) score test and
Silvey’s (1959) numerically equivalent Lagrange multiplier (LM) statistic only require estimation
of the model parameters under the null, they became the preferred choice for neglected serial
correlation tests in econometric applications following Breusch (1978) and Godfrey (1978a,b),
to the extent that they are nowadays routinely reported by all the popular regression packages.
In addition to computational considerations, which continue to be very relevant for resampling
procedures with relatively small sample sizes, two other important advantages of LM tests are
that (i) rejections provide a clear indication of the specific directions along which modelling
efforts should focus, and (ii) they are often easy to interpret as moment tests, so they remain
informative for alternatives they are not designed for. Furthermore, under standard regularity
conditions, they are asymptotically equivalent to the Likelihood ratio (LR) and Wald tests under
the null and sequences of local alternatives, and thus they share their optimality properties.

One of those standard regularity conditions is a full rank information matrix of the unre-
stricted model parameters evaluated under the null. However, Fiorentini and Sentana (2016)
highlighted some examples of neglected serial correlation tests in which this condition does not
hold despite the fact that the model parameters are locally identified both under the null and
the alternative hypotheses. To tackle this problem, they applied the “extremum” tests proposed
by Lee and Chesher (1986). These authors studied situations in which one of the scores of the
parameters of the model under the alternative is identically zero when evaluated under the null.
Given that this renders standard LM tests infeasible, Lee and Chesher (1986) exploited the
restrictions that the null hypothesis imposes on higher-order optimality conditions. Sometimes,
the second derivative suffices, but it might be necessary to study the third or even higher-order
ones. They proved the asymptotic equivalence between their extremum tests and the corre-
sponding LR tests under the null and sequences of local alternatives in unrestricted contexts.
Using earlier results by Cox and Hinkley (1974), this equivalence intuitively follows from the
fact that the extremum tests can often be re-interpreted as standard LM tests of a suitable
transformation of the parameter whose score is zero such that the new information matrix is
no longer singular. For example, if the first two derivatives are identically zero when evaluated
under the null but the third one is not, a cubic root provides an appropriate transformation
which leads to a non-zero score after applying L’Hépital’s rule twice in succession. Naturally,

the LR test is numerically invariant to this one-to-one transformation. In contrast, Wald tests



are extremely sensitive to reparametrization under these circumstances.

Importantly, though, in all the examples Lee and Chesher (1986) and Fiorentini and Sentana
(2016) discussed, the nullity of the information matrix of the alternative model under the null
was one. The purpose of this paper is to develop tests for neglected serial correlation asymp-
totically equivalent to the LR test in some highly irregular situations in which the nullity of the
information matrix is two or higher. To do so, we rely on the generalized extremum tests (GET)
proposed in Amengual, Bei and Sentana (2023).

To understand our procedure, it is pedagogically convenient to consider the simplest possible
situation of an information matrix with a zero 2 x 2 diagonal block because the scores of two of the
parameters of the model under the alternative are identically zero when evaluated under the null.
For simplicity, suppose the second-order derivatives are all different from zero. Unfortunately,
a mere reparametrization will not solve the problem in this case because the number of distinct
elements of the Hessian (three) exceeds the number of parameters affected by the singularities
(two). For that reason, our solution involves two steps. First, we express the two parameters
affected by the singularities in polar coordinates, which effectively correspond to the angle and
length of their Cartesian representation on the real plane. For a fixed value of the angle, testing
the null hypothesis is equivalent to testing that the Euclidean length of the parameter vector is
zero, a unidimensional problem to which we could apply the Lee and Chesher (1986) solution.
Unfortunately, the angle becomes underidentified under the null, so the second step of our
solution relies on the supremum of their test statistic over all possible values of the angle as
likelihood ratio analogue in the spirit of Davies’ (1987).

More generally, GET is an LR-type test that compares the log-likelihood function under the
null to the maximum of its lowest-order expansion under the alternative capable of identifying
the restricted parameters.

For illustrative purposes, we use as examples two classes of univariate time series models
very popular among practitioners:

1. the multiplicative seasonal ARIMA (SARIMA) models put forward by Box and Jenkins
(1970) to capture the autocorrelation of series with strong seasonal patterns, such as their
famous airline passenger example, and

2. the unobserved components ARIMA (UCARIMA) models, which constitute the basis of the
“structural time series” models studied by Harvey (1989) as a way of performing the classical
decomposition of a time series into trend, cyclical, seasonal and irregular components.

(see Lippi and Reichlin (1992) for an insightful comparison of some important characteristics of

these two models).



We show that our proposed tests effectively check that certain autocorrelations of the ob-
servations are zero, which in turn implies that their asymptotic distribution is standard. This
is somewhat remarkable because GET statistics typically have unusual asymptotic distributions
(see e.g. Amengual, Bei and Sentana (2022)).

We conduct Monte Carlo exercises that study the finite sample size and power properties
of our proposal and compare it to other tests for neglected serial correlation. We find that our
suggested parametric bootstrap procedures yield very reliable test sizes for the small samples
typically encountered in empirical applications to macroeconomic data. In addition, we confirm
the power superiority of our tests over their competitors. Finally, we also confirm their substan-
tial computational advantages over the corresponding LR tests, which require the maximization
over the entire parameter space of an unrestricted log-likelihood function which is extremely
flat around its maximum when the null hypothesis is true. These computational advantages are
particularly pertinent for computing the bootstrap critical values mentioned above.

The rest of the paper is organized as follows. We derive our proposed tests for the two afore-
mentioned examples in Sections 2 and 3, respectively, studying both their asymptotic properties
and their finite sample ones. Next, we present our conclusions in Section 4, relegating proofs

and some additional results to the appendices.

2 Multiplicative seasonal ARIMA models

The serial dependence structure of the popular multiplicative seasonal ARIMA models put
forward by Box and Jenkins (1970) is perfectly understood, and the same is true of the properties
of the maximum likelihood estimators (MLE) of their parameters in normal circumstances.
Moreover, LM tests for neglected serial correlation in such models have been readily available
for several decades. However, what it is far less known is that in some cases, the standard
regularity conditions that guarantee the asymptotic validity of such tests do not hold. Next, we

showcase the difficulties involved by means of a rather simple example.

2.1 The test statistic

Suppose that after taking regular and seasonal differences of an observed time series, a
researcher would like to formally assess the need for a more complicated dependence structure.
Specifically, assuming the data is observed at the quarterly frequency, and letting L denote the
lag operator, one of the alternatives that a researcher might consider is the following AR(2)-

SAR(2) process:

(1 —91L)(1 — 99L) (1 — 93L) (1 — 94 LY (s — ops) = &4, (1)



with E(g;) = 0 and V(g;) = ¢y, where y; = AAyz; with A =1 — L and Ay = 1 — L* denoting
the usual regular and seasonal difference operators, and z; denoting the original data, so that
Hy : 9 =0, with 9 = (¥4, 92, 93,94)".

As usual, non-linear least squares estimation coincides with Gaussian ML, so that the crite-

rion function will be

T
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where the conditional mean under the alternative is
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The model parameters under the null are ¢,, and ¢y, whose restricted MLEs coincide
with the sample mean and variance (with denominator T') of y;. Moreover, the MLEs of the
parameters of the alternative model, which also include 9, usually converge to their true values
at the standard /T rate.

However, as we shall formally prove below, the information matrix of model (1) evaluated

at ¥ = 0 has two zero eigenvalues because
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which makes this testing problem a highly irregular one. This is particularly relevant for Wald
tests, which are extremely sensitive to reparametrizations in this context. For example, Fioren-
tini and Paruolo (2009) found that the rate of convergence of a sequential Cochrane-Orcutt-type
estimator of what is effectively the product of the first two autocorrelations of 1; is T' rather
than T% or T when Y1 = J2 = 0 in a non-seasonal version of model (1) in which J3 = 94 = 0.

As we show in the proof of Proposition 1, we can find a suitable reparametrization relating
(Qars ov,V1,02,93,894) and (¢, ¢y, 0i1, iz, Ou1, Ou2) that isolates the singularity in the last two
parameters in such a way that the first derivatives of the log-likelihood function corresponding
to 6,1 and 0,2 are both zero, where @, = (0;1,0;2) contains the parameters of the alternative
model that are first-order identified while @), = (0,1,0,2) refers to those that are first-order
underidentified but second-order identified in the terminology of Sargan (1983).

Fortunately, the assumptions of Theorem 1 in Amengual, Bei and Sentana (2023) apply to

the second derivatives
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because the asymptotic covariance matrix of
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scaled by /T has full rank for any (0u1,042) # (0,0), which leads to the following result:

2 +9’l2t2

Proposition 1 Under Hy,
LRy = GETyp + O,(T %), (5)

where LR is the likelihood ratio statistic based on (2), and
GETr = T(#{y + i + Fapl[far > 0] 4 fgpl[fer > 0]), (6)

where 1[.] is the usual indicator function and
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Therefore, the GET7 statistic is simply focusing on the first two regular sample autocorre-
lations and the first two seasonal ones, which is very intuitive in view of (1). Given that these
estimated autocorrelations are asymptotically independent under the null of white noise, the
asymptotic distribution of (6) will be a mixture of x3, x3 and x3 with weights i, % and %,
respectively. The partially one-sided nature of the test arises from the multiplicative nature of
the alternative, which forces the roots to be always real. Additive alternatives, which allow for
complex roots too, would give rise to two-sided tests.

Furthermore, we can show that the GET test statistic of white noise against the multiplicative

AR(k)-SAR(ks) model

[T (1= L) TIER (1= 95 L) (e — ou) = &

for K > 3 or ks > 3 will numerically coincide with the statistic in (6). The rationale is as
follows. When the null is true, we can prove that the MLE of an additive AR(3) is such that
all three roots of the lag polynomial are real with probability tending to zero, unless one of
the roots is forced to be zero. Consequently, the LR for multiplicative AR(3) is asymptotically
equivalent to the LR for AR(2), and the same applies to the corresponding GETs. Perhaps
less surprisingly, we can also show that we would obtain exactly the same test statistic if we
considered multiplicative M A alternatives instead.

To provide the intuition for the convergence rate in (5), it is convenient to look at expression

(A3) in Appendix A. Specifically, given that we can write the LR test statistic in terms of



a fourth-order Taylor expansion of the log-likelihood function whose leading terms coincide
with the ones that appear in the expression for the GET test statistic, the O/p(T_i) rate of
the remainder immediate determines the rate of convergence of the difference between the two
statistics under the null.

Finally, it is important to mention that our proposed test, which is based on sample autocor-
relations, is numerically invariant to affine transformations of the observed series y;. Effectively,
this means that its finite sample distribution is pivotal with respect to ¢ = (¢, ¢y). There-
fore, one can estimate the sample mean and variance of y;, and apply our test directly to the

standardized series as if they were the observed variables.

2.2 Simulation evidence

Next, we study the finite sample size and power properties of the testing procedures we in-
troduced in the previous subsection by means of several extensive Monte Carlo exercises. Given
that no nuisance parameters are effectively involved under the null, we can set the uncondi-
tional mean and variance of the innovation ¢; to 0 and 1, respectively, both under the null and
alternative hypotheses without any loss of generality.

Naturally, we estimate ¢;; and ¢y, under the null with the sample mean and variance,
respectively. We recycle the sample mean as initial value for ¢,, under the alternative. As
for ¢y, and ¥, we use as starting values the ones we obtain by means of a minimum distance
procedure that takes as objective function the Euclidean norm of the difference between the
theoretical and sample values of the variance and the four autocovariances underlying our test
statistic (6) in order to increase the chances that we obtain the right unrestricted ML estimates,
and consequently, the correct LR test. Nevertheless, our results seem insensitive to this choice
of initial values.

As alternative hypotheses we consider the covariance stationary models

(1-1L— 1L - 1L* — 1LYy = & (H,), and

(1—.4L)(1 4 4L)(1 — ALY + ALYy, = & (Hg,),

for which the first, second, fourth and eighth autocorrelation coefficients in the population are
(0.14,0.14,0.14,0.03) and (0,0.16,0.03,0.16). Note that two of the roots of the first process are
complex conjugates, while our test is designed for the case of real roots.

We approximate the exact finite sample distribution using 10,000 simulated samples under
the maintained hypothesis that the y;’s are i.i.d. as standard normals. In fact, we could thus
obtain “exact” critical values for any sample size by increasing the number of simulations.

Alternatively, one could consider a non-parametric bootstrap procedure that randomly draws



with replacement from the observations, which would eliminate any time series dependence
while allowing for any marginal distribution. Either way, we do not need to take into account
the sensitivity of the critical values to @ because the test statistics are numerically invariant to
the values of these estimators.

In Table 1 we compare the results of our test with three alternative procedures: LM-AR(1)
and LM-SAR(4), which denote standard LM tests based on the score of an AR(1) and a Wallis
(1972)-style seasonal AR(4), respectively, and a moment test based on the first two regular
sample autocorrelations and the first two seasonal ones (MT), which is effectively the two-sided
version of (6), whose asymptotic distribution is x3 under the null. Specifically, Panel A of Table
1 contains the rejection rates based on asymptotic critical values for 7' = 100 (top) and T' = 400
(bottom), while in Panel B we report the ones that rely on the parametric bootstrap.

The first three columns of each of those panels present the rejection rates at the 1%, 5% and
10% levels under the null. Given the number of replications, the 95% asymptotic confidence
intervals for the Monte Carlo rejection probabilities under the null are (.80,1.20), (4.57,5.43)
and (9.41,10.59) at the 1%, 5% and 10% levels. As can be seen in Panel A, all tests tend to be
undersized at the usual nominal levels, with some significant size distortions across the board
when T = 100. As expected, though, the rejection rates get much closer to the nominal sizes
for T' = 400. In contrast, the size of the tests becomes perfectly accurate by construction when
we use the parametric bootstrap procedure described above.

In turn, the last six columns present the rejection rates at the 1%, 5% and 10% levels for
the two alternatives we consider. The behavior of the different test statistics is in accordance
with expectations. In particular, our proposal is the most powerful for H,,, which is not very
surprising given that it is designed to direct power against such multiplicative alternatives with
real roots. But it is also the top performer for H,, even though the process has two complex
roots, which is perhaps not entirely surprising in view of the positivity of the relevant population
autocorrelations. Predictably, the rejection rates in Panel B are slightly higher, which simply
reflects the fact that all the tests tend to be conservative with the asymptotic critical values.

The scatterplot in Figure 1 visually illustrates the asymptotic equivalence under the null
between LRy and GETr statistics stated in Proposition 1, with the Gaussian rank correlation
coeflicients between them being 0.932 and 0.986 across Monte Carlo samples of size T' = 100
and 400, respectively. The Gaussian rank correlation coefficient between two variables is the
usual Pearson correlation coefficient between the Gaussian scores of those variables, which are
obtained by applying the inverse Gaussian cumulative distribution function transform to the

ranks of the observations on each variable divided by n + 1 (see Amengual, Sentana and Tian



(2022)). Like the Spearman correlation coefficient, the Gaussian one is less sensitive to outliers
than the Pearson one.

Finally, our results also indicate that the LR takes 755 (921) seconds of CPU time for 10,000
samples of length 100 (400), while computing GET only requires 0.20 (0.24) seconds, respectively,

which makes a huge difference in the calculation of the bootstrap critical values.

3 UCARIMA models

These popular unobserved component models assume that the observed time series are
the superposition of two or more latent ARIMA time series models, whose parameters can be
estimated by maximizing the Gaussian log-likelihood function of the observed data, which can
be readily obtained either as a by-product of the Kalman filter prediction equations or from
Whittle’s (1962) frequency domain asymptotic approximation. Once the parameters have been
estimated, filtered values of the unobserved components can be extracted by means of the
Kalman smoother or its Wiener-Kolmogorov counterpart. These estimation and filtering issues
are well understood (see e.g. Harvey (1989) for a textbook treatment).

In contrast, tests that assess the correct specification of the parametric ARIMA models for the
underlying components are far less well studied, even though the various outputs of an UCARIMA
model could be misleading under misspecified dynamics. As mentioned in the introduction,
Fiorentini and Sentana (2016) provided a thorough discussion of such tests, highlighting the
popular local level model as an example in which the LM test cannot be computed in the usual
way because the information matrix of the alternative model is sometimes singular under the
null. Unfortunately, their solution based on Lee and Chesher (1986) cannot be applied when
the nullity of the information matrix is two or more. Next, we study in detail a simple example

of this situation.

3.1 The test statistic

The most popular UCARIMA model among practitioners is the local level process:

T = 2+ u, (7)
Az = fy, (8)
uwg = vy and 9)
(5)ue ~ ~[(2)-(7 &)

where f; and v; follow two univariate white noise processes orthogonal at all leads and lags, I;_1

denotes the information set available at ¢ — 1 which contains past values of x, and O'?c and o2 are



both strictly positive to exclude degenerate cases. Thus, the observed series is simply a random

walk plus noise, whose first differences y; = Ax; follow an MA (1) process with coefficient

B, = (VT aq-2—q) <0, (11)

2

where ¢ = a?c /o2 > 0 is the bounded signal to noise ratio, and residual variance o2 = —o2/ By-

As is well known, this model justifies the popular Exponentially Weighted Moving Average
(EwMA) prediction rule, which has proved remarkably successful in many applications ranging
from macro time series to volatility forecasts. However, EWMA predictions become suboptimal
if (8) or (9) are dynamically misspecified, so it makes sense to test them against some more
general alternatives.

To illustrate the issues that may arise, we consider the following nesting model:

(1 =L — L) Az = f
(i — OéL)Q’LLt = Utt t } (12)

in which the “signal” z; follows an ARIMA(2,1,0) process while the “noise” u; a stationary ARr(1)
process. As a result, the null hypothesis of interest is Hy : « = 1, = 15 = 0.

Once again, we can formally prove that the dimension of the nullspace of the information ma-
trix of the parameters of model (12) evaluated under the null is two because the first-derivatives
of the log-likelihood function corresponding to 1; and 1, are linear combinations of the ones
corresponding to a?, 02 and a. In fact, we show in the proof of Proposition 2 that we can find a
suitable reparametrization from (0’%,012], a,1h1,1,) to (a?j, ol af, wi,wg) that isolates the sin-
gularity in the last two parameters in such a way that the first-derivatives of the log-likelihood
function corresponding to TM and 1/15 are both zero.

Like Fiorentini and Sentana (2016), we can explicitly relate this singularity to the identi-
fication conditions for UCARIMA models in Hotta (1989). Specifically, although model (12) is

generally identified, it is locally equivalent around the null to the following model:

Azy = (1 — ;L — Py L),
L (13)

in the sense that the (absolute value of the) scores and information matrices are identical when
Hp holds. Unlike model (12), which generates the autocorrelation structure of a restricted
ARMA (3,3) for v, model (13) generates the autocorrelation structure of an unrestricted MA(2),
which depends on three parameters only, namely the two MA coefficients plus the variance of
the reduced form innovations. In contrast, model (13) depends on five parameters, namely 1),
15 and a together with afc and o2, which means that the M A (2) reduced form can only identify
a manifold of dimension two of the structural parameters.

In addition, with the aforementioned reparametrization,



2 3 2
a? =0 and 8? = 0, while 8? 0,
(O11)? (0y1)? (O1py)?

which means that these two parameters have different degrees of identification. Fortunately,

the assumptions of the more general Theorem 2 in Amengual, Bei and Sentana (2023) apply,

allowing us to obtain the following result:

Proposition 2 Under Hy,
LRy = GETy + O,(T" %), (14)

where LRy is the corresponding likelihood ratio statistic, and

Tor
GET, = (Tor Tsr far )V;alpa rsr |, with
T4T
' Tor
Fir = VY gy, i VVT [ e | (15)
aFa T—00 -
2ot Yi T4T

Therefore, both LR and GETr are effectively testing that the second, third and fourth
autocorrelations of y; are zero. This result is not entirely surprising in view of the fact that v,
follows an M A (1) model under the null and an ArRMA(3,3) under the alternative. Unlike what
happened in the model discussed in Section 2, though, the sample autocorrelations are no longer
asymptotically independent under the null, so we need their asymptotic covariance matrix to
correct for sampling uncertainty, which is particularly simple to obtain in the frequency domain
using the expressions in Appendix B.1, as we explain in the proof of Proposition 2.

Finally, expressions (A4)—(A8) in Appendix A provide intuition on the convergence rate in
(14). Specifically, given that we can write the LR test statistic in terms of a eighth-order Taylor
expansion of the log-likelihood function whose leading terms coincide with the terms that appear
in the expression of the GET test, the Op(T_é) rate of the remainder immediate determines the

rate of convergence of the two statistics under the null.

3.2 Simulation evidence

To assess the size properties of our proposed test, we generate 10,000 samples of lengths
T = 100 and T = 400 of the local level model (7)-(10). Under the null, we simulate Gaussian
shocks with afc =1 and o2 = 0.5, so that the signal to noise ratio is moderate.

We compute the spectral version of GETr in (A10) using (B14) to estimate the informa-
tion matrix (A9) and the fast Fourier transform to obtain the periodogram. It is important to
emphasize that the LRy statistic requires the estimation of model (12), which is a non-trivial

numerical task for the reasons described in the introduction. To increase the chances that we

10



obtain the correct unrestricted ML estimates, and consequently, the right LR test, we keep the
maximum maximorum of the spectral log-likelihood of model (12) starting from two sets of ini-
tial values: the ones that maximize the log-likelihood function under the null, and another set
that we obtain by means of a minimum distance procedure that takes as objective function the
Euclidean norm of the difference between the theoretical and sample values of the variance and
the first four autocovariances of the process, whose expressions we provide in Appendix B.2.

Although our main interest lies in the GETr and LRy statistics in Proposition 2, we also
consider the following two moment tests for comparison purposes:

1. no second-order serial correlation in y;,

2. no second- or third-order serial correlation in y;.

Importantly, in computing these moment tests, we use the relevant elements of (A9) to obtain
the adjusted asymptotic covariance matrix of the second and third sample autocovariances.

Unlike what happens in the multiplicative seasonal ARIMA model in Section 2 in which the
autocorrelations did not depend on the mean and variance of y;, the finite sample distribution
of GETr and LRy is not pivotal with respect to the (unknown) value of the signal to noise
ratio ¢, even though both statistics are numerically invariant to the scale of y;. Intuitively, the
value of ¢ affects the autocorrelations on which our test is based, so we need to adjust for the
sampling variability of its estimators under the null, both asymptotically and in the bootstrap.
For that reason, we conduct a parametric bootstrap procedure whereby for each of those 10,000
simulated samples, we simulate another N B — 1 samples in which we set afc equal to one without
loss of generality and (1 + ¢)~! to its estimated value, so that we can automatically compute
size-adjusted rejection rates, as forcefully argued by Horowitz and Savin (2000). In fact, the
bounded support of (1 + ¢)~! allows us to compute a table of “exact” critical values for a fine
grid of values of this reduced-form MA coefficient before running the actual simulations (see
Appendix D.1 in Amengual and Sentana (2015) for details). The same procedure works if we
replace (1 4 ¢)~! by either B, in (11) or the first-order autocorrelation of y;, which are both
between zero and minus one, but it is trickier to apply to ¢ directly because this parameter can
take any positive real value in the sample.

We present the rejection rates under the null for the tests at the 10%, 5% and 1% in the first
three columns of Table 2. Once more, in Panel A we report the results based on asymptotic
critical values for samples of length 100 (top) and 400 (bottom), and in Panel B those based
on the bootstrap. Given that the number of Monte Carlo simulations is also 10,000, the 95%
asymptotic confidence intervals for the rejection probabilities under the null are again (.80,1.20),

(4.57,5.43) and (9.41,10.59) at the 1%, 5% and 10% levels.
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In terms of size distortions, the same comments we made in the seasonal ARIMA example
apply here too, with only two exceptions: (i) the LR test is now slightly oversized, and (ii) the
bootstrap no longer provides exact critical values because of the need to estimate gq. Neverthe-
less, all the testing procedures have reasonable sizes when we rely on bootstrap critical values
regardless of the sample length. It is also worth mentioning that in a very small fraction of
the samples of size T' = 100 simulated under the null (0.62%), we encountered the “pile-up”
problem associated to a positive first-order sample autocorrelation for y;. In contrast, this never
happened under either of the alternatives below, or indeed when T = 400.

In particular, we simulate and estimate 10,000 samples of the same length of the following

two alternative data generation processes (DGPs):

(14 0.5L + 0.4L?) Az = f,
(1—0.5L)u; = v (Ho,) and

(1—0.1L+0.5L?)Az = f; (H,,)
(1 + 05L)ut = Ut a2

with the same 0? and o2 as in the null hypothesis. The first four autocorrelation coefficients of
these processes in the population are (-0.32,-0.19,0.15,-0.04) and (-0.42,0.03,-0.15,0.15).

The corresponding rejection rates, which we report in the last six columns of Table 2, indicate
that the behavior of the different test statistics is in accordance with expectations. For both
alternatives, the GET and LR tests are more powerful than the competitors. Interestingly,
LR is slightly more powerful than our proposal for both H,; and H,,, which is in contrast
with the ranking in the example in Section 2. Nevertheless, one should keep in mind that our
equivalence result is an asymptotic one under the null and, presumably, suitable sequences of
local alternatives, while the sample sizes we use in our simulations are moderately small and we
are effectively considering fixed alternatives. In this respect, the scatterplot in Figure 2 visually
illustrates the asymptotic equivalence under the null between LR and GETr in Proposition 2,
with the Gaussian rank correlation coefficients between the GET and LR test statistics across
Monte Carlo samples of size T = 100 and 400 generated under the null being 0.743 and 0.807,
respectively, reflecting the slower rate of convergence.

The simulation results also indicate that the LR takes 1,250 (1,763) seconds for 10,000
samples of length 100 (400), while computing GET only requires 4.5 (5.5) seconds, respectively,

which once again makes a huge difference in the calculation of the bootstrap critical values.

4 Conclusions

We characterize the singularity of the information matrix of a multiplicative seasonal AR

model & la Box and Jenkins under the null of white noise, as well as of a trend plus signal
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UcARIMA model that nests the popular local level process. Using the generalization in Amen-
gual, Bei and Sentana (2023) of the extremum-type tests in Lee and Chesher (1986) to models in
which the nullity of the information matrix under the null hypothesis is strictly larger than one,
we explain how to obtain a score-type test based on higher-order derivatives which is asymp-
totically equivalent to the LR despite said singularity but only requires estimation under the
null. This is particularly relevant for resampling-based inference because the fact that several
log-likelihood derivatives are zero under the null implies that the LR requires the estimation of
all the parameters that appear under the alternative in a model whose log-likelihood function is
extremely flat.

Our proposed dynamic specification tests are simple to implement and even simpler to inter-
pret. And although some of our theoretical derivations make extensive use of frequency domain
methods for time series, we provide a simple time domain interpretation of the statistics, so that
empirical researchers who are not familiar with spectral analysis can still apply them easily.

We conduct Monte Carlo exercises that study the finite sample size and power properties
of our proposals and compare them to alternative approaches. We find that our suggested
parametric bootstrap procedures work very well, and that our tests have more power than
alternative procedures. We also find that the computational advantages of our GET procedures
relative to the LR ones are very substantial.

In the two examples that we consider the model parameters are only identified up to higher-
order when the null is true. As a result, a local power analysis of our proposed tests would
necessarily involve sequences of those parameters converging to zero at unusually low rates.
Nevertheless, given that in both cases our test statistics have y?-like asymptotic distributions
under the null, they would approximately follow non-central x? distributions in large samples
if we ignore inequality constraints. Finding exact expressions for the non-centrality parameters

constitutes an interesting avenue for further research.
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Appendices
A Proofs

In this appendix, we thoroughly check that the multiplicative seasonal ARIMA and UCARIMA
models that we have considered satisfy the substantive assumptions required for the application
of Theorems 1 and 2 in Amengual, Bei and Sentana (2023), respectively. For the sake of brevity,
though, we do not include a detailed verification of the regularity conditions in their Assumptions

1 and 2.

Proof of Proposition 1

The scores evaluated under the null will be

ol; _ Y= Pum Ol (ye — <PM)2 2%

Oop Pv ’ Aoy 20y ’
Oy Ol (yr— o) (W1 — o) and Oy Ol (ye— o) (Wi—a — oumr)
001 OU oy V5 94 Py

which immediately imply (3), thereby confirming that the nullity of the information matrix is
two.

To isolate those singularities, consider the reparametrization from the original set of para-
meters @ = (¢, Py, 91, 02,93, 94) to a different set p = (¢, Oy, 0i1, 0i2, Ou1, Ou2)’ defined by
or = Ous v = vy 1 =01 — 01, U2 = 0, U3 = big — Oy2 and 4 = Oy,

The corresponding first-order derivatives under the equivalent null hypothesis
Ho:0i1 =041 =0i2="0,=0

are

ol _ (e — dpr) (i1 — dpy) Ol _ (Yt — épr) (We—a — Opr) Ol — 0 and ol —0

01 oy T 000 oy "0, 002

which verifies Assumption 3.1 in Amengual, Bei and Sentana (2023).
In turn, the second-order derivatives involving 6,; and 6,2 are given in (4). Consequently,

021,
0022

021,
062

21,
002"

0%% = 07— + 03

where 892 = (63,0105,60102,03)" and

82lt _ <82lt 82115 821t 82lt> 82lt o 2 (yt - ¢M) (yt—Q - (Z)M)

0622 \ 99?" 961005" 061002° 963 ) (90,1)? Py ’
%l _ 0 and O’ = 2 (yt — dar) (Yr—s — (bM)'
00,1002 (00,2) ov
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It is then easy to see that the asymptotic covariance matrix of

O Ol Ol Ol e 0%k
Oy’ Ody " 80,17 00" " 0022

under the null, namely dg{(p‘_/l, 1/2,1,1,460% 4462}, has full rank, which verifies Assumption 3.2
in Amengual, Bei and Sentana (2023).

As a result, their Theorem 1 immediately implies that

LRy =2[Ly(p) — Ly(p)] = GETy + Oy(T~ 1),

where
- - 1 -
GETT = S@1T(¢7 ) 0191 (d))SelT (d) ) T Gsu;f() QT(G’M d)) 0§NDT‘T<¢) 2 O] )
T ol T
- .~ o
Slglt(¢7 0) = 89 1 (ZSM? Z = T(Tl, T2) VO él I
=1 v t=1
and
1 1 T 9% o\ T 2
0, )=~ — 02, 0 g2 T T (025, 1 02,7) . (Al
QT( ¢)) T4031 +401212 (tz:; ul 8931 U28032 031 +0i2 ( wl’2 u27"8) ( )

Simple algebra then yields (6) because the value of (6,1, 60,2) that maximizes (A1) is proportional

to the vector (/721 [F2 > 0], \/7s1 [fg > 0]) if 73 > 0 or 7g > 0, and to (1, 1) otherwise. O

To briefly illustrate the main idea behind Theorem 1 in Amengual, Bei and Sentana (2023)
in this case, let us write 6,1 and 68,2 in polar coordinates so that 6,1 = nv; and 6,2 = nuy with
v? +v2 = 1, and consider the simplified null hypothesis Hp : = 0 for a fixed value of v; and vy
determined by the relevant polar angle. In this context, the only relevant quantity associated

to n is
_y 202 o (Yt — dar) (Yr—s — ¢M).
ap by * oy

Moreover, given that

alt 8[15 . al / 82[1& o
b <0¢80;) =0and B [aas ch (8%69@)] =0

under the null, we can ignore the parameter uncertainty in estimating ¢,, and ¢y, at least

@ %(yt — o) (Yr—2 — dur)

asymptotically.
Next, letting
/ T 82lt
Sol(p) - [Seil (p)’ 5912(p)] ) Hn(d’a 777U) - Z 87?72
t=1
and
V(¢’ U) - VG’I’{T_% [Sél (d)v 0)7 H”](¢7 07 ’U)HQ’), 0} - |: VS(§¢) VH(((;7 U) :| ’ (A2)
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a similar argument to the one used in the proof of Theorem 1 in Amengual, Bei, Sentana (2023)
implies that
Sp.(¢,0) } <92~ > <0,~ )’ 1,5 0; 1
LRT:supQ[ ‘= -T Vi (o,v 4+ 0,(T" 1
(6;,v) H”](¢7 0, U) 772 772 ( ) 772 p( )
= sup 250, (},0)8; — TOVH(B)8; + 2H,)($,0,0)1> — TV (B, o)t + Op(T 1)
(01'7'1))
IHH((:évP: U)2

V71(¢),U) 1 [Hn((’]zaoav) > O] + OP(T_i)a

(A3)

=T S6,(6,0)V5" (¢)Se,(¢,0) + sup T~

where the first equality comes from a fourth-order Taylor expansion of the log-likelihood function
whose first two terms are the leading ones and the rest is included in the O, (T _%) remainder,

the second equality follows from (A2), and the last one is trivial.

Proof of Proposition 2

We can use expression (B11) in Appendix B.1 to compute the spectral approximation to the
log-likelihood function of model (12) with gy, (w; p) given in (B15), p = (¢',0'), ¢ = (J?,U%)'
and 6 = (a, ¥y, 1),) .

To simplify the notation, let us define the vector C(w) = [C},(w), Cy(w)]" with

. ) cos(2w)
_ 2mlyy(w) — gyy(w; ) 1 an W) = 2mlyy (w) — gyy(w;y) cos(3w
Colw) = Ty (w3 ) [ cos(w) } 4 Colw) iy (w3 ) COSEL; ’

which correspond to the contribution of frequency w to the spectral score of an MA(4) model
parametrized in terms of its unconditional variance and first four autocovariances, say v =
(Yos 71572, V3, 74), evaluated at v9 = v3 = v, = 0, as can be immediately seen from (B12).
Importantly, gy, (w; p) = gyy(w;~y) for all w under the locally equivalent null hypotheses

Hy:a=1)=1%y=0 and Hy:vy=7v3=7,=0

when both a? and o2 are strictly positive.

Therefore, we can write the contribution of frequency w to the spectral score as

ol ol
(1 Cw), =5 =(2 -2 C
902 ( 0000)(&1),80% ( 0 0 0)C(w),
ﬂ—(—Qaz 40% —20% 0 0)C(w) ﬂ—(0 202 0 0 0)C(w)
o FoRof f “D g, T f w
and
ﬂ—(o 0 202 0 0)C(w)
oy ! o
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We can immediately notice that the last two elements of this score belong to the linear span
of the first three, which confirms that the nullity of the information matrix is again two.

To isolate those singularities, we conduct a two-step reparametrization as follows. First, we

consider
07 =0F = 20795 + oY — 20798, 07 = 0 + 0P + 207705,
<>2
a=a’+ 71/102 + 721#2; Y1 =7 and P, =
and then
ST L 9o i2 12

+ 207; Pi2

off = o —olPul®, o = o+ Lot2gf3, a0 = ol fQ—w 0§ =] and 9§ =)=

After this sequential reparametrization, the relevant derivatives evaluated under the null

become

ol ol ol ol

9012 = f‘? =(1 0)Cy(w)=a1Cy(w), 9012 =902 (2 —2)Cp(w) = aCy(w),

! v v
ol ol 2 2 2 — /

ot T e (=205 40} )Cy(w)+( =205 0 0)Cy(w)=d1Cy(w) +b1Co(w)

and
o o 02l B 031 _0
SR A CAR A
In addition, straightforward calculations deliver
—802 '
0%l 202(c2 — 202) /02 7’ f
o= | Colwy+ | —aatio? | Cotw)
(8¢2) frow 40’%
= d’20¢(w) + béCg(w),
2] 954 /o2 / —20%(0% +207) /07, ,
T = [ 952 (52 £2U2 2 ]C¢(W)+ 40? Co(w)
= d5Cy(w) + b5Ce(w)
and
!/
' [ 60?(40‘} + 140?02 +90)/o? ] 24‘730(03% + 40?27/12} 1— 208) ot
= v U [Cg(w)+ —120% /0 Co(w)
_ 2 4 2 2 4 4 ¢ f/%v 0

(31#1;)4 240%(20% + Tojoy, + 20y) [0y, _120;

d;Cyp(w) + b3Co(w).

Next, we carry out an eighth-order Taylor expansion of the reparametrized spectral log-

likelihood function of the sample, Ly (p!), around the true values of its parameters under the
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null; namely pgl =

(8,0,

which yields

- L -/
oL ,
ﬁ ¢ - } ¢T? ; d’T? ;
Oa
t i 1 0L e 1 i i
LT(p ) - LT(P()) = F(9y])4 (e - §T (e 1% (2
%L A A A
EED 152 12 142
1_0%L () 2 Py
L 2 (apl)? |
¢ — &5
! OZT
4
BT (@7 —of of wf' wlvl W ) otev)|
i)
12

il 199L j
<Hjj,ﬁ8pw> {\E(PT - PI)) }

+ 3 (L2 {16 - oly)

il 1 [O3%L _
X -

SZTLj(pT)} } {T(pT - pE)j},

Jj=8
where
i 92L 9L 1 8°L 3L 1 93L
o¢T e 0! oat 4 ogt (0] aqs*awf oy} 2 aw(w )2
92L 9L 1 9°L 1
datoep! d(at)? A dat(oyh) aoﬁawawz 29 (a%)
H = 1 9L 1 85L 2 8%L 1 2°L 11 %L
T | Meuproet A (@y))ioat 8 (ay1)® * <a¢1>4a¢*aw* SeICOICIE
8L 3L 1 8L 1 i
awia@aqbf’ oyplogploat 4o *a¢2(a¢1) 2 (w*>2a(«/ﬂ)2 3oy (a%)
1 L 1 &L 11 1 2 'L
2 (oyh)2ael 2 (ayl)2oat 24! (6%) (aw a3 aw*w%) A gyl

V = E(H), j is a five-dimensional vector of indices, for example (1,0,2,0,3), in which case

0“IL 0"IL j 2 T2y 12,13
- = L (o' = by = (o = off)at?yl?,
opt 9ot oaton) 0 foouge 2
Jo = {(2,2,2,8,0),(2,2,2,2,2),(2,2,2,0,4)}, 71 = {5 : ¢/ <8, 3’ € Jo such that j < j'}
and Jo = {j: V5 <8, & T,7¢ T}, with / = (1,1,1,1,1), are finite sets consisting of

those indices.

On this basis, we will

oL 1

OL 9L 1
apt’  dat 4l (87/11)4

|

have that
o' — ¢}
af
9L 9L 1_9L )’ e D o0 Cy(w)
ovlovy 2 (0u})? 1 B B )| Co(w)
iyl
172
s
L 0

"t ] | st

(A4)

(A5)

(A6)

(A7)



where I» is the identity matrix of order two,

i
y b, o DC,4()
D= 1),A: a |, B=|0 |,v= R *:[ V }
(a’z af* 2 ool |39 =] colw)
5 3 12
¥y
i
(6%
L 0\ [ (o) +rs60) ol
AT,OT_< 2 >u_[ 0 ¢ ., Ap(07) = (AD™ 1
2
and
T g g g O' O' 0'20'2 O'
o _2g;aT_4a§¢T2 U gl 4 ST s
T _ m 1 _
A0 =Bt | T T2+4afwT¢2 ]!
e 2af¢§2—12 2474

In addition, the interpretation of C(w) as a spectral log-likelihood score allows us to use
expression (B13) to obtain the asymptotic variance of a suitably scaled version of

T—-1
St =) C(wj),
0

where w; = 275 /T (for j = 0,... are the usual Fourier frequencies. Specifically, if we

- 1)
partition the autocovariances into 7y, = (vg,71) and v, = (V2,73,74), then we will have that

T_%ST i N |:< > < YnTn 7!L7u >:| = N(O, V)’ (Ag)
'Yn‘Ya 7070«

with the different elements evaluated at v, = 0. Consequently,

¢’ — o}
aT
(o —af of ol' wlul o2 )v| ol' | =66 Te)Ae o).
vivh

On this basis, we can write L, (p!) — Ln(pg) as the local quadratic approximation in Theorem 2
of Amengual, Bei and Sentana (2023), with a remainder R, (p') equal to the sum of (A5)-(A8).
Next, we verify in detail Assumption 4 of that theorem.
Assumption 4.1: It is easy to see that A(¢', @7) is continuous and )\(¢$, 0) = 0. In addition,
A(¢',6%) = 0 if and only if

( 2%%2 ~ 120 ¢T4 ) _ ( 0 >
20 +4 f¢T¢2 204 ¢T4 0/’
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which gives the unique solution wJ{ =0, w; = 0 if we consider a local neighborhood around (0, 0)
such that WU < g for € > 0 small enough.

Assumption 4.2: A central limit theorem for T~Y2S; holds because the special case of the
MA(4) process to which this spectral score corresponds is covariance stationary and contains no
discrete harmonic components. Given that the generalized spectral score is a full-rank linear
transformation of this scaled average, a central limit theorem will apply to it too.

Assumption 4.3: The limiting variance of T~1/28p will have full rank for analogous reasons,
as long as we exclude processes whose M A polynomial contains unit roots. The full-rank mapping
of the spectral log-likelihood score to this scaled average guarantees that the generalized spectral
score will also have a full-rank limiting covariance matrix under the same circumstances.

Assumption 4.4: We verify this for each term in (A5)-(A8). In particular, (A5) follows
from H+V = Op(T_%). As for (A6), we can easily check that: (i) the term in {.} is o,(1 +
VT||A(@',87)|]), while (ii) the term in [.] is Op(1) because the derivative corresponding to j € J;
has zero expectation, which we can in turn verify by means of the multivariate Faa di Bruno’s
formula (see Constantine and Savits (1996) for details) or by calculating the required expectation
directly. In turn, we can easily verify for (A7) that (i) the term in {.} is 0,(1 + T||A(¢T, 87)?),
while (i) the term in [.] is O,(1). Finally, the term in {.} in (A8) is O,(1 + T||A(¢',87)]?),
while the one in [] is 0,(1).

Assumption 4.5: We can immediately see that

1
0C(w) _ —Amlyy (@) + gyy(«,y) CZZS((Q?) {1, 21— cos(w)] }.
o' gij (w,y) cos(3w) 7
cos(4w)
Hence, we will have that
'8C(w) ‘ 9 ‘ —Z:lswlyy(w) ' i 1 ‘ <9 —47TIyy(w)3 492 1 | = gt),
Oy Gyy(@>Y) Gy (@) (afc + 4012,) (Ufc + 40%)

where ¢?(y) is integrable. Consequently, Theorem 2 in Amengual, Bei and Sentana (2023)
implies that
LRy = GETy + O,(T" %),
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where

GETy =sup {2 [Se,T<<?>> - Ie¢<<?b)I;$<<?>>8¢,T<c?>)] "Xo(61)
~nXp(0") |Too(§) — Tog(®) T4 () Ts0(®)| Xa(6) |

T _ L
= |75 3 Colwn) | [Zo0(®) — Zoo(B) Ty (@)Zs0(®)] T—ZZ%(wt)] (A10)
t=1 t=1
Tor
=( Tor Tar Tar )Vg,,a r3r |
T4T

with the two equalities holding with probability approaching 1 and the second one following
from Ar = {V/Thg} — A =R5.

Assumption 4.6: Once again, we verify this for each term in (A5)-(A8). Specifically, (A5)
follows from the fact that H+)V = Op(T_%). In addition, note that T%)\(QST, 0r) = O(1) implies
that

). ar = O(T"3), by =0(I" %) and tyr = O(T3).

N[

¢r =0T~

Thus, the slowest convergence rate is T~5 because this is the rate of the {.} terms in (A6) and
(A7) and the [.] term in (AS8).

The final step of the proof simply involves the application of the delta method to go from
the autocovariances v; (j = 0,...,4) to the autocorrelations p; = v;/v9 (j = 1,...,4), which
delivers the expressions in the statement of the proposition. The intuition is that given that the
restricted MLEs for a?c and o2 are such that in large samples the estimated model will perfectly
match the sample variance and first autocovariance of y; with probability approaching one, the
first two components of Sp 1 evaluated at &T will be zero, which in turn implies that GETp
is effectively testing that the second, third and fourth autocovariances of y; are simultaneously
zero on the basis of their sample counterparts, but taking into account the sampling uncertainty

in estimating those autocovariances when the true process is the local level model (7)-(10). O

B Additional results

B.1 Maximum likelihood estimation in the frequency domain

Henceforth, we assume that g; is a covariance stationary series, which may require taking
first or seasonal differences of the observations, as in the examples in Sections 2 and 3.

Let

L LT .
=97 Z Z(yt — ) (ys — e

t=1 s=1
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denote the periodogram of y;. If we assume that the spectral density g,,(w;p) is not zero at
any of those frequencies, the so-called Whittle (1962)’s (discrete) spectral approximation to the

log-likelihood function is

12 1= 271, (w;)
——ln 2r) — = Y In|gyy(wj; p)| — —w I (B11)
2 ;:;) e 2 ; Gyy(wji p)

where w; = 2mj/T (for j =0,...T — 1) are the usual Fourier frequencies.
The MLE of p1, which only enters through I, (w), is the sample mean, so in what follows we
focus on demeaned variables. In turn, the score with respect to all the remaining parameters is

ol 1 — OGyy(wj; p) . .
% =3 jz; TM(wjap)m(w]) p), (B12)

where m(w; p) = 27 Ly, (w) — gyy(w; p) and M (w; p) = g,.7(w; p).
The information matrix is block diagonal between p and the elements of p, with the (1,1)-

element being g,,(0) and the (2,2)-block

) 417r/_7r 3gyy§:j§p)M(w;p){8gyy§:ﬁp)}*dw’ -

where * denotes the conjugate transpose of a matrix. A consistent estimator will be provided

either by the outer product of the score or by

T-1 . Wi *
®(p) = 1 Z 89yy(wjaP)M(wj;p) {agyy(gpja P)} ' (B14)

2 = op
In fact, by selecting an artificially large value for 7" in (B14), one can approximate (B13) to any
desired degree of accuracy. In addition, the univariate nature of y; implies that both g, (w;; p)
and its derivatives are real.

Formal results showing the strong consistency and asymptotic normality of the resulting ML
estimators of dynamic latent variable models under suitable regularity conditions were provided
by Dunsmuir (1979), who generalized earlier results for VARMA models by Dunsmuir and Hannan

(1976). These authors also show the asymptotic equivalence between time and frequency domain

MLEs.

B.2 The autocorrelation structure of the UCARIMA model

We can derive the autocovariance structure of y; = Ax; by the usual inverse Fourier trans-
formation ~,, (k) = cov(ys, ye—k) = |, ek g, (w)dw after exploiting that g,,(w) is the sum of
the spectral densities of the signal and noise components, s; = Az; and ny = Auy, respectively,
which are cross-sectionally uncorrelated at all leads and lags. Specifically, we know that

1 PRy
NI oL — 2t T 1 al

U = St + Ny,
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where the first component, s;, is an AR(2) process while the second component, n;, is an

ARrRMA(1,1) with a unit root on the MA part. Thus,

gyy(“?ﬂ) = gss(w; p) + gnn(w; p)

_ i L Q-1 - )
(910 — Gy 29) (1~ 9307 — 9o89) | (1~ ae)(1 — acw)
2
_ o n 2(1 — cosw)o? (B15)

(14 92 4+ 932) — 241 (1 — b)) cosw — 2y cos 2w (1 + a?) — 2acosw
However, the expressions for v, (k) are somewhat easier to obtain in the time domain as the
sum of the autocovariances of the two underlying components.
The autocovariances of the AR(2) process for the signal are given by the usual Yule-Walker

recursion
753(1{;) = wlf)/s(k - 1) + waYs(k - 2)7 (B16)

with initial conditions

B 1_1/,2) o% 1 _( ) ) o5
w0 = (1532 g w0 = (5 ey

which yields

V1 [1] + (2 — ¥y)]
1 — 1y

_ PT + Po(1 — 1)
1 — 1y

Vss(2) V5(0), Vs5(3) = 75(0)

and

() = Py [Y3 + 7/117/12(31— 11/;2)] +3(1 — %)’Ys((])-
— 1y

To find the solution for general k, it is convenient to find the roots of the characteristic equation

(B16), which are given by 61 = 2¢; + 21/19F + 49, and 62 = 3¢, — $1/97 + 4,

When the roots are different (real or complex), the autocorrelation of order k will be given

by

_ 0= — 05 (1 - 6F)

k)= 0).
Applying L’Hopital’s rule, this simplifies to
(1- 52)} k
k)= 1[1+k 0"y4(0
Vos (k) [ 1 (0)

when the two roots are equal, which happens for 1y = —1)% /4 (see e.g. Fuller (1995)).

In turn, the autocovariances of the ARMA(1,1) process for the noise will be

o[ (@=1)?] 20 o[ L (a=1%]  (a-1)0?
’Ynn(o)_o-'u[l—i_ 1a2:|_a+17’7nn(1)_0-'u (Oé 1)+ 1*0(2 - Ol+1

and 7,,, (k) = [0*"H(a = 1)o]]/(a + 1). Finally, v, (k) = 755(k) + Y (k)-
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C Tables and figures

Table 1: Monte Carlo rejection rates (in %) under the null and alternative hypotheses for the
white noise versus multiplicative seasonal AR test.

Null Alternative hypotheses
hypothesis H,y, H,,
1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A: Asymptotic critical values

T =100
GET 1.1 41 82 29.8 459 55.2 27.3 48.7 60.9
LR 09 43 92 14.8 314 428 19.7 43.7 57.9
LM-AR(1) 0.7 41 9.0 149 299 39.6 26 93 16.0
LM-SAR(4) 0.5 3.7 80 11.6 27.7 384 25 95 16.1
MT 0.8 37 78 25.8 40.7 49.7 20.6 39.1 50.7
T = 400
GET 1.0 49 938 87.9 94.7 96.8 925 978 99.1
LR 09 44 9.0 80.1 916 95.1 91.7 97.7 99.0
LM-ARr(1) 09 47 95 58.1 76.1 83.5 3.1 104 17.2
LM-SAR(4) 1.1 5.0 9.7 584 782 8355 5.1 13.7 21.7
MT 09 44 94 84.6 929 95.5 89.0 96.3 98.0

Panel B: Bootstrap critical values

T =100
GET 1.0 5.0 10.0 29.3 48.2 577 26.5 519 64.2
LR 1.0 5.0 10.0 15.3 33.3 44.2 20.8 46.6 59.3
LM-AR(1) 1.0 5.0 10.0 16.8 32.3 409 3.1 108 17.0
LM-SAR(4) 1.0 5.0 10.0 154 31.7 41.6 3.8 11.6 184
MT 1.0 5.0 10.0 270 443 53.3 22.0 43.7 55.0
T = 400
GET 1.0 5.0 10.0 87.4 94.7 96.8 92.1 979 99.1
LR 1.0 5.0 10.0 81.0 923 95.3 92.2 98.0 99.1
LM-AR(1) 1.0 5.0 10.0 60.1 769 84.1 3.7 108 17.7
LM-SAR(4) 1.0 5.0 10.0 57.3 782 86.0 4.9 137 221
MT 1.0 5.0 10.0 85.3 933 95.8 89.6 96.7 98.2

Notes: Results based on 10,000 samples. The mean and variance parameters ¢,, and ¢y, are estimated
under the null using their sample analogs. GET is computed as defined in section 2.1. DGPs: the true
unconditional mean and the variance of the innovations are set to 0 and 1, respectively, under both the
null and alternative hypotheses. As for the alternative hypotheses,

(1-01L—0.1L%* —0.1L3 —0.1LYy; = &; (Ha,)

and
(1 —0.4L)(1 +0.4L)(1 — 0.4LY (1 + 0.4LYYy, = &, (Hy,).

LM-AR(1) and LM-SAR(4) denote the Lagrange multiplier tests based on the score of an AR(1) and a
seasonal SAR(4), respectively. MT refers to the two-sided version of GET. Finite sample critical values
in Panel B are computed using a parametric bootstrap procedure.
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Table 2: Monte Carlo rejection rates (in %) under the null and alternative hypotheses for the
local level model versus the UCARIMA model (12) test.

Null Alternative hypotheses
hypothesis H,, H,,
1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A: Asymptotic critical values

T =100
GET 0.7 42 89 4.6 189 320 75 205 304
LR 1.0 5.2 104 11.3 30.3 43.7 10.8 274 399
2"d autocorrelation 0.8 4.1 9.3 29 127 21.7 1.6 6.8 124
ond & 37 autocorrelation 0.8 41 88 41 17.2 29.0 1.5 6.6 11.9
T = 400
GET 0.8 48 95 64.0 86.7 93.0 494 721 81.8
LR 0.8 54 104 75.2  90.7 95.3 62.9 82.8 89.8
2"d autocorrelation 0.9 4.6 9.6 277 54.6 68.1 2.1 81 14.8
2nd & 374 autocorrelation 09 45 96 484 754 85.6 2.0 7.8 14.0
Panel B: Bootstrap critical values
T =100
GET 1.1 5.3 104 6.0 21.7 355 8.6 228 33.0
LR 1.9 53 104 11.0 27.0 389 10.3 24.1 35.1
2"d autocorrelation 1.2 5.3 10.2 4.5 13.6 23.6 2.3 7.2 13.7
2nd & 37 autocorrelation 1.3 55 10.0 5.5 19.8 314 22 79 132
T = 400
GET 1.0 5.0 10.0 67,0 87,0 93,7 51,5 72,7 83,0
LR 1.2 5.2 10.2 71,4 88,1 92,9 59,0 78,8 86,4
274 autocorrelation 1.0 5.0 10.0 30,3 56,0 69,1 24 89 15,3
ond & 37 autocorrelation 1.0 50 10.1 52,8 76,8 85,8 2,5 84 142

Notes: Results based on 10,000 samples. The local level parameters O'?c and o2 are estimated under the
null. GET is computed as defined in section 3.1. DGPs: We simulate Gaussian shocks with a? =1 and
02 = 0.5 under both the null and the alternatives. Alternative hypotheses:

(1+0.5L +0.4L%) Az = f; (H..)
(1 - 05L)Ut = Ut @

and

(14 0.5L)us = vy } (Hay)-

27 autocorrelation (2"? & 3" autocorrelation) denote the moment test of no second-order (no second-
or third-order) serial correlation in y;. Finite sample critical values in Panel B are computed using a
parametric bootstrap procedure.
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Figure 1: Alignment of GET and LR under the null under null for the white noise versus

multiplicative seasonal AR test.

GET

LR

Notes: Scatter plots of the GETr and LRt test statistics. Results based on 10,000 simulated samples
of size T of y ~ i.i.d. Gaussian. GET is computed as explain in section 2.1. The true mean and variance
of the simulated data are set to 0 and 1, and the elements of ¢ are estimated using the sample mean and
variance, respectively.
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Figure 2: Alignment of GET and LR under the null for the local level model versus the
UCARIMA model (12).

GET

LR

Notes: Scatter plots of the GETr and LRt test statistics. Results based on 10, 000 simulated samples
of size T of the model under the null with Gaussian shocks with O'?c =1and 02 = 0.5. GET is computed
as explained in section 3.1.
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