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Abstract

We propose generalised DWH specification tests which simultaneously compare three or
more likelihood-based estimators in multivariate conditionally heteroskedastic dynamic re-
gression models. Our tests are useful for GARCH models and in many empirically relevant
macro and finance applications involving VARs and multivariate regressions. We determine
the rank of the differences between the estimators’ asymptotic covariance matrices under
correct specification, and take into account that some parameters remain consistently esti-
mated under distributional misspecification. We provide finite sample results through Monte
Carlo simulations. Finally, we analyse a structural VAR proposed to capture the relationship
between macroeconomic and financial uncertainty and the business cycle.
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1 Introduction

Empirical studies with financial data suggest that returns distributions are leptokurtic even
after controlling for volatility clustering effects. This feature has important practical conse-
quences for standard risk management measures such as Value at Risk and recently proposed
systemic risk measures such as Conditional Value at Risk or Marginal Expected Shortfall (see
Adrian and Brunnermeier (2016) and Acharya et al. (2017), respectively), which could be
severely mismeasured by assuming normality. Given that empirical researchers are interested
in those risk measures for several probability levels, they often specify a parametric leptokurtic
distribution, which then they use to estimate their models by maximum likelihood (ML).

A non-trivial by-product of these non-Gaussian ML procedures is that they deliver more effi-
cient estimators of the mean and variance parameters, especially if the shape parameters can be
fixed to their true values. The downside, though, is that they often achieve those efficiency gains
under correct specification at the risk of returning inconsistent parameter estimators under dis-
tributional misspecification (see e.g. Newey and Steigerwald (1997)). This is in marked contrast
with the generally inefficient Gaussian pseudo-maximum likelihood (PML) estimators advocated
by Bollerslev and Wooldridge (1992) among many others, which remain root-7" consistent for
the mean and variance parameters under relatively weak conditions.

If researchers were only interested in those two conditional moments, the semiparametric
(SP) estimators of Engle and Gonzalez-Rivera (1991) and Gonzalez-Rivera and Drost (1999)
would provide an attractive solution because they are consistent and also attain full efficiency
for a subset of the parameters (see Linton (1993), Drost and Klaassen (1997), Drost, Klaassen
and Werker (1997) and Sun and Stengos (2006) for univariate time series examples). Unfortu-
nately, SP estimators suffer from the curse of dimensionality when the number of series involved,
N, is moderately large, which limits their use. Furthermore, Amengual, Fiorentini and Sentana
(2013) show that non-parametrically estimated conditional quantiles lead to risk measures with
much wider confidence intervals than their parametric counterparts even in univariate contexts.
Another possibility would be the spherically symmetric semiparametric (SSP) methods consid-
ered by Hodgson and Vorkink (2003) and Hafner and Rombouts (2007), which are also partially
efficient while retaining univariate rates for their nonparametric part regardless of N. However,
asymmetries in the true joint distribution will contaminate these estimators too.

In any event, given that many research economist at central banks, financial institutions and
economic consulting firms continue to rely on the estimators that commercial econometric soft-
ware packages provide, it would be desirable that they routinely complemented their empirical

results with some formal indication of the validity of the parametric assumptions they make.



The statistical and econometric literature on model specification is huge. In this paper, our
focus is the adequacy of the conditional distribution under the maintained assumption that the
rest of the model is correctly specified. Even so, there are various ways of assessing it. One
possibility is to nest the assumed distribution within a more flexible parametric family in order
to conduct a Lagrange Multiplier (LM) test of the nesting restrictions. This is the approach
in Mencia and Sentana (2012), who use the generalised hyperbolic family as an instrumental
nesting distribution for the multivariate Student t. In contrast, other specification tests do
not consider an explicit alternative hypothesis. A case in point are consistent tests based on
the difference between the theoretical and empirical cumulative distribution functions of the
innovations (Bai (2003) and Bai and Zhihong (2008)) or their characteristic functions (Bierens
and Wang (2012) and Amengual, Carrasco and Sentana (2019)). An alternative procedure would
be the information matrix test of White (1982), which compares some or all of the elements of
the expected Hessian and the variance of the score. White (1987) also proposed the application
of Newey’s (1985) conditional moment test to assesses the martingale difference property of the
scores under correct specification. Finally, the general class of moment tests in Newey (1985)
and Tauchen (1985) could also be entertained, as Bontemps and Meddahi (2012) illustrate.

But when a research economist relies on standard software for calculating some non-Gaussian
estimators of 8 and their asymptotic standard errors from real data, a more natural approach
to testing distributional specification would be to compare those estimators on a pairwise basis
using simple Durbin-Wu-Hausman (DWH) tests.! As is well known, the traditional version of
these tests can refute the correct specification of a model by exploiting the diverging properties
under misspecification of a pair of estimators of the same parameters. Focusing on the model
parameters makes sense because if they are inconsistently estimated, the conditional moments
derived from them will be inconsistently estimated too.

In this paper, we take this idea one step further and propose an extension of the DWH tests
which simultaneously compares three or more estimators. The rationale for our proposal is given
by a novel proposition which shows that if we order the five estimators we mentioned in the
preceding paragraphs as restricted and unrestricted non-Gaussian ML, SSP, SP and Gaussian
PML, each estimator is “efficient” relative to all the others behind. This “Matryoshka doll”
structure for their joint asymptotic covariance matrix implies that there are four asymptotically
independent contiguous comparisons, and that any other pairwise comparison must be a linear

combination of those four. We exploit these properties in developing the asymptotic distribution

"Wu (1973) compared OLS with IV in linear single equation models to assess regressor exogeneity unaware
that Durbin (1954) had already suggested this. Hausman (1978) provided a procedure with far wider applicability.



of our proposed multiple comparison tests. We also explore several important issues related to
the practical implementation of DWH tests, including its two score versions, their numerical
invariance to reparametrisations and their application to subsets of parameters.

To design reliable tests, we first need to figure out the rank of the difference between the
asymptotic covariance matrices under the null of correct specification so as to use the right num-
ber of degrees of freedom. We also need to take into account that some parameters continue to
be consistently estimated under the alternative of incorrect distributional specification, thereby
avoiding wasting degrees of freedom without providing any power gains.

In Fiorentini and Sentana (2019), we characterised the mean and variance parameters that
distributionally misspecified ML estimators can consistently estimate, and provided simple
closed-form consistent estimators for the rest. One of the most interesting results that we
obtain in this paper is that the parameters that continue to be consistently estimated by the
parametric estimators under distributional misspecification are those which are efficiently es-
timated by the semiparametric procedures. In contrast, the remaining parameters, which will
be inconsistently estimated by distributionally misspecified parametric procedures, the semi-
parametric procedures can only estimate with the efficiency of the Gaussian PML estimator.
Therefore, we will focus our tests on the comparison of the estimators of this second group of
parameters, for which the usual efficiency - consistency trade off is of first-order importance.

The inclusion of means and the explicit coverage of multivariate models make our proposed
tests useful not only for GARCH models but also for dynamic linear models such as VARs or mul-
tivariate regressions, which remain the workhorse in empirical macroeconomics and asset pricing
contexts. This is particularly relevant in practice because researchers are increasingly acknowl-
edging the non-normality of many macroeconomic variables (see Lanne, Meitz and Saikkonen
(2017) and the references therein for recent examples of univariate and multivariate time series
models with non-Gaussian innovations). Nevertheless, structural models pose some additional
inference challenges, which we discuss separately. Obviously, our approach also applies in cross-
sectional models with exogenous regressors, as well as in static ones.

The rest of the paper is as follows. In section 2, we provide a quick revision of DWH tests and
derive several new results which we use in our subsequent analysis. Then, in section 3 we formally
present the five different likelihood-based estimators that we have mentioned, and derive our
proposed specification tests, paying particular attention to their degrees of freedom and power.
A Monte Carlo evaluation of our tests can be found in section 4, followed by an empirical analysis
of the relationship between uncertainty and the business cycle using a structural VAR. Finally,

we present our conclusions in section 6. Proofs and auxiliary results are gathered in appendices.



2 Durbin-Wu-Hausman tests

2.1 Wald and score versions

Let @T and éT denote two GMM estimators of @ based on the average influence functions
my(60) and iy (@) and weighting matrices Sy and S,7, respectively. When both sets of moment
conditions hold, then, under standard regularity conditions (see e.g. Newey and McFadden

(1994)), the estimators will be jointly root-7" consistent and asymptotically Gaussian, so

VT (67 — b7) % N(0,A) and
T(0r — 07) A~ (67 — O7) 4 Xz, (1)

where r = rank(A) and ~ denotes a generalised inverse. Consider now a sequence of local
alternatives such that

VT (07 — 07) ~ N(0n, — 0, A). (2)

In this case, the asymptotic distribution of the DWH statistics (1) will become a non-central
chi-square with non-centrality parameter (0,,—6,,)' A~ (60,,—0,,) and the same number of degrees
freedom (see e.g. Hausman (1978) or Holly (1987)). Therefore, the local power of a DWH test
will be increasing in the limiting discrepancy between the two estimators, and decreasing in both
the number and magnitude of the non-zero eigenvalues of A.

Knowing the right number of degrees of freedom is particularly important for employing
the correct distribution under the null. Unfortunately, some obvious consistent estimators of

2 In fact, they might not even be positive

A might lead to inconsistent estimators of A~.
semidefinite in finite samples. We will revisit these issues in sections 3.4 and 3.6, respectively.
The calculation of the DWH test statistic (1) requires the prior computation of 61 and O7.
In a likelihood context, however, Theorem 5.2 of White (1982) implies that an asymptotically
equivalent test can be obtained by evaluating the scores of the restricted model at the inefficient
but consistent parameter estimator (see also Reiss (1983) and Ruud (1984), as well as Davidson
and MacKinnon (1989)). Theorem 2.5 in Newey (1985) shows that the same equivalence holds
in situations in which the estimators are defined by moment conditions. In fact, it is possible
to derive not just one but two asymptotically equivalent score versions of the DWH test by
evaluating the influence functions that give rise to each of the estimators at the other estimator,

as explained in section 10.3 of White (1994). The following proposition, which we include for

completeness, spells out those equivalences:

% A trivial non-random example of discontinuities is the sequence 1/T, which converges to 0 while its generalised
inverse (1/T)~ = T diverges. Theorem 1 in Andrews (1987) provides conditions under which a quadratic form
based on a generalised inverse of a weighting matrix converges to a chi-square distribution.



Proposition 1 Assume that the moment conditions m;(0) and n.(0) are correctly specified.
Then, under standard reqularity conditions

T(67 — 87) A~ (07 — O7) — T/ (07)S,Tm (00) AL, Ty, (00) St (B7) = 0p(1)  (3)
and T(Or — 07) A~ (87 — 87) — Ty (07)S0Tn(00)A;, T (00)Suiir(07) = o0,(1), (4)

where Ay, and A, are the limiting variances of J.,(80)Sm Ty (07) and T (80)S,VTir(07),
respectively, which are such that

1 1

Ay, [j/n(BO)Smjm(Hg)]i :[jT’L(BO)Snjn(OO)]f

1 1

A=[T7,(00)SmTm(00)]” Ay [T(00)8,Tn(00)]

with Jm () = plimy_ 0my(0)/00', Jn(0) = plimy ., 067 (6)/00', Sp = plimy o, Spr,
S, = plimgy_, o Spr and rank [J) (00)SmTm(00)] = rank [J(00)S,Tn(00)] = p = dim(8), so
that rank(A,,,) = rank(A,,) = rank(A).

An intuitive way of re-interpreting the asymptotic equivalence between the original DWH
test in (1) and the two alternative score versions on the right hand sides of (3) and (4) is
to think of the latter as original DWH tests based on two convenient reparametrisations of
0 obtained through the population version of the first order conditions that give rise to each
estimator, namely 7,,(0) = J;,(0)S,, E[m,(0)] and 7,,(0) = J,,(0)S,E[n,(0)]. While these new
parameters are equal to 0 when evaluated at the pseudo-true values of 6 implicitly defined by
the exactly identified moment conditions J,,(6,,)Sm E[m(0,,)]=0 and 7, (0,,)S, E[n.(6,)] =0,
respectively, 7,,(0,) and 7,(6,,) are not necessarily so, unless the correct specification condition
0,, = 0,, = 0y holds.? The same arguments also allow us to loosely interpret the score versions
of the DWH tests as distance metric tests of those moment conditions, as they compare the
values of the GMM criteria at the estimator which sets those exactly identified moments to 0
with their values at the alternative estimator. We will discuss more formal links to the classical
Wald, Likelihood Ratio (LR) and LM tests in a likelihood context in section 3.4.

Proposition 1 implies the choice between the three versions of the DWH test must be based on
either computational ease, numerical invariance or finite sample reliability. While computational

ease is model specific, we will revisit the last two issues in sections 2.2 and 4, respectively.

2.2 Numerical invariance to reparametrisations

Suppose we decide to work with an alternative parametrisation of the model for convenience
or ease of interpretation. For example, we might decide to compare the logs of the estimators

of a variance parameter rather than their levels. We can then state the following result:

3 A related analogy arises in indirect estimation, in which the asymptotic equivalence between the score-based
methods proposed by Gallant and Tauchen (1996) and the parameter-based methods in Gouriéroux, Monfort and
Renault (1993) can be intuitively understood if we regard the expected values of the scores of the auxiliary model
as a new set of auxiliary parameters that summarises all the information in the original parameters (see Calzolari,
Fiorentini and Sentana (2004) for further details and a generalisation).



Proposition 2 Consider a homeomorphic, continuously differentiable transformation w(.) from
0 to a new set of parameters m, with rank [on’ (0) /86] = p = dim(0) when evaluated at Oy, O
and O1. Let °p = arg ming ey ﬁl/T(ﬂ')SmTﬂ_‘lT(ﬂ') and T = arg minyery ﬁ’T(ﬂ')SnTﬁT(ﬂ'), where
my(7) = my[0(m)] and ny(7) = n,[0(7)] are the influence functions written in terms of m, with
0(m) denoting the inverse mapping such that w[@(m)] = 7. Then,

1. The Wald versions of the DWH tests based on éT — éT and T — T are numerically
identical if the mapping is affine, so that w = A@ + b, with A and b known and |A| # 0.
2. The score versions of the tests based on mp(07) and mp(7r) are numerically identical if

- _[08(G)] T, . [00'(Fr)]
mT o' mt on ’

where A and AlLp, are consistent estimators of the generalised inverses of the limiting
variances of J'(00)SmVTr(07) and Jh(00)SmVTwr(7r), respectively.
3. An analogous result applies to the score versions based on nr(01) and np(&r).

These numerical invariance results, which extend those in sections 17.4 and 22.1 of Ruud
(2000), suggest that the score-based tests might be better behaved in finite samples than their

“Wald” counterpart. We will provide some simulation evidence on this conjecture in section 4.

2.3 Subsets of parameters

In some examples, generalised inverses can be avoided by working with a parameter subvec-
tor. In particular, if the (scaled) difference between two estimators of the last py elements of 6,
92T and égT, converge in probability to 0, then comparing 91T and élT is analogous to using a
generalised inverse with the entire parameter vector (see Holly and Monfort (1986) for further
details).

But one may also want to focus on a subset if the means of the asymptotic distributions of
92T and éQT coincide both under the null and the alternative, so that a DWH test involving
these parameters will result in a waste of degrees of freedom, and thereby a loss of power.

The following result provides a useful interpretation of the two score versions asymptotically

equivalent to a Wald-style DWH test that compares 017 and élT:

Proposition 3 Define

Mi7(0,8:) = Tim(0)Snmr(8) — T (0)SmTom ()T (0)SimTam (8)] ™ T3 (0)Suiiir (6),
17(0,50) = Jin(0)Saiir(6) — T1(0)S1T2n(0)[T3,(8)SnT2n(8)] ™" T3, (8)Sniir (6)

as two sets of p1 transformed sample moment conditions, where

In(0) = [ Jim(0) Fom(8) | = [ plimy_, Omr(0)/0607 plimy_,,, dmr(0)/065 |,

If my(0) and n,(0) are correctly specified, then, under standard regularity conditions
T(0r — 67) AL, (01 — 1) — Trh%’(éT)A;frﬁ%’(éT) = 0,(1)
and T(élT — élT)lAl_l(élT — élT) — Tﬁf‘q’w(éT)A;%ﬁf‘T(éT) = 0p<1),

6



where Aq1, Am% and AnlL are the limiting variances of \/T(élT — 91T), \/Tﬁlf‘T(éT,Sm) and
VT ﬁfT(@T, Sy), respectively, which are such that

An = [T5(00)SnTn(00)]" At [T (00)SmTm(80)]

[73(00)SnTn(00)] " At [T1(80)S0Tn(80)]"

with 1 denoting the diagonal block corresponding to 01 of the relevant inverse.

Intuitively, we can understand m;;(0, S,,) and fij;(6, S,,) as moment conditions that exactly

identify 61, but with the peculiarity that

ol PPIT(0:5) 066, S,)

T A A

which makes them asymptotically immune to the sample variability in the estimators of 5.
When J1,,(0)SmTom(0) = J7,,(0)S,T2n(0) = 0, the above moment tests will be asymptoti-

cally equivalent to tests based on J}, (6)S, /Ty (07) and J}, (0)S,v/Tiir(87), respectively,

but in general this will not be the case.

2.4 Multiple simultaneous comparisons

All applications of DWH tests we are aware of compare two estimators of the same underlying
parameters. However, as we shall see in section 3.2, there are situations in which three or more
estimators are available. In those circumstances, it might not be entirely clear which pair of
estimators researchers should focus on.

Ruud (1984) highlighted a special factorisation structure of the likelihood such that different
pairwise comparisons give rise to asymptotically equivalent tests. He illustrated his result with
three classical examples: (i) full sample vs first subsample vs second subsample in Chow tests;
(ii) GLS vs within-groups vs between-groups in panel data; and (iii) Tobit vs probit vs truncated
regressions. Unfortunately, Ruud’s (1984) factorisation structure does not apply in our case.

In general, the best pairwise comparison, in the sense of having maximum power against a
given sequence of local alternatives, would be the one with the highest non-centrality parameter
among those tests with the same number of degrees of freedom.* But in practice, a researcher
might not be able to make the required calculations without knowing the nature of the departure
from the null. In those circumstances, a sensible solution would be to simultaneously compare
all the alternative estimators. Such a generalisation of the DWH test is conceptually straight-
forward, but it requires the joint asymptotic distribution of the different estimators involved.

There is one special case in which this simultaneous test takes a particularly simple form:

‘Ranking tests with different degrees of freedom is also straightforward but more elaborate (see Holly (1987)).



Proposition 4 Let 9]T, j =1,...,J denote an ordered sequence of asymptotically Gaussian
estimators of @ whose joint asymptotic covariance matriz adopts the following form:

Q Q ... O Q
2 Q9 ... Qy
S : (5)
Q L ... Q54 Q5
2 Q ... Q4 Q

i i i il
Then, the DWH test comparing all J estimators, TZ;IZQ(HZ_F .y ) (92 — Qj_1)+(0?[" —0 ),
is the sum of J —1 consecutive pairwise DWH tests that are asymptotically mutually independent
under the null of correct specification and sequences of local alternatives.

Hence, the asymptotic distribution of the simultaneous DWH test will be a non-central x?
with degrees of freedom and non-centrality parameters equal to the sum of the degrees of freedom
and non-centrality parameters of the consecutive pairwise DWH tests. Moreover, the asymptotic
independence of the tests implies that in large samples, the probability that at least one pairwise
test will reject under the null will be 1—(1—a)’~!, where « is the common significance level.

Positive semidefiniteness of the covariance structure in (5) implies that one can rank (in the
usual positive semidefinite sense) the asymptotic variance of the J estimators as

Q;>Q51>...2 0 >Qy,
so that the sequence of estimators follows a decreasing efficiency order. Nevertheless, (5) goes
beyond this ordering because it effectively implies that the estimators behave like Matryoshka
dolls, with each one being “efficient” relative to all the others below. Therefore, Proposition 4
provides the natural multiple comparison generalisation of Lemma 2.1 in Hausman (1978).

An example of the covariance structure (5) arises in the context of sequential, general to spe-
cific tests of nested parametric restrictions (see Holly (1987) and section 22.6 of Ruud (2000)).
More importantly for our purposes, the same structure also arises naturally in the compari-
son of parametric and semiparametric likelihood-based estimators of multivariate, conditionally

heteroskedastic, dynamic regression models, to which we turn next.

3 Application to non-Gaussian likelihood estimators

3.1 Model specification

In a multivariate dynamic regression model with time-varying variances and covariances, the

vector of N observed variables, yy, is typically assumed to be generated as:
1/2 %
ye = m(0) + Z,*(0)e;.

where p,(0) = p(l;—1;0), X4(0) = X(1;-1;0), p() and vech [X()] are N x 1 and N(N +1)/2x 1

vector functions describing the conditional mean vector and covariance matrix known up to the



p X 1 vector of parameters @, I;_; denotes the information set available at ¢ — 1, which contains
past values of y; and possibly some contemporaneous conditioning variables, and 2; / 2(9) is some
particular “square root” matrix such that 2; /2 (0)2; / ?(0) = %,(6). Throughout the paper, we
maintain the assumption that the conditional mean and variance are correctly specified, in the
sense that there is a true value of 0, say 6, such that E(y:|I;—1) = p,(0o) and V(y¢|l;—1) =
34(0p). We also maintain the high level regularity conditions in Bollerslev and Wooldridge
(1992) because we want to leave unspecified the conditional mean vector and covariance matrix
in order to achieve full generality. Primitive conditions for specific multivariate models can be
found for example in Ling and McAleer (2003).

To complete the model, a researcher needs to specify the conditional distribution of ;. In
Supplemental Appendix D we study the general case. In view of the options that the dominant
commercially available econometric software companies offer to their clients, though, in the main
text we study the situation in which a researcher makes the assumption that, conditional on I;_1,
the distribution of €} is independent and identically distributed as some particular member of the
spherical family with a well defined density, or €} |[;_1;6,m ~ i.i.d. s(0,1y,n) for short, where n

denotes ¢ additional shape parameters which effectively characterise the distribution of ¢; = &}’e}

(see Supplemental Appendix C.1 for a brief introduction to spherically symmetric distributions).
The most prominent example is the standard multivariate normal, which we denote by n = 0
without loss of generality. Another important example favoured by empirical researchers is the
standardised multivariate Student ¢ with v degrees of freedom, or i.i.d. (0, I, v) for short. Asis
well known, the multivariate ¢ approaches the multivariate normal as ¥ — oo, but has generally
fatter tails and allows for cross-sectional dependence beyond correlation. For tractability, we
define n as 1/v, which will always remain in the finite range [0,1/2) under our assumptions.”

Obviously, in the univariate case, any symmetric distribution, including the GED (also known

as the Generalised Gaussian distribution), is spherically symmetric too.”

3.2 Likelihood-based estimators

Let Lp(¢) denote the pseudo log-likelihood function of a sample of size T' for the general
model discussed in section 3.1, where ¢ = (', )" are the p + ¢ parameters of interest, which
we assume variation free. We consider up to five different estimators of 6:

1. Restricted ML (RML): 87(7), which is such that 87(7) = argmaxgce Lr(0,7). Its

’Nevertheless, Propositions 10, 13, C2, D1, D2 and D3 already deal explicitly with the general case, while
Propositions 5, 6, 7, 8 and 9 continue to be valid without sphericity.

6A Student ¢t with 1 < v < 2 implies an infinite variance, which is incompatible with the correct specification
of 34, while the conditional mean will not even be properly defined if v < 1.

"See McDonald and Newey (1988) for a univariate generalised ¢ distribution which nests both GED and Student
t, and Gillier (2005) for a spherically symmetric multivariate version of the GED.



efficiency can be characterised by the 6,80 block of the information matrix, Zgg(¢,), provided
that 7 = my. Thus, we can interpret Zgg(¢y) as the restricted parametric efficiency bound.
2. Joint or Unrestricted ML (UML): 87, obtained as (87, i) = arg maxges L7(0,n). In
this case, the feasible parametric efficiency bound is P(¢y) :I(gg(qbo)—Ign(¢o)I,;,},(qbo)l'én(d)o).
3. Spherically symmetric semiparametric (SSP): éT, which restricts € to have an i.i.d.
5(0,Ix,m) conditional distribution, but does not impose any additional structure on the distri-
bution of ¢; = €}’e}. This estimator is usually computed by means of one BHHH iteration of
the spherically symmetric efficient score starting from a consistent estimator (see Supplemen-
tal Appendix C.5 for further computational details).® Associated to it we have the spherically
symmetric semiparametric efficiency bound S (¢o)-
4. Unrestricted semiparametric (SP): 7, which only assumes that the conditional distri-
bution of e} is i.1.d.(0,Iy). It is also computed with one BHHH iteration of the efficient score
starting from a consistent estimator (see Supplemental Appendix D.3 for further computational
details). Associated to it we have the usual semiparametric efficiency bound S(¢y).
5. Gaussian Pseudo ML (PML): 87 = 07(0), which imposes 17 = 0 even though the true
conditional distribution of ef might be neither normal nor spherical. As is well known, the
efficiency bound for this estimator is given by C™1(¢y) = A(do) B~ (pg)A(dy), where A(gp,) is
the expected Gaussian Hessian and B(¢,) the variance of the Gaussian score.

Propositions C1-C3 in Supplemental Appendix C and Proposition D3 in Supplemental Ap-

pendix D contain detailed expressions for all these efficiency bounds.

3.3 Covariance relationships

The next proposition provides the asymptotic covariance matrices of the different estimators

presented in the previous section, and of the scores on which they are based:

Proposition 5 If ef|L;_1; ¢q is i.i.d. s(0,1n,mny) with bounded fourth moments, then

sot(®o) \ | Zoo(Po) P(do) ‘5:((150) §(¢0) Aleb)
VT & Solnt(%o) 73(‘750) 72(‘7—"0) ‘5:((750) §(¢0) A(o)
Am VIS | Ser(do) || = | S(d)  S(do) S(ey) S(do) Algho)| - (6)
t=1 | 30:(¢o) S(gg)  S(dg) S(dg) S(dg) Aldy)
s0:(60,0)/ | | A(dg)  Aldg) Aldg) Aldg) Bl
01 (no) — o Too (P0) Lo (Do) Tog(P0) Zgg(P0) Loy (#0)
01 — 6o Too (90) P (o) P '(do) P '(dg) P~ (o)
andTlLH;oV\/f 07 — 6o = [Zgg (¢0) P~ '(d0) S7'¢o) S o) S (o)l (7)
01 — 0o Too (¢0) P~ (o) S ') S ') S '(eo)
0r—00 )| |Zog(d0) P '(eo) SHeo) S ') Cley)

8Hodgson, Linton and Vorkink (2002) also consider alternative estimators that iterate the semiparametric
adjustment until it becomes negligible. However, since they have the same first-order asymptotic distribution, we
shall not discuss them separately.
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Therefore, the five estimators have the Matryoshka doll covariance structure in (5), with each
estimator being “efficient” relative to all the others below. A trivial implication of this result
is that one can unsurprisingly rank (in the usual positive semidefinite sense) the “information

matrices” of those five estimators as follows:

Too () > Plebg) > S(y) > S(epg) > C(by). (8)

Proposition 5 remains valid when the distribution of €} conditional on I;_; is not assumed
spherical, provided that we cross out the terms corresponding to the SSP estimator Or (see
Supplemental Appendix D for further details). Therefore, the approach we develop in the next
section can be straightforwardly extended to test the correct specification of any maximum
likelihood estimator of multivariate conditionally heteroskedastic dynamic regression models.
Such an extension would be important in practice because while the assumption of sphericity

might be realistic for foreign exchange returns, it seems less plausible for stock returns.

3.4 Multiple simultaneous comparisons

Five estimators allow up to ten different possible pairwise comparisons, and it is not obvious
which one researchers should focus on. If they only paid attention to the asymptotic covariance
matrices of the differences between those ten combinations of estimators, expression (8) suggests
that they should focus on adjacent estimators. However, the number of degrees of freedom and
the diverging behaviour of the estimators also play a very important role.

Nevertheless, we also saw in section 2.4 that there is no reason why researchers should choose
just one such pair, especially if they are agnostic about the alternative. In fact, the covariance
structure in Proposition 5 combined with Proposition 4 implies that DWH tests of multiple
simultaneous comparisons are extremely simple because non-overlapping pairwise comparisons
give rise to asymptotically independent test statistics. Importantly, this result, combined with
the fact that any of the ten possible pairwise comparisons can be obtained as the sum of the
intermediate contiguous comparisons, implies that at the end of the day there are only four
asymptotically independent pairwise comparisons. For example, the difference between the
spherically symmetric estimator 67 and the Gaussian estimator 07 is numerically equal to the
sum of the differences between each of those estimators and the general semiparametric estimator
07, so the limiting mean and covariance matrix of \/T(OT — éT) will be the sum of the limiting
means and covariance matrices of vT'(@7 — 87) and VT (87 — 07). As a result, we can compute
the non-centrality parameters of the DWH test based on 61 — 01 from the same ingredients as

the non-centrality parameters of the DWH tests that compare éT — éT and éT — éT. This result
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also implies that the differences between adjacent asymptotic covariance matrices will often will
be of reduced rank, a topic we will revisit in section 3.6.

Still, researchers may disregard 61 — 67 because the semiparametric estimator and the
Gaussian estimator are consistent for 8y regardless of the conditional distribution, at least as
long as the #id assumption holds. For the same reason, they will also disregard O — 0p if they
maintain the assumption of sphericity. In practice, the main factor for deciding which estimators
to compare is likely to be computational ease. For that reason many empirical researchers might
prefer to compare only the three parametric estimators included in standard software packages
even though increases in power might be obtained under the maintained assumption of iid
innovations by comparing Or to éT or éT instead of 7. The next proposition provides detailed
expressions for the necessary ingredients of the three DWH test statistics in (1), (3) and (4)
when we compare the unrestricted ML estimator of 8 with its Gaussian PML counterpart.

Proposition 6 If the reqularity conditions A.1 in Bollerslev and Wooldridge (1992) are satis-
fied, then under the null of correct specification of the conditional distribution of y

Tlgréo VIVT(0r —07)] = C(¢g) — P (b)),
Th_r)réo V[\/Tébmfp(é% no)] = P(de)C(Pg)P(dg) — Pleg) and
Jim V[VTspr(07,0)] = B(eg) — Al¢o)P ™ (¢g) Alo):

where §9|,7T(9T,n0) is the sample average of the unrestricted parametric efficient score for 6

evaluated at the Gaussian PML estimator éT, while §9T(9T,O) is the sample average of the
Gaussian PML score evaluated at the unrestricted parametric ML estimator Op.

The next proposition provides the analogous expressions for the three DWH test statistics
in (1), (3) and (4) when we compare the restricted ML estimator of 8 which fixes 1 to i with

its unrestricted counterpart, which simultaneously estimates these parameters.

Proposition 7 If the regularity conditions in Crowder (1976) are satisfied, then under the null
of correct specification of the conditional distribution of y;

Jim V{VT(B7 — 87} = P~ (¢by) — Tog (b0) = Tog (60)Zon(0)T™ () Ton($0)Zgg ($0):
Jim V[VTSor(87.,M)] = Zoo(do) P~ (¢0)Zoo (o) — Zoo(Bo) = Lon($)L™ () Loy, (dy and
Jim VAVTSg,[07(7), 7]} = P(¢o) — P(d0) 4 ($0)P(0)
= Zon($0) Ly (D0)Ton(D0)Zog ($0)Zon(60)Zom ($0)Ton (H0)

where T (¢g) = [Inn(do) —Ién((f’o)z&al(¢0)Ien(¢o)]_1: Sor(0r,7M) is the sample average of

the restricted parametric score evaluated at the unrestricted parametric ML estimator Or and
Sonr(07,M) is the sample average of the unrestricted parametric efficient score for 6 evaluated

at the restricted parametric ML estimator O7(7).
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The comparison between the unrestricted and restricted parametric estimators of € can be
regarded as a test of Hy : 7 = f. However, it is not necessarily asymptotically equivalent to the
Wald, LR and LM of the same hypothesis. In fact, a straightforward application of the results
in Holly (1982) implies that these four tests will be equivalent if and only if rank[Zgy, ()] = g =
dim(n), in which case we can show that the LM test and the gy, [67(7), @] version of our DWH
test numerically coincide. But Proposition C1 in Supplemental Appendix C implies that in the
spherically symmetric case Zgy,(¢pg) = Ws(dg)Msr (1), where W(¢pg) in (C28) is p x 1 and
Mgr(19) in (C18) is 1 x ¢, which in turn implies that rank[Zg,(¢g)] is one at most. Intuitively,
the reason is that the dependence between the conditional mean and variance parameters 8 and
the shape parameters i effectively hinges on a single parameter in the spherically symmetric
case, as explained in Amengual, Fiorentini and Sentana (2013). Therefore, this pairwise DWH
test can only be asymptotically equivalent to the classical tests of Hy : 7 = 7 when ¢ = 1 and
Mgr(1g) # 0, the Student ¢ with finite degrees of freedom constituting an important example.

More generally, the asymptotic distribution of the DWH test under a sequences of local
alternatives for which ny, = % + /VT will be a non-central chi-square with rank[Zg, (¢q)]

degrees of freedom and non-centrality parameter

7' T (60)Zog (D0)[Zgg (#0)Zon(00) I (d0)Zon ($0)Zag (D0)] Zgg (0)Zon (o), 9)
while the asymptotic distribution of the trinity of classical tests will be a non-central distribution

with ¢ degrees of freedom and non-centrality parameter

7' Lo (o) — Loy (P0)Zag (Do) Zon (o)) -
Therefore, the DWH test will have power equal to size in those directions in which Zg,(¢g)77 = 0
but more power than the classical tests in some others (see Hausman and Taylor (1981), Holly
(1982) and Davidson and MacKinnon (1989) for further discussion). For analogous reasons, it

will be consistent for fixed alternatives Hy : n = 7 + 1) with Zg,(¢py)n # 0.

3.5 Subsets of parameters

As in section 2.3, we may be interested in focusing on a parameter subset either to avoid
generalised inverses or to increase power. In fact, we show in sections 3.6 and 3.7 that both
motivations apply in our context. The next proposition provides detailed expressions for the dif-
ferent ingredients of the DWH test statistics in Proposition 3 when we compare the unrestricted

ML estimator of a subset of the parameter vector with its Gaussian PML counterpart.

Proposition 8 If the reqularity conditions A.1 in Bollerslev and Wooldridge (1992) are satis-
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fied, then under the null of correct specification of the conditional distribution of yi

lim V[VT(B17 — 017)] = Co,0,(¢0) — PP%" (),

T—oo

Jim VIVTSo,jg,7 (01, 10)] = [P ()] ™' Coy0, (90) [P ()] ™" — [P (¢09)] " and
Jim VIVTSg, 9,7 (07, 0)] = [A%?(¢)] ! [Co,0, (0) — P (90)I[A”* ()] ", where

1
§01|02nT(0, 77) :§01T(0, 77) - [10102 (¢O)IB1T](¢O)] [%20:(( )) 9172:(((?(?))] |:S_92T(0, n):| s (10)

01 To,05(00) Town(@0)] [0, @)\ .
PO ()= {Ielelwo) [Ielexc/)o)Iem(qbo)][Z; o) 1‘-:;’@5)] {zf;: (¢f>] ,while

S6,16,7(0,0) = 50,7(6,0) — As,0,(d) Ag g, (09)56,7(8,0), and
AP0 () = [Agy0, (o) — Ag,0,(B0)Ag g, (B0)Ab,0,(¢0)] "

The analogous result for the comparison between the unrestricted and restricted ML esti-
mator of a subset of the parameter vector is as follows:

Proposition 9 If the regularity conditions in Crowder (1976) are satisfied, then under the null
of correct specification of the conditional distribution of y

Jim VT — 0 @]} = PHO () ~ 17 ().
Jim VIVTS,j0,7 (07, )] = [2%% ()] P () [T ()] ™" — [I%%(¢9)] " and
Jim V{VTSg, 0,7 [07(m). 11} = (PO ()] ™" — [P ()] T () [P (¢99)] .

where 8¢, |9,n7(0,M) is defined in (10),

S0,0,7(0.M) = 86,7(0,M) — Lo,0,(00)Zg,0, (P0)Se,7(6,7), and
%% (¢y) = [Zo,0, (o) — Z6,0,(%0)Zg,9, (®0)Zo,0, (o)) -

In practice, we must replace A(¢y), B(¢y) and Z(¢,) by consistent estimators to make all the
above tests operational. To guarantee the positive semidefiniteness of their weighting matrices,
we will follow Ruud’s (1984) suggestion and estimate all those matrices as sample averages of
the corresponding conditional expressions in Propositions C1 and C2 in Supplemental Appendix
C evaluated at a common estimator of ¢, such as the restricted MLE [07(7),7], its unrestricted
counterpart q’)T, or the Gaussian PML 07 coupled with the sequential ML or method of moments
estimators of 17 in Amengual, Fiorentini and Sentana (2013), the latter being such that B(6,n)
remains bounded.’ In addition, in computing the three versions of the tests we exploit the
theoretical relationships between the relevant asymptotic covariance matrices in Propositions 8

and 9 so that the required generalised inverses are internally coherent.

9Unfortunately, DWH tests that involve the Gaussian PMLE will not work properly with unbounded fourth
moments, which violates one of the assumptions of Proposition C2 in Supplemental Appendix C.

14



In what follows, we will simplify the presentation by concentrating on Wald version of DWH
tests in (1), but all our results can be readily applied to their two asymptotically equivalent

score versions in (3) and (4) by virtue of Proposition 1, and the same applies to Proposition 3.

3.6 Choosing the correct number of degrees of freedom

Propositions 6 and 7 establish the asymptotic variances involved in the calculation of simul-
taneous DWH tests, but they do not determine the correct number of degrees of freedom that
researchers should use. In fact, there are cases in which two or more estimators are equally

efficient for all the parameters, and one instance in which this is true for all five estimators:'°

Proposition 10 1. Ifef|li_1;¢q is i.i.d. N(0,Iy), then

V [set(60,0)|1:—1; 60, 0] 0
o MM(O)

V' [s6:(00,0)|1;—1;609,0] = —FE [hggt(00,0)|1;—1;00,0] = Ai(6g,0) = B:(6o,0).

Z:(00,0) = V [s(00,0)|1;_1;69,0] = , where

2. If €f|Ii—1; ¢ is i.i.d. 5(0,In,mg) with ko = E(¢})/[N(N +2)] =1 < oo, and Zi(¢,) =
E[Z1(00)|¢] # 0, where Z;(00) is defined in (C6), then S(¢y) = Lo () only if ng = 0.

The first part of this proposition, which generalises Proposition 2 in Fiorentini, Sentana and
Calzolari (2003), implies that @7 suffers no asymptotic efficiency loss from simultaneously esti-
mating 1 when 1y = 0. In turn, the second part, which generalises Result 2 in Gonzalez-Rivera
and Drost (1999) and Proposition 6 in Hafner and Rombouts (2007), implies that normality is
the only such instance within the spherical family.

For practical purposes, this result implies that a researcher who assumes multivariate nor-
mality cannot use DWH tests to assess distributional misspecification. But it also indicates that
if she has specified instead a non-Gaussian distribution that nest the multivariate normal, she
should not use those tests either if she suspects the true distribution may be Gaussian because
the asymptotic distribution of the statistics will not be uniform. Unfortunately, one cannot
always detect this problem by looking at ). For example, Fiorentini, Sentana and Calzolari
(2003) prove that under normality, the ML estimator of the reciprocal of degrees of freedom
of a multivariate Student ¢ will be 0 approximately half the time only. In many empirical
applications, though, normality is unlikely to be a practical concern.

There are other distributions for which some but not all of the differences will be 0:
Proposition 11 1. If ef[Ii—1;¢q 15 i.i.d. s(0,In,mg) with —=2/(N +2) < Ko < 0o, and

Wi(g) # 0, then S(¢g) = Zog(po) only if si|li—1; Pg is i.i.d. Gamma with mean N and
variance N[(N + 2)ko + 2].

2. If e;|l1—1; ¢g is i.i.d. s(0,In,mg) and Ws(eg) # 0, P(bg) = Zea (o) only if Msr-(1o) = 0.

10As we mentioned before, the restricted ML estimator @T(ﬁ) is efficient provided that i = m,, which in this
case requires that the researcher must correctly impose normality.
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The first part of this proposition, which generalises the univariate results in Gonzalez-Rivera
(1997), implies that the SSP estimator 01 can be fully efficient only if e€f has a conditional
Kotz distribution (see Kotz (1975)). This distribution nests the multivariate normal for k = 0,
but it can also be either platykurtic (x < 0) or leptokurtic (k > 0). Although such a nesting
provides an analytically convenient generalisation of the multivariate normal that gives rise to
some interesting theoretical results,!! the density of a leptokurtic Kotz distribution has a pole
at 0, which is a potential drawback from an empirical point of view.

In turn, the second part provides the necessary and sufficient condition for the information
matrix to be block diagonal between the mean and variance parameters @ on the one hand and
the shape parameters 17 on the other. Although the lack of uniformity that we mentioned after
Proposition 10 applies to this proposition too, its practical consequences would only become a
real problem in the unlikely event that a researcher used a parametric spherical distribution for
which M,s # 0 in general, but which is such that M,s; = 0 in some special case. We are not aware
of any non-Gaussian elliptical distribution with this property, although it might exist.!?

There are also other more subtle but far more pervasive situations in which some, but not
all elements of @ can be estimated as efficiently as if 1y were known (see also Lange, Little
and Taylor (1989)), a fact that would be described in the semiparametric literature as partial
adaptivity. Effectively, this requires that some elements of sg;(¢p,) be orthogonal to the relevant
tangent set after partialling out the effects of the remaining elements of sg;(¢) by regressing the
former on the latter. Partial adaptivity, though, often depends on the model parametrisation.
The following reparametrisation provides a general sufficient condition in multivariate dynamic

models under sphericity:

Reparametrisation 1 A homeomorphic transformation rs(.) = [rh.(.),7,,(.)]" of the mean-

variance parameters @ into an alternative set 9 = (9.,9,)', where 9; is a positive scalar, and
rs(0) is twice continuously differentiable with rank [0, (0) /06] = p in a neighbourhood of 6y,

such that (60) = 1, (8.
oy ooy | ¥ =

Expression (11) simply requires that one can construct pseudo-standardised residuals
o o—1/2 e}
e (W) = 372 (We)lye — i (9e)]
which are i.i.d. s(0,9;1y,m), where ¥J; is a global scale parameter, a condition satisfied by most

static and dynamic models.

""For example, we show in the proof of Proposition 10 that Zee(¢) = S(¢) in univariate models with Kotz
innovations in which the conditional mean is correctly specified to be 0. In turn, Francq and Zakoian (2010) show
that Z,, (¢) = C(¢) in those models under exactly the same assumptions.

“Piorentini and Sentana (2019) provides a very different reason for the DWH test considered in Proposition
6 to be degenerate. Specifically, Proposition 5 in that paper implies that if one uses a Student ¢ log-likelihood
function for estimating @ but the true distribution is such that x < 0, then vT(67 — 07) = 0,(1).
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The next proposition generalises and extends earlier results by Bickel (1982), Linton (1993),
Drost, Klaassen and Werker (1997) and Hodgson and Vorkink (2003):
Proposition 12 1. Ifef|li_1;¢ isii.d. s(0,In,n) and (11) holds, then:
(a) the spherically symmetric semiparametric estimator of 9. is ¥;-adaptive,
(b) If I denoées the iterated spherically symmetric semiparametric estimator of ¥, then
Vi = Yi7(Der), where
dir(9) = (NT)™' 22 (9e), (12)
W) = [ye— m(9)]'S7 (O lye — py(9e)], (13)
(¢) rank[S(¢g) — C~ (¢by)] < dim(¥) =p— 1,
2. If in addition E[ln |X3(9.)||¢g] = k VO, holds, then:
(a) Zys(¢g), ( ,S(0), S(¢g) and C(gpy) are block-diagonal between 9. and V;.

bo)
(b) \F( i — Vir) = 0p(1), where {9; = (f’ICT,qN?iT) is the Gaussian PMLE of ¥, with
ﬁzT— T ( )

This proposition provides a saddle point characterisation of the asymptotic efficiency of the
SSP estimator of 19, in the sense that in principle it can estimate p — 1 parameters as efficiently
as if we fully knew the true conditional distribution of the data, including its shape parameters,
while for the remaining scalar parameter it only achieves the efficiency of the Gaussian PMLE.

The main implication of Proposition 12 for our proposed tests is that while the maximum
rank of the asymptotic variance of \/T({?T — 109T) will be p — 1, the asymptotic variances of
VT[97 —07®)], VT (97 —O7) and indeed VT [0 — O (7)] will have rank one at most. In fact,
we can show that once we exploit the rank deficiency of the relevant matrices in the calculation of
generalised inverses, the DWH tests based on v/T (1~9CT — ;’CT), VT [{%T — 1A91-T(T7)], VT (191T — {%T)
and VT [9;7 — ¥;7(7)] coincide with the analogous tests for the entire vector ¥, which in turn
are asymptotically equivalent to tests that look at the original parameters 6.

It is also possible to find an analogous result for the SP estimator, but at the cost of restricting

further the set of parameters that can be estimated in a partially adaptive manner:

Reparametrisation 2 A homeomorphic transformation rg(.) = [ry.(.), 5 (), t5.()] of the
mean-variance parameters 0 into an alternative set @ = (@, @k @i, ), where p;, is N x 1,
P = vech(®i.), @i is an unrestricted positive definite symmetric matriz of order N and ry(6)
is twice continuously differentiable in a neighbourhood of 6y with rank [81'; (60) /80] = p, such

that

1/2 1/2
20(0) = 272 (00) @50 ()
This parametrisations simply requires the pseudo-standardised residuals

e(00) = 3 (@) lye — 1i(pe)] (15)

to be ¢.7.d. with mean vector ¢,,, and covariance matrix ®;..

w(8) = 12(0,) + (0, )i, } L (14)

The next proposition generalises and extends Theorems 3.1 in Drost and Klaassen (1997)

and 3.2 in Sun and Stengos (2006):
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Proposition 13 1. Ifef|l;_1;0, 0 is i.i.d. D(0,1y, @), and (14) holds, then
(a) the semiparametric estimator of @,., @.r, is p;-adaptive, where p; = (@, @) -
(b) If ¢ denotes the iterated semiparametric estimator of @, then @,r = Pimr(Per)
and $;.p = Picr(Per), where
Cimr() = T i €l(ee), (16)
Cicr(p) = T71 1 vech{[ef (@) = imr (@[} (9e) = Pimr ()]} (17)
(¢) rank[S(¢g) — C(¢pg)] < dim(ep,) =p — N(N +3)/2.
2. If in addition E10p5(.0)/0. - 3 (pun)| do] = 0 and
B{0veclS (00 /0. - [T © 3 (00)]| d0} = 0, then
(a) Tpp (o), P(o), S(bg) and C(py) are block diagonal between o, and ;.

(b) NT(pir — Pir) = 0p(1), where @y = (@lp, Piy) is the Gaussian PMLE of o, with
Pimr = Pimr(Per) and @iy = Picr(Per)-

This proposition provides a saddle point characterisation of the asymptotic efficiency of the
semiparametric estimator of 8, in the sense that in principle it can estimate p — N(N + 3)/2
parameters as efficiently as if we fully knew the true conditional distribution of the data, while
for the remaining parameters it only achieves the efficiency of the Gaussian PMLE.

The main implication of Proposition 13 for our purposes is that while the DWH test based
on VT (@r — p7) will have a maximum of p — N(N + 3)/2 degrees of freedom, those based on
VT @r—@r@)], VI($r —@r) and VT [ — @p(9)] will have N (N +3)/2 at most. As before,
we can show that once we exploit the rank deficiency of the relevant matrices in the calculation
of generalised inverses, DWH tests based on VT(@.7 — $.7), VT[@ir — @ir(@)], VT (Pi7 — Pir)
and VT[p,r — @,7(7)] are identical to the analogous tests based on the entire vector @, which

in turn are asymptotically equivalent to tests that look at the original parameters 6.

3.7 Maximising power

As we discussed in section 2.1, the local power of a pairwise DWH test depends on the
difference in the pseudo-true values of the parameters under misspecification relative to the
difference between the covariance matrices under the null. But Proposition 1 in Fiorentini and
Sentana (2019) states that in the situation discussed in Proposition 12, ¥, will be consistently
estimated when the true distribution of the innovations is spherical but different from the one
assumed for estimation purposes, while ¥; will be inconsistently estimated. Therefore, rather
than losing power by disregarding all the elements of 9., we will in fact maximise power if
we base our DWH tests on the overall scale parameter ¥; exclusively. Similarly, Proposition
3 in Fiorentini and Sentana (2019) states that in the context of Proposition 13, ¢, will be
consistently estimated when the true distribution of the innovations is i.i.d. but different from

the one assumed for estimation purposes, while ¢,,, and ¢;. will be inconsistently estimated.
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Consequently, we will maximise power in that case if we base our DWH tests on the mean and

covariance parameters of the pseudo standardised residuals €5 (¢,) in (15).

3.8 Extensions to structural models

So far we have considered multivariate dynamic location scale models which directly parame-
trise the conditional first and second moment functions. However, non-Gaussian innovations
have also become increasing popular in dynamic structural models, whose focus differs from
those conditional moments. Two important examples are non-causal univariate ARMA models
(see Supplemental Appendix E.2) and structural vector autoregressions (SVARs), like the one we
consider in the empirical section. These models introduce some novel inference issues that we

illustrate in this section by studying the following N-variate SVAR process of order p:
Yt =T + Z?zl Ajyt_j + Cs}", s:‘lt—l ~ z’.i.d.(O, IN)7 (18)

where C is a matrix of impact multipliers and €} are “structural” shocks. The loading matrix is
sometimes reparametrised as C = JW¥, where ¥ is a diagonal matrix whose elements contain the
scale of the structural shocks, while the columns of J, whose diagonal elements are normalised
to 1, measure the relative impact effects of each of the structural shocks on all the remaining
variables, so that the parameters of interest become j = wveco(J — Iy) and ¥ = vecd(P).
Similarly, the drift 7 is often written as (Ixy —®; —...—®,)p under the assumption of covariance
stationarity, where p is the unconditional mean of the observed process. We will revisit these
interesting alternative parametrisations below, but as we discussed in section 2.2, they all give
rise to asymptotically equivalent and possibly numerically identical DWH tests.

Let e, = Ce; denote the reduced form innovations, so that e;l;—1 ~ 4.i.d.(0,X) with
3 = CC'. Asis well known, a Gaussian (pseudo) log-likelihood is only able to identify 3, which
means the structural shocks €; and their loadings in C are only identified up to an orthogonal
transformation. Specifically, we can use the so-called L@ matrix decomposition'? to relate the
matrix C to the Cholesky decomposition of 3 = X3} as C = X;Q, where Q is an N x N
orthogonal matrix, which we can model as a function of N (N —1)/2 parameters w by assuming

that |Q| = 1.141> While X[, is identified from the Gaussian log-likelihood, w is not. In fact,

13The LQ decomposition is intimately related to the QR decomposition. Specifically, Q'X} provides the QR
decomposition of the matrix C’,which is uniquely defined if we restrict the diagonal elements of X1, to be positive
(see e.g. Golub and van Loan (1993) for further details).

"See section 9 of Magnus, Pijls and Sentana (2020) for a detailed discussion of three ways of explicitly para-
metrising a rotation (or special orthogonal) matrix: (i) as the product of Givens matrices that depend on
N(N — 1)/2 Tait-Bryan angles, one for each of the strict upper diagonal elements; (ii) by using the so-called
Cayley transform of a skew-symmetric matrix; and (c) by exponentiating a skew-symmetric matrix. Our proce-
dures apply regardless of the chosen parametrisation.

'5If |Q| = —1 instead, we can change the sign of the it" structural shock and its impact multipliers in the
it" column of the matrix C without loss of generality as long as we also modify the shape parameters of the
distribution of &}, to alter the sign of all its non-zero odd moments.
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the underidentification of w would persist even if we assumed for estimation purposes that e}
followed an elliptical distribution or a location-scale mixture of normals.

Nevertheless, Lanne, Meitz and Saikkonen (2017) show that statistical identification of both
the structural shocks and C (up to permutations and sign changes) is possible assuming (i)
cross-sectional independence of the N shocks and (ii) a non-Gaussian distribution for at least
N — 1 of them. Still, the reliability of the estimated impulse response functions (IRFs) and
associated forecast error variance decomposition (FEVDs) depends on the validity of the assumed
distributions. For that reason, a distributional misspecification diagnostic such our DWH test,
which does not specify any particular alternative hypothesis, seems particularly appropriate.

For simplicity, in the rest of this section we assume that the N structural shocks are cross-
sectionally independent with symmetric marginal distributions. One particularly important
example will be €},|I;_1 ~ i.i.d. t(0, 1,v;). Univariate ¢ distributions are very popular in finance as
a way of capturing fat tails while nesting the traditional Gaussian assumption. Their popularity
is also on the rise in macroeconomics, as illustrated by Brunnermeier et al (2019).

Let @ = [7/,vecd (A1), ... ,ved (A}),ved (C)]" = (7/,a],...,a},c/) = (7/,a’,c/) denote the
structural parameters characterising the first two conditional moments of y;. In addition, let
0= (01,-..,0y) denote the shape parameters, so that ¢ = (6, ¢')’. In the case of the Student

t, each distribution depends on a single shape parameter 7; = v 1. As in previous sections,

i
we consider two alternative ML estimators of the structural parameters in @: a restricted one
which assumes that the shape parameters are known (RMLE), and an unrestricted one that
simultaneously estimates them (UMLE).

Somewhat surprisingly, it turns out that under correct distributional specification, the UMLE
is efficient for all the model parameters except the standard deviations of the structural shocks.
More formally, the following proposition derives the asymptotic properties of the differences

between the RMLE and UMLE under the null of correct specification:

Proposition 14 If model (18) with cross-sectionally independent symmetric structural shocks
generates a covariance stationary process, then NT[fip—pr(2)] = o,(1), VT[ar—ar(2)] =
0p(1), VT [jr—=jr(@)] = 0p(1), and limp—.oo V{VT [pr—tp1(2)]} = P¥¥ () — I¥¥ (dby)-

This result implies that we should base the DWH tests on the comparison of the restricted
and unrestricted ML estimators of the elements of 1, their squares or logs, thereby avoiding the
need for generalised inverses that would arise if we compared the estimators of the N2 elements

of ¢ (see Proposition B1.3).!6 As usual, we can obtain two asymptotically equivalent tests by

87 the autoregressive polynomial (Ix — A1L — ... — A, L) had some unit roots, so that (18) generated a
(co-) integrated process, Proposition 14 would remain valid with p replaced with 7, but its proof would become
more involved because of the non-standard asymptotic distribution of the estimators of the conditional mean
parameters. In contrast, the distribution of the ML estimators of the conditional variance parameters would
remain standard (cf. Theorem 4.2 in Phillips and Durlauf (1986)).
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using the scores with respect to 1 instead of the parameter estimators (see Proposition 3).
Nevertheless, one should not use any of these tests when one suspects that the innovations are
Gaussian not only for the lack of uniformity mentioned after Proposition 10 in section 3.6, but
also because 1 is asymptotically underidentified.

The results in Holly (1982) imply that this DWH test will be asymptotically equivalent to the
LR test of Hy : § = i if and only if rank(Z¢,) = N, which we show in the proof of Proposition
B1. In that case, we can prove that the version of the DWH test based on the efficient scores
of the unrestricted parameter estimators evaluated at the restricted parameter estimators is
numerically identical to the LM test of this null hypothesis, which is entirely analogous to the
discussion that follows Proposition 7.

It might appear that one cannot compare these non-Gaussian ML estimators to the Gaussian
PML ones because the Gaussian pseudo log-likelihood is flat along an N(N — 1)/2-dimensional
manifold of the structural parameters c. However, appearances are sometimes misleading. Under
correct distributional specification, the non-Gaussian estimators will efficiently estimate the
reduced form covariance matrix, so it is straightforward to develop DWH specification tests
based on p (or 7), a and o = vech(X) or its Cholesky factor o; = vech(Xr), and their
associated scores, even though we cannot do it for for w, let alone j or .

Proposition B2 contains the asymptotic covariance matrix of the Gaussian pseudo-ML es-
timators of the reduced form parameters, which are asymptotically inefficient relative to the
UMLEs when the innovations are non-Gaussian. In turn, Proposition Bl provides the non-
Gaussian scores and information matrix for 7 and a. Finally, Proposition B3 provides the
analogous expressions for o7, and w.!” The only unusual feature is that in computing the as-
ymptotic covariance of the estimators of the V(N +1)/2 parameters in o, in the non-Gaussian
case, one must take into account the sampling variability in the estimation of the N(N — 1)/2
structural parameters in w, as well as the drift and autoregressive parameters.

The block diagonality of all the asymptotic covariance matrices immediately implies that we
can additively decompose the DWH test that compares all the reduced form parameters into a
component that compares the conditional mean parameters and another one that compares the
residual covariance matrix 3 or its Cholesky decomposition. However, Fiorentini and Sentana
(2020) show that if the true joint density of the structural shocks e} in (18) is the product of N
univariate densities but they are different from the ones assumed for ML estimation purposes,
then the restricted and unrestricted non-Gaussian (pseudo) ML estimators of model (18) remain

consistent for a and j but not for 7 or ¥. Thus, the parameters that are efficiently estimated

'"Given that the mapping from & to o in expression (D13) of Appendix D.1 is bijective, we can invert it to
obtain the scores and information matrix for o and w from the corresponding expression for o and w.
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by the unrestricted ML estimator remain once again consistently estimated under distributional
misspecification. Although we cannot exploit the consistency of j to increase the power of the
DWH test that compares the ML estimators of the reduced form variance parameters with the
Gaussian ones because we cannot separately identify them with a Gaussian pseudo log-likelihood,
it makes sense to increase the power of the DWH test that compares the ML estimators of the
mean parameters with the Gaussian ones by saving degrees of freedom and focusing on either
the drifts in 7 or the unconditional means in pu even though they do not directly affect the IRFs
and FEVDs. Using the results on invariance to reparametrisation in Proposition 2, the DWH
test of all the mean parameters is asymptotically equivalent whether we parametrise the model
in term of (7,a) or (u,a), and in fact, some of the score versions will be numerically identical.

In contrast, the DWH tests that only focus on either 7 or p will be different.'®

4 Monte Carlo evidence

In this section, we assess the finite sample size and power of our proposed DWH tests in
the univariate and multivariate examples that we have been considering by means of extensive
Monte Carlo simulation exercises. In all cases, we evaluate the three asymptotically equivalent
versions of the tests in (1), (3) and (4) using the ingredients in Propositions 8 and 9. To simplify
the presentation, we denote the Wald-style test that compares parameter estimators by DWH1,
the test based on the score of the more efficient estimator evaluated at the less efficient one by
DWH2 and, finally, the second score-based version of the test by DWH3.

Univariate GARCH-M  Let rj;; denote the excess returns on a broad-based portfolio. Drost

and Klaassen (1997) proposed the following model for such a series:
rare = 1(0) +0u(0)er,  14(0) = T704(8), 07(8) = w+ariy_y + Boi_i(6). (19)

The conditional mean and variance parameters are 8’ = (7,w, o, 3). As explained in Fiorentini

" and 19;, where

and Sentana (2019), this model can also be written in terms of ¥, = (5,7, 9)
vy = ajw, § = 7w'/? and ¥; = w (reparametrisation 1) or @. = (3,7)’, ©;, and @;., where

v =ajw, ¢;, = Tw? and ¢,, = w (reparametrisation 2).

18The intuition is as follows. In the case of the unconditional mean parametrisation, the block diagonality of
the information matrix not only arises between the conditional mean parameters and the rest, but also between
p and a, with the same being true for the Gaussian PMLE covariance matrix. As a result, the DWH test of the
conditional mean parameters can be additively separated between the DWH test of p, which has all the power,
and the DWH test of a, whose asymptotic power is equal to its size. In contrast, neither the information matrix
nor the Gaussian sandwich matrix are block diagonal between 7 and a when we rely on the parametrisation
in terms of the drifts, which means that the DWH test based on the drifts is not asymptotically independent
from the DWH test based the dynamic regression coefficients a. But since both the DWH test of all the mean
parameters and the DWH test for a are the same in both reparametrisations, the DWH test based on 7 must be
different from the DWH test for . The ordering of the local power of these two tests is unclear.
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Random draws of €} are obtained from four different distributions: two standardised Student
t with v = 12 and v = 8 degrees of freedom, a standardised symmetric fourth-order Gram-
Charlier expansion with an excess kurtosis of 3.2, and another standardised Gram-Charlier
expansion with skewness and excess kurtosis coefficients equal to -0.9 and 3.2, respectively. For
a given distribution, random draws are obtained with the NAG library GO5DDF and GO5FFF
functions, as detailed in Amengual, Fiorentini and Sentana (2013). In all four cases, we generate
20,000 samples of length 2,000 (plus another 100 for initialisation) with 5 = 0.85, a = 0.1,
7 = 0.05 and w = 1, which means that 6 = ¢;,, = 0.05, v = 0.1 and ¥; = ¢,;,. = 1. These
parameter values ensure the strict stationarity of the observed process. Under the null, the
large number of Monte Carlo replications implies that the 95% percent confidence bands for
the empirical rejection percentages at the conventional 1%, 5% and 10% significance levels are
(0.86,1.14), (4.70,5.30) and (9.58,10.42), respectively.

We estimate the model parameters three times: first by Gaussian PML and then by max-
imising the log-likelihood function of the Student ¢ distribution with and without fixing the
degrees of freedom parameter to 12. We initialise the conditional variance processes by setting
o} tow(l+7r2,)/(1—B), where r3, = % Z1T 72, provides an estimate of the second moment of
rare. The Gaussian, unrestricted Student ¢ and restricted Student t log-likelihood functions are
maximised with a quasi-Newton algorithm implemented by means of the NAG library EO4LBF
routine with the analytical expressions for the score vector and conditional information matrix
in Fiorentini, Sentana and Calzolari (2003).

Table 1 contains the empirical rejections rates of the three pairwise tests in Propositions
8 and 9, together with the corresponding three-way tests. When comparing the restricted and
unrestricted ML estimators, we also compute the LR test of the null hypothesis Hy : 7 = 7. As we
mentioned in section 3.4, the asymptotically equivalent LM test of this hypothesis is numerically
identical to the corresponding DWHS3 test because dim(m) = 1. Hence, we obtain exactly the
same statistic whether we compare the entire parameter vector 8 or the scale parameter 1J; only.

When the true distribution of the standardised innovations is a Student ¢ with 12 degrees of
freedom, the empirical rejections rates of all tests should be equal to their nominal sizes. This
is in fact what we found except for the DWH1 and DWH2 tests that compare the restricted
and unrestricted ML estimators and scores, which are rather liberal and reject the null roughly
10% more often than expected. A closer inspection of those cases revealed that even though
the small sample variance of both estimators is well approximated by the variance of their
asymptotic distributions, the Monte Carlo distribution of their difference is highly leptokurtic,

so the resulting critical values are larger than those expected under normality. In contrast, the
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DWHS3 test, which in this case is invariant to reparametrisation,'”

seems to work very well.

When the true distribution is a standardised Student ¢ with v = 8, only the tests involving
the restricted ML estimators that fix the number of degrees of freedom to 12 should show some
power. And indeed, this is what the second panel of Table 1 shows, with DWH3 having the best
raw (i.e. non-size adjusted) power, and the LR ranking second. In turn, the three-way tests
suffer a slight loss power relative to the pairwise tests that compare the two ML estimators.
Finally, the empirical rejection rates of the tests that compare the unrestricted ML and PML
estimators are close to their significance levels.

For the symmetric and asymmetric standardised Gram-Charlier expansions, most tests show
power close or equal to one. The only exceptions are the DWH1 and DWH2 versions of the tests
comparing the unrestricted ML and PML estimators. Overall, the DWH3 version our proposed
tests seems to outperform the two other versions.

In addition, we find almost no correlation between the DWH tests that compare the re-
stricted and unrestricted ML estimators and the one that compare the Gaussian PMLE with
the unrestricted MLE, as expected from Propositions 4 and 5. This confirms that the distrib-
ution of the simultaneous test can be well approximated by the distribution of the sum of the
two pairwise DWH tests.

Multivariate market model Let r; denote the excess returns on a vector of IV assets traded
on the same market as r3;7. A very popular model is the so-called market model

ry = a+ bryy + QY% (20)
The conditional mean and variance parameters are ' = (a’,b’,w’), where w = vech(€2) and
Q = Q/2Q'/2, In this case, Fiorentini and Sentana (2019) show that can write it in terms
of 9, = (a’,b’,w’) and ¥;, with 9; = ||V and Q°(w) = Q/|Q|'/N (reparametrisation 1) or
@.=b, @, =aand @, = vech(®;.) = vech() (reparametrisation 2).

We consider four standardised multivariate distributions for €}, including two multivariate
Student t with ¥ = 12 and v = 8 degrees of freedom, a discrete scale mixture of two normals
(DSMN) with mixing probability 0.2 and variance ratio 10, and an asymmetric, location-scale
mixture (DLSMN) with the same parameters but a difference in the mean vectors of the two
components § = .5y, where {y is a vector of N ones (see Amengual and Sentana (2010)
and Appendix E.1, respectively, for further details). For each distribution, we generate 20,000
samples of dimension N = 3 and length 7" = 500 with a = .112¢3, b = ¢3 and Q@ = D'/2RD"/?,

with D = 3.136 I3 and the off diagonal terms of the correlation matrix R equal to 0.3. Finally,

19Proposition 2 implies that the score tests will be numerically invariant to reparametrisations if the Jacobian
used to recompute the conditional expected values of the Hessian matrices A: and Z; and the conditional covariance
matrix of the scores B; are evaluated at the same parameter estimators as the Jacobian involved in recomputing
the scores with respect to the transformed parameters by means of the chain rule.
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in each replication we generate the strongly exogenous regressor rjs; as an ¢.¢.d. normal with an
annual mean return of 7% and standard deviation of 16%.

Table 2 show the results of the size and power assessment of our proposed DWH tests. As
in the previous example, the DWH3 version of the test appears to be the best one here too,
although not uniformly so. When we compare restricted and unrestricted MLE, all versions
of the DWH test perform very well both in terms of size and power despite the fact that the
number of parameters involved is much higher now (three intercepts, three variances and three
covariances). On the other hand, the tests that compare PMLE and unrestricted MLE show
some small sample size distortions, which nevertheless disappear in simulations with larger
sample lengths not reported here.

When the distribution is asymmetric, the DWH2 versions of the test that focus on the scale
parameter are powerful but not extremely so, the rationale being that they are designed to
detect departures from the Student ¢ distribution within the spherical family. In contrast, when
we simultaneously compare a and vech(2), power becomes virtually 1 at all significance levels.

Once again, we find little correlation between the statistics that compare the restricted and
unrestricted ML estimators and the ones that compare the Gaussian PMLE with the unrestricted
MLE, as expected from Propositions 4 and 5. This confirms that we can safely approximate the
distribution of the simultaneous test by the distribution of the sum of the two pairwise tests.
Structural VAR Finally, we focus on the model in section 3.8 by simulating samples from
the following bivariate SVAR(1) process:

Y1t 1.2 0.7 0.5 1 0.313 1.2 0 €74
(ygt > - < 0.5>+< —-0.2 0.8 >Yt_l+<0.583 1 > ( 0 1.6 >(5’2‘t )

In the size experiment, €}, and €3, are two independent standardised Student ts with n; =
0.15 and 1y = 0.10 respectively, but in the power experiment €}, is drawn from a symmetric
DSMN with mixing probability 0.52 and variance ratio 0.06 while €5, follows an asymmetric
DLSMN with mixing probability 0.3, variance ratio 0.2 and § = 0.5. The sample length is
T = 2,000.

We consider three estimators, the Gaussian PMLE, the UMLE that assumes two independent
Student ¢ for the structural shocks, and the RMLE that fixes the shape parameters at their true
values in the size experiment and at v = 8 and v = 24 in the power experiment.

Since the main purpose of SVARs is policy analysis, it is of interest to compare the Monte
Carlos means of the estimated IRFs and FEVDs to their true values. Under correct specifica-
tion, all curves are virtually indistinguishable, confirming that the identification and estimation
strategy in Lanne et al (2017) works remarkably well. As Figure 1 shows, though, under incor-

rect specification, the IRFs and FEVDs of the first variable are markedly biased even though the
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pattern of the IRFs is correct because (I — AL)~1J is consistently estimated, as we explained at
the end of section 3.8. Remarkably, the RMLE curves show very little bias, but this is a fluke
that disappears by fixing the values of n; and 7, to the pseudo-true values of the UMLEs.
Table 3 displays the finite sample size and power of our tests. Given the larger sample size,
we observe lower finite sample size distortions than in the multivariate market model.?’ The
three versions of the test show a similar behaviour, with no version uniformly superior to the
others. When the distribution is not Student, power is remarkable and reaches 1 for all tests
except the one that compares the PML and UML estimators of the drifts 7. Even then, the
percentage of rejections of the DWH2 statistic is above 92% at the 1% nominal level. The fact
that in this design only one of the shocks is asymmetric, while the tests based on 7 only have

power under asymmetric shocks, might explain why we do not observe a 100% rejection rate.

5 Empirical illustrations

In Fiorentini and Sentana (2019), we illustrated the empirical relevance of our proposed
consistent estimators by fitting the univariate GARCH-M model (19) to the daily returns of 200
large cap stocks from the main eurozone markets between 2014 and 2018. When we compared
Gaussian and unrestricted Student ¢ MLEs by means of the score versions of our tests, we
rejected the null at the 5% significance level for 36.5% of the series if we focused on symmetric
alternatives (9;) and for 41% when we allowed for asymmetric ones (¢;,,, ¥;s)- In addition, the
DWH test that checks the adequacy of the Student ¢ distribution with 4 degrees of freedom
rejected the null at the 5% significance level for 39.5% of series, while the joint test obtained by
adding the previous statistics up rejected the null for more than half of the series under analysis.

In this section, we apply our procedures to the trivariate SVAR in Angelini el al (2019), who
revisited the empirical analysis in Ludvigson, Ma and Ng (2015) and Carriero, Clark and Mar-
cellino (2018). Figure 2 displays the data, which we downloaded from the JAE data archive at
http://qed.econ.queensu.ca/jae/2019-v34.3/angelini-et-al/. It consists of monthly observations
from August 1960 to April 2015 on a macro uncertainty index taken from Jurado, Ludvigson,
and Ng (2015), the rate of growth of the industrial production index, and a financial uncertainty
index constructed by Ludvigson, Ma and Ng (2018). As all these authors convincingly argue,
a joint model of financial and macroeconomic uncertainty is crucial to understand the relation-
ship between uncertainty and the business cycle. We adopt the original VAR(4) specification in

Angelini el al (2019), which implies that 7" = 653 after initialization of the log-likelihood with

20 As expected from Proposition 10, though, size distortions become a serious problem in a separate Monte
Carlo exercise in which €7, and €5, are two independent standardised Student t with with 66.6 and 100 degrees of
freedom, respectively, which are rather difficult to distinguish from Gaussian random variables in finite samples.
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4 pre-sample observations. Our main point of departure is that we assume that the structural
innovations follow three independent standardised Student ¢ distributions with v; degrees of
freedom, which allows us to identify the entire matrix of impact multipliers C = JW¥. Thus,
the unrestricted ML procedure estimates 2N + (p + 1) N? = 51 parameters, while the restricted
MLE fixes v1 = vy = v3 = 8 (We tried different values of ranging from 6 to 10 but results were
very similar). Finally, the Gaussian PMLE estimates N (N — 1)/2 = 3 parameters less because
it can only identify CC' = J®2J' = X.

Our PML estimators of the autoregressive matrices coincide with those in Angelini et al
(2019). Further, the restricted and unrestricted MLEs of those parameters are also very similar
because the three estimators are consistent under weak conditions, as we explained in section
3.8. The estimates of the drift, the (scaled) impact multiplier matrix J, the standard deviations
of the structural shocks in ¥ and the unconditional variance of the one period ahead forecast
errors X are reported in Table 4. As can be seen, the three estimators of the drift parameters
are quite similar for the first two series, while for the last one the sign of the UML and RML
estimators is reversed with respect to the PML one. A look at the estimators of X reveals both
an unbalanced scaling of the data, and a low predictability in the rate of growth of the industrial
production index. The restricted and unrestricted MLEs of J are rather similar. In fact, the
consistency of the non-Gaussian ML estimators of the matrix J is indirectly confirmed by the
extremely high (=.995) time series correlation between the (non-standardised) estimates of each
structural shock obtained as J~'e;(0) evaluated at the RMLE and UMLE. In contrast, there
is a striking difference in the standard deviation of the third structural shock, which strongly
points to distributional misspecification. However, this conjecture needs to be confirmed by our
formal DWH test statistics, which account for the sampling variability of the estimators.

The three versions of our DWH tests produce qualitatively similar results. For that reason,
in Table 5 we only report the results of the versions that evaluate the score of the more effi-
cient estimators at the less efficient ones (e.g. the unrestricted Student ¢ scores at the Gaussian
PMLE). According the Monte Carlo results in the previous section, these are the most conser-
vative ones. As expected, we conclude that the null of correct specification of the structural
innovation distributions is clearly rejected. The test statistics that compares the unrestricted
ML estimator of the variance of the Wold innovations J \iIQj " with its PML counterpart 3 has a
tiny p-value. Similarly, if we compare the same estimators of the drift parameters, the p-value
of our DWH statistic is .001. Given the additivity of these two test statistics mentioned at the
end of section in section 3.8, the p-value of the joint test is virtually zero. As for the comparison

between the restricted and unrestricted MLEs of the diagonal elements of ¥, which contain the
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standard deviations of the structural shocks, the DWH tests massively reject once again. This
rejection is confirmed by the asymptotically equivalent LR test of Hy : v1 = vo = v3 = 8.

To gauge the extent to which are results might be driven by events in the first part of our
sample, we also consider a subsample that uses the second half of the available observations.
Specifically, it begins in 1988:05, thereby avoiding the October 87 market crash. As can be seen
from Table 6, the model is still rejected but not overwhelmingly so.

In summary, the assumption of independent, non-Gaussian structural shocks is very attrac-
tive because it allows the identification of all the model parameters without any additional
restrictions, but it entails distributional misspecification risks. Our empirical results confirm

that those risks cannot be ignored.

6 Conclusions and directions for further research

We propose an extension of the Durbin-Wu-Hausman specification tests which simultane-
ously compares three or more likelihood-based estimators of the parameters of general multi-
variate dynamic models with non-zero conditional means and possibly time-varying variances
and covariances. Although we focus most of our discussion on the comparison of the three esti-
mators offered by the dominant commercial econometric packages, namely, the Gaussian PML
estimator, as well as ML estimators based on a non-Gaussian distribution, which either jointly
estimate the additional shape parameters or fix them to some plausible values, we also consider
two semiparametric estimators, one of which imposes the assumption that the standardised
innovations follow a spherical distribution.

We also explore several important issues related to the practical implementation of our pro-
posed tests, including the different versions, their numerical invariance to reparametrisations and
their application to subsets of parameters. By explicitly considering a multivariate framework
with non-zero conditional means we are able to cover many empirically relevant applications.
Our results also apply to dynamic structural models, whose focus differs from the conditional
mean and variance, and raise some interesting inference issues that we also study in detail.
Extensions to stochastic volatility models in which the log-likelihood cannot be obtained in
closed-form are conceptually possible as long as the ML estimators and their asymptotic vari-
ances are available, but we leave the interesting computational considerations that they raise
for further research.

To select the right number of degrees of freedom, we need to figure out the rank of the
difference between the estimators’ asymptotic covariance matrices. In this respect, we discuss

several situations in which some of the estimators are equally efficient for some of the parameters
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and prove that the semiparametric estimators share a saddle point efficiency property: they are
as inefficient as the Gaussian PMLE for the parameters that they cannot estimate adaptively.

A comparison of our results with those in Fiorentini and Sentana (2019) imply that the
parameters that are efficiently estimated by the semiparametric procedures continue to be con-
sistently estimated by the parametric estimators under distributional misspecification. In con-
trast, the remaining parameters, which the semiparametric procedures can only estimate with
the efficiency of the Gaussian PML estimator, will be inconsistently estimated by distribution-
ally misspecified parametric procedures. For that reason, we focus our tests on the comparison
of the estimators of this second group of parameters, for which the usual efficiency - consistency
trade off is of first-order importance.

Our Monte Carlo experiments indicate that many of our proposed tests work quite well, but
some versions show noticeable size distortions in small samples. Since we have a fully specified
model under the null, parametric bootstrap versions might be worth exploring. An interesting
extension of our Monte Carlo analysis would look at the power of our tests in models with
time-varying shape parameters or misspecified first and second moment dynamics.

Given the increased popularity of Independent Component Analysis in econometric appli-
cations, as illustrated by the SVARs in section 3.8, specification tests that directly target the
maintained assumptions of non-normality and independence of the structural shocks provide a
particularly appropriate complement to our proposed tests (see Amengual, Fiorentini and Sen-
tana (2020)). We could also extend our theoretical results to a broad class of models for which a
pseudo log-likelihood function belonging to the linear exponential family leads to consistent esti-
mators of the conditional mean parameters (see Gouriéroux, Monfort and Trognon (1984a)). For
example, we could use a DWH test to assess the correct distributional specification of Lanne’s
(2006) multiplicative error model for realised volatility by comparing his ML estimator based
on a two-component Gamma mixture with the Gamma-based consistent pseudo ML estimators
in Engle and Gallo (2006). Similarly, we could also use the same approach to test the correct
specification of the count model for patents in Hausman, Hall and Griliches (1984) by comparing
their ML estimator, which assumes a Poisson model with unobserved gamma heterogeneity, with
the consistent pseudo ML estimators in Gouriéroux. Monfort and Trognon (1984b)). All these

extensions constitute interesting avenues for further research.
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Appendix

A Proofs
A.1 Proposition 1

Assuming that 6 belongs to the interior of its admissible parameter space, the estimators

of 8 will be characterised with probability tending to 1 by the first order conditions

— / P
8Ingé0T)*§mTﬁlT(éT) = 0, (Al)
oy (07) & =

ngg )&, (Br) = o0 (A2)

By analogy, 6,, and 6, will be the pseudo-true values of 8 implicitly defined by the exactly

identified moment conditions

jéz(em)SmE[mt(em)] = 0,
T (60:,)S,Eny(8,)] = 0.

Under the null hypothesis that both sets of moments are correctly specified, 8,,, = 8,, = 0.

The Wald version of the DWH test in (1) is based on the difference between 67 and 0.
Under standard regularity conditions (see e.g. Newey and McFadden (1994)), first-order Taylor
expansions of (A1) and (A2) around 6y imply that

VI(0r = 00) = — [T5(00)SnTm(00)] " Tu(00)SmVTinar(89) + 0,(1),
VT (071 —00) = —[75(00)Sn(00)T(80)] " Ty (80)SuV/Thir(69) + 0p(1). (A3)
Therefore,

VT(0r —01) = { [T5,(80)SmTm(00)] " T0(00)Sm = [T5(00)SnTn(00)] " Ti(00)Sy }

VTimr(6)
x[ o ]+o,,(1). (A4)

On the other hand, the first score version of the DWH test is as a test of the moment

restrictions

T (0,)Sm E[my(6,)] = 0. (Ab)

If we knew 0,,, it would be straightforward to test whether (A5) holds. But since we do not
know it, we replace it by its consistent estimator 67, which satisfies (A2). To account for the
sampling variability that this introduces under the null, we can use again a first-order Taylor

expansion of the sample version of (A5) evaluated at 87 around 6y. Given the assumed root-T
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consistency of 61 for 6y, we can use (A3) to write this expansion as

T (07)S, N Ty (07) = T, (00)SmVTir(00) + T, (00)SmTm (00)Sm VT (67 — 00) + 0,(1)
=T,(00)SmVTr(6)
T3 (00) S Tom (80| T (00) S (80) T4 (80)] T, (80) SV Ty (B0) +0,(1). (A6)

But a comparison between (A6) and (A4) makes clear that
VT (07 = 07) = [71,(00)SnT(80)] " [77,(80)SmV/ Tr(87)] + 0 (1), (A7)

which confirms that the Wald and score versions of the test are asymptotically equivalent because
rank[7,) (00)SnJn(00)] = dim(0) in first-order identified models. Given that mp (@) and np(0)
are exchangeable, the second equivalence condition trivially holds too. O
A.2 Proposition 2

The Wald-type version of the Hausman test for the original parameters in (1) is infeasible

when A is unknown, in which case it must be computed as
T(6r — 6r) AT (67 — b7), (A8)

where A7 denotes a consistent estimator of a generalised inverse of A, i.e. the asymptotic
covariance matrix of v/T (éT —éT), which does not necessarily coincide with a generalised inverse
of a consistent estimator of A because of the potential discontinuities of generalised inverses.
Given the assumed regularity of the reparametrisation, we can apply the delta method to show

that the asymptotic covariance matrix of v/T'(#1 — #7) will be

80/(71'0) Aag(ﬂ'o)
on on’

which in turn implies that we can use

[aewa Az [aa'wm)]‘l

on'!

or

as a consistent estimator of its generalised inverse provided that 77 is a consistent estimator of
mo. Therefore, the Wald-type version of the Hausman test for the original parameters will be

ae(fmr A~ [80(7@

on’ T or

T(7p — #r) [ ]_1(77'T—7?T)- (A9)

Lemma 1 in Supplemental Appendix B states the numerical invariance of GMM estimators and

criterion functions to reparametrisations when the weighting matrix remains the same, so that

~ ~

ﬁ'T — ﬁ'T = I‘(OT) — I‘(OT).
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In general, though, one would expect (A8) and (A9) to differ. However, when the mapping from

0 to m is affine, the Jacobian of the inverse transformation is the constant matrix A~!, yielding
T(7p — #p) ATV AFA™ (R — #7) = T(O7 — 07) AZ (07 — O7),

as required.

Let us now look at one of the score versions of the DWH test in terms of the original para-
meters, the other one being entirely analogous. We saw in the proof of the previous proposition
that the first-order condition for @7 is (A1). Therefore, we can compute the alternative DWH

test in practice as

0r)S omy (Br) , aﬁli‘r(éT)SmTﬁlT(éT)- (A10)

00’ mT " Hg

Lemma 1 also implies that My (7) = myp[@(7)] and @7 = 8(71) when the weighting matrix
used to compute 6 and 77 is common. Given the assumed regularity of the reparametrisation,

we can easily show that the asymptotic covariance matrix of J (m0)S, VT (77) will be

_ 30'(7"0)A 06(mo)

An on on’

As a consequence, it seems natural to use

2] ]

as a consistent estimator of a generalised inverse of A, provided that 7r7 is a consistent estimator

of g. Therefore, we can compute the analogous test in terms of 7 as

< Omr(fr) {aew]—l - [aew)r O (F7) &

Tﬁl,T(ﬁ'T)SmT on! O’ mT e o SmTﬁlT(ﬁ'T)‘ (A12)

Combining the chain rule for derivatives with the results in Lemma 1, we can prove that

oW (Rr) s _ . . 0O0(Fr)omyp(0r) s _ -
T om T onm og  Smrmr(0r),

Sprmr(7r)

which in turn implies that

o a Omp(Rr) [00(r) Y L [060/(Grr) ] Ry () &

W (1) Smr on’ on’ mT om om Smrtr (7r)
s & Omp(07)00(7r) [00(r)| L L [00'(Fr)] 06 (Fr) Oy (O7) & _ =
= 17 (07)Smr 00’ on'! on'! mr o om 00 Smr 0 (07).

Therefore, (A10) and (A12) will be numerically identical if

-1

96 (7r) [39(*T)
o' on’

=1,
Sufficient conditions for this to happen are that the mapping is affine, or that we use 7 = 7
in computing (A11). O
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A.3 Proposition 3

Again, we focus on the first result, as the second one is entirely analogous. Let us start from

the asymptotic equivalence relationship (A7). Given that

T (00)S,VTir(0r) =

the application of the partitioned inverse formula yields

\/T(élT _élT) =

[T1.(80)SmTm(80)]"" =

|
|

[T (00)S 1T (80)]

[ _jllm(a)smj2m(9)[

Tim
Tom
Tim

0
(7]

11 _

(0)

(0)
(G)SmﬁﬂlT@T) ]
T3 (0)Sm /Ty (07) |

m

fT(éT, Sm), where

jllm(e)Smjlm(g)
jém(a)SmJZm(a)]_1~72/m(0)8mu71m (0)

-1

Given that [7/,(80)SmJTm(00)]"" will have rank p; because [T, (00)SmTm(00)] has rank p,

the Wald version of the DWH test that focuses on 61 only is equivalent to a score version that

looks at Mz (07, Sy,).

A.4 Proposition 4

Given that
22 A1
0 — 6, 0
oo | | o
oy -6y L0
it follows immediately from (5) that
- R -
GT - GT Qy -0
A3 A2
0 — 61 0
Tlim Vv : = ;
—00
by by 0
\ op-07" ) 0

I 0
—1I |
0 0
0 0
0
Q33—
0
0

0
oy
i ~2
0 0O O
~3
0 0 O 0
: ; (A13)
-I TIo0 0] ?
0 -1 I_ 9;*1
o7
0 0
0 0
Qy 1-Q5 2 0
0 QJ—QJ_l

which in turn implies the asymptotic independence of non-overlapping DWH test statistics of

the form (1). But since (A13) holds for any T, all J(J — 1)/2 possible differences between any

two of the J estimators will be linear combinations of the J — 1 adjacent differences in (A14).00

A.5 Proposition 5

Given that Propositions C1-C3 in Supplemental Appendix C and Proposition D3 in Sup-

plemental Appendix D derive all the information bounds, we simply need to compute the off-
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diagonal elements. Let us start with the first row. Straightforward manipulations imply that

Els0:(¢)Spje ()]

E{s0t()[56:(®) — Syu (&)L (&) T (0)]| D}
= Zoo(¢) — Zon(d)Lpy (9)Ton(d) = P(d).

Intuitively, P(¢y) is the covariance matrix of the residuals in the multivariate theoretical regres-
sion of sg¢(¢py) on sy(¢y), which trivially coincides with the covariance matrix between those

residuals and sg.(¢). Next,
Elsot($)8:(0)|0] = EZar(0)ear(d){ely(0)Z(0) — [&),(¢) — &1,(0,0)K (k) K (0)]Z)()} @]

= E [Za(0)ear($)ely(9)Zar(0)| ] — E{Zar(0)ear(9)[8(d) — &(0,0)K™ (r) K (0)]Z;() |}

4

= Zao(n) = W) Wito0)- {[F2vestm) 1| - oy | = S000

by virtue of the law of iterated expectations, together with expressions (C33), (C34) and (C35)
in Supplemental Appendix C. Intuitively, S (¢pg) is the variance of the error in the least squares
projection of sg;(¢py) onto the Hilbert space spanned by all the time-invariant functions of ¢;(8y)
with bounded second moments that have zero conditional means and are conditionally orthogonal
to e4(6o,0), which trivially coincides with the covariance matrix between those residuals and
set(¢g). Given that this Hilbert space includes the linear span of s, (), it follows immediately
that S(¢) is smaller than P(¢,) in the positive semidefinite sense.

We also know from the proof of proposition D3 in Supplemental Appendix D that

Elsoi($)86:(¢)|0] = EZar(0)ear(d) { €l (¢)Z0y,(0) — ey (d) — egt<0,0>/c+ (@) K (0)] Z;(o)} |9)
= E [Z4(0)eq (0, 0)ey, (0, 0)Z4(0)| o]
—E{Za(0)ear () [e4(d) — €4(6,0)K™ () K (0)] Zij(¢)|o}
= Zo0(9) — Za(d) [Mad(eo) — K (0) K (00)KC (0)] Ziy(¢) = S(ebo)

by virtue of the law of iterated expectations, together with expressions (B3) and (C22) in
appendices B and C, respectively. Intuitively, S (¢p) is the covariance matrix of the errors in
the projection of sg(¢y) onto the Hilbert space spanned by all the time-invariant functions of
e} with zero conditional means and bounded second moments that are conditionally orthogonal
to e4:(6o,0), which trivially coincides with the covariance matrix between those residuals and
sgt(¢g). The fact that the residual variance of a multivariate regression cannot increase as
we increase the number of regressors explains why S (¢py) is at least as large (in the positive
semidefinite matrix sense) as S(¢y), reflecting the fact that the relevant tangent sets become

increasing larger. Finally,

Elso:(¢)sp(0,0)|@] = —0E[s;(6,0)|]/00 = A(¢)
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thanks to the generalised information equality.

Let us now move on to the second row, and in particular to

Elson:(#)36:(9)|¢] = E[{Zar(0)ea(¢)
~Ton($)Tn ($)ere(®)} {e(@)Zin(0) — |&lu(¢) — &(8,0)K (1) K (0)] Ziy(9) } [t
—E[{zdx Jea($ >egt<¢o>zat<¢o>\¢] ElZat(0)ear(#)81(6) Zin(60)| )
+ElZa(8)ea($)elu (6, 0)C" (00)K (0) Zi()|6] — Ton () Ts (9) Elert (d)ely()Z1y()1]
+Ton(®)Ton (@) Bleri(#)8(6)Z1(0)|6] — Ton (9) Ty (9) Eleri(9) edtw 0)K™ (k) K (0) Zy(9)|¢)

N +2

= Too(P) — Ws(dg) Wi(ehy) - { [NMSS(UO) - 1] [(N + 2 YKo + 2] S

where we have used the fact that

Elesi(9)ey(9)|d] = E{Ele;(d)el(d)lst, dll¢} = Eleri(d)&(4)¢]
= E{ew(d)[6(st;m)(se/N) = 1]|¢} [ 0 wved (Ix) ] and
Eleri(¢)e(0,0)|¢] = E{E[e(¢)e(6,0)[s:, ¢llo} = Elen(¢)&y(6,0)|¢]
= E{en(¢)[(st/N) —1]|$p}[ 0 wed(Iy) | =0
by virtue of Lemma 3 in Supplemental Appendix B. Similarly,
Elspjn:(6)86:(#)|¢] = E[{Zar(0)ear(d)
~Ton($) L (D)ert(D) Helu (o) [Zi (d0) — Zig()] — €4(80,0)K T (20)K (0) Ziy()}|¢)
= E[{Zat(0)ear (D)€ (0)Ziyy ($0)|D] — E[Zar(0)ea(db)ely, (d0)Ziy()]| ]
—E[Zat(8)ea(¢)e(8,0)K " (0)K (0) Zy(6)|)
= Zoo(9) — Za(9) [Maa(@o) — K (0) KT (09)KC (0)] Ziy() = S(bg)

because sy;(¢) is orthogonal to e (6,0) by virtue of Lemma 3 and

Eleri(#) Hew (o) Za:(d0) — Za()]} @] = 0

by the law of iterated expectations. Finally,
El[sont(#)sp,(6,0)|9] = E[{Z(0)es (D) — Lon($) Ly (P)er(¢)}ey,(0,0)Zy,()|¢] = A(h)

because of the generalised information equality and the orthogonality of e,;(¢) and e (8, 0).

Let us start the third row with

E[80:(¢)86:(9)|¢] = E[{Zar(0)ear(¢) — Za(¢)[8at() — K (0) KT () &4(0,0)]}
x{eq(00)[Zan (o) — Zy(#)] — €400, 0)KT (9) K (0) Zy(h) } ]
= Too () — Za(9) [Mad(eo) — K (0)K* (20)K (0)] Zy(¢p) = S(dby) because
E{[&a() — K (0) KT (x) &1:(6, 0)]e () [ Z () — Ziy(d)]|¢p} = O
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by the law of iterated expectations. In addition, we have that

E80:(¢)sp(0,0)|@] = A(9), (A15)

which follows immediately from (A21) and the generalised information matrix equality.

Turning to the last off-diagonal element, we can show that

E[80/(¢)sp;(0,0)|p] = E[{Za(0)ea:(0, @) — Za(0, 0) [ear(, 0) — K (0) K™ (o) eas(0,0)]}
x€y;(0,0)Z,(0)|¢] = A(6)

because eg;(0,0) is conditionally orthogonal to [eq (0, @) — K (0) K (0) €4 (6, 0)] by construc-
tion. This result also proves the positive semidefiniteness of S(¢g) — .A(0)B~(¢).A(8) because
this expression coincides with the residual covariance matrix in the theoretical regression of the
semiparametric efficient score on the Gaussian pseudo-score.

To prove the second part of the proposition, it is convenient to regard each estimator as an
exactly identified GMM estimator based on the corresponding score, whose asymptotic variance
depends on the asymptotic variance of this score and the corresponding expected Jacobian. In
this regard, note that the information matrix equality applied to the restricted and unrestricted

versions of the efficient score implies that

—0E[sq.(9)| 9] /08’ Elsor(#)sp,(¢)|@] = Zoo(¢) and
—0E[sn:(#)|0]/00" = Else|ni(¢)sgpy(d)|¢] = P(e).

Similarly, we can use the generalised information matrix equality together with some of the

arguments in the proof of Proposition C3 in Supplemental Appendix C to show that

—0E[S61()¢]/00 = E[Sg¢(d0)sp:(¢0)|¢] = [Zdt( Jeat(@o)es (o) Zar(00)| o]

2 ¢0}

—E{Ws(%) [[5(%770)5\? - 1} N+ 2o+ 2 1 ]edt ®0)Zy;(60)
¢o} Z4(60)

St

~Taolo) - Wo(o) B { [{s(ctm0) 3~ 1} - (NHWQ(N 1) eitso)

= Zao(00 We(@o) B | { o6t 1] - g5 (1) | [0 31| 0] W)
= Zoo(do) — Ws(o)W (o) - { [NN 2Mss(770) 1} NN 1 2)% 9 }
= $(60) = Elsor()3(6)] 0] (A16)

The generalised information matrix equality also implies that

OB o)IP0] _ s, (0)su(00)16] = Bl (00)eur(0)el(00)Z0 (00)] ]
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On this basis, we can use standard first-order expansions of v'T'[07(n,)—80g] and VT (87 —8;)
to show that

lim E{T[Br(ny) — 00)(8r — 00)} = T4 (¢) lim E[TSe1(¢)Shr (@)} P~ () = Tyg ().

All the remaining asymptotic covariances are obtained analogously. O

A.6 Proposition 6

Given the efficiency of @7 relative to 87, it follows from Lemma 2 in Hausman (1978) that
VT(0r — 1) — N [0,C(po) — P (90)] -
The other two results follow directly from Proposition 1 after taking into account that

—0E([sen:(¢)|9]/00" = P(¢) (A17)
—0E[s0:(0,0)|9]/00" = A(¢)

by the generalised information matrix equality. O

A.7 Proposition 7
The efficiency of 87(n) relative to 7 and Lemma 2 in Hausman (1978) imply that

VT(0r —0r(n) — N [07100(%) — Tog ()

under then null of correct specification. The other two results follow directly from Proposition

1 and the partitioned inverse formula after taking into account that (A17) and

—OE[s6:(0,7)|¢] /00" = Tog(p)

by the information matrix equality. [l

A.8 Proposition 8
The proof of Proposition 6 immediately implies that

VT (@1 — br) — N [0,Co,0, () — P** ()]

under the null. If we combine this result with Proposition 3, we obtain the expressions for the
asymptotic variances of the two asymptotically equivalent score versions. ([l

A.9 Proposition 9
The proof of Proposition 7 immediately implies that

VT[011 — 017(n)] — N{0, [P0 (¢p)) — 719" ()]}

under the null. If we combine this result with Proposition 3, we obtain the expressions for the

asymptotic variances of the two asymptotically equivalent score versions. 0
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A.10 Proposition 10

The proof of the first part is trivial, except perhaps for the fact that Ms,.(0) = 0, which
follows from Lemma 3 in Supplemental Appendix B because e (6, 0) coincides with eg (0o, 0y)
under normality.

To prove the second part, we use the fact that after some tedious algebraic manipulations

we can write Mgq (1) — K (0) KT (k) £(0) in the spherical case as

My (n)-1]In 0
{ 0 [Mss(n)-%ﬂ} (In2+Knyn) + hrlss(no)-ljtwl)[(if—””),@ vec(In)ved (Iy) }
Therefore, given that Z;(¢g) # 0, Zea(¢) — S(¢) will be zero only if My(n) = 1, which in turn
requires that the residual variance in the multivariate regression of 6(<¢, mg)e; on €f is zero for
all t, or equivalently, that d(¢;,my) = 1. But since the solution to this differential equation is
9(s¢,m) = —.56¢ + C, then the result follows from (C19) in Supplemental Appendix C.

If the true conditional mean were 0, and this was taken into account in estimation, then the

first diagonal block would disappear, and Zgg(¢p) — S(¢) could also be 0 if
Z4(0, 0) [Maa(e) = K (0) K™ (0) K (0)] Z4(8, 0) = 0.

Although this condition is unlikely to hold otherwise, it does not strictly speaking require nor-
mality. For example, Amengual, Fiorentini and Sentana (2013), correcting an earlier typo in

Amengual and Sentana (2010), show that

Mas(1g) = Nk +2
ss\0) = (N ¥ 2)k + 2
for the Kotz distribution, which immediately implies that
Mgs(M) L N d
_ = an
s\ (k+1) (26 + Nk £ 2)
Mas(m0) — 14 2K B 22
ss\Tlo (k+D[(N+2)x+2] (k+1)26+Nk+2)

When N = 1, (Iy2 + Kyn) = 2 and vec(In)ved' (In) = 1, which trivially implies that
Too(d) — S(¢p) = 0. However, this result fails to hold for N > 2. Specifically, using the explicit

expressions for the commutation matrix in Magnus (1988), it is straightforward to show that

2 000 1
2 2
K 0110 | K 0 ( 100 1 )
(k+1)(4k+2)| 0 1 1 0 (k+1)(26+1)| O
0 0 0 2 1
K2 12
(k+1)(2k+1) 02 02 T (kD) (26+1)
_ 0 (H+1)’£22KZ+1) (n+lj‘£225+1) 0
0 ) (n+1)’i2ﬁ+1) (H-‘rlf?ﬂ-ﬁ-l) 02
DD 0 0 D@
which can only be 0 under normality. 0
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A.11 Proposition 11

Note that Zgg(¢) — S(¢) is W ()W’ () times the residual variance in the theoretical
regression of §(s¢,mg)st/N — 1 on (¢¢/N) — 1. Therefore, given that W(¢) # 0, Zgg(¢) — S(¢)
can only be 0 if that regression residual is identically 0 for all t. The solution to the resulting
differential equation is

N(N +2)k

C,
(N +2)r+2] o

n¢e —

g(se,m) = —2[ m

which in view of (C19) in Supplemental Appendix C implies that

%_1 1
hlsesmyocsg™ 7 exp {‘WMQ} |

i.e. the density of Gamma random variable with mean N and variance N[(N +2)ko+2]. In this
sense, it is worth recalling that k > —2/(N + 2) for all spherical distributions, with the lower
limit corresponding to the uniform.

As for the second part, expression (C27) in Supplemental Appendix C implies that in the
spherically symmetric case the difference between P(¢y) and Zgg(¢y) is given by

W (o) Wi(dy) - [Mar(m0) M, (m0)MY,(10)]

which is the product of a rank one matrix times a non-negative scalar. Therefore, given that
W (¢) # 0 and M, (ny) has full rank, P(¢,) can only coincide with Zgg(¢) if the 1 x ¢ vector
Mg (1) is identically 0. O
A.12 Proposition 12

Given our assumptions on the mapping r4(.), we can directly work in terms of the 9 para-
meters. In this sense, since the conditional covariance matrix of y; is of the form ¥;37(9.), it is

straightforward to show that

Zun(9) = { o7 0w (92)/09 75 0,

LH{owed [£5(9.)] /003 ;P (9 0 30 (90)] | _ [ Zo.0e(9) Zg,st(V) } (A18)
19 ved (Iy) 0 Zy,(¥) |
Thus, the score vector for 9 will be

s9.4(0,m) | | Zo.u(9)en(,m) + Zy st (F)es (I, n)
[ s9:¢(9,m) } B [ Zg. s1(9)es (9,m) } ; (A19)

where e; (9, n) and e (9, n) are given in expressions (C8) and (C9) in Supplemental Appendix

C, respectively.
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It is then easy to see that the unconditional covariance between sy (9, 1) and sy, (9, n) is

£ {1 20a0) 2o 1[5 00 || 2 ) 9]

{2l Ntalo) =1 { § PO /2 9 @ 3 )

_ {2va(m) + ;vl,}ihrlss<n> “ Wz (9, myvec(iy),

with Zyg s(9,m) = E[Zy,st(9)|9,n], where we have exploited the serial independence of €}, as

9, n} vee(Iy)

well as the law of iterated expectations, together with the results in Proposition C1 in Supple-
mental Appendix C.
We can use the same arguments to show that the unconditional variance of sy,:(¢,n) will

be given by

{10 zoww) ]| 400 ) ] o0
= Zhl’ﬁvec’(IN)[Mss(n) (In2 + Knn) + Mgs(n) — 1))vec(In)ved (In)]vec(Iy)
{2Mgs(m) + N[Mss(n) — 1]}V
4192 '

Hence, the residuals from the unconditional regression of sg (9, 1) on sy,:(¥,n) will be:

5191|19it(19> n) = Zy . (9)en(9,m) + Zy, st (9)es(9,m)

47912 {2Mss (77)+N[MSS(77)‘1]} 1
T {20, () NMys (n)-1]JN 20, Zoges(O)vee(In) o
= Zg 11(9)ew(9,m) + [Zy,st(F) — Zg,s(9,m)]es (9, m).

ved (In)es(9,m)

The first term of Sﬁc‘ﬁit(ﬂo, 1) is clearly conditionally orthogonal to any function of ¢;(do).
In contrast, the second term is not conditionally orthogonal to functions of ¢;(), but since the
conditional covariance between any such function and eg (90, 1) will be time-invariant, it will be
unconditionally orthogonal by the law of iterated expectations. As a result, sg_jg,:(F0,719) Will
be unconditionally orthogonal to the spherically symmetric tangent set, which in turn implies
that the spherically symmetric semiparametric estimator of 9, will be ¥;-adaptive.

To prove Part 1b, note that Proposition C3 in Supplemental Appendix C and (A18) imply

that the spherically symmetric semiparametric efficient score corresponding to ¥; will be

. 1
Sﬁit(ﬁ) = _2,19
N

~38 {[5[9(19),?7]%](\?) - 1] - (N—|—§)/1+2 [gtl(\?) - 1}}

ved (In)vee {8[s¢(9), nle; (9)e}'(9) — In}

= g5, Olse®).nlee(9) = N = 5 { ol 2 1] - g [ -l )
_ N [ct(ﬂ) B 1} _
Gi(N+2k+2] | N
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But since the iterated spherically symmetric semiparametric estimator of 1 must set to 0 the sam-
ple average of this modified score, it must be the case that Zthl gt({?T) = Zthl §§(’F,CT) / Vir =
NT, which is equivalent to (12).

To prove Part 1c note that

$9,4(9,0) = oo [c(F) — N] (A20)

21;
is proportional to the spherically symmetric semiparametric efficient score $y,(19), which means
that the residual covariance matrix in the theoretical regression of this efficient score on the

Gaussian score will have rank p — 1 at most. But this residual covariance matrix coincides with

S (¢) — A(p) B~ (¢) A(9) since
ElS01(6)59,(6. 0)|6] = E[Zr(0)ea()ely (6,0)Z,, (8)] 6] = A(D) (A21)
because the regression residual

St 2 St
St = (s
ooy (N+2)n0+2(N )

is conditionally orthogonal to eg (8¢, 0) by the law of iterated expectations, as shown in the
proof of proposition C3 in Supplemental Appendix C.

Tedious algebraic manipulations that exploit the block-triangularity of (A18) and the con-
stancy of Zy,s(9) show that the different information matrices will be block diagonal when
Wa.s(¢g) is 0. Then, part 2a follows from the fact that Wy _s(¢pg) = —FE {0di(90)/09.| ¢g}
will trivially be 0 if E[ln|X8(9.)||¢o] = k V..

Finally, to prove Part 2b note that (A20) implies that the Gaussian PMLE will also satisfy
(12). But since the asymptotic covariance matrices in both cases will be block-diagonal between
Y. and ¥; when E[ln|X2(J.)||¢po] = k V., the effect of estimating . becomes irrelevant. [
A.13 Proposition 13

We can directly work in terms of the ¢ parameters thanks to our assumptions on the mapping
ry(.). Given the specification for the conditional mean and variance in (14), and the fact that
e} is assumed to be i.7.d. conditional on z; and I;_i, it is tedious but otherwise straightforward

to show that the score vector will be

S, (¥, 0) Zyi(pei(p, 0) + Zep,st(p)est(w; 0)
Se.t(,0) | = Zy, st(p)es (e, 0) : (A22)
St (5 0) Zy, it(pew(p; 0)
where
Ze,u(p) = { '(02) /01 + e [5 (01)) /001 - (@i @) } 57 (1) 2512,
wt(so) /[z: 2 (p)))/0p, - [@ ”2®z° V(o) @y ), (A23)
pomlt(©) = =Zg,,1().

zwcstap) - avec (®12) /0. - (In@®; V) =24, (¢),
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e (p, 0) and ey (g, o) are given in (D4) in Supplemental Appendix D, with

er(p) = 8,220 2 (00 Iyt — 18 (00) — B2 (00) i) (A24)

It is then easy to see that the unconditional covariance between s, ;(¢, @) and the remaining

elements of the score will be given by

Z/
R Rl e )| PR e

ls
with Zy 1(¢, 0) = E[Zy 11(p)|p, 0] and Zy_s(p, 0) = E[Zy_st(#)|p, 0], where we have exploited

the serial independence of e and the constancy of Z,, st(¢) and Zy,_ 11(), together with the

law of iterated expectations and the definition

i el v 08 e

Similarly, the unconditional covariance matrix of sy, (¢, @) and s, (¢, 0) will be

|: 0 Z(pics(‘P> :| |: Mll(g) Mls(g) :| 0 Ziplml(go)
Zo,i(¢) O 1s(0) Mss(e) || Zg, s(#) 0

Thus, the residuals from the unconditional least squares projection of s, (¢, @) on sy, ¢(¢, 0)

and sy, +(®, @) will be:

S upmt(P:0) = Zou(@len(p, 0) + Ly s(p)es(p, Q)
~[ Zea(p,0) Zys(p.0) ] [ zliiﬁ Z)) ]

= [Zpit(p) — Zp (e, 0)]eit(p, 0) + [Zy st(P) — Zypes(p, 0)]est(p, 0),

because both Z,, () and Z,, () have full row rank when ®;. has full rank in view of the
discussion that follows expression (D13) in Supplemental Appendix D.

Although neither ey (¢, @) nor eg (¢, o) will be conditionally orthogonal to arbitrary func-
tions of e}, their conditional covariance with any such function will be time-invariant. Hence,
Se.|pipit(Ps @) Will be unconditionally orthogonal to d1n fle} (¢); 0]/0@ by virtue of the law
of iterated expectations, which in turn implies that the unrestricted semiparametric estimator
of ¢, will be ,-adaptive.

To prove Part 1b note that the semiparametric efficient scores corresponding to ¢,. and ¢;,,
will be given by

o) 50 JEOR @] et 11 §
because Zy, 5t(9) = Zy, s(9) and Zy, 11(9) = Zy,, 1(9) Vt. But if (17) and (16) hold, then the
sample averages of €[p., Pic(©e), Pim(Pc); 0] and egt[p., Pic(©e), Pim(¥.); 0] will be 0, and the

same is true of the semiparametric efficient score.
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To prove Part 1c note that
[ Se,.t(#,0) ] _ [ 0 Zy, (o) } [ i () ’ (A25)
Sont(@0) | = | Zpile) O veclef (9)ef () — I
which implies that the residual covariance matrix in the theoretical regression of the semipara-
metric efficient score on the Gaussian score will have rank p — N (V4 3)/2 at most because both
Zy, s(p) and Zy, (o) have full row rank when ®;. has full rank. But as we saw in the proof
of Proposition 5, that residual covariance matrix coincides with S(¢pg) — A(8)B~'(¢).A(8).
Tedious algebraic manipulations that exploit the block structure of (A23) and the constancy
of Zy, st() and Zy,_ 11(e) show that the different information matrices will be block diagonal
when Z, (¢, 0) and Zy, (¢, 0) are both 0. But those are precisely the necessary and suf-
ficient conditions for sy, (4, @) to be equal to sy, |, . (¥, 0), which is also guaranteed by
two conditions in the statement of part 2. In this sense, please note that the reparametrisa-
tion of ¢,. and ¢;,, that satisfies those conditions will be such that the Jacobian matrix of

vech[K~12(p, )@, K% (p.)] and K~/2(p,)p.,, — 1(p,) with respect to ¢ evaluated at the

0
In |-

Finally, to prove Part 2b simply note that (A25) implies the Gaussian PMLE will also satisfy

true values is equal to

I
_y-t [ Sepy.t ( ’ ] [ Se,.t($0)s: (p(,f ‘Po ’ ] ‘ N(N+1)/2
{ Sazmt ‘PO ¢O Ssozmt(LPO) Pet LPO ¢ 0

(17) and (16). But since the asymptotic covariance matrices in both cases will be block-diagonal
between ¢, and ¢, when the two conditions in the statement of part 2 hold, the effect of
estimating ¢, becomes irrelevant. ([l
A.14 Proposition 14

The proof builds up on Proposition Bl in Supplemental Appendix B. Assuming mean

stationarity, the relationship vector of drift parameters 7 and the unconditional mean g is given

by In — Ay —...— A,)p. Hence, the Jacobian from one vector of parameters to the other is
P T IN—Al—...—Ap —[L’(X)IN —p,/®IN
a 0 IN2 PN 0
o(w.a') . : : I
0 0 . Iy

Consequently, Z;(0) for (p',a’, ¢’) becomes

(IN —A— ... - Ap)cill
(Y1 —p)@CY

(thp - N) & C_ll
On2xn
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so that

Ty = (AN—A1— ... —A)CVMC Iy - A1 —...—A),
ro ... T(p-1)
Taa = : : ® C'MyC,
'(p—1) ... T(0)

and Z,a = 0. Consequently, the asymptotic variances of the restricted and unrestricted ML

estimators of p and a will be given by

I = Av—A1— ... —A)"CM'C'Iy — A1 — ... — Ay,
ro) ... Tp-11"

T = L ®CM,;'C,
'(p—1) ... T(0)

where T'(5) is the j* autocovariance matrix of y;.
Let us now look at the conditional variance parameters. The product rule for differentials

dC = (dJ)¥ + J(d¥) immediately implies that
dvec(C) = (¥ @ In)Andveco(J) + (Ixy @ J)Endveco(P),

where Ey is the N2 x N matrix such that vec(¥) = Eyvecd(¥) for any diagonal matrix ¥,
where vecd(W) places the elements in the main diagonal of ¥ in a column vector, and Ay is an
N2 x N(N — 1) matrix such that vec(J — Iy) = Ayveco(J — Iy), with veco(J — Iy) stacking
by columns all the elements of the zero-diagonal matrix J — Iy except those that appear in its
diagonal. Therefore, the Jacobian will be

OJvec(C)

o',y
where we have used that YAy = Ax(ANYAy) for any diagonal matrix Y and A/ (¥ ®

=[(T@Iy)Ay (In®J)EN |=[ AT ®Iy_1) (INn®J)EN ], (A26)

In)An = (¥ ®@Iy_1) (see Proposition 6 in Magnus and Sentana (2020)).
As a result, the scores with respect to j and 1 will be
(TRIyv_1)AY
E\(Iy®J)

- [t A BTN W T g - [ AVIVET DY o)

] Iy © 31y & T Yeu(d)
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Similarly, the information matrix of the unrestricted ML estimators of (j, 1, @) will be

’ —1r -1
[ Aly(In ®\I.J]*1]§’(‘IJ ®W )]Mss[(‘I’ U H(IyeIJ HAy Ey® ']
N

MLEN[ (PO H(IyeI Ay Ey¥ ! |
A (Iy @37V (T @ v
UIE),
Mrr
ANIN @I (TP WM (TP H(IyeI HAy
= U IE M (TP H(IyeI HAay
M, EN(Te ¥ ) (IyeI Ay
ANIN @I (T HMGENT ! AL(IyeJ V) (T e H)EyM,,
U IEGNMENT ! U IEEyM,
M, EVEN® ! M,y
ANIN @I N (T WM (TP H(IyeI HAy
= U IMENIy @I AN
M, Ey(Iy @I Ay
ANINy @ I VENM Tt AL(Iy @ J7Y)EyMs,
UM, o ! UM,
M., w1 M,y

:| ENMST‘

Let us now obtain the asymptotic covariance matrix of the restricted ML estimators of
(j,%) which fix g to its true values. Lemmas 4 and 5 contain the inverses of Mg, and
[(Te® H(IyoJ HAy ExNP!] respectively. Thus, the asymptotic covariance matrix
of (j,v) will be

ANIN @) (T W) [Iy: — ENEy(Iy e J) (P! o ¥)) e
YE(Iy ®J) 88
X {[Iyz — (T '@ ®)Iy @ J)ENER(T o @) Iy )Ay (Iyn®J)ENT },

which does not have have any special structure, except in the unlikely event that Jo = I, in
which case the inverse in Lemma 5 would reduce to
{ A (T @ T)AN]AY }
PE/, ’
where we have used the fact that Iy2 — ENE, = AnxA/y (see Proposition 4 in Magnus and
Sentana (2020)). Tedious algebraic manipulations then show that the asymptotic covariance
matrix of the restricted ML estimators of (j, ) which fix g to its true values when Jg = Iy

would be

{ [AN (T @ B)AN][AN(Kny + T)AN] AW (T @ B)Ay] 0 }
0 M [

The matrix A’N(\II_1 ® W)Ay is obviously diagonal. In turn, Proposition 5 in Magnus and
Sentana (2020) implies that the matrix A\ (Kyy + Y)Ay = AGVKyvAy + AT Ay is the
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sum of a diagonal matrix Ay YAy and a symmetric orthogonal matrix A\KynAy whose
only N(N — 1) non-zero elements are 1s in the positions corresponding to the ij and ji elements
of J for j > 4. Therefore, although the parameters in the different columns of J would not
be asymptotically orthogonal when Jy = I, the dependence seems to be limited to pairs of
elements {J},; and {J},.

We can follow an analogous procedure to find the asymptotic covariance matrix of the unre-

stricted ML estimators of (j, 1, o) for general J, which will be

Al (Iy ©3)(T 1@ U)[Iy2 — ExEY(Iy @ I) (T 1@ ®)] 0

YE\(Iy ®J) 0
0 Iy
LMo N ExM "M MM, MJEy  —ExM M, M"™
0 o ~ MM, M IE), M'T
o e - (T 10 Iy J)ENEN] (T 1o W) (IyeI)Ay (InJ)Exy¥® 0
0 0 Iy
AVINy@I) (T 1@ ) Iy: - ExEY(Iy e J) (T ¥))
_ TE, (Iy ©J) M
0

x {[Iy> — (T 10 ®)(Iy @ V)ENEN (T 10 @) (Iy2J)Ay (Iy2J)Exy® 0}
ANIN @) (T U)[Iy: —EvEy(INe ) (T 1o W¥)] o0

+ VE\(Iy ®J) 0
0 Iy
y ExM MMM, M 'E, —EyM Mg M'™
— MMM E) M
y { [INQ — (‘Il_l®‘I’)(IN®J,)ENEIN](‘I’_1®‘I’)(IN®J,)AN (IN®J/)EN\II 0 }
0 0 In |-

Let us look at the second term in the sum. First of all, its northeastern block is
~AN(IN @) (T @ ®)[Iy: — ENEy(Iy @) (¥ 1o ¥)|ExyM_ My, M™
= ANIy @ I)(T e O)EyM M, M™
+ANIy @) (T ! @ UENEN(Iny @ J)(T ! @ ¥)|ExyM Mg, M™
= Ay(Iy @ HENM M M™ + Ay (In @ HENEN(Iy @ HExyM Mg M
= AN(Iy @ DENM MM + Al (Iy © Ex(Ix © J)M M, M™ =0,

and the same applies to the southwestern one by symmetry.

Turning now to the eastern block, we get
~UEN(Iy @ HNEyM M M™ = —BM M, M,

a diagonal matrix, and by symmetry, the same applies to the southern block. The sourtheastern

block is trivially M™ which is also diagonal.
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Let us now focus on the northwestern and western blocks, which are given by

ANIy @) (T @ ©)Iy: — ENEN(Iy @) (T @ ) EyM M, MM, M_'E)y
x[Iy2 — (T @) Iy @ J)ENEN] (T @ ¥)(Iy @ J)Ayx and
PE(Iy @ ))ExM M, MM, M 'EY

x[Iy2 — (T 1@ @) (Iy @ V) ENEN] (T @ ©)(Iy @ T)Ay,

respectively. Given that the northeastern block is 0, these two blocks will be 0 too. Finally,
given that the central block is

VE\(Iy @ HEyM M, MM, M EN(Iy @ ) Exy® = MM, MM/, M, ¥,

S S

the second term in the sum reduces to

0 0 0
0 TM_ M, MM, M ¥ —IM_ M, M |. (A27)
0 —~ MMM M

This expression confirms that the restricted and unrestricted ML estimators of j are equally
efficient because the first term in the sum is a bordered version of the asymptotic covariance
matrix of the restricted MLEs of j and .

Expression (A27) also implies that the unrestricted ML estimators of j and @ are asymp-
totically independent, and that the unrestricted MLEs of g are as efficient as its restricted ML
estimators which fix j to its true value and simultaneously estimate @ and g. In fact, given that

the asymptotic covariance matrix of those restricted estimators would be

-1 -1 rr !/ —1 _ -1 rr
( M+ MM MM ME — MM, M ) (A28)

— MM, MW M
and that all four blocks are diagonal matrices, it is tedious but otherwise straightforward to
prove that each of the diagonal elements of M™ coincides with the asymptotic variance of the
MLE of n; in a univariate Student ¢ log-likelihood that only estimates this parameter and a scale
parameter 7y;.

The comparison between (A27) and (A28) also indicates that the covariance between the
ML estimators of ®p and g is the same regardless of whether j is estimated or not. The same is
true of the correction to the asymptotic covariance matrix of v resulting from estimating o. In
contrast, UM ¥ and Ely(Iy ® C)M NIy @ C)Exy = Ey(Iy @ J¥)M(Iy @ ¥I)EN do

not generally coincide unless Jg = Iy. O
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TABLE 4: Parameter estimates. Sample period 1960:08 - 2015:04

PML UML RML
7 0.013 1.261 0.013 0.008 1.045 -0.007 0.010 1.042 -0.002
1.000 -0.006 0.069 1.000 -0.008 0.063
J 14.045 1.000 0.771  21.354 1.000 0.968
0.157 -0.001 1.000 0.208 -0.001 1.000
v 0.010 0.681 0.199 0.009 0.582 0.020

0.001 -0.011 0.001 0.003 0.007 0.027 0.001 -0.009 0.000
JW2)' x 10 -0.011 4.329 0.007 0.007 5.063 0.305 -0.009 3.733 0.003
0.001 0.007 0.007 0.027 0.305 0.397 0.000 0.003 0.004

TABLE 5: DHW test statistics. Sample period 1960:08 - 2015:04

Test d.f. Statistic p-value
PML vs. UML
TQ(O7, 77 3 13.90 0.003
vech(2)Q (07, i) 6 28.66  7x107°
(T, vech(X))Q(07, H7) 9 42.57 0.0
UML vs. RML
diag(C)Q(0r,7) 3 343.93 0.0
n=m 3 143.55 0.0

PML vs. UML tests are based on the UML score computed at the PMLE. In turn, UML vs. RML tests
correspond to the UML score computed at the RMLE, and the LR test, respectively.

TABLE 6: DHW test statistics. Sample period 1988:05 - 2015:04

Test d.f. Statistic p-value
PML vs. UML
T@Q(O7,717) 3 5.650 0.130
vech(2)Q (07, ir) 6 14.57 0.024
(1, vech(X))Q(07, i) 9 20.22 0.017
UML vs. RML
diag(C)Q(B7,7) 3 69.69 0.0
n=m 3 37.82 0.0

PML vs. UML tests are based on the UML score computed at the PMLE. In turn, UML vs. RML tests
correspond to the UML score computed at the RMLE, and the LR test, respectively.
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B Auxiliary results

Lemma 1 Let Op = arg mingce rYl’T(B)S‘mTrYlT(H) denote the GMM estimator of 8 over the
parameter space © based on the average influence functions mr(0) and weighting matriz Sy,
and consider a homeomorphic and continuously differentiable transformation (.) from the orig-

inal parameters 6 to a new set of parameters m, with rank [0’ (0) /00] evaluated at O7 equal to
p=dim(0). If O € int(®), then

0r = O(wr),
o

T = 77( T)?

and
W (7)) Sprir (77) = Wp(07)Smrmr (07),

where O(m) is the inverse mapping such that w[@(m)] = w, mp(7) = mr[0(m)] are the average
influence functions written in terms of 7, and p = arg mingery My (7)Syrmy ().

Proof. The interior solution assumption implies that the sample first-order condition charac-

terising @7 is

om(07) 5 R
g(gﬂsmeT(eT) =0, (B1)
while the corresponding condition for 7t will be
omi(fr) = _ . 00 (7wr) omL[0(7r)] 5 _ .
g;_T)SmeT(ﬂ'T) = 8(7TT) T[ae( T)]SmeT[O(T&'T)] =0 (BQ)

by the chain rule for derivatives. Given that rank [08' () /O] evaluated at w(07) is p in
view of our assumption on the rank of the direct Jacobian 9z’ () /00 by virtue of the inverse
mapping theorem, the above equations imply that Or = 0(7r), whence the other two results
trivially follow. U

This result confirms the numerical invariance of the GMM criterion to reparametrisations
when the weighting matrix remains the same, a condition satisfied by the most popular choices,
including the identity matrix, as well as the unconditional sample variance of the influence
functions and its long-run counterpart when the initial estimators at which those matrices are
evaluated satisfy 7! = 7r(9i). Obviously, in exactly identified contexts, such as the one implicitly
arising in maximum likelihood estimation, in which the usual sufficient identification condition
rank{E[0m; (6y) /06']} = p holds, the weighting matrix becomes irrelevant, at least in large
samples, which allows us to replace the first order conditions (B1) and (B2) by mp(07) = 0,
and mp(#7r) = 0, respectively. Aside from this change, the results of the lemma continue to
hold.

Lemma 2 Let ¢ denote a scalar random variable with continuously differentiable density func-
tion h(s;m) over the possibly infinite domain [a,b], and let m(s) denote a continuously differen-
tiable function over the same domain such that E [m(s)|n] = k(n) < co. Then

E[0m(s)/0s|n] = —E [m(s)01Inh(s;n)/0s|n],

as long as the required expectations are defined and bounded.



Proof. If we differentiate

with respect to ¢, we get

> om(s) b Oh(sim) om 3111 h(s;m)
0/a e h(gyn)dg—i-/a m(s) O d§/a (s;m dc—i—/ m(s e ———ds,
as required. O

Lemma 3 If €f|I;_1;600, 0 is i.i.d. D(0,Iy, ) with density function f(e};0), where o = 0
denotes normality, then

E{e(0,0) [€(0,0).€..(0,0)]|I;-1;6,0} = [K(0)|0]. (B3)

Proof. We can use the conditional analogue to the generalised information matrix equality (see

e.g. Newey and McFadden (1994)) to show that

E {36:(0.0) [s:(6. 0).5,,(6. 0)] | T—1: 60, 0} = —E{ [asag(;,o)‘ 8503(;/0)}

= — E{[hgg(6;0)[0]| I;-1; 0, 0} = [A:(¢)|O]

Itfl; 07 Q}

irrespective of the conditional distribution of €}, where we have used the fact that sg;(6,0) does
not vary with @ when regarded as the influence function for 8. Then, the required result follows

from the martingale difference nature of both ez (6o,0) and e:(6o, @g)- O
Lemma 4
Mss Msr - o KNN + T ENMsr -1
MIST‘ MTT B M;rEN MT"!‘
Ay[Ay(Kyy + T)ANTAY 0 (Eyx 0 My Mg \ '/ Ey 0
0 0 0 Iy )\ M, M, 0 Iy )’
(B4)

where Mgs, Mgsp, My, X and Mg, are defined in Proposition D2, and My, = (In + ETEyN)
is a diagonal matrix of order N with typical element Mgs(0;).

Proof. Using the partitioned inverse formula, we get

( Mgy My, )‘1 B [ ML+ MM MM, MZ) — MMM
M/sr My _MMM/STM;; (MTT - M;ngslMST)il

Given that Y is diagonal, we can use Proposition 7 in Magnus and Sentana (2020), which
yields

M = (Knnv+X) ' =An[AY(Kyy + Y)AN]'Ay + Ex(Iy + EyYEN) 'E)y

= An[AN(Kyy + T)AN] A + EyME).



In turn, Theorem 7.4(i) in Magnus (1988) states that KyyEx = Ep, which implies that
MGEny = (Kyny + Y)Ey = (In2 + Y)Ey = Ex(Iy + EyTEyN) = EyM,, by virtue of
Proposition 3 in Magnus and Sentana (2020). Then, if we premultiply both sides by M} =
(Kyy + T)_l, we end up with Ey = M EyMg,, whence we finally obtain that M_'Ey =
ENMS_Sl. Thus, M 1My = ENM Mg, where MM, is a diagonal matrix with typical
element M, (0;)/Mss(0;). Therefore M., M Mg, = M, E\NMIENM, = M, MM, will
be a diagonal N x N matrix with typical diagonal element M2 (g;)/Mss(0;). In turn, this
implies that M,, — ML M I My = My — M, MM, is a diagonal matrix with typical
element M,,.(v;) — M2,.(9;)/Mss(0;), so that M™ = (M., — M, M !M,)~! is also diagonal.
Moreover, M} Mg M™ = ExyM M4 M" where M 'M . M'" is once again diagonal with
typical element [Mg(0;)/Mss(0)]/[Mrr(vi)—MZ,(0;) /Mss(@;)]-

If we put all these pieces together, we end up with

My Mo ' [ M+ ENMIM MM, MIEy —ExM M, M
M;’!’ M'rfr' o _MTTM;TM‘;lEQV MTT
[ AN[AN(Kyy + T)AN] AN + Ey(ME + MM, MMM DEY,  —ExM Mg, M7
- _MTTM,/S’I‘Ms_SlEEV M
B AN[A/N(KNN + T)AN]_IAIN 0
N 0 0
L Ex O M+ MM MMM MM M Ey 0
0 IN _MTTM;TMS_SI M 0 IN
_ ( Ax[AyEyy +X)Ay]TAY 0 (Ey 0 My Mg \ '/ Ey 0
0 0 0 Iy ML, M, 0 Iy )’
as claimed. ]

Proposition B1 If model (18) with cross-sectionally independent symmetric structural shocks
generates a covariance stationary process, then:

1. Its information matriz is block diagonal between (7/,a’)" and (c’, 0')
2. The asymptotic covariance matrix of the restricted and unrestricted ML estimators of
(r',a")" will be given by
/ ’ -1

1 73 i}
I:L (I'(0) jruu’) (T'(p— 1:) + pp') ©CMIC,
p T'p-1)+pp) ... (T0)+pu)

where T'(p) is the p'* autocovariance matriz of y; and My is defined in Proposition D2.
3. The asymptotic covariance matrices of the restricted and unrestricted ML estimators of ¢
and o are given by

(In @ )M} Iy ® C') and

Iy @ C " HYMy(Iy@CY) (Iy®CHM,,
M, (Ixy®C™1) M ’

-1

respectively, where Mg, Mg, and M. are also defined in Proposition D2 and the rank of
the difference between the asymptotic variances of these two estimators of ¢ is N.



Proof. Given the mapping between the structural and reduced form parameters, the contribu-

tion to the conditional log-likelihood function from observation ¢ (¢t =1,...,7T) will be

li(ys; @) = —In|C| +1[14(0); 01] + - - - + l[ene(0); o],

where 1[¢%,(0); g;] is the univariate log-likelihood function for the " structural shock &% (8),
e;(0) = C1ey(0), and 4(0) = (yt — 7 — ®1yt—1 — ... — ®,y:—p). To compute the gradient
and information matrix, we rely on the expressions in Supplemental Appendix D.3 because the
assumed multivariate distribution for €;(0) is not elliptically symmetric despite the marginal
distributions of its components being symmetric. Given that the conditional mean vector and

covariance matrix of (18) are given by

Il't(g) = T+Ayi 1+ + Ath—pa
»(0) = CC,

respectively, straightforward algebra shows that

Iy
yi-1 @Iy
oul(0) _._ _
th(o) — I’gg )Et 1/2/(0) — C 1/7
Yt—p & IN
Onexn
Oy N2
On2 2
dved [X4(0 _ B
zu0) = Oy om0 [avec™)
On2x 2
IN2

which means that the conditional mean and variance parameters are variation free. This fact,
combined with the symmetry of the Student ¢ and the formulas in Proposition D2, immedi-
ately implies that the information matrix will be block diagonal. Specifically, the block of the

information matrix corresponding to the N + pN? conditional mean parameters (7,a) will be

1 yl’ff} .. y,’H,)
Blzu@)Muzye) = £ | * 0 T T g et (o)
y?f;p yt*p.yg—l ytfp.}’é—p
1 o . 74
_ u (T'(0) + pu) (T(p - 1:) + pp') % C VA, C L. (B6)
ﬁ (F’(p—i)+uu’) (F(O)%uu’)

In turn, the (conditional) information matrix for the unrestricted ML estimators of the N?

structural shock coefficients ¢ and the N shape parameters g will be:
Zst(e) 0 Mss Msr Zst(e) 0
0 Iy M. M,, 0o Iy /)’

4



In this respect, we can use the results in Proposition D2 to prove that

Mss Msr _ KNN—FT ENMsr
M/ST' MT'/‘ o M;,’,EN Mrr )

Hence, the information matrix will be

Zst(o) 0 Mss Msr Zst(e) 0
0 Iy M, M, 0 Iy
IveC HEKNyN+Y)In®@CY) (Iy®C HENM,,
M, Ey(Iy®C™) Mr .
If we then use the expressions in Lemma 4, we can easily show that the inverse of the
information matrix will be
(IN & C){AN[AIN(KNN + T)AN]ilA& + ENMSSE/N}<IN &® C) —(IN &® C)ENM;;IMLWMTT
MM, M JE)\(Iy ® C) M
where M =M 14+M M, MM/ M L.
In contrast, if we assume that the shape parameters are fixed at their true values, the

asymptotic covariance matrix of the restricted ML estimators of ¢ will be

(IN@CMIIN®C) = (Iy2C)AN[ANVKyy +X)AN] AN Iy @ C)
+(Iy @ CO)EyM_'E)(Ixy @ C).

Therefore, the efficiency loss from simultaneously estimating the N shape parameters g will be
(Iny ® C)ExM'M, MMM Ey(Iy ® C'),

which has rank N rather than N? because EyM ;)M M""M’, M_'E/; is a diagonal matrix of

rank N in which the non-zero diagonal elements are

-1
1 Mgr(gi) ’ ( ) Mgr(gi)
Tr 7 .

Mss(0;)

w% Mgs(gi)
Finally, note that since the ranks of (Iny ® C’_l) and M. = ExM,, are N2 and N, respec-

tively, Sylvester’s rank inequality implies that
rank[(Iy®C)ExyM M, M™] = N,

so that Holly’s (1982) condition holds. O

Proposition B2 If model (18) with cross-sectionally independent symmetric structural shocks
generates a covariance stationary process, then the asymptotic covariance matriz of the Gaussian
PML estimators is block diagonal between (7/,a’)" and o, with the first block given by

1 o 74 !

po TO)+pp) o (T-1)+pp)

. : . ®3
p T'p-1+pp) ... (T0)+pu)



and the second block by
Dy (E e = Dy 'DY(C' @ CTHK(C™ @ CTV)Dy[Dy (=@ X Dy},

where K = Elvec(efef — In)vec(efe; —In)'] is the N2 x N2 matriz of fourth-order moments of
the structural shocks.

Proof. The information matrix equality implies that the expected value of the (minus) Hessian
of the Gaussian pseudo log-likelihood usually coincides with the value of the true information
matrix under normality. Therefore, we could exploit the fact that M; = Iy and C~Y M, C~! =
> ~! under normality to simplify the expressions we have already derived for 7 and a in Propo-
sition B1. However, the situation is slightly more complicated for o because the number of
parameters that can be identified by the Gaussian and non-Gaussian PMLs is different. For
that reason, we use the expressions in Proposition C2 to prove that the bottom block of the

(minus) expected value of the Hessian will be given by
1 1
Age = ZDMZ’% RX2)(Iy: + Kyy) (22 @2 2)Dy = sDN(E @2 )Dy

regardless of the choice of square root matrix in view of the properties of the duplication and
commutation matrix in Magnus and Neudecker (2919).

As for the matrix B, which contains the asymptotic variance of the Gaussian scores, the
symmetry of the marginal distributions of the structural shocks together with the cross-sectional
independence across shocks imply that we will also obtain a block diagonal expression with the
same block for the conditional mean parameters as A. In contrast, the block for the conditional
variance parameters o will be different. To obtain it, we can use the expressions in Proposition
C2 with C playing the role of 7 to exploit the cross-sectional independence of the structural
shocks, which leads to
1
4

where K is equal to Kyn plus a a block diagonal matrix in which each of the N blocks is

Byy = ;Diy(C™' @ CTHK(C™' ® CV)Dy,

diagonal of size N x N with the following structure:

1 0 O 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0 O
0 0 0 ri(e) 0 0 0
0 0 O 0 1 0 O
0 0 O 0 0o . 0
|0 0 0 0 0 0 1|
In the Student ¢ case, kii(0;) = (vi +2)/(vi —4). O

Proposition B3 If model (18) with cross-sectionally independent symmetric structural shocks

generates a covariance stationary process, then the scores and information matriz of o, and w
are given by

|: SO'L(e; Q) :| _ |: LN(IN ® Ezll)(Q & Q) e (¢)

sw(0;0) | | dved(Q)/ow - Iy Q) | *



and

Ly(Iy ®37")(Q® Q)
dved (Q) /0w - (In ® Q)

Proof. As in Proposition 14, the proof builds up on Proposition B1. Specifically, given that
vec(C) = (Q @ In)vec(Xr) = (Q' @ In)Lyvech(X1), straightforward algebra shows that

oc
do’,

M [ (QoQ)(In® EZI)LN (In ® Q) - Ovec(Q) /0w’ |.

= (Q @ Iy)Ly.

Similarly, given that we can also write vec(C) = (Iy ® X,)vec(Q), we will have that

dc Ovec(Q)
ow' (Iy @ %r) ow'

where dvec(Q)/0w’ depends on the particular parametrisation of orthogonal matrices chosen

(see Magnus, Pijls and Sentana (2020)). Given that

5(:(0; Q) - (IN ® Cil/)est(d))a
this direct approach allows us to obtain the scores for oy and w as
SO-L(O; Q) . 80’/80’L . . LN(Q®IN) )
[ Sw(e; Q) :| - ( 80//8(.0 Sc(07 Q) - 8vec’(Q)/8w . (IN Q E/L) Sc(e, Q).
But since C = 2;,Q so C™!' = Q'S ! and C™V = £, 7Q, we have that
Ly(Q®1y) } (Iy & C) Ly(QeIy)(Iv ® 27'Q) ]

[ dved (Q) /0w - (Iy ® X)) [ dved (Q) /0w - (Iy @ T )(Iv @ £.7'Q)

_ [ Ly(Iy®2;")(Q® Q) }
dved (Q) /0w - (In 2 Q) |

whence the expression for the scores and information matrix immediately follows. The depen-
dence of the scores s4, (0; 0) on Q simply reflects the fact that we have defined &} (0) = C1e.(0)
in terms of the true underlying independent shocks. We explain how to compute Ly (Iny ® 2;1’)
efficiently at the end of Appendix D.1. O

To obtain the asymptotic variances of o, we can alternatively use the following two-step
procedure. First, we go from the structural loading matrix C to X. Given that d3 = (dC)C’ +
C(dC’), it immediately follows that

dvec(E) = (C®Iy)dvec(C)+ (Iy @ C)dvec(C')
= (C®Iy)dvec(C)+ (In ® C)Kyndvec(C) = (In2 + Kyn)(C @ Iy)dvec(C),

so that

90 = Dy (Iy2 +Kyn)(C @ Iy),

where DE is the Moore-Penrose inverse of the duplication matrix (see Magnus, 1988). Using
this Jacobian, the delta method allows us to obtain the asymptotic covariance matrix of the
restricted and unrestricted MLEs of the reduced form parameters o, but not their scores because
rank(do/0c’) = N(N+1)/2, so we cannot invert it. Then, we can go from o to o, by exploiting
expression (E13) in Appendix D.1.



Lemma 5

AN(Iyed)(F'@W)[Iy:—ENEy(Ived) (T W)] }

(TP )(IyaI ANENE ™ = { VEy (In®J)

Proof. Let us look at the four blocks of

{ Al (IyeI) (T @) Iy —ExEy (Iyed)(T 1o ®))]

VE) (Iy®Jd) }[(‘I'®‘I"1)(IN®J—1)AN Ex¥1].

The northwestern block is

AGIN@I)(T ' ®) (T ) (IyeJ HAy
~ANIN@I)(T '@ UENENIN D) (T 1) (T ¥ ) (IveI HAy
= ANAN - AR(Iy@J) (¥ '@ ¥)ENEyAy = Iyv_1)

by virtue of Proposition 4 in Magnus and Sentana (2020). Similarly, the northeastern block is

ANINN(T T UENT ! - AY(Iy @ 0) (T o U EyENIy @ J)(T ! @ $)EyT !
= AY(IN@INENT ! - AY(Ixy @ HENEN(Iy @ J)Exy® ' =0

thanks to Propositions 2 and 3 in Magnus and Sentana (2020), together with the fact that
the diagonal elements of J are normalised to 1. The same propositions also imply that the

southwestern block will be
YEN(IN@))(To T H)(IyeI Ay = PEyAy =0,
while the sourtheastern one
VEN(Iy @ H)ENT ! = U(Iy 0 J)T ! =1y,

as claimed. O

C The special case of spherical distributions
C.1 Some useful distribution results

A spherically symmetric random vector of dimension N, e}, is fully characterised in Theorem
2.5 (iii) of Fang, Kotz and Ng (1990) as e} = e;u;, where u; is uniformly distributed on the
unit sphere surface in RV, and e; is a non-negative random variable independent of u;, whose
distribution determines the distribution of €. The variables e; and u; are referred to as the
generating variate and the uniform base of the spherical distribution. Assuming that E(e?) < oo,
we can standardise e by setting F(e?) = N, so that E(ef) = 0, V(ef) = Iy. Specifically, if e}
is distributed as a standardised multivariate Student ¢ random vector of dimension N with v
degrees of freedom, then e; = \/m, where (; is a chi-square random variable with N

degrees of freedom, and &, is an independent Gamma variate with mean g > 2 and variance



2vg. If we further assume that F(ef) < oo, then the coefficient of multivariate excess kurtosis
ko, which is given by E(e})/[N(N +2)] — 1, will also be bounded. For instance, kg = 2/(vo — 4)
in the Student ¢ case with v¢ > 4, and kg = 0 under normality. In this respect, note that since
E(e}) > E?(e?) = N? by the Cauchy-Schwarz inequality, with equality if and only if e; = vV N
so that ey is proportional to u, then k9 > —2/(N + 2), the minimum value being achieved in
the uniformly distributed case.

Then, it is easy to combine the representation of spherical distributions above with the higher
order moments of a multivariate normal vector in Balestra and Holly (1990) to prove that the

third and fourth moments of a spherically symmetric distribution with V' (ef) = Iy are given by

E(ele} ®e}) =0, (C1)
E(ete} @erel’) = Evec(efel )ved (efe})] = (ko +1)[(Iy2 + Knn) +vec (In) ved (In)], (C2)

where K,,,,, is the commutation matrix of orders m and n (see e.g. Magnus and Neudecker

(2019)).

C.2 Likelihood, score and Hessian for spherically symmetric distributions

Let exp[c(n) + g(st,m)] denote the assumed conditional density of ef given I,_; and the
shape parameters, where ¢(n) corresponds to the constant of integration, g(s¢,n) to its kernel
and ¢; = €;’ef. Ignoring initial conditions, the log-likelihood function of a sample of size T for
those values of @ for which () has full rank will take the form Ly (¢) = S 7, l;(#), where
L(¢) = di(0) + c(n) + g[s:(0),m), di(6) = In|;/*(8)] is the Jacobian, ¢,(8) = €}'(0)e} (6),
e7(0) = =, *(0)e1(0) and £1(8) =y, — ().

Let s¢(¢) denote the score function 0l;(¢)/0¢, and partition it into two blocks, sg;(¢) and
snt(¢), whose dimensions conform to those of @ and 7, respectively. If p,(0), 3(0), c(n) and
g[st(0),m] are differentiable, then

sni(P) = 0c(n)/On + 9g [<1(0),m] /On = eri(P), (C3)
while

sor(@) = g+ CLEEOTIND) 7,6, z(0)] | 6 | = Zl®)eate).  (Ca)
where

0di(0)/00 = —Zg(0)vec(ly),

951(0)/00 = —2{Z;(0)e;(0) + Zx(0)vec [7(0)e}’(0)]}, (C5)

Zu(9) = 0p;(0)/00 -, (0), (C6)

Z.(0) = soved [(0)] /005 2 (0)23; 1 (0)] (c)

en(6,m) = d[s(6),n] € (0), (C8)

ca(8,m) = vec{dlu(8).m] -} (0)e}'(6)~1In}, (C9)



and
6[<¢(8),m] = —20g[s+(0),m] /s (C10)

is a damping factor that reflects the tail-thickness of the distribution assumed for estimation
purposes. Importantly, while both Z4(0) and eg(¢) depend on the specific choice of square
root matrix Ei/ 2(0), sg:(¢) does not, a property that inherits from I;(¢). As we shall see in
Supplemental Appendix D, this result is not generally true for non-spherical distributions.

Obviously, sg.(0, 0) reduces to the multivariate normal expression in Bollerslev and Wooldridge
(1992), in which case:

_ elt(ea O) _ sjfk (0)
ca(9,0) = { es(0,0) | | wvecler(0)ey(0)-1yn] |-
Assuming further twice differentiability of the different functions involved, we will have that
the Hessian function hy(¢) = 9s;(¢p)/0¢’ = 02l;(¢p) /0O’ will be

hoot () 9?di(8) | 9%g[s:(8),n] Is1(6) Ds4(0) n dg[s1(0),n] 9%<4(0)
061 0000’ (0¢)2 00 06 s 0000
hon:(9) 951(6)/00 - 9*g [<¢(0),m] /OsOn, (C12)

hoyni(¢) = 9%c(n)/0mon’ + 0%g[<(6),m] /onon,

(C11)

where
1
82dt(9)/3080/:2Z5t(0)zgt(0)—§ {ved [2;1(0)] ® I, } Ovec {Oved [£,(0)] /06} /06', (C13)
0%¢1(0)/0000" = 22.4(0)Z;,(0) + 8Zs(0) Iy @ &7 (0)e;(0)]Z44(0) + 4Z41(6) e} (0) © In]ZL,(6)
+4Z.1(60)[<](8) © TnZi,(0) — 2[e}'(0)2, "* (6), 0vecldpi(8) /0606
—{ved [B;%(0)e1 (0)er (0)%,% (0)] ® 1, }dvec{dved [£4(0)]/00} /06
Note that ds;(0)/00, 0%dy(0)/0006" and 6%s,(0)/0006’ depend on the dynamic model specifica-
tion, while 9%g(s,n)/(9s)?, 9%g(s,n)/0sOn’ and dg(s,n)/Ondn’ depend on the specific spherical
distribution assumed for estimation purposes (see Fiorentini, Sentana and Calzolari (2003) for
expressions for 0(s¢,m), ¢(n), g(st,n) and its derivatives in the multivariate Student ¢ case,

Amengual and Sentana (2010) for the Kotz distribution and discrete scale mixture of normals,

and Amengual, Fiorentini and Sentana (2013) for polynomial expansions).

C.3 Asymptotic distribution

Given correct specification, the results in Crowder (1976) imply that e;(¢) = [€,(¢), er(P)]
evaluated at ¢ follows a vector martingale difference, and therefore, the same is true of the score
vector s;(¢). His results also imply that, under suitable regularity conditions, the asymptotic

distribution of the joint ML estimator will be VT(¢p — ¢py) — N (0,271 ()], where Z(¢) =
E[Z,(o)|¢b0),

T(@) = Vis(@)li-1; 0] = Ze(O)M($)Z}(0) = —E [hy()|L1-1: @],

2,(0) (Zdi)(e) I(Z): < Z14(6) ZSB(O) 0 ) (C14)



and M(¢) =V [ei(¢)|¢]. In particular, Crowder (1976) requires: (i) ¢y is locally identified and
belongs to the interior of the admissible parameter space, which is a compact subset of RP*4; (ii)
the Hessian matrix is non-singular and continuous throughout some neighbourhood of ¢; (iii)
there is uniform convergence to the integrals involved in the computation of the mean vector
and covariance matrix of s;(¢); and (iv) —E~' [T 3, hy(¢p)| T71 3", hy(9) N I+, where
E~Y[-T713", hy(¢)] is positive definite on a neighbourhood of ¢y.

As for éT(F)), assuming that 7 coincides with the true value of this parameter vector, the
same arguments imply that /T[07(7) — 8g] — N [0, T, (¢)], where Zgg(¢py) is the relevant
block of the information matrix.

The next proposition, which originally appeared as Proposition 1 in Fiorentini and Sentana
(2007), generalises Propositions 3 in Lange, Little and Taylor (1989), 1 in Fiorentini, Sentana
and Calzolari (2003) and 5.2 in Hafner and Rombouts (2007), providing detailed expressions for

M(¢) in models with non-zero conditional means:

Proposition C1 If ef|I;_1; ¢ is i.i.d. s(0,1n,n) with density explc(n) + g(s¢,m)], then

./\/lu(n) 0 0
M(n) = 0 My(n) Ms(m) |, (C15)
0 M(n) Mpy(n)

My(n) = My(n)ly, (C16)
Miss () = Mss(n) (Iy2 + Knn) + [Mss(n) — Hvec(In)ved (In), (C17)
Mgr(m) = vec(In)Mgr (1), (C18)

My(n) = [52(<t, ‘?7} E [ f;t’ )N +5(§t777)‘ "7] )

Mss(n) = N]YLQ{HV{ (St NM} Nji {28559?”) (%)2 77] +1,
ot = £{ sty = 1] o] o) = 5| 5 P ).

Proof. For our purposes it is convenient to rewrite ey (¢,) as
e(pg) = 0st(00),moler (Bo) = d(st, mo)v/seue,
est(dpg) = wvec{d[c(00),mole; (B0)e;’ (B0) — In} = vec [0(ss, mg)srupuy — In]

where ¢; and u; are mutually independent for any standardised spherical distribution, with
E(w) =0, E(uu,) = Ny, E(s;) = N and E(s?) = N(N +2)(k¢ + 1). Importantly, we only
need to compute unconditional moments because ¢; and u; are independent of z; and I;_1 by

assumption. Then, it easy to see that

Elew(¢)|¢] = E[5(st;n)v/seln] - E(us) = 0,

and that
Elest(¢)|¢] = vec {E [6(st,mp)st|n] - E(upwy) — In} = vee(Iy) {E [0(st,m0)(s¢/N)Im] — 1}
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In this context, we can use expression (2.21) in Fang, Kotz and Ng (1990) to write the density

function of ¢; as

N/2

T(N/2)

VP exple(n) + g(sem)), (C19)

h(si;sm) =
whence

(e m)(6a/N) = 1) =~ [1+ 0+ 9 hlse; m) /0] (c20)

On this basis, we can use Lemma 2 in Supplemental Appendix B to show that F(s;) = N < oo
implies
Els - 0lnh(s;;m)/0sIn] = —E[1] = 1,
which in turn implies that
E5(se,m)(ste/N) = 1n] =0 (C21)

in view of (C20). Consequently, Eles:(¢)|¢] = 0, as required.
Similarly, we can also show that

Eleu(p)ey(@)l¢] = E{6*(ce.m)semuiln} = Iy - E[6%(s1,mp)(s¢/N)|ml,
Elen(¢)el (o) ] E {0(st,m)v/sruved [6(se, m)spuay —In] [} =0

by virtue of (C1), and

Plea(o)elu(eo)| ] = B {oee [S(st, mo)spurns — T ved [5st,mo)ssu ~ Tn] [n}
= E [8(st,m)stn)” N<N1+2)K
—2FE[6(st,m)(s¢/N)|n]vec (In) ved (In) + vec (Iy)ved (Iy)

In2 + Kyn) +vee (Iy)ved (Iy)]

= (N]YM)E [6(st,m)(se/N)m)* (2 + Kyw)
N ) ,
. {ME [0t m)(se/N) )™ — 1} vee (Iy)ved (Iy)]

by virtue of (C2), (C20) and (C21).
Finally, it is clear from (C3) that e,;(¢y) will be a function of ¢; but not of u;, which
immediately implies that Eley(¢p)el,(p)|¢] = 0, and that

Eleg(¢)e(@)l¢] = E{vec[0(st,n)st - upuy — Iy e,(o)}
= wvec(Iy E{ (st,m)(se/N) — 1] €. (gb)}

To obtain the expected value of the Hessian, it is also convenient to write hgg.(¢g) in (C11)

12



as

—4Z51(00)[In ® {[s:(60), noler (Bo)ey’ (B0) — In}1Z,(60)

_ dvec [Ou}(0)
Oy (0) 0 1) |

3 {eBom) (52 (00) & = eolen, o { 2SO

~22,(00) ey (B0, 1m0) © T |Z(00) — 2240 (B0, mo) & Tn 2, (00)
S154(00) 0|1 (00) 24 (90)~22.(00) 24y 00)~ 21 T0) 7, ) 0 e (00) 2 00
+20(00)e} B0)ec (00)e1 (0024 (0) + Zuu(B)uecl (00)ei (B0l (00),(60)

+ Zuy(Bo)vecle; (00)<] (00)vec [e7 (B0)<} (60)1 2Ly (80)}

Clearly, the first four lines have zero conditional expectation, and the same is true of the

sixth line by virtue of (C1). As for the remaining terms, we can write them as

—0(t,1M0)Z1:(00)Z;(00) — 206(5¢,1m0) /05 - Zyy(80)sruru; Zy, (o)
—2Z(00)Z,(00) — 206(st,m0)/0s - g?ZSt(Go)vec(utug)vecl(utué)Z’St(ao),

whose conditional expectation will be

—Z14(60)Z1,(00) E[6(s15m0) + 2(ct/N) - 90(st,m0) /95 |mo] — 2Zist(60) Z54(60)

2.
—Zst(00)2E[gt J?fé((]iftfg))/&%]

[(Tn2 @ Kyn) + vee(In)ved (In)]ZL(00).
As for hgy (), it follows from (C5) and (C12) that we can write it as

{Z11(60)e; (00) + Zst(8o)vec [e7(B0)er (80)] } - 96 [s¢(60),m0] /O’
= [Zy(0)us/St + Z(0)vec(upuy)sy) - 95(st,m) /07,

whose conditional expected value will be Zg (0g)vec(In)E[(s¢/N) - 9d(s,mg) /0N 0. O

Fiorentini, Sentana and Calzolari (2003) provide the relevant expressions for the multivariate
standardised Student ¢, while the expressions for the Kotz distribution and the DSMN are
given in Amengual and Sentana (2010) (The expression for Mss(x) for the Kotz distribution in
Amengual and Sentana (2010) contains a typo. The correct value is (Nk + 2)/[(N + 2)k + 2]).

As for Z(¢), while it is relatively straightforward to obtain closed-form expressions in con-
ditionally homoskedastic, dynamic linear models such as multivariate regressions or VARs (see
e.g. Amengual and Sentana (2010)), it is virtually impossible to do so in dynamic conditionally
heteroskedastic models, as one has to resort to numerical or Monte Carlo integration methods to
compute the required expected values (see e.g. Engle and Gonzalez-Rivera (1991) and Gonzalez-
Rivera and Drost (1999)). Nevertheless, see Fiorentini and Sentana (2015, 2018) for closed-form
expressions in the context of tests for univariate or multivariate conditional homoskedasticity,

respectively.
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C.4 Gaussian pseudo maximum likelihood estimators

An important special case of restricted ML estimator arises when 77 = 0, in which case éT(O)
coincides with the Gaussian PML estimator 8. Unlike what happens with other values of m,
67 remains root-T consistent for @y under correct specification of y,(6) and ;(8) even though
the true conditional distribution of €} |I;_1; ¢ is neither Gaussian nor spherical, provided that
it has bounded fourth moments. The proof is based on the fact that in those circumstances,
the pseudo log-likelihood score, sg:(0,0), is also a vector martingale difference sequence when

evaluated at @, a property that inherits from

_ elt(aa 0) _ ’5? (0)
eq(0,0) = [ ex(0,0) | | veclef(0)ey'(0) —1In] [
Importantly, this property is preserved even when the standardised innovations, €}, are not
stochastically independent of I;_.
The asymptotic distribution of the PML estimator of 8 is stated in the following result, which

specialises Proposition 1 in Bollerslev and Wooldridge (1992) to models with 4.i.d. innovations

with shape parameters p:

Proposition C2 Assume that the reqularity conditions A.1 in Bollerslev and Wooldridge (1992)
are satisfied.

1. Ife|l;_1;¢ isi.i.d. D(0, Iy, @) with tr[K(g)]<oc, where ¢ = (6, @), then VT (87—86p) —
N [07609<0070; ¢0)] with

Co0(6,0; ¢) = Ay (6,0; 9)Bag(8,0; ) Ayy (6,0 ¢),
Ago(0,0; ¢) = —E [hggi(0,0)|p] = E[Age:(0,0; 9)|¢]
Agor(0,0; ) = —E[hgg,(0;0)| I;_1; ¢] = Z4(8)K(0)Z7,(),
Beg(0,0;¢) =V [sg:(0,0)|p] = E [Bee:(6,0; ¢)|9]
Bgei(0,0; @) = V[se:(0;0)| I;-1; @] = Za(0)K(0) /dt(e)a

and

K(e)=V]eau(0,0)| I;_1; ¢|= [ q)I/J(VQ) ?Eg; ] , (C22)

where
(o) = E[ejvec (e7e}’)| @]
Y (o) = Elvec(eje;’ — In)ved (efe;y’ — In)| @)

depend on the multivariate third and fourth order cumulants of €f, so that ®(0) = 0 and
Y(0) = (In2 +Knn) if we use o =0 to denote normality.

2. If ef|i—1; ¢ is i.i.d. s(0,In,mg) with ko < oo, then (C22) reduces to

Iy 0

K (k) = 0 (k+1)(In2+Kny)+rvec(In)ved (Iy) |’

(C23)

which only depends on the true distribution through the population coefficient of multivari-
ate excess kurtosis

k= E(Z|n)/[N(N +2)] — 1. (C24)
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Proof. The proof of the first part is based on a straightforward application of Proposition
1 in Bollerslev and Wooldridge (1992) to the i.i.d. case. Since sg:(00,0) = Z4(00)eq: (60, 0),
and ez (00, 0) is a vector martingale difference sequence, then to obtain B;(¢) we only need to
compute Vegz (6o, 0)|I;—1; ¢g], which justifies (C22). Further, we will have that

[ e;1(6,0) ] _ < e (6o) > _ [ Ve

es:(60,0) vec e} (0p)er’ (00) — In] vece(spupuy — Iy)

for any spherical distribution, with ¢; and u; both mutually and serially independent. Then
(C23) follows from (C1) and (C2). As for A:(¢y), we know that its formula, which is valid
regardless of the exact nature of the true conditional distribution, coincides with the expression

for Bi(¢y) under multivariate normality by the (conditional) information matrix equality. [

C.5 Spherically symmetric semiparametric estimators

As is well known, a single scoring iteration without line searches that started from 61 and
some root-T' consistent estimator of 1, say 7, would suffice to yield an estimator of ¢ that
would be asymptotically equivalent to the full-information ML estimator &T, at least up to
terms of order O,(T~1/2). Specifically,

( 07 — 07 > _ [Zoe(ﬁbo) Zon (o) } - Z [ SGt ]
Ny —Nr Zon(P0)  Inn(oo) T — | sni(Or, 7M7) '
If we use the partitioned inverse formula, then it is easy to see that
b1 — 81 = [Zoo(b0) — Zon($0) Ly (@0)Zon(¢0)]
T
Z [Sot Or.7r) IBn(¢O)I;1%(¢O)Snt(éTaﬁT)] = Ieo(cbo)f ZSBMt(éT»ﬁT)a
= t=1
where
I% (o) = [Zoo(bo) — Zon(P0) Ly (#0)Zon(P0)]
and
50|nt(007 M) = s6¢(60,M0) — IBn(¢O)I;7%(¢O)Snt(00> ) (C25)

is the residual from the unconditional theoretical regression of the score corresponding to 6,
set(¢g), on the score corresponding to 7, syi(¢y). This residual score is sometimes called the
unrestricted parametric efficient score of 6, and its covariance matrix, P(¢q) = [Z99 ()] ', the
marginal information matrix of 8, or the unrestricted parametric efficiency bound.

In the spherically symmetric case, we can easily prove that (C25) and its covariance matrix

reduce to
Se|nt(¢0) = Zq1(00)eqt(dg) — Ws(y) - [Msr(Wo)M;rl (no)ert(¢0)] (C26)

and

P(o) = Zoo(d) — Ws(do) Wi(eby) - [Msr(no)M;rl(Uo)Mlsr(no)] ) (C27)
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respectively, where

W (o) = Za(00)[0, vec' (In)]' = E[Za:(80)]¢][0", ved (In)]

— E{lavec’[zt(eoﬂ ¢0} = E[W4(80)|¢o] = —E [Gdt(eo)

—1
9 80 vec[Et (00)] 80

wf.  (c)

It is worth noting that the last summand of (C25) coincides with Zg(¢,) times the theoret-
ical least squares projection of e (¢,) on (the linear span of) e,+(¢y), which is conditionally
orthogonal to eg (6o, 0) from Proposition 3 of Fiorentini and Sentana (2007). Such an interpre-
tation immediately suggests alternative estimators of 8 that replace a parametric assumption on
the shape of the distribution of the standardised innovations €} by a more flexible alternative.
Specifically, Hodgson and Vorkink (2003), Hafner and Rombouts (2007) and other authors have
suggested spherically symmetric semiparametric estimators which allow for any member of the
class of spherically symmetric distribution. To derive such estimators, these authors replace the
linear span of e,+(¢y) by the so-called spherically symmetric tangent set, which is the Hilbert
space generated by all time-invariant functions of ¢;(6g) with bounded second moments that
have zero conditional means and are conditionally orthogonal to eg(6p,0). The next proposi-
tion, which originally appeared as Proposition 7 in Fiorentini and Sentana (2007), provides the
resulting spherically symmetric semiparametric efficient score and the corresponding efficiency
bound:

Proposition C3 When €f|I;_1, ¢ is i.i.d. s(0,In,n) with —2/(N + 2) < kg < 00, the spheri-
cally symmetric semiparametric efficient score is given by:

S0 (0) =s0(60)~ W 90) {9100 ol U0 1] -t [l (o)

while the spherically symmetric semiparametric efficiency bound is

$(60) = Tao(do) - Wl Wi60) - { [ X utm) 1] - b (oa0)
et (6o)

w00 =B { o tiamenton -1 |5%)
gt] -(¥-Y) [ vec(()IN) ] ! (1)

Proof. First of all, it is easy to show that for any spherical distribution

[ e;(6o,0)

€5t (007 O)

- B [ Vetuy
vece(

Ctutué - IN)

€4+(00,0)

and
satt) =2 || L) |5
_ 5[§t(90)7n ] 5?(00) .
= E{ vec [0[s¢(60), M) - 52(00)5:/ 6o) — 1] St ¢o}
_ 3(st: Mo)v/srus N st 0
- E{ Uec[fs(Ctﬂ?o;)Ctutui — 1] gt} B [5(%,770)]\[ 1] [ vec(Iy) ] 7 (C32)
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where we have used again the fact that E(u;) = 0, E(uu}) = N 'y, and ¢; and u; are
stochastically independent.

In addition, we can use the law of iterated expectations to show that

Eléa(p)eq(d)o) = E{E[[8ar(d)ew (d)lst, @} = Elea(d)&y, (D)ol = Ela(d)éy (#)| 9],
Eléu(p)ey(0,0)|¢]=E{E[&w(P)ey(0,0)|s:, dl|o} = Elea ()& (6, 0)|d]= Eléa($)&y(0,0)|¢]
and

E [84(0,0)e,(8,0)|¢p] = E [e4(0,0)8,(0,0)|¢p] = E [&4(0,0)&,(6,0)|¢] .

Hence, to compute these matrices we simply need three scalar moments.

In this respect, we can use (C24) to show that

E[(;{Q M :(N”N)“”, (C33)
so that
E [édt(a,O)e&t(B,O)W] - (N—I—QN),{—F2 ( 8 vec(IN)(t))ec'(IN) ) N K(ﬁ)

We can also use Lemma 2 in Supplemental Appendix B to show that E(s?) = N(N +2)(k +
1) < oo implies
E [} - 0lnh(s;m)/ds|n] = —E[254n] = —2N.

If we then combine this result with (C20) and (C21), we will have that for any spherically

symmetric distribution

B{(3 1) - n} = 2 =
so that
E [&4()e),(0,0)|¢] = K (0),

which coincides with the value of F [€4(8,0)e/,(6,0)|¢] under normality.
Finally, Proposition C1 immediately implies that

£ oty < 1] nf =5

T AT WSS -1
N Mss(n) (C35)
Therefore, it trivially follows from the expressions for K (0) and K (ko) above that

E { [édt@) R (0)K (k) 846, 0)} e/, (6, 0)‘ I 1 ¢}
— E{ [édt(qb) —K0) K (k) &6, 0)} &0, 0)‘ I 1 q,s} —0

for any spherically symmetric distribution. In addition, we also know that

E { [édt(qf)) R (0)K* (k) &us(6, 0)} ‘ L1 ¢} —o0.
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Thus, even though [edt(qbo) K (0) K+ (ko) &4:(60, )} is the residual from the theoretical re-
gression of €4 (¢) on a constant and €4(6,0), it turns out that the second summand of (C29)
belongs to the restricted tangent set, which is the Hilbert space spanned by all the time-invariant
functions of ¢;(6p) with bounded second moments that have zero conditional means and are con-
ditionally orthogonal to ez (6g,0).

Now, if write (C29) as

Zar(0)ea(d) — Za(h)8a () + Za(@)K (0) KT (1) 84(6,0),

then we can use the law of iterated expectations to show that the spherically symmetric semi-
parametric efficient score is indeed unconditionally orthogonal to the restricted tangent set.

Finally, the expression for the semiparametric efficiency bound will be

{Za(®)ea(s) - Z4 }

x {ear(®)'2y(0) — |&,(8) — €,(6, 00K (1) K (0)] Z(9)
= E [Zy(0)eq(d)ey (¢ )Zdt(a)’(ﬂ

B {Za(0)eu(®) [(¢) — €1(8, 0K () K (0)] 2 <¢>\¢}

~E{Za(®) |[&a(¢) ~ K (0) KT () 8 (0, 0)| €1 (0)Zi(0) |}

+E{Za(¢) [ear() — K (0) KT () €x(0,0)] [(®) — &1, 0>/€+ (1) K (0)] Zi(@)l e}

= Too(Po) — Ws(dg)Wi(edy) - { [M

E[get(¢)§/9t(¢)|¢] =F [

Mss(n) — 1} T N[(N +42)f<a +2] }

by virtue of the law of iterated expectations. O
In the case of the univariate GARCH-M model (19), we estimate the model parameters using

reparametrisation 1 in section 4. Specifically,

20,(6) = 8;1%(19)/819: . 1 05 (9e) 2B + 5oty e ] _ % [ 254 5W(9,) ] |
0;" 03 (9e) ;" "of () 0 v; 0
- 2O [ ][
02 (Ve)  20;09%(0c) | oP3(D,) 5V,
1 092(J9,
W90 = e
and

<t(9) = e (9) = 07 o7 2 (V)i

On the other hand, we use the natural parametrisation of the multivariate market model in

(20), so that 8’ = (a’,b’,w’), where w = vech(€2). Given the Jacobian matrices:

m (Iy Inrae 0), (C36)
m - (0 0 Dy), (C37)
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because dvec(Q2)/dvech'(Q) is the duplication matrix of order N (see Magnus and Neudecker,
1988), a direct application of (C4) immediately implies that

sat(0) = Q715,e4(0),
spi(0) = Q7 lr0ie4(0),
Swt(0) = %D'N(Qfl ® Qfl)vec[étst(B)sg(B) — Q]

where €,(0) = r; — a — br,.
The last ingredient we need is

Ws(¢0) = [07 0, %vecl(nil)DN}/

because
D'N(Qfél ® Q*%’)vec(IN) = Dyvec(Q71).

In practice, eg(¢) has to be replaced by a semiparametric estimate obtained from the joint
density of €f. However, the spherical symmetry assumption allows us to obtain such an estimate
from a nonparametric estimate of the univariate density of ¢;, h (s¢; 1), avoiding in this way the
curse of dimensionality. Specifically, if we use expression (C19), then we can estimate d[s¢(0), 7]

non-parametrically by exploiting that

_20gla(6).m] _ _20Wnhlst(6)m] N -2 1
ds s 2 «(0)

We can compute h[s¢(0);m] either directly by using a kernel for positive random variables
(see Chen (2000)), or indirectly by using a faster standard Gaussian kernel after exploiting the
Box-Cox-type transformation v = ¢* (see Hodgson, Linton and Vorkink (2002)). In the second

case, the usual change of variable formula yields

N/2
p(vin) = WU‘”M’“ exple(n) + g(v'/*;m)],
whence
g% m) = Inp(v;n) + <1 — ;i) Inv — gln%r—i- Ink —InI'(N/2) — ¢(n)
and

dg(v'/*; m) _ kalnf(?};n)vkyk + k—N/2
owl/k ov vl/k

We use the second procedure in our Monte Carlo simulations because the distribution of

(6) becomes more normal-like as N increases, which reduces the advantages of using kernels for
positive variables. Specifically, we use a cubic root transformation to improve the approximation,
with a common bandwidth parameter for both the density and its first derivative. Given that
a proper cross-validation procedure is extremely costly to implement in a Monte Carlo exercise,
we have done some experimentation to choose the optimal bandwidth by scaling up and down

the automatic choices given in Silverman (1986).
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In the univariate case, there is a conceptually simpler alternative that does not require
working with ¢; = 2. In particular, we can exploit the fact that the density of ¢} is the same
as the density of —e} by assigning to £¢j the equally weighted average of the non-parametric
density estimates at € and —¢j. Likewise, we can compute the equally weighted average of the

absolute value of its derivatives and assign its & value to €f and —¢j, respectively.

D The general case of non-spherical distributions
D.1 Likelihood, score and Hessian for non-spherical distributions

In this section, we assume that, conditional on I;_;, €f is independent and identically dis-
tributed, or e;|l;_1;00, 00 ~ i.i.d. D(0,Ix,gy) for short, where g are some ¢ additional pa-
rameters that determine the shape of the distribution. Importantly, this distribution could
substantially depart from a multivariate normal both in terms of skewness and kurtosis. Let
f(e*; @) denote the assumed conditional density of e} given I;_; and those shape parameters
0, which we assume is well defined. Let also ¢ = (', )" denote the p + ¢ parameters of inter-
est, which once again we assume variation free. Ignoring initial conditions, the log-likelihood
function of a sample of size T' for those values of @ for which 3;(€) has full rank will take
the form Ly(¢) = S0, li(¢), where li(¢p) = dy(0) + In f[e}(), 0], di(6) = In|=;/2(6)],
e7(0) = =, /*(0)e1(8), and €1(8) =y, — m,(0).

The most common choices of square root matrices are the Cholesky decomposition, which
leads to a lower triangular matrix for a given ordering of y;, or the spectral decomposition, which
yields a symmetric matrix. The choice of square root matrix is non-trivial because Etl / 2(0) affects
the value of the log-likelihood function and its score in multivariate non-spherical contexts. In
what follows, we rely mostly on the Cholesky decomposition because it is much faster to compute
than the spectral one, especially when 33,(8) is time-varying. Nevertheless, we also discuss some
modifications required for the spectral decomposition later on.

Let s¢(¢) denote the score function 0l;(¢)/0¢, and partition it into two blocks, sg;(¢) and
set(¢), whose dimensions conform to those of @ and g, respectively. Assuming that p,(6),

Etl /2 (0) and In f(e*, ) are differentiable, it trivially follows that

0dy(8) | ey (9) O1n flef (8) ; o]

ser(0,0) = 59 00 de* ‘
But since
0d,(0)/06 = —awcl[;;m((’)]vec[ztl/”(e)] = —Zy(8)vec(Iy)
and
OLO) 113 200) g 2y 20l O
= —{Z,(0) + [} (0) ® IN]Z,,(0)}, (D1)
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where
Zu(0) = 04 (6) /06 - 5,7 () (D2)
Z4(0) = dved [2%(0)]/00-[Iy @ =, % (0)] [’

it follows that

@) = 12u(0).240] | &9 | = 2u(0es(0) 03)

Sgt(¢) = 0Infle; (0);0]/00 = er(9),

with
C[ew@) ][ -0 flei(®): el/oe*,
cul®) = [ ext(6) } - [ “vee {Iy +n fle}(0): ol /0e" - 7'(0)) | (D4)

Similarly, let hs(¢) denote the Hessian function 9s;(¢)/0¢’ = 021;(¢p)/0pO¢’. Assuming

twice differentiability of the different functions involved, expression (D1) implies that

deu00) __9In flei(0); 0 9<i (6) _ W SIei 0]y o0 o) 1z 0} (D)

00’ Oe*De* 00’ Oe*De*
because
deit(0, 0) = —d{0n f[e;(0); o]/ 0e™ }. (D6)
In turn,
des(0, 0) = —dvec [amf[;w . sf'(@)}
T R e UG

implies that

8e8t(¢) _ aeSt(07 Q) I
l9) 000 _ _ler0)o1y

2 n * . n * .
~{et@on =BT E D o O SETOk N 17 )+ e 0 0z 0)). (D9

&1n flef (6); 0] Oef () Iy 2 /[e1(0); o]\ Oei (6)
De* e 06’ N De* 00’

Finally, (D6) and (D7) trivially imply that

0%en(0,0) _ _0°Inflef(0); o]
0000 Oe*dgo’ ’
d%es (0, 0) 9%1n fle}(0); o]

— —[€(6) ® Ly]

0000’ 0e*0o’

Using these results, we can easily obtained the required expressions for

hoot(P) = th(9)ae8lt0(/¢ ) +Zst(9)6egg/¢)
+[eh9) 0 1,) LON e () 1,) PO (g

hog(¢) = Zy(0)ey(p)/00" + Zst(0)0est(h)/D0, (D10)
hoet(¢) = 0°Infle; (0);0]/0000 "
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In this regard, note that since (D6) and (D7) also imply that
e (0,0)/0¢ = —0In fle}(8); 0] /000, (D11)
Dest(0,0)/0¢ = —[ei(8) ® I]0° In f[ef(0); €]/ e O¢, (D12)

respectively, it is clear that

2 n * .
2u() 202 12,0108~ (2,(0)+ 2,(0)ei(0) o 1y T D)
el (0) 0%In f(e} (0); 0)
6 de 90

so both ways of computing hg,(¢) indeed coincide.

Importantly, while Z;;(0), Z(0), dvec|Z;(0)]/060" and dvec|Z4(0)]/06" depend on the dy-
namic model specification, the first and second derivatives of In f(e*; @) depend on the specific
distribution assumed for estimation purposes.

For the standard (i.e. lower triangular) Cholesky decomposition of ¥;(8), we will have that
dvec(Xy) = [(%; 22 RIn) + Iy ® 22/2)KNN]dvec(Zt1/2).

Unfortunately, this transformation is singular, which means that we must find an analogous
transformation between the corresponding dvech’s. In this sense, we can write the previous

expression as
_ »l/2 ! 1/2 »1/2
dvech(Z;) = [Ly (%, @ Iy)Ly + Lv(Iny @ 2,/ ) K ynyLiy]dvech(X,’7), (D13)

where Ly is the elimination matrix (see Magnus, 1988). We can then use the results in chapter

5 of Magnus (1988) to show that the above mapping will be lower triangular of full rank as long
as X 1/2 has full rank, which means that we can readily obtain the Jacobian matrix of vech(3, =/ 2)
from the Jacobian matrix of vech(X;).

In the case of the symmetric square root matrix, the analogous transformation would be
dvech(y) = [DL(E? @ Iy)Dy + D} (Iy ® /%)D y]dvech(S}/?),

where D}, = (D’yDy)'D’y is the Moore-Penrose inverse of the duplication matrix (see Magnus
and Neudecker, 1988).

From a numerical point of view, the calculation of both Ly (%; »!/2 ® In)Ly and Ly(Iy ®
21/ 2)K ~nLy is straightforward. Specifically, given that Lyvec(A) = vech(A) for any square
matrix A, the effect of premultiplying by the %N (N+1)x N2 matrix Ly is to eliminate rows N+1,
2N+1 and 2N+2, 3N+1, 3N+2 and 3N+3, etc. Similarly, given that LyKyyvec(A) = vech(A'),
the effect of postmultiplying by Ky nL’y is to delete all columns but those in positions 1, N+1,
ON+1,... . N+2, 2N+2,..., N+3, 2N+3,..., N2.

Let F; denote the transpose of the inverse of LN(Z]tl/2 @ In)Ly +Ln(In ® Etl/2)KNNL’N

which will be upper triangular. The fastest way to compute

rr9l/2 '
OJvec [;)5 (0)] Iy e 2_1/2(0)] _ 1 0vech [2:(0)]

: o FLy(y @ », /2 (D14)
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is as follows:

1. From the expression for dvec [3:(0)] /00 we can readily obtain dvech’ [£:(0)] /06 by

simply avoiding the computation of the duplicated columns
2. Then we postmultiply the resulting matrix by F;

3. Next, we construct the matrix

> o .. o0

o X2 ... o

Ly(Iy © %,/%) = Ly . U .
0 o - 2;1/2

by eliminating the first row from the second block, the first two rows from the third block,

..., and all the rows but the last one from the last block

4. Finally, we premultiply the resulting matrix by dvech’ [¥4(6)] /00 - F.

D.2 Asymptotic distribution

Propositions 10.1, 13, C2.1 and D3 already deal explicitly with the general case, so there
is no need to generalise them. In turn, Propositions 6, 7, 8, 9 and their proofs continue to be
valid if we change 11 by 0. The same happens to Proposition 5, provided we erase the row and
columns corresponding to 61 and its influence function Sgt(¢). On the other hand, Propositions
10.2, 11, 12, C2.2 and C3 are specific to the spherically symmetric case. Therefore, the only

proposition that really requires a proper generalisation is Proposition C1.
Proposition D1 If ef|l;_1;¢ is ii.d. D(0,Iy, @) with density f(e*,0), then

Ti(¢) = Z(0)M(0)Zi(8),

Zy(0) 0 Z,(0) Z4(0) O
zo) = ("5 1) =("" %0 0 )
and
Mu(e) Mis(e) Mi(o)
Mig) = | &) A | | Mie) Mule) Mule) |,
dr " (@) M. (e) M. (o)
with
Mu(e) = Vien(d)|¢] = E [0°In f(e]; 0)/0c*0e™ | ] ,
Mus(@) = Eler(¢)est(d) |¢] = E [0°In f(e]; 0) /0™ 0™ - (] @ In)| o] |
Mss(0) = View(d)|p] = E [(ef ® In) - 0*In f(e}; 0)/0e* 0™ - (e} @ In)|e] — Knw,
M (0) = Elew(@)e(¢)| 9] = —E [0°In f(e]; 0)/0e*0d | ] ,
Mar(0) = Eleq(@)e)(d)|p] = —E [(ef @ In)0*In f(e]; 0)/0e* 00 |o] ,
and

M;r(0) = Vier(9)lg] = —~E [0°In f(ef; 0)/0000'|$] -
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Proof. Since the distribution of e} given I;_; is assumed to be i.i.d., then it is easy to see from
(D3) that e¢(¢p) = [el, (@), e, (¢p)]" will inherit the martingale difference property of the score

st(¢g). As a result, the conditional information matrix will be given by

Muyu(e) Mis(e) M (e Z,(0) 0
{tho(e) ZSB(B) IO ] [MESEQ)) Mss((g)) Msr(@%] {Z’:f(@) 0]
! (@) Mi(e) M. (o) 0o I
_ [ Z1(0)Mu(0)Zi,(0) + Zst(0) M (0)Z;,(6) + Z1y(0) Mi5(0)Z(0) + Zst(0) Mss(0)Z4(0)
M;,(0)Z;,(0) + M, (0)Z5,(0)
th( )MZT( )Jrzst(e)Msr(Q)]
M. (0) ’

where

Mu(e) Mis(e) Mir(e) e (0, o)
MES(Q) MSS(Q) MST‘(Q) =V est(07 Q)
;r(g) Mlsr(g) MTT(Q) ert(ga Q)

which confirms the variance of the score part of the proposition.

As for the expected value of the Hessian expressions, it is easy to see that

Elhggi(@)|2t, 115 ¢ = Zy(0)E [86”8(3,’@ Zt,ft1;¢] +Zy(0)E [86353(:/,9) Zt,ft1;¢]
because
Elew(0,0)|z, Ii-1; 9] = —E[01n fle;(0); 0] /0™ |2, [1-1; 0] = 0 (D15)
and

Elest(8, @)|zt, It-1; @] = —E [vec{In + O1n f[e}(0); 0] /0™ - €](0)}|z1, [-1;¢] = 0. (D16)

Expression (D5) then leads to

a 07 82 In 1% ,
b [%8(9’9) Zt’It_l;qs} N E{ aﬁgsat (*/) ]{th( 0) + [ (0) © IN1Z,(0)} Ztajt—1§¢}
9% In 921n fle*(0):
=P [ 3{?*?5*/ ‘ 4 Zu(0) + B [ 32’[*2&5*/)7 = €1 (0) ® IN]’ ¢] Z,(0).

Likewise, equation (D8) leads to

8est(9> Q)
P2

B 4 - £ [{si0) o1y LSOk Ty, o OS]

821n f[er(0); ,
We0:ell o) zi0

< {Z(6) + [ (0) © In1Zy(8)}| 1. I 1,¢}—E[[e:<e>®lm

9°1n f[e}(0); @]
Oe*0e*

[€7(6) ® L]

B [[ez‘w) Lyl

2, Iy (4 Z;t(a) - KNNth(a)
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because of (D15) and (D16), which in turn implies

p{ iy 20LEH0k) g o,

Oe*
W } [€/(0) ® 1Iy]

= KNNE{ [W ®IN] [et"(0) @ In]

KNNE{ [alnfggfa)59]s;*(0) ®1N}

2, Iy —1; ¢}

= KNNE{KNN |:IN &

ztvjt—ﬁd)}

Zt7It—1§¢}

Zt,ft1;¢} = —-Kuyn

in view of Theorem 3.1 in Magnus (1988).

As a result, the information matrix equality implies that
Mu(e) = E{0%Inflef(0);0]/0e 0| ¢}
Mis(@) = E{8%Inf[e}(6);0]/0e* 9™ - [ (0) @ In]| ¢}
Mss(e) = E{[ef(0) @ In]0” In f[e(0); 0] /0™ 0™ - [e7(0) @ In]| ¢} — Knw

Similarly, equation (D10) implies that

Ehggi(d)|2t, It—1; ] = E[Z1,(0)0e4(0, 0) /00" + Z5(0)0es(0, 0) /00 |2, I—1; P).

But then the information matrix equality together with equations (D11) and (D12) imply that

E[0ey(0,0)/0¢ |21, I-1;¢] = —E{0°In f[e}(6); @]/0*0'|p} = Mir (@),
E[0ex(0,0)/0€ |21, Ii—1;¢] = —E{[e;(0) ® In]0*In f[e}(0); €] /000 |} = M (@)

Finally, the information matrix equality also implies that

M, (0) = —E{0°In f[€}(6); €] /0000’ |9},

as required. O

D.3 Cross-sectionally independent disturbances

Let us now specialise the results in the previous two subsections for the case in which the
disturbances are cross-sectionally independent. Specifically, we assume that the conditional

density of €} given I;_; and the shape parameters g can be factorised as
N
n fle; 0).] = Y In FI=4(6). e,

where €7 (0) = [¢7,(0),...,e3.(0)]) and 0 = (@4, ..., 0y), with dim(g;) = ¢; and Zf\il ¢ =q.

The main simplification in the expressions for the scores result from the fact that

_ O0f[e14(0);04]
Oe3

elt(¢) = )

_ Of[en(0);on]
Oy
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14 DSl g g) L 2l (g)

Oe3
eSt(¢) = —vecC
010 /1o, (6) Oln flen,(0);
Wgﬁ(e) 1+Wfﬁw(9)

and
Oln fle7,(0);04]
do;
€rt (¢) = ;
Oln flen,(6);on]
Jdon

so that the derivatives involved correspond to the underlying univariate densities.

When any of the N distributions is symmetric, then these expressions simplify further as

_07; = 6(511?2’ Qi)git‘

Additional simplifications in the expressions for the Hessian arise because 02 In f[e}(0); o] /0e*Oe*,
0%1n fle;(0); 0]/0e* 00’ and 6% In f[e}(0); 0] /0000’ are (block) diagonal matrices with represen-
tative elements 9% In f[e},(0); 0,]/0cF0et, 9*In fe},(0); 0,]/0c; D0} and 9% In f[e},(0); 0,]/ 00,00,
respectively.

As for the information matrix, Proposition D1 simplifies to
Proposition D2 If e|I;_1; ¢ is i.i.d. D(0,1y, @) with density f(e*, 0) = [, f(ek, 0;), then

the information matrix will be given by a special case of Proposition D1 in which My will be a
diagonal matrixz of order N with typical element
J

Oln f(ef; ;)
Mis =M EYy, where My, also a diagonal matriz of order N with typical element

Oe;
1 .0 1 *.0
0 nf(gzﬁ Qz) 0 nf(gzﬁ Qz)g* Q:| ,

Oet ’ Oet i
M, is the sum of the commutation matriz Ky and a block diagonal matriz X of order N? in
which each of the N diagonal blocks is a diagonal matrixz of size N with the following structure:

My(g;) =V [

e o]

[ Myu(ey) O 0 0 0 0 0
0 0 0 0 0 0
0 0 Mu(o; ) 0 0 0 0
YT, = 0 0 0 Mgs(0;) — 1 0 0 0 ,
0 0 0 0 My(@i+1) O 0
0 0 0 0 0 . 0
L 0 0 0 0 0 0 M”(QN) ]

where Ol (et )
n EZ‘ 30;) «
T;Sit Q] )

M. is an N X q block diagonal matriz with typical diagonal block of size 1 X g;

Oln f(ef;0;) Oln f(e}y; 0;) 0
Oet ’ do; ’

Mgs(@;) =V [

My-(0;) = —cov [
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Mg = ExMyg,., whereMyg, another block diagonal matrix of order N x q with typical block of
Oln flefy; 0i) o Oln flely; @i)

size 1 X q;
85: (3] 8QZ Q:| )

and M., is an q X q block diagonal matriz with typical block of size q; X ¢;
Oln f(e};; o;
cisal,]

do;
Proof. The expression for M;; follows trivially from the fact that

o| -

for i # j because of the cross-sectional independence of the shocks.

Mgr(@;) = cov [

Myr(Q;) =V [

Oe¥ ’ Oe*

*.0.) 01 0
con lalnf(smgz) nf(ffit 0;)
J

The same property also implies that M;s =M;;E’y because for i # j # k

* .. 811’1 g”.‘ ; . i 6ln E#f ; i
E aln f(82t7 Q’L) f( It Q])E;Ft 0 — 0 Since E M o| = 0,
der Oc* Oej
Oln f(e};0;) Oln fel; 0;) o | ] : *
b [ fc‘)(s;t ! fa(g%«t 2 )5jt e| = Osince B (cf| o) =0,
*.0.) [ 0In f(e%; 0; ] it Qi
E alnf(gztagz) f( Jt Q])g*ft_|—1 o = 0 since F M o =0
Oe? e} J Oe;

and
dln f(ek; 0,) OIn f (55 05)

E L
* * t
Oe; e}

g] = 0 since E (¢, 0) = 0.

The expression for Mg, is slightly more involved. First, most but not all the off-diagonal

terms will be 0. Specifically, when ¢ # j

1 *. 0 Oln f(et,; 0; dln f(e%; 0,
| (OnlChie) . )OI | e g | TGO
de: oc* e}

. [81111"(62}; 0;) . 0ln f(ej; Qz‘)s*

Q:| =0 since E (&3] @) =0

85? it 85: Jt
and
On f(eji; 0:) dn f(ejs; @1) , dln f(c%: 0;)
E|| 02 1) | — L=k + 1 =0 J ol It AT ARV | -0
< 65;5 €t T 85; €t t 1] since 86;* er T 1o
However,
o0l x:0; dln f(e%,; o, o1 *.
b nfa(;t’gl) jt fa(si,t e it Q] = 1 since I [Wsé‘ﬁl‘g] = 0.
t J i

In contrast, the diagonal terms, which can only take two forms, are different from 0. Specif-

ically, they will be either

dln f(eh; 0,) . ?
(2esinl

Oln f(e}; 0;)

E
Oe;

Q] = Mgs(0;) since E [ 5+ 1‘ Q} =0
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or

=K

® 2
E (8lnf(5itv Ql)E;t) 0

Oln f(ely; 0)\°
Oe;

*
Oe}

g] = My(p;) since E (5;‘?{ o) =1.

As a result, we can write Mg, = Kyny + T.

The cross-sectional independence of the shocks also implies the block diagonal structure of
M. and M,.., as well as the fact that M. = ExMy,,.. As expected, the same expressions are
obtained by taking the expected value of the (minus) Hessian. O

When one of the univariate distributions is symmetric, then M;5(0;) =M;-(0;) = 0. One
popular example will be the univariate standardised Student ¢ distribution with v = n~! degrees

of freedom, which is such that

i g0 =) — (% Yo |14 - c20)]

with
n; +1 1 1 1—2n, 1
c(n;) = log < > —log [F <>] — —log — —log .
‘ 2n; 2n; 2 n; 2
Here,
+1
5 *2, — n
(Et 777) 1_277+7752<2
and
Oln f(efsm) 1 1 y n+1 _y 1
on (1 —2n) 22 2n 2n
n+1 e 1 N
— —~ In(1 22 )
120+ ne22nd—2n) 27 TN

In addition

B vi(vi+1)
1\[ll(gi) - (Vi — 2)(Vz + 3)7
QVZ'
Mss(Qz‘) - » +37
Mgr(0;) = — 61/’2
T\ = T ) i + (v + 3)

and

v vz , (Vi 1/;1 v; — 3)(v;
Mrr(Qi) = ZZ [1/1 (E) - ( ;—1>:| - 2(1/2, —(2)2(11?)—*(- 1)_51?)_{_ 3)7

where ¢’ () = 0?InI'(z)/0x? is the so-called tri-gamma function (Abramowitz and Stegun
1964), which reduce to 1, 1, 0 and 3/2 respectively, under normality (see Fiorentini, Sentana
and Calzolari (2003)). As a result, when all shocks are in fact Gaussian, Mg; = Kyn + Iy2,
which confirms that not all elements of C can be identified with a Gaussian log-likelihood
function because rank(Kyy + In2) = N(N +1)/2 (see section 4 in Magnus and Sentana (2020)

for a general expression for the eigenvalues of (Kyy + ).
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D.4 Semiparametric estimators

In Supplemental Appendix C.5 we interpreted the last summand of (C25) as Zg(¢,) times
the theoretical least squares projection of eg(¢y) on (the linear span of) e,+(¢y), which is con-
ditionally orthogonal to eg (6o, 0) from Proposition 3 in Fiorentini and Sentana (2007). Such
an interpretation allowed Gonzalez-Rivera and Drost (1999) to replace a parametric assumption
on the shape of the distribution of the standardised innovations € by a fully non-parametric
alternative. Specifically, in a univariate context they replaced the linear span of e,+(¢,) by the
so-called unrestricted tangent set, which is the Hilbert space generated by all the time-invariant
functions of €} with bounded second moments that have zero conditional means and are condi-
tionally orthogonal to ez (6, 0). The next proposition, which originally appeared as Proposition
6 in Fiorentini and Sentana (2007), describes the resulting semiparametric efficient score and
the corresponding efficiency bound for multivariate conditionally heteroskedastic models whose
conditionally mean is not identically zero:

Proposition D3 If ef|I;_1;0, p is i.i.d. D(0,Iy,p) with density function f(e};p), where p

denotes the possibly infinite dimensional vector of shape parameters and p = 0 normality, and
both its Fisher information matrix for location and scale,

Maq (0, p) =V [eq(0, 0)|1:-1; 0, p]

vl L@ oo} =V Coeete s om sy oes oy ||2]

and the matriz of third and fourth order central moments K (p) in (C22) are bounded, then the
semiparametric efficient score will be given by:

Sot(@) = sgr(@) — Za(0, p) [eqt(8, p) — K (0) K¥(p)ea(6,0)], (D17)

while the semiparametric efficiency bound is

where + denotes Moore-Penrose inverses and Zgg(0, p) = E [Zg(0)Maa(0, p)Z.,,(0)]0, p].

Proof. It trivially follows from expressions (B3) and (C22) in appendices B and C, respectively,
that

E { [edt(07 Q) -K (O) IC+ (Q) edt(av O)] e;ft(aa 0) |It*1; 0’ Q} =0
for any distribution. In addition, we also know that
E{[eqt(0,0) —K(0)K" (0) e(0,0)] |I;-1;6,0} = 0.

Hence, the second summand of (D17), which can be interpreted as Z;(¢) times the residual from
the theoretical regression of e (¢y) on a constant and eg(6p,0), belongs to the unrestricted
tangent set, which is the Hilbert space spanned by all the time-invariant functions of €} with zero

conditional means and bounded second moments that are conditionally orthogonal to ez (69, 0).
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Now, if we write (D17) as
(Z.4:(0) — Za(8, 0)] €4t (0, 0) + Za(6, @)K (0) KT () ea(8,0),

then we can use the law of iterated expectations to show that the semiparametric efficient
score (D17) evaluated at the true parameter values will be unconditionally orthogonal to the
unrestricted tangent set because so is e4(09,0), and F [Z4(0) — Z4(0, 0)|0, 0] = 0.

Finally, the expression for the semiparametric efficiency bound will be

{Za(0)ea(6,0) — Za(6, 0) [ea(6,0) — K (0 ) T (e)ew(0,0)] ]
x {eat(0, 0)'Z;,(0) — [e,(0, o) — €,,(8,0)K™ (o) K (0)] Z(0 Q}
= E [Z4(0)eq (0, 0)ey,(0, 0)Za:(6)10, o]
—E{Z4(0)eq (0, 0) [€44(8, ) — e,(6,0)CT () K (0)] Z;(6,0)16, 0}
—E{Z4(0,0) [ea(0,0) — K (0) K" (0) (8, 0)] ea () Z;,(0)]6, 0}
+E{Z4(0, 0) [ea(8,0) — K (0) KT (0) e4(8,0)] [e}, (8, 0) — €4(0,0)K™ (0) K (0)] Zy(0, 0)16, 0}
=Tpo(0,0) — Z4(0, 0) [Maa () — K (0) KT (0) K (0)] Z;(8, 0)
by virtue of (C22), (B3) and the law of iterated expectations. O

In the case of the univariate GARCH-M model (19), we estimate the model parameters using

reparametrisation 2 in section 4. Specifically, expressions (D2) and (D4) become

1 o—1 02 ~1/2
5%; 0 0 o TTW
7 5/~Lt( )/aso 1 2PimTt (Qog) (op (ro)/ Pe B PimPic 71/2cpct(soc)
() = 172 o 12, ai(ee) = D
Pic Ot (LPC) Pic Ot (Soc) 0 0
- D02 0 W
7 _ 80’%(90)/890 B 1 PicO0¢ (ro)/ Pe B <PC(§(‘PC)
st(p) = 20,02(0,)  20,.02(,) 20 = 0
cr t c wc”t c O'f (‘Pc) §(PZ-C
and
Oln fle ;
eir(p, 0) = —W,
Oln fle ;
est((p, Q) = — {1 + Et(‘P)W} ,
respectively, where
et(ﬂo) = eg(SOC) Pim = Tt Pim _ Tt ‘szff?(‘PC)
o eloile) P eloie,)
and
1 90552 (p,

209%(p,)  Op,
Then, a direct application of (D3) yields

Wi(p)r'(¢;) } [ en(%@% } ’

B elt(goa Q) —
Ser(0) = [ Zule) Zule) | [ est(, 0) } - [ A(er) cst(ps 0
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where
r(e;) = ( o> 1)

and
1/2

. 0
A(pie) = %B 1,1 |-
2Pic
On the other hand, we use again the natural parametrisation of the multivariate market

model in (20). As a result, the Jacobian matrix (C36) in Supplemental Appendix C remains

relevant, so that

sat(0) = —Q 291 f[e;(0); p/Oc™,
spi(0) = —Q V2,0 fle;(0); p]/Oe”,

where /2 is a matrix square root of €.

If we choose the Cholesky decomposition, we can use expression (D14) to obtain
1
Swt(0) = —§D’NFLN(IN ® Q_%)vec {Iy + 0ln f[e;(0); p]/0c* - €' (0)},
where F denotes the transpose of the inverse of LN(QU2 QIN)Ly +Ly(Iv ® Ql/Q)KNNL’N.
Finally, it is worth noting that it is possible to avoid the use of explicit Moore-Penrose
generalised inverses in the computation of the correction by exploiting the fact that

K(p)= In O In Elejvech’(efe}’)| 0, o] In O
p 0 Dy )| E[vech(eie)e*|0,0] E[vech(ele!)vech!(efel’) —1x|0,0] |\ 0 D/

and

[ Iy 0
’C(O) - ( 0 Ino+Kpyn >

imply that

KOK (P00 = (o yp )

Iy Elefvech/(je}')] 0, o] - ef
vech(

Elvech(efe;)e*| 0, 0] Elvech(eref yvech (efef’) — In| 0, o] eref’ — 1)

Nevertheless, f(e}; p) has to be replaced by a nonparametric estimator, which increasingly
suffers from the curse of dimensionality as the cross-sectional dimension N increases. In line with
the usual practice, we employ a standard multivariate Gaussian kernel. Once again, we have
done some experimentation to choose optimal bandwidths by scaling up and down the automatic
choices given in Silverman (1986) because a proper cross-validation procedure is extremely costly

to implement in a Monte Carlo exercise when N = 3.
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E Other results
E.1 Standardised two component mixtures of multivariate normals

Consider the following mixture of two multivariate normals

. N(py,%1)  with probability A,
! N(pt9, )  with probability 1 — .
Let d; denote a Bernoulli variable which takes the value 1 with probability A and 0 with
probability 1 — A. As is well known, the unconditional mean vector and covariance matrix of

the observed variables are:

E(ey) = E[E(eddi)] = Apy + (1= AN pso,
Vier) = VI[E(edy)] + E[V(edldi)] = A1 = A (g — p2) (1 — p2)" + A1 + (1 = N) .

Therefore, this random vector will be standardised if and only if

Apy+ (1 =Npy = 0,
AL =N (k1 = p2) (g — p) +AB1+ (1= = L

Let us initially assume that p; = p9 = 0 but that the mixture is not degenerate, so that
A # 0,1. Let 21L2'1 ; and 22L2/2L denote the Cholesky decompositions of the covariance

matrices of the two components. Then, we can write
A+ (1= Ny =3 [M Iy + (1 — )\)EILIEMEIQLEILM]EIM =31 (\Iy + K K))E

where Kj = \/ﬁZILIEgL remains a lower triangular matrix. Given that Iy = eje; +
... + eyey, where e; is the i vector of the canonical basis, the Cholesky decomposition of
My + KK, say J1.J), can be computed by means of N rank-one updates that sequentially
add ﬁei\f/\eg for : = 1,..., N. The special form of those vectors can be efficiently combined
with the usual rank-one update algorithms to speed up this process (see e.g. Sentana (1999) and
the references therein). In any case, the elements of J;, will be functions of A and the N(N+1)/2
elements in K. If we then choose X1, = le, we will guarantee that A3 4+ (1 — \) g = Iy.
Therefore, we can achieve a standardised two-component mixture of two multivariate normals
with 0 means by drawing with probability A one random variable from a distribution with
covariance matrix J Zl'J El, and with probability 1 — A from another distribution with covariance
matrix (1 — \) 'K K.

Let us now turn to the case in which the means of the components are no longer 0. The
zero unconditional mean condition is equivalent to p; = (1 — A\)d and py = —AJ, so that
measures the difference between the two means. Thus, the unconditional covariance matrix will
be A(1 — \)8d’ + Iy after imposing the restrictions on X7 and 39 in the previous paragraph.
Once again, the Cholesky decomposition of this matrix is very easy to obtain because it can be

regarded as a positive rank-one update of the identity matrix, whose decomposition is trivial.
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Thus, we can parametrise a standardised mixture of two multivariate normals, which usually
involves 2N mean parameters, 2N (N +1)/2 covariance parameters and one mixing parameter, in
terms of the N mean difference parameters in §, the V(N +1)/2 relative variance parameters in
K and the mixing parameter A, the remaining N mean parameters and N (N +1)/2 covariance
ones freed up to target any unconditional mean vector and covariance matrix.

Mencia and Sentana (2009) explain how to standardise Bernoulli location-scale mixtures
of normals, which are a special case of the two component mixtures we have just discussed
in which 3o = »3¥;. Straightforward algebra confirms that the standardisation procedure

described above simplifies to the one they provide in their Proposition 1.

E.2 Non-causal ARMA models

Consider the following AR(2) process:
(1 -1 L)(1 —agL)xy = p+&,, (E1)

where &, is a possibly non-Gaussian i.i.d. sequence, a1, a2 € R, |ag| < 1, |ag| > 1 but ag # afl.
Higher order process with possibly complex roots can be handled analogously, but the algebra
gets messier. Brockwell and Davis (1987) showed that x; can be written as the following doubly
infinite MA process

&t

a2_0417

—ay'p
(1)1 -ay")

which they called mixed causal/non-causal because x; effectively depends on past, present and

Ty = — (oL oy LA L b a F 2 Lol L2 ol LB+ )

future values of the underlying innovations. Nevertheless, by looking at the spectral density of

x¢ they also showed that this process has the following purely causal AR(2) representation:

(1 - L)(1 —ay L)y = v+ wy, (E2)
where u; is a white noise but not necessarily serially independent sequence, with variance 03 =
oy 202 and v = —ay 1),. Thus, the situation is entirely analogous to the well known multiple

invertible and non-invertible representations of M A processes.

Breidt et al (1991) showed that a non-Gaussian log-likelihood function based on the as-
sumption that the distribution of &, is 4.i.d. with 0 mean and finite variance O'g will be able to
consistently estimate the values of the two autoregressive roots that appear in (E1) as well as
the true drift and variance of the innovations. In contrast, a Gaussian log-likelihood function,
which effectively exploits the information in the spectral density of x;, can only consistently
estimate the parameters in (E2).

At first sight, it might appear that one cannot apply the procedures we have developed in
the paper to assess the adequacy of the non-Gaussian distribution chosen for the purposes of
estimating the “structural” parameters because the Gaussian pseudo log-likelihood cannot con-

sistently estimate them. However, under correct specification, the non-Gaussian log-likelihood
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function will also estimate a1, a5 L —Qy L and oy 20? consistently. Therefore, one can easily
develop a DWH specification test to check the validity of the distributional assumption for &,
by comparing the non-Gaussian coefficient estimators of those “reduced form” parameters with
the Gaussian ones. The score versions of those tests that we discussed in section 2.1 are also
straightforward. As we have argued in section 3.7, power gains may be obtained by focusing on

2
v and 0.

E.3 Additional Monte Carlo results

In this section, we look at the sampling distribution of the estimators we used in section 4 to

compute the DWH tests of the univariate GARCH-M model and the multivariate market model.

Univariate GARCH-M Table 1S displays the Monte Carlo medians and interquartile ranges
of the estimators. The results broadly confirm the theoretical predictions in terms of bias and rel-
ative efficiency. It is worth noticing that the bias of the restricted (unrestricted) Student ¢ max-
imum likelihood estimators of the scale parameter is negative (positive) when the log-likelihood
is misspecified, which suggests that our tests will have good power for pairwise comparisons
involving this parameter, at least for the distributions considered in the exercise. In turn, the

location parameter estimators are biased only when the true distribution is asymmetric.

Multivariate market model Table 2S displays the Monte Carlo medians and interquartile
ranges of the estimators for several representative parameters in addition to the global scale
parameter ¥; = |Q|1/ N Specifically, we exploit the exchangeability of our design to pool the
results of all the elements of the vectors of intercepts a and slopes b, and the “vectors” of residual
covariance parameters vecd(2°), vecl(2°), vecd(2) and vecl(€2). Once again, the results are
in line with the theoretical predictions. Moreover, the biases of the restricted and unrestricted
Student ¢ maximum likelihood estimators of the global scale parameter have opposite signs,
as in the univariate case. Finally, the location parameters are only biased in the asymmetric
distribution simulations. Therefore, we expect tests that involve the intercepts to increase power

in that case, but to result in a waste of degrees of freedom otherwise.
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TABLE 1S: Univariate GARCH-M: Parameter estimators.

Parameter 6] ~y 3, Pim Yiy Pic n=1/v
True value 0.85 0.1 0.05 1.0
RML 0.8467 0.0960 0.0506 1.0404 0.0833
(0.0375)  (0.0348)  (0.0314)  (0.4132)
UML 0.8467 0.0959 0.0507 1.0397 0.0815
Student t1 (0.0376)  (0.0350)  (0.0315)  (0.4125)  (0.0276)
PML 0.8464 0.0956 0.0508 1.0420
(0.0392)  (0.0363)  (0.0324)  (0.4331)
RML 0.8467 0.0956 0.0505 1.0137 0.0833
(0.0383)  (0.0344)  (0.0315)  (0.3986)
UML 0.8468 0.0959 0.0504 1.0392 0.1232
Student t (0.0381)  (0.0343)  (0.0314)  (0.4077)  (0.0276)
PML 0.8460 0.0955 0.0504 1.0439
(0.0423)  (0.0384)  (0.0333)  (0.4539)
RML 0.8461 0.0955 0.0506 0.8706 0.0833
(0.0437)  (0.0383)  (0.0278)  (0.3817)
UML 0.8470 0.0967 0.0502 1.3990 0.3604
GC(0,3.2) (0.0371)  (0.0338)  (0.0254)  (0.5748)  (0.0264)
PML 0.8460 0.0956 0.0506 1.0425
(0.0429)  (0.0377)  (0.0327)  (0.4476)
RML 0.8460 0.0956 0.1117 0.8601 0.0833
(0.0436)  (0.0386)  (0.0358)  (0.3848)
UML 0.8475 0.0970 0.1723 1.5853 0.3865
GC(-.9,3.2) (0.0356)  (0.0321)  (0.0380)  (0.6728)  (0.0265)
PML 0.8459 0.0956 0.0511 1.0453
(0.0431)  (0.0381)  (0.0326)  (0.4626)

Monte Carlo medians and (interquartile ranges) of RML (Student ¢-based maximum likelihood with
12 degrees of freedom), UML (unrestricted Student ¢-based maximum likelihood), and PML (Gaussian
pseudo maximum likelihood) estimators. GC (Gram-Charlier expansion). Sample length=2,000. Repli-

cations=20,000.
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