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1 Introduction

Empirical studies with financial data suggest that returns distributions are leptokurtic even

after controlling for volatility clustering effects. This feature has important practical conse-

quences for standard risk management measures such as Value at Risk and recently proposed

systemic risk measures such as Conditional Value at Risk or Marginal Expected Shortfall (see

Adrian and Brunnermeier (2016) and Acharya et al. (2017), respectively), which could be

severely mismeasured by assuming normality. Given that empirical researchers are interested

in those risk measures for several probability levels, they often specify a parametric leptokurtic

distribution, which then they use to estimate their models by maximum likelihood (ML).

A non-trivial by-product of these non-Gaussian ML procedures is that they deliver more effi -

cient estimators of the mean and variance parameters, especially if the shape parameters can be

fixed to their true values. The downside, though, is that they often achieve those effi ciency gains

under correct specification at the risk of returning inconsistent parameter estimators under dis-

tributional misspecification (see e.g. Newey and Steigerwald (1997)). This is in marked contrast

with the generally ineffi cient Gaussian pseudo-maximum likelihood (PML) estimators advocated

by Bollerslev and Wooldridge (1992) among many others, which remain root-T consistent for

the mean and variance parameters under relatively weak conditions.

If researchers were only interested in those two conditional moments, the semiparametric

(SP) estimators of Engle and Gonzalez-Rivera (1991) and Gonzalez-Rivera and Drost (1999)

would provide an attractive solution because they are consistent and also attain full effi ciency

for a subset of the parameters (see Linton (1993), Drost and Klaassen (1997), Drost, Klaassen

and Werker (1997) and Sun and Stengos (2006) for univariate time series examples). Unfortu-

nately, SP estimators suffer from the curse of dimensionality when the number of series involved,

N , is moderately large, which limits their use. Furthermore, Amengual, Fiorentini and Sentana

(2013) show that non-parametrically estimated conditional quantiles lead to risk measures with

much wider confidence intervals than their parametric counterparts even in univariate contexts.

Another possibility would be the spherically symmetric semiparametric (SSP) methods consid-

ered by Hodgson and Vorkink (2003) and Hafner and Rombouts (2007), which are also partially

effi cient while retaining univariate rates for their nonparametric part regardless of N . However,

asymmetries in the true joint distribution will contaminate these estimators too.

In any event, given that many research economist at central banks, financial institutions and

economic consulting firms continue to rely on the estimators that commercial econometric soft-

ware packages provide, it would be desirable that they routinely complemented their empirical

results with some formal indication of the validity of the parametric assumptions they make.
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The statistical and econometric literature on model specification is huge. In this paper, our

focus is the adequacy of the conditional distribution under the maintained assumption that the

rest of the model is correctly specified. Even so, there are various ways of assessing it. One

possibility is to nest the assumed distribution within a more flexible parametric family in order

to conduct a Lagrange Multiplier (LM) test of the nesting restrictions. This is the approach

in Mencía and Sentana (2012), who use the generalised hyperbolic family as an instrumental

nesting distribution for the multivariate Student t. In contrast, other specification tests do

not consider an explicit alternative hypothesis. A case in point are consistent tests based on

the difference between the theoretical and empirical cumulative distribution functions of the

innovations (Bai (2003) and Bai and Zhihong (2008)) or their characteristic functions (Bierens

and Wang (2012) and Amengual, Carrasco and Sentana (2019)). An alternative procedure would

be the information matrix test of White (1982), which compares some or all of the elements of

the expected Hessian and the variance of the score. White (1987) also proposed the application

of Newey’s (1985) conditional moment test to assesses the martingale difference property of the

scores under correct specification. Finally, the general class of moment tests in Newey (1985)

and Tauchen (1985) could also be entertained, as Bontemps and Meddahi (2012) illustrate.

But when a research economist relies on standard software for calculating some non-Gaussian

estimators of θ and their asymptotic standard errors from real data, a more natural approach

to testing distributional specification would be to compare those estimators on a pairwise basis

using simple Durbin-Wu-Hausman (DWH) tests.1 As is well known, the traditional version of

these tests can refute the correct specification of a model by exploiting the diverging properties

under misspecification of a pair of estimators of the same parameters. Focusing on the model

parameters makes sense because if they are inconsistently estimated, the conditional moments

derived from them will be inconsistently estimated too.

In this paper, we take this idea one step further and propose an extension of the DWH tests

which simultaneously compares three or more estimators. The rationale for our proposal is given

by a novel proposition which shows that if we order the five estimators we mentioned in the

preceding paragraphs as restricted and unrestricted non-Gaussian ML, SSP, SP and Gaussian

PML, each estimator is “effi cient” relative to all the others behind. This “Matryoshka doll”

structure for their joint asymptotic covariance matrix implies that there are four asymptotically

independent contiguous comparisons, and that any other pairwise comparison must be a linear

combination of those four. We exploit these properties in developing the asymptotic distribution

1Wu (1973) compared OLS with IV in linear single equation models to assess regressor exogeneity unaware
that Durbin (1954) had already suggested this. Hausman (1978) provided a procedure with far wider applicability.
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of our proposed multiple comparison tests. We also explore several important issues related to

the practical implementation of DWH tests, including its two score versions, their numerical

invariance to reparametrisations and their application to subsets of parameters.

To design reliable tests, we first need to figure out the rank of the difference between the

asymptotic covariance matrices under the null of correct specification so as to use the right num-

ber of degrees of freedom. We also need to take into account that some parameters continue to

be consistently estimated under the alternative of incorrect distributional specification, thereby

avoiding wasting degrees of freedom without providing any power gains.

In Fiorentini and Sentana (2019), we characterised the mean and variance parameters that

distributionally misspecified ML estimators can consistently estimate, and provided simple

closed-form consistent estimators for the rest. One of the most interesting results that we

obtain in this paper is that the parameters that continue to be consistently estimated by the

parametric estimators under distributional misspecification are those which are effi ciently es-

timated by the semiparametric procedures. In contrast, the remaining parameters, which will

be inconsistently estimated by distributionally misspecified parametric procedures, the semi-

parametric procedures can only estimate with the effi ciency of the Gaussian PML estimator.

Therefore, we will focus our tests on the comparison of the estimators of this second group of

parameters, for which the usual effi ciency - consistency trade off is of first-order importance.

The inclusion of means and the explicit coverage of multivariate models make our proposed

tests useful not only for Garch models but also for dynamic linear models such as Vars or mul-

tivariate regressions, which remain the workhorse in empirical macroeconomics and asset pricing

contexts. This is particularly relevant in practice because researchers are increasingly acknowl-

edging the non-normality of many macroeconomic variables (see Lanne, Meitz and Saikkonen

(2017) and the references therein for recent examples of univariate and multivariate time series

models with non-Gaussian innovations). Nevertheless, structural models pose some additional

inference challenges, which we discuss separately. Obviously, our approach also applies in cross-

sectional models with exogenous regressors, as well as in static ones.

The rest of the paper is as follows. In section 2, we provide a quick revision of DWH tests and

derive several new results which we use in our subsequent analysis. Then, in section 3 we formally

present the five different likelihood-based estimators that we have mentioned, and derive our

proposed specification tests, paying particular attention to their degrees of freedom and power.

A Monte Carlo evaluation of our tests can be found in section 4, followed by an empirical analysis

of the relationship between uncertainty and the business cycle using a structural Var. Finally,

we present our conclusions in section 6. Proofs and auxiliary results are gathered in appendices.
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2 Durbin-Wu-Hausman tests

2.1 Wald and score versions

Let θ̂T and θ̃T denote two GMM estimators of θ based on the average influence functions

m̄T (θ) and n̄T (θ) and weighting matrices S̃mT and S̃nT , respectively. When both sets of moment

conditions hold, then, under standard regularity conditions (see e.g. Newey and McFadden

(1994)), the estimators will be jointly root-T consistent and asymptotically Gaussian, so

√
T (θ̃T − θ̂T )

d→ N(0,∆) and

T (θ̃T − θ̂T )′∆−(θ̃T − θ̂T )
d→ χ2r , (1)

where r = rank(∆) and − denotes a generalised inverse. Consider now a sequence of local

alternatives such that
√
T (θ̃T − θ̂T ) ∼ N(θm − θn,∆). (2)

In this case, the asymptotic distribution of the DWH statistics (1) will become a non-central

chi-square with non-centrality parameter (θm−θn)′∆−(θm−θn) and the same number of degrees

freedom (see e.g. Hausman (1978) or Holly (1987)). Therefore, the local power of a DWH test

will be increasing in the limiting discrepancy between the two estimators, and decreasing in both

the number and magnitude of the non-zero eigenvalues of ∆.

Knowing the right number of degrees of freedom is particularly important for employing

the correct distribution under the null. Unfortunately, some obvious consistent estimators of

∆ might lead to inconsistent estimators of ∆−.2 In fact, they might not even be positive

semidefinite in finite samples. We will revisit these issues in sections 3.4 and 3.6, respectively.

The calculation of the DWH test statistic (1) requires the prior computation of θ̂T and θ̃T .

In a likelihood context, however, Theorem 5.2 of White (1982) implies that an asymptotically

equivalent test can be obtained by evaluating the scores of the restricted model at the ineffi cient

but consistent parameter estimator (see also Reiss (1983) and Ruud (1984), as well as Davidson

and MacKinnon (1989)). Theorem 2.5 in Newey (1985) shows that the same equivalence holds

in situations in which the estimators are defined by moment conditions. In fact, it is possible

to derive not just one but two asymptotically equivalent score versions of the DWH test by

evaluating the influence functions that give rise to each of the estimators at the other estimator,

as explained in section 10.3 of White (1994). The following proposition, which we include for

completeness, spells out those equivalences:

2A trivial non-random example of discontinuities is the sequence 1/T , which converges to 0 while its generalised
inverse (1/T )− = T diverges. Theorem 1 in Andrews (1987) provides conditions under which a quadratic form
based on a generalised inverse of a weighting matrix converges to a chi-square distribution.
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Proposition 1 Assume that the moment conditions mt(θ) and nt(θ) are correctly specified.
Then, under standard regularity conditions

T (θ̃T − θ̂T )′∆−(θ̃T − θ̂T )− Tm̄′T (θ̃T )SmJm(θ0)Λ
−
mJ ′m(θ0)Smm̄T (θ̃T ) = op(1) (3)

and T (θ̃T − θ̂T )′∆−(θ̃T − θ̂T )− T n̄′T (θ̂T )SnJn(θ0)Λ
−
nJ ′n(θ0)Snn̄T (θ̂T ) = op(1), (4)

where Λm and Λn are the limiting variances of J ′m(θ0)Sm
√
Tm̄T (θ̃T ) and J ′n(θ0)Sn

√
T n̄T (θ̂T ),

respectively, which are such that

∆=
[
J ′m(θ0)SmJm(θ0)

]−1
Λm

[
J ′m(θ0)SmJm(θ0)

]−1
=
[
J ′n(θ0)SnJn(θ0)

]−1
Λn

[
J ′n(θ0)SnJn(θ0)

]−1
with Jm(θ) = plimT→∞ ∂m̄T (θ)/∂θ′, Jn(θ) = plimT→∞ ∂n̄T (θ)/∂θ′, Sm = plimT→∞ S̃mT ,
Sn = plimT→∞ S̃nT and rank [J ′m(θ0)SmJm(θ0)] = rank [J ′n(θ0)SnJn(θ0)] = p = dim(θ), so
that rank(Λm) = rank(Λn) = rank(∆).

An intuitive way of re-interpreting the asymptotic equivalence between the original DWH

test in (1) and the two alternative score versions on the right hand sides of (3) and (4) is

to think of the latter as original DWH tests based on two convenient reparametrisations of

θ obtained through the population version of the first order conditions that give rise to each

estimator, namely πm(θ) = J ′m(θ)SmE[mt(θ)] and πn(θ) = J ′n(θ)SnE[nt(θ)]. While these new

parameters are equal to 0 when evaluated at the pseudo-true values of θ implicitly defined by

the exactly identified moment conditions J ′m(θm)SmE[mt(θm)]=0 and J ′n(θn)SnE[nt(θn)]=0,

respectively, πm(θn) and πn(θm) are not necessarily so, unless the correct specification condition

θm = θn = θ0 holds.3 The same arguments also allow us to loosely interpret the score versions

of the DWH tests as distance metric tests of those moment conditions, as they compare the

values of the GMM criteria at the estimator which sets those exactly identified moments to 0

with their values at the alternative estimator. We will discuss more formal links to the classical

Wald, Likelihood Ratio (LR) and LM tests in a likelihood context in section 3.4.

Proposition 1 implies the choice between the three versions of the DWH test must be based on

either computational ease, numerical invariance or finite sample reliability. While computational

ease is model specific, we will revisit the last two issues in sections 2.2 and 4, respectively.

2.2 Numerical invariance to reparametrisations

Suppose we decide to work with an alternative parametrisation of the model for convenience

or ease of interpretation. For example, we might decide to compare the logs of the estimators

of a variance parameter rather than their levels. We can then state the following result:

3A related analogy arises in indirect estimation, in which the asymptotic equivalence between the score-based
methods proposed by Gallant and Tauchen (1996) and the parameter-based methods in Gouriéroux, Monfort and
Renault (1993) can be intuitively understood if we regard the expected values of the scores of the auxiliary model
as a new set of auxiliary parameters that summarises all the information in the original parameters (see Calzolari,
Fiorentini and Sentana (2004) for further details and a generalisation).
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Proposition 2 Consider a homeomorphic, continuously differentiable transformation π(.) from
θ to a new set of parameters π, with rank [∂π′ (θ) /∂θ] = p = dim(θ) when evaluated at θ0, θ̂T
and θ̃T . Let π̂T = arg minπ∈Π m̄

′
T (π)S̃mT m̄T (π) and π̃T = arg minπ∈Π n̄

′
T (π)S̃nT n̄T (π), where

mt(π) = mt[θ(π)] and nt(π) = nt[θ(π)] are the influence functions written in terms of π, with
θ(π) denoting the inverse mapping such that π[θ(π)] = π. Then,
1. The Wald versions of the DWH tests based on θ̃T − θ̂T and π̃T − π̂T are numerically
identical if the mapping is affi ne, so that π = Aθ + b, with A and b known and |A| 6= 0.

2. The score versions of the tests based on m̄T (θ̃T ) and m̄T (π̃T ) are numerically identical if

Λ∼mT =

[
∂θ(π̃T )

∂π′

]−1
Λ∼mt

[
∂θ′(π̃T )

∂π

]−1
,

where Λ∼mT and Λ∼mT , are consistent estimators of the generalised inverses of the limiting
variances of J ′m(θ0)Sm

√
Tm̄T (θ̃T ) and J ′m(θ0)Sm

√
T m̄T (π̃T ), respectively.

3. An analogous result applies to the score versions based on n̄T (θ̂T ) and n̄T (π̂T ).

These numerical invariance results, which extend those in sections 17.4 and 22.1 of Ruud

(2000), suggest that the score-based tests might be better behaved in finite samples than their

“Wald”counterpart. We will provide some simulation evidence on this conjecture in section 4.

2.3 Subsets of parameters

In some examples, generalised inverses can be avoided by working with a parameter subvec-

tor. In particular, if the (scaled) difference between two estimators of the last p2 elements of θ,

θ̂2T and θ̃2T , converge in probability to 0, then comparing θ̂1T and θ̃1T is analogous to using a

generalised inverse with the entire parameter vector (see Holly and Monfort (1986) for further

details).

But one may also want to focus on a subset if the means of the asymptotic distributions of

θ̂2T and θ̃2T coincide both under the null and the alternative, so that a DWH test involving

these parameters will result in a waste of degrees of freedom, and thereby a loss of power.

The following result provides a useful interpretation of the two score versions asymptotically

equivalent to a Wald-style DWH test that compares θ̂1T and θ̃1T :

Proposition 3 Define

m̄⊥1T (θ,Sn) = J ′1m(θ)Smm̄T (θ)− J ′1m(θ)SmJ2m(θ)[J ′2m(θ)SmJ2m(θ)]−1J ′2m(θ)Smm̄T (θ),

n̄⊥1T (θ,Sn) = J ′1n(θ)Snn̄T (θ)− J ′1n(θ)SnJ2n(θ)[J ′2n(θ)SnJ2n(θ)]−1J ′2n(θ)Snn̄T (θ)

as two sets of p1 transformed sample moment conditions, where

Jm(θ) =
[
J1m(θ) J2m(θ)

]
=
[

plimT→∞ ∂m̄T (θ)/∂θ′1 plimT→∞ ∂m̄T (θ)/∂θ′2
]
,

Jn(θ) =
[
J1n(θ) J2n(θ)

]
=
[

plimT→∞ ∂n̄T (θ)/∂θ′1 plimT→∞ ∂n̄T (θ)/∂θ′2
]
.

If mt(θ) and nt(θ) are correctly specified, then, under standard regularity conditions

T (θ̃T − θ̂T )′∆−11(θ̃T − θ̂T )− Tm̄⊥′T (θ̃T )Λ−
m⊥1

m̄⊥′T (θ̃T ) = op(1)

and T (θ̃1T − θ̂1T )′∆−11(θ̃1T − θ̂1T )− T n̄⊥′1T (θ̂T )Λ−
n⊥1

n̄⊥1T (θ̂T ) = op(1),
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where ∆11, Λm⊥1
and Λn⊥1

are the limiting variances of
√
T (θ̃1T − θ̂1T ),

√
Tm̄⊥1T (θ̃T ,Sm) and

√
T n̄⊥1T (θ̂T ,Sn), respectively, which are such that

∆11 =
[
J ′m(θ0)SmJm(θ0)

]11
Λm⊥1

[
J ′m(θ0)SmJm(θ0)

]11
=

[
J ′n(θ0)SnJn(θ0)

]11
Λn⊥1

[
J ′n(θ0)SnJn(θ0)

]11
,

with 11 denoting the diagonal block corresponding to θ1 of the relevant inverse.

Intuitively, we can understand m̄⊥1T (θ,Sn) and n̄⊥1T (θ,Sn) as moment conditions that exactly

identify θ1, but with the peculiarity that

plim
T→∞

∂m̄⊥1T (θ,Sn)

∂θ′2
= plim

T→∞

∂n̄⊥1T (θ,Sn)

∂θ′2
= 0,

which makes them asymptotically immune to the sample variability in the estimators of θ2.

When J ′1m(θ)SmJ2m(θ) = J ′1n(θ)SnJ2n(θ) = 0, the above moment tests will be asymptoti-

cally equivalent to tests based on J ′1m(θ)Sm
√
Tm̄T (θ̃T ) and J ′1n(θ)Sn

√
T n̄T (θ̂T ), respectively,

but in general this will not be the case.

2.4 Multiple simultaneous comparisons

All applications of DWH tests we are aware of compare two estimators of the same underlying

parameters. However, as we shall see in section 3.2, there are situations in which three or more

estimators are available. In those circumstances, it might not be entirely clear which pair of

estimators researchers should focus on.

Ruud (1984) highlighted a special factorisation structure of the likelihood such that different

pairwise comparisons give rise to asymptotically equivalent tests. He illustrated his result with

three classical examples: (i) full sample vs first subsample vs second subsample in Chow tests;

(ii) GLS vs within-groups vs between-groups in panel data; and (iii) Tobit vs probit vs truncated

regressions. Unfortunately, Ruud’s (1984) factorisation structure does not apply in our case.

In general, the best pairwise comparison, in the sense of having maximum power against a

given sequence of local alternatives, would be the one with the highest non-centrality parameter

among those tests with the same number of degrees of freedom.4 But in practice, a researcher

might not be able to make the required calculations without knowing the nature of the departure

from the null. In those circumstances, a sensible solution would be to simultaneously compare

all the alternative estimators. Such a generalisation of the DWH test is conceptually straight-

forward, but it requires the joint asymptotic distribution of the different estimators involved.

There is one special case in which this simultaneous test takes a particularly simple form:

4Ranking tests with different degrees of freedom is also straightforward but more elaborate (see Holly (1987)).
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Proposition 4 Let θ̂
j
T , j = 1, . . . , J denote an ordered sequence of asymptotically Gaussian

estimators of θ whose joint asymptotic covariance matrix adopts the following form:
Ω1 Ω1 . . . Ω1 Ω1

Ω1 Ω2 . . . Ω2 Ω2
...

...
. . .

...
...

Ω1 Ω2 . . . ΩJ−1 ΩJ−1
Ω1 Ω2 . . . ΩJ−1 ΩJ

 . (5)

Then, the DWH test comparing all J estimators, T
∑J

i=2(θ̂
j
T − θ̂

j−1
T )′(Ωj −Ωj−1)+(θ̂

j
T − θ̂

j−1
T ),

is the sum of J−1 consecutive pairwise DWH tests that are asymptotically mutually independent
under the null of correct specification and sequences of local alternatives.

Hence, the asymptotic distribution of the simultaneous DWH test will be a non-central χ2

with degrees of freedom and non-centrality parameters equal to the sum of the degrees of freedom

and non-centrality parameters of the consecutive pairwise DWH tests. Moreover, the asymptotic

independence of the tests implies that in large samples, the probability that at least one pairwise

test will reject under the null will be 1−(1−α)J−1, where α is the common significance level.

Positive semidefiniteness of the covariance structure in (5) implies that one can rank (in the

usual positive semidefinite sense) the asymptotic variance of the J estimators as

ΩJ ≥ ΩJ−1 ≥ . . . ≥ Ω2 ≥ Ω1,

so that the sequence of estimators follows a decreasing effi ciency order. Nevertheless, (5) goes

beyond this ordering because it effectively implies that the estimators behave like Matryoshka

dolls, with each one being “effi cient”relative to all the others below. Therefore, Proposition 4

provides the natural multiple comparison generalisation of Lemma 2.1 in Hausman (1978).

An example of the covariance structure (5) arises in the context of sequential, general to spe-

cific tests of nested parametric restrictions (see Holly (1987) and section 22.6 of Ruud (2000)).

More importantly for our purposes, the same structure also arises naturally in the compari-

son of parametric and semiparametric likelihood-based estimators of multivariate, conditionally

heteroskedastic, dynamic regression models, to which we turn next.

3 Application to non-Gaussian likelihood estimators

3.1 Model specification

In a multivariate dynamic regression model with time-varying variances and covariances, the

vector of N observed variables, yt, is typically assumed to be generated as:

yt = µt(θ) + Σ
1/2
t (θ)ε∗t ,

where µt(θ) = µ(It−1;θ), Σt(θ) = Σ(It−1;θ), µ() and vech [Σ()] are N ×1 and N(N +1)/2×1

vector functions describing the conditional mean vector and covariance matrix known up to the
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p× 1 vector of parameters θ, It−1 denotes the information set available at t− 1, which contains

past values of yt and possibly some contemporaneous conditioning variables, andΣ
1/2
t (θ) is some

particular “square root”matrix such that Σ
1/2
t (θ)Σ

1/2′
t (θ) = Σt(θ). Throughout the paper, we

maintain the assumption that the conditional mean and variance are correctly specified, in the

sense that there is a true value of θ, say θ0, such that E(yt|It−1) = µt(θ0) and V (yt|It−1) =

Σt(θ0). We also maintain the high level regularity conditions in Bollerslev and Wooldridge

(1992) because we want to leave unspecified the conditional mean vector and covariance matrix

in order to achieve full generality. Primitive conditions for specific multivariate models can be

found for example in Ling and McAleer (2003).

To complete the model, a researcher needs to specify the conditional distribution of ε∗t . In

Supplemental Appendix D we study the general case. In view of the options that the dominant

commercially available econometric software companies offer to their clients, though, in the main

text we study the situation in which a researcher makes the assumption that, conditional on It−1,

the distribution of ε∗t is independent and identically distributed as some particular member of the

spherical family with a well defined density, or ε∗t |It−1;θ,η ∼ i.i.d. s(0, IN ,η) for short, where η

denotes q additional shape parameters which effectively characterise the distribution of ςt = ε∗′t ε
∗
t

(see Supplemental Appendix C.1 for a brief introduction to spherically symmetric distributions).5

The most prominent example is the standard multivariate normal, which we denote by η = 0

without loss of generality. Another important example favoured by empirical researchers is the

standardised multivariate Student t with ν degrees of freedom, or i.i.d. t(0, IN , ν) for short. As is

well known, the multivariate t approaches the multivariate normal as ν →∞, but has generally

fatter tails and allows for cross-sectional dependence beyond correlation. For tractability, we

define η as 1/ν, which will always remain in the finite range [0, 1/2) under our assumptions.6

Obviously, in the univariate case, any symmetric distribution, including the GED (also known

as the Generalised Gaussian distribution), is spherically symmetric too.7

3.2 Likelihood-based estimators

Let LT (φ) denote the pseudo log-likelihood function of a sample of size T for the general

model discussed in section 3.1, where φ = (θ′,η′)′ are the p + q parameters of interest, which

we assume variation free. We consider up to five different estimators of θ:

1. Restricted ML (RML): θ̂T (η̄), which is such that θ̂T (η̄) = arg maxθ∈Θ LT (θ, η̄). Its

5Nevertheless, Propositions 10, 13, C2, D1, D2 and D3 already deal explicitly with the general case, while
Propositions 5, 6, 7, 8 and 9 continue to be valid without sphericity.

6A Student t with 1 < ν ≤ 2 implies an infinite variance, which is incompatible with the correct specification
of Σt, while the conditional mean will not even be properly defined if ν ≤ 1.

7See McDonald and Newey (1988) for a univariate generalised t distribution which nests both GED and Student
t, and Gillier (2005) for a spherically symmetric multivariate version of the GED.
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effi ciency can be characterised by the θ,θ block of the information matrix, Iθθ(φ0), provided

that η̄ = η0. Thus, we can interpret Iθθ(φ0) as the restricted parametric effi ciency bound.

2. Joint or Unrestricted ML (UML): θ̂T , obtained as (θ̂T , η̂T ) = arg maxφ∈Φ LT (θ,η). In

this case, the feasible parametric effi ciency bound is P(φ0)=Iθθ(φ0)−Iθη(φ0)I−1ηη (φ0)I ′θη(φ0).

3. Spherically symmetric semiparametric (SSP): θ̊T , which restricts ε∗t to have an i.i.d.

s(0, IN ,η) conditional distribution, but does not impose any additional structure on the distri-

bution of ςt = ε∗′t ε
∗
t . This estimator is usually computed by means of one BHHH iteration of

the spherically symmetric effi cient score starting from a consistent estimator (see Supplemen-

tal Appendix C.5 for further computational details).8 Associated to it we have the spherically

symmetric semiparametric effi ciency bound S̊(φ0).

4. Unrestricted semiparametric (SP): θ̈T , which only assumes that the conditional distri-

bution of ε∗t is i.i.d.(0, IN ). It is also computed with one BHHH iteration of the effi cient score

starting from a consistent estimator (see Supplemental Appendix D.3 for further computational

details). Associated to it we have the usual semiparametric effi ciency bound S̈(φ0).

5. Gaussian Pseudo ML (PML): θ̃T = θ̂T (0), which imposes η = 0 even though the true

conditional distribution of ε∗t might be neither normal nor spherical. As is well known, the

effi ciency bound for this estimator is given by C−1(φ0) = A(φ0)B−1(φ0)A(φ0), where A(φ0) is

the expected Gaussian Hessian and B(φ0) the variance of the Gaussian score.

Propositions C1-C3 in Supplemental Appendix C and Proposition D3 in Supplemental Ap-

pendix D contain detailed expressions for all these effi ciency bounds.

3.3 Covariance relationships

The next proposition provides the asymptotic covariance matrices of the different estimators

presented in the previous section, and of the scores on which they are based:

Proposition 5 If ε∗t |It−1;φ0 is i.i.d. s(0, IN ,η0) with bounded fourth moments, then

lim
T→∞

V


√
T

T

T∑
t=1


sθt(φ0)

sθ|ηt(φ0)
s̊θt(φ0)
s̈θt(φ0)

sθt(θ0,0)


=


Iθθ(φ0) P(φ0) S̊(φ0) S̈(φ0) A(φ0)

P(φ0) P(φ0) S̊(φ0) S̈(φ0) A(φ0)

S̊(φ0) S̊(φ0) S̊(φ0) S̈(φ0) A(φ0)

S̈(φ0) S̈(φ0) S̈(φ0) S̈(φ0) A(φ0)
A(φ0) A(φ0) A(φ0) A(φ0) B(φ0)

 , (6)

and lim
T→∞

V


√
T


θ̂T (η0)− θ0
θ̂T − θ0
θ̊T − θ0
θ̈T − θ0
θ̃T − θ0



=


I−1θθ (φ0) I−1θθ (φ0) I−1θθ (φ0) I−1θθ (φ0) I−1θθ (φ0)

I−1θθ (φ0) P−1(φ0) P−1(φ0) P−1(φ0) P−1(φ0)
I−1θθ (φ0) P−1(φ0) S̊−1(φ0) S̊−1(φ0) S̊−1(φ0)
I−1θθ (φ0) P−1(φ0) S̊−1(φ0) S̈−1(φ0) S̈−1(φ0)
I−1θθ (φ0) P−1(φ0) S̊−1(φ0) S̈−1(φ0) C(φ0)

 (7)

8Hodgson, Linton and Vorkink (2002) also consider alternative estimators that iterate the semiparametric
adjustment until it becomes negligible. However, since they have the same first-order asymptotic distribution, we
shall not discuss them separately.
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Therefore, the five estimators have the Matryoshka doll covariance structure in (5), with each

estimator being “effi cient” relative to all the others below. A trivial implication of this result

is that one can unsurprisingly rank (in the usual positive semidefinite sense) the “information

matrices”of those five estimators as follows:

Iθθ(φ0) ≥ P(φ0) ≥ S̊(φ0) ≥ S̈(φ0) ≥ C−1(φ0). (8)

Proposition 5 remains valid when the distribution of ε∗t conditional on It−1 is not assumed

spherical, provided that we cross out the terms corresponding to the SSP estimator θ̊T (see

Supplemental Appendix D for further details). Therefore, the approach we develop in the next

section can be straightforwardly extended to test the correct specification of any maximum

likelihood estimator of multivariate conditionally heteroskedastic dynamic regression models.

Such an extension would be important in practice because while the assumption of sphericity

might be realistic for foreign exchange returns, it seems less plausible for stock returns.

3.4 Multiple simultaneous comparisons

Five estimators allow up to ten different possible pairwise comparisons, and it is not obvious

which one researchers should focus on. If they only paid attention to the asymptotic covariance

matrices of the differences between those ten combinations of estimators, expression (8) suggests

that they should focus on adjacent estimators. However, the number of degrees of freedom and

the diverging behaviour of the estimators also play a very important role.

Nevertheless, we also saw in section 2.4 that there is no reason why researchers should choose

just one such pair, especially if they are agnostic about the alternative. In fact, the covariance

structure in Proposition 5 combined with Proposition 4 implies that DWH tests of multiple

simultaneous comparisons are extremely simple because non-overlapping pairwise comparisons

give rise to asymptotically independent test statistics. Importantly, this result, combined with

the fact that any of the ten possible pairwise comparisons can be obtained as the sum of the

intermediate contiguous comparisons, implies that at the end of the day there are only four

asymptotically independent pairwise comparisons. For example, the difference between the

spherically symmetric estimator θ̊T and the Gaussian estimator θ̃T is numerically equal to the

sum of the differences between each of those estimators and the general semiparametric estimator

θ̈T , so the limiting mean and covariance matrix of
√
T (̊θT − θ̃T ) will be the sum of the limiting

means and covariance matrices of
√
T (̊θT − θ̈T ) and

√
T (θ̈T − θ̃T ). As a result, we can compute

the non-centrality parameters of the DWH test based on θ̊T − θ̃T from the same ingredients as

the non-centrality parameters of the DWH tests that compare θ̊T − θ̈T and θ̈T − θ̃T . This result
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also implies that the differences between adjacent asymptotic covariance matrices will often will

be of reduced rank, a topic we will revisit in section 3.6.

Still, researchers may disregard θ̈T − θ̃T because the semiparametric estimator and the

Gaussian estimator are consistent for θ0 regardless of the conditional distribution, at least as

long as the iid assumption holds. For the same reason, they will also disregard θ̊T − θ̈T if they

maintain the assumption of sphericity. In practice, the main factor for deciding which estimators

to compare is likely to be computational ease. For that reason many empirical researchers might

prefer to compare only the three parametric estimators included in standard software packages

even though increases in power might be obtained under the maintained assumption of iid

innovations by comparing θ̂T to θ̊T or θ̈T instead of θ̃T . The next proposition provides detailed

expressions for the necessary ingredients of the three DWH test statistics in (1), (3) and (4)

when we compare the unrestricted ML estimator of θ with its Gaussian PML counterpart.

Proposition 6 If the regularity conditions A.1 in Bollerslev and Wooldridge (1992) are satis-
fied, then under the null of correct specification of the conditional distribution of yt

lim
T→∞

V [
√
T (θ̃T − θ̂T )] = C(φ0)− P−1(φ0),

lim
T→∞

V [
√
T s̄′θ|ηT (θ̃T ,η0)] = P(φ0)C(φ0)P(φ0)− P(φ0) and

lim
T→∞

V [
√
T s̄′θT (θ̂T ,0)] = B(φ0)−A(φ0)P−1(φ0)A(φ0),

where s̄θ|ηT (θ̃T ,η0) is the sample average of the unrestricted parametric effi cient score for θ
evaluated at the Gaussian PML estimator θ̃T , while s̄θT (θ̂T ,0) is the sample average of the
Gaussian PML score evaluated at the unrestricted parametric ML estimator θ̂T .

The next proposition provides the analogous expressions for the three DWH test statistics

in (1), (3) and (4) when we compare the restricted ML estimator of θ which fixes η to η̄ with

its unrestricted counterpart, which simultaneously estimates these parameters.

Proposition 7 If the regularity conditions in Crowder (1976) are satisfied, then under the null
of correct specification of the conditional distribution of yt

lim
T→∞

V {
√
T [θ̂T − θ̂T (η̄)]} = P−1(φ0)− I−1θθ (φ0) = I−1θθ (φ0)Iθη(φ0)Iηη(φ0)I ′θη(φ0)I−1θθ (φ0),

lim
T→∞

V [
√
T s̄θT (θ̂T , η̄)] = Iθθ(φ0)P−1(φ0)Iθθ(φ0)− Iθθ(φ0) = Iθη(φ0)Iηη(φ0)I ′θη(φ0 and

lim
T→∞

V {
√
T s̄′θ|ηT [θ̂T (η̄), η̄]} = P(φ0)− P(φ0)I−1θθ (φ0)P(φ0)

= Iθη(φ0)I−1ηη (φ0)I ′θη(φ0)I−1θθ (φ0)Iθη(φ0)I−1ηη (φ0)I ′θη(φ0)

where Iηη(φ0) = [Iηη(φ0) − I ′θη(φ0)I−1θθ (φ0)Iθη(φ0)]
−1, s̄θT (θ̂T , η̄) is the sample average of

the restricted parametric score evaluated at the unrestricted parametric ML estimator θ̂T and
s̄θ|ηT (θ̃T , η̄) is the sample average of the unrestricted parametric effi cient score for θ evaluated
at the restricted parametric ML estimator θ̂T (η̄).
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The comparison between the unrestricted and restricted parametric estimators of θ can be

regarded as a test of H0 : η = η̄. However, it is not necessarily asymptotically equivalent to the

Wald, LR and LM of the same hypothesis. In fact, a straightforward application of the results

in Holly (1982) implies that these four tests will be equivalent if and only if rank[Iθη(φ0)] = q =

dim(η), in which case we can show that the LM test and the s̄θ|ηT [θ̂T (η̄), η̄] version of our DWH

test numerically coincide. But Proposition C1 in Supplemental Appendix C implies that in the

spherically symmetric case Iθη(φ0) = Ws(φ0)msr(η0), where Ws(φ0) in (C28) is p × 1 and

msr(η0) in (C18) is 1× q, which in turn implies that rank[Iθη(φ0)] is one at most. Intuitively,

the reason is that the dependence between the conditional mean and variance parameters θ and

the shape parameters η effectively hinges on a single parameter in the spherically symmetric

case, as explained in Amengual, Fiorentini and Sentana (2013). Therefore, this pairwise DWH

test can only be asymptotically equivalent to the classical tests of H0 : η = η̄ when q = 1 and

msr(η0) 6= 0, the Student t with finite degrees of freedom constituting an important example.

More generally, the asymptotic distribution of the DWH test under a sequences of local

alternatives for which η0T = η̄ + η̃/
√
T will be a non-central chi-square with rank[Iθη(φ0)]

degrees of freedom and non-centrality parameter

η̃′I ′θη(φ0)I−1θθ (φ0)[I−1θθ (φ0)Iθη(φ0)Iηη(φ0)Iθη(φ0)I−1θθ (φ0)]
−I−1θθ (φ0)Iθη(φ0)η̃, (9)

while the asymptotic distribution of the trinity of classical tests will be a non-central distribution

with q degrees of freedom and non-centrality parameter

η̃′[Iηη(φ0)− I ′θη(φ0)I−1θθ (φ0)Iθη(φ0)]
−1η̃.

Therefore, the DWH test will have power equal to size in those directions in which Iθη(φ0)η̃ = 0

but more power than the classical tests in some others (see Hausman and Taylor (1981), Holly

(1982) and Davidson and MacKinnon (1989) for further discussion). For analogous reasons, it

will be consistent for fixed alternatives Hf : η = η̄ + η̃ with Iθη(φ0)η̃ 6= 0.

3.5 Subsets of parameters

As in section 2.3, we may be interested in focusing on a parameter subset either to avoid

generalised inverses or to increase power. In fact, we show in sections 3.6 and 3.7 that both

motivations apply in our context. The next proposition provides detailed expressions for the dif-

ferent ingredients of the DWH test statistics in Proposition 3 when we compare the unrestricted

ML estimator of a subset of the parameter vector with its Gaussian PML counterpart.

Proposition 8 If the regularity conditions A.1 in Bollerslev and Wooldridge (1992) are satis-
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fied, then under the null of correct specification of the conditional distribution of yt

lim
T→∞

V [
√
T (θ̃1T − θ̂1T )] = Cθ1θ1(φ0)− Pθ1θ1(φ0),

lim
T→∞

V [
√
T s̄θ1|θ2ηT (θ̃T ,η0)] = [Pθ1θ1(φ0)]−1Cθ1θ1(φ0)[Pθ1θ1(φ0)]−1 − [Pθ1θ1(φ0)]−1 and

lim
T→∞

V [
√
T s̄θ1|θ2T (θ̂T ,0)] = [Aθ1θ1(φ0)]−1[Cθ1θ1(φ0)− Pθ1θ1(φ0)][Aθ1θ1(φ0)]−1, where

s̄θ1|θ2ηT (θ,η)= s̄θ1T (θ,η)−
[
Iθ1θ2(φ0)Iθ1η(φ0)

][Iθ2θ2(φ0) Iθ2η(φ0)
I ′θ2η(φ0) Iηη(φ0)

]−1[
s̄θ2T (θ,η)
s̄ηT (θ,η)

]
, (10)

Pθ1θ1(φ0)=

{
Iθ1θ1(φ0)−

[
Iθ1θ2(φ0)Iθ1η(φ0)

][Iθ2θ2(φ0) Iθ2η(φ0)
I ′θ2η(φ0) Iηη(φ0)

]−1[I ′θ1θ2(φ0)
I ′θ1η(φ0)

]}−1
, while

s̄θ1|θ2T (θ,0) = s̄θ1T (θ,0)−Aθ1θ2(φ0)A−1θ2θ2(φ0)̄sθ2T (θ,0), and

Aθ1θ1(φ0) = [Aθ1θ1(φ0)−Aθ1θ2(φ0)A−1θ2θ2(φ0)A
′
θ1θ2(φ0)]

−1.

The analogous result for the comparison between the unrestricted and restricted ML esti-

mator of a subset of the parameter vector is as follows:

Proposition 9 If the regularity conditions in Crowder (1976) are satisfied, then under the null
of correct specification of the conditional distribution of yt

lim
T→∞

V {
√
T [θ̂1T − θ̂1T (η̄)]} = Pθ1θ1(φ0)− Iθ1θ1(φ0),

lim
T→∞

V [
√
T s̄θ1|θ2T (θ̂T , η̄)] = [Iθ1θ1(φ0)]−1Pθ1θ1(φ0)[Iθ1θ1(φ0)]−1 − [Iθ1θ1(φ0)]−1 and

lim
T→∞

V {
√
T s̄′θ1|θ2ηT [θ̂T (η̄), η̄]} = [Pθ1θ1(φ0)]−1 − [Pθ1θ1(φ0)]−1Iθ1θ1(φ0)[Pθ1θ1(φ0)]−1,

where s̄θ1|θ2ηT (θ,η) is defined in (10),

s̄θ1|θ2T (θ, η̄) = s̄θ1T (θ, η̄)− Iθ1θ2(φ0)I−1θ2θ2(φ0)̄sθ2T (θ, η̄), and

Iθ1θ1(φ0) = [Iθ1θ1(φ0)− Iθ1θ2(φ0)I−1θ2θ2(φ0)I
′
θ1θ2(φ0)]

−1.

In practice, we must replace A(φ0), B(φ0) and I(φ0) by consistent estimators to make all the

above tests operational. To guarantee the positive semidefiniteness of their weighting matrices,

we will follow Ruud’s (1984) suggestion and estimate all those matrices as sample averages of

the corresponding conditional expressions in Propositions C1 and C2 in Supplemental Appendix

C evaluated at a common estimator of φ, such as the restricted MLE [θ̂T (η̄),η̄], its unrestricted

counterpart φ̂T , or the Gaussian PML θ̃T coupled with the sequential ML or method of moments

estimators of η in Amengual, Fiorentini and Sentana (2013), the latter being such that B(θ,η)

remains bounded.9 In addition, in computing the three versions of the tests we exploit the

theoretical relationships between the relevant asymptotic covariance matrices in Propositions 8

and 9 so that the required generalised inverses are internally coherent.

9Unfortunately, DWH tests that involve the Gaussian PMLE will not work properly with unbounded fourth
moments, which violates one of the assumptions of Proposition C2 in Supplemental Appendix C.
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In what follows, we will simplify the presentation by concentrating on Wald version of DWH

tests in (1), but all our results can be readily applied to their two asymptotically equivalent

score versions in (3) and (4) by virtue of Proposition 1, and the same applies to Proposition 3.

3.6 Choosing the correct number of degrees of freedom

Propositions 6 and 7 establish the asymptotic variances involved in the calculation of simul-

taneous DWH tests, but they do not determine the correct number of degrees of freedom that

researchers should use. In fact, there are cases in which two or more estimators are equally

effi cient for all the parameters, and one instance in which this is true for all five estimators:10

Proposition 10 1. If ε∗t |It−1;φ0 is i.i.d. N(0, IN ), then

It(θ0,0) = V [st(θ0,0)|It−1;θ0,0] =

[
V [sθt(θ0,0)|It−1;θ0,0] 0

0′ Mrr(0)

]
, where

V [sθt(θ0,0)|It−1;θ0,0] = −E [hθθt(θ0,0)|It−1;θ0,0] = At(θ0,0) = Bt(θ0,0).

2. If ε∗t |It−1;φ0 is i.i.d. s(0, IN ,η0) with κ0 = E(ς2t )/[N(N + 2)] − 1 < ∞, and Zl(φ0) =
E[Zlt(θ0)|φ0] 6= 0, where Zlt(θ0) is defined in (C6), then S̈(φ0) = Iθθ(φ0) only if η0 = 0.

The first part of this proposition, which generalises Proposition 2 in Fiorentini, Sentana and

Calzolari (2003), implies that θ̂T suffers no asymptotic effi ciency loss from simultaneously esti-

mating η when η0 = 0. In turn, the second part, which generalises Result 2 in Gonzalez-Rivera

and Drost (1999) and Proposition 6 in Hafner and Rombouts (2007), implies that normality is

the only such instance within the spherical family.

For practical purposes, this result implies that a researcher who assumes multivariate nor-

mality cannot use DWH tests to assess distributional misspecification. But it also indicates that

if she has specified instead a non-Gaussian distribution that nest the multivariate normal, she

should not use those tests either if she suspects the true distribution may be Gaussian because

the asymptotic distribution of the statistics will not be uniform. Unfortunately, one cannot

always detect this problem by looking at η̂T . For example, Fiorentini, Sentana and Calzolari

(2003) prove that under normality, the ML estimator of the reciprocal of degrees of freedom

of a multivariate Student t will be 0 approximately half the time only. In many empirical

applications, though, normality is unlikely to be a practical concern.

There are other distributions for which some but not all of the differences will be 0:

Proposition 11 1. If ε∗t |It−1;φ0 is i.i.d. s(0, IN ,η0) with −2/(N + 2) < κ0 < ∞, and
Ws(φ0) 6= 0, then S̊(φ0) = Iθθ(φ0) only if ςt|It−1;φ0 is i.i.d. Gamma with mean N and
variance N [(N + 2)κ0 + 2].

2. If ε∗t |It−1;φ0 is i.i.d. s(0, IN ,η0) and Ws(φ0) 6= 0, P(φ0) = Iθθ(φ0) only if msr(η0) = 0.

10As we mentioned before, the restricted ML estimator θ̂T (η̄) is effi cient provided that η̄ = η0, which in this
case requires that the researcher must correctly impose normality.
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The first part of this proposition, which generalises the univariate results in Gonzalez-Rivera

(1997), implies that the SSP estimator θ̊T can be fully effi cient only if ε∗t has a conditional

Kotz distribution (see Kotz (1975)). This distribution nests the multivariate normal for κ = 0,

but it can also be either platykurtic (κ < 0) or leptokurtic (κ > 0). Although such a nesting

provides an analytically convenient generalisation of the multivariate normal that gives rise to

some interesting theoretical results,11 the density of a leptokurtic Kotz distribution has a pole

at 0, which is a potential drawback from an empirical point of view.

In turn, the second part provides the necessary and suffi cient condition for the information

matrix to be block diagonal between the mean and variance parameters θ on the one hand and

the shape parameters η on the other. Although the lack of uniformity that we mentioned after

Proposition 10 applies to this proposition too, its practical consequences would only become a

real problem in the unlikely event that a researcher used a parametric spherical distribution for

which mrs 6= 0 in general, but which is such that mrs = 0 in some special case. We are not aware

of any non-Gaussian elliptical distribution with this property, although it might exist.12

There are also other more subtle but far more pervasive situations in which some, but not

all elements of θ can be estimated as effi ciently as if η0 were known (see also Lange, Little

and Taylor (1989)), a fact that would be described in the semiparametric literature as partial

adaptivity. Effectively, this requires that some elements of sθt(φ0) be orthogonal to the relevant

tangent set after partialling out the effects of the remaining elements of sθt(φ0) by regressing the

former on the latter. Partial adaptivity, though, often depends on the model parametrisation.

The following reparametrisation provides a general suffi cient condition in multivariate dynamic

models under sphericity:

Reparametrisation 1 A homeomorphic transformation rs(.) = [r′sc(.), r
′
si(.)]

′ of the mean-
variance parameters θ into an alternative set ϑ = (ϑ′c, ϑ

′
i)
′, where ϑi is a positive scalar, and

rs(θ) is twice continuously differentiable with rank [∂r′s (θ) /∂θ] = p in a neighbourhood of θ0,
such that

µt(θ) = µt(ϑc),
Σt(θ) = ϑiΣ

◦
t (ϑc)

}
∀t. (11)

Expression (11) simply requires that one can construct pseudo-standardised residuals

ε◦t (ϑc) = Σ
◦−1/2
t (ϑc)[yt − µ◦t (ϑc)]

which are i.i.d. s(0, ϑiIN ,η), where ϑi is a global scale parameter, a condition satisfied by most

static and dynamic models.

11For example, we show in the proof of Proposition 10 that Iθθ(φ) = S̈(φ) in univariate models with Kotz
innovations in which the conditional mean is correctly specified to be 0. In turn, Francq and Zakoïan (2010) show
that I−1θθ (φ) = C(φ) in those models under exactly the same assumptions.
12Fiorentini and Sentana (2019) provides a very different reason for the DWH test considered in Proposition

6 to be degenerate. Specifically, Proposition 5 in that paper implies that if one uses a Student t log-likelihood
function for estimating θ but the true distribution is such that κ < 0, then

√
T (θ̃T − θ̂T ) = op(1).
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The next proposition generalises and extends earlier results by Bickel (1982), Linton (1993),

Drost, Klaassen and Werker (1997) and Hodgson and Vorkink (2003):

Proposition 12 1. If ε∗t |It−1;φ is i.i.d. s(0, IN ,η) and (11) holds, then:

(a) the spherically symmetric semiparametric estimator of ϑc is ϑi-adaptive,

(b) If ϑ̊T denotes the iterated spherically symmetric semiparametric estimator of ϑ, then
ϑ̊iT = ϑiT (̊ϑcT ), where

ϑiT (ϑc) = (NT )−1
∑T

t=1 ς
◦
t (ϑc), (12)

ς◦t (ϑc) = [yt − µt(ϑc)]′Σ◦−1t (ϑc)[yt − µt(ϑc)], (13)

(c) rank[S̊(φ0)− C−1(φ0)] ≤ dim(ϑc) = p− 1.

2. If in addition E[ln |Σ◦t (ϑc)||φ0] = k ∀ϑc holds, then:
(a) Iϑϑ(φ0),P(φ0), S̊(φ0), S̈(φ0) and C(φ0) are block-diagonal between ϑc and ϑi.
(b)
√
T (̊ϑiT − ϑ̃iT ) = op(1), where ϑ̃

′
T = (ϑ̃

′
cT , ϑ̃iT ) is the Gaussian PMLE of ϑ, with

ϑ̃iT = ϑiT (ϑ̃cT ).

This proposition provides a saddle point characterisation of the asymptotic effi ciency of the

SSP estimator of ϑ, in the sense that in principle it can estimate p− 1 parameters as effi ciently

as if we fully knew the true conditional distribution of the data, including its shape parameters,

while for the remaining scalar parameter it only achieves the effi ciency of the Gaussian PMLE.

The main implication of Proposition 12 for our proposed tests is that while the maximum

rank of the asymptotic variance of
√
T (ϑ̃T − ϑ̊T ) will be p − 1, the asymptotic variances of

√
T [ϑ̂T − ϑ̂T (η̄)],

√
T (̊ϑT − ϑ̂T ) and indeed

√
T [̊ϑT − ϑ̂T (η̄)] will have rank one at most. In fact,

we can show that once we exploit the rank deficiency of the relevant matrices in the calculation of

generalised inverses, the DWH tests based on
√
T (ϑ̃cT − ϑ̊cT ),

√
T [ϑ̂iT − ϑ̂iT (η̄)],

√
T (̊ϑiT − ϑ̂iT )

and
√
T [̊ϑiT − ϑ̂iT (η̄)] coincide with the analogous tests for the entire vector ϑ, which in turn

are asymptotically equivalent to tests that look at the original parameters θ.

It is also possible to find an analogous result for the SP estimator, but at the cost of restricting

further the set of parameters that can be estimated in a partially adaptive manner:

Reparametrisation 2 A homeomorphic transformation rg(.) = [r′gc(.), r
′
gim(.), r′gic(.)]

′ of the
mean-variance parameters θ into an alternative set ϕ = (ϕ′c,ϕ

′
im,ϕ

′
ic, )
′, where ϕim is N × 1,

ϕic = vech(Φic), Φic is an unrestricted positive definite symmetric matrix of order N and rg(θ)
is twice continuously differentiable in a neighbourhood of θ0 with rank

[
∂r′g (θ0) /∂θ

]
= p, such

that
µt(θ) = µ�t (ϕc) + Σ

�1/2
t (ϕc)ϕim

Σt(θ) = Σ
�1/2
t (ϕc)ΦicΣ

�1/2′
t (ϕc)

}
∀t. (14)

This parametrisations simply requires the pseudo-standardised residuals

ε�t (ϕc) = Σ
�−1/2
t (ϕc)[yt − µ�t (ϕc)] (15)

to be i.i.d. with mean vector ϕim and covariance matrix Φic.

The next proposition generalises and extends Theorems 3.1 in Drost and Klaassen (1997)

and 3.2 in Sun and Stengos (2006):
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Proposition 13 1. If ε∗t |It−1;θ,% is i.i.d. D(0, IN ,%), and (14) holds, then

(a) the semiparametric estimator of ϕc, ϕ̈cT , is ϕi-adaptive, where ϕi = (ϕ′im,ϕ
′
ic)
′.

(b) If ϕ̈T denotes the iterated semiparametric estimator of ϕ, then ϕ̈imT = ϕimT (ϕ̈cT )
and ϕ̈icT = ϕicT (ϕ̈cT ), where

ϕimT (ϕc) = T−1
∑T

t=1 ε
�
t (ϕc), (16)

ϕicT (ϕc) = T−1
∑T

t=1 vech{[ε
�
t (ϕc)−ϕimT (ϕc)][ε

�
t (ϕc)−ϕimT (ϕc)]

′}. (17)

(c) rank[S̈(φ0)− C−1(φ0)] ≤ dim(ϕc) = p−N(N + 3)/2.

2. If in addition E[∂µ�′t (ϕc0)/∂ϕc ·Σ
�−1/2
t (ϕc0)

∣∣∣φ0] = 0 and

E{∂vec[Σ�1/2t (ϕc0)]/∂ϕc · [IN ⊗Σ
�−1/2′
t (ϕc0)]

∣∣∣φ0} = 0, then

(a) Iϕϕ(φ0),P(φ0), S̈(φ0) and C(φ0) are block diagonal between ϕc and ϕi.
(b)
√
T (ϕ̃iT − ϕ̈iT ) = op(1), where ϕ̃′T = (ϕ̃′cT , ϕ̃

′
iT ) is the Gaussian PMLE of ϕ, with

ϕ̃imT = ϕimT (ϕ̃′cT ) and ϕ̃icT = ϕicT (ϕ̃′cT ).

This proposition provides a saddle point characterisation of the asymptotic effi ciency of the

semiparametric estimator of θ, in the sense that in principle it can estimate p − N(N + 3)/2

parameters as effi ciently as if we fully knew the true conditional distribution of the data, while

for the remaining parameters it only achieves the effi ciency of the Gaussian PMLE.

The main implication of Proposition 13 for our purposes is that while the DWH test based

on
√
T (ϕ̃T − ϕ̈T ) will have a maximum of p−N(N + 3)/2 degrees of freedom, those based on

√
T [ϕ̃T − ϕ̃T (η̄)],

√
T (ϕ̈T − ϕ̃T ) and

√
T [ϕ̈T − ϕ̃T (η̄)] will have N(N +3)/2 at most. As before,

we can show that once we exploit the rank deficiency of the relevant matrices in the calculation

of generalised inverses, DWH tests based on
√
T (ϕ̃cT − ϕ̈cT ),

√
T [ϕ̃iT − ϕ̃iT (η̄)],

√
T (ϕ̈iT − ϕ̃iT )

and
√
T [ϕ̈iT − ϕ̃iT (η̄)] are identical to the analogous tests based on the entire vector ϕ̃, which

in turn are asymptotically equivalent to tests that look at the original parameters θ.

3.7 Maximising power

As we discussed in section 2.1, the local power of a pairwise DWH test depends on the

difference in the pseudo-true values of the parameters under misspecification relative to the

difference between the covariance matrices under the null. But Proposition 1 in Fiorentini and

Sentana (2019) states that in the situation discussed in Proposition 12, ϑc will be consistently

estimated when the true distribution of the innovations is spherical but different from the one

assumed for estimation purposes, while ϑi will be inconsistently estimated. Therefore, rather

than losing power by disregarding all the elements of ϑc, we will in fact maximise power if

we base our DWH tests on the overall scale parameter ϑi exclusively. Similarly, Proposition

3 in Fiorentini and Sentana (2019) states that in the context of Proposition 13, ϕc will be

consistently estimated when the true distribution of the innovations is i.i.d. but different from

the one assumed for estimation purposes, while ϕim and ϕic will be inconsistently estimated.
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Consequently, we will maximise power in that case if we base our DWH tests on the mean and

covariance parameters of the pseudo standardised residuals ε�t (ϕc) in (15).

3.8 Extensions to structural models

So far we have considered multivariate dynamic location scale models which directly parame-

trise the conditional first and second moment functions. However, non-Gaussian innovations

have also become increasing popular in dynamic structural models, whose focus differs from

those conditional moments. Two important examples are non-causal univariate Arma models

(see Supplemental Appendix E.2) and structural vector autoregressions (Svars), like the one we

consider in the empirical section. These models introduce some novel inference issues that we

illustrate in this section by studying the following N -variate Svar process of order p:

yt = τ +
∑p

j=1Ajyt−j + Cε∗t , ε∗t |It−1 ∼ i.i.d.(0, IN ), (18)

where C is a matrix of impact multipliers and ε∗t are “structural”shocks. The loading matrix is

sometimes reparametrised as C = JΨ, where Ψ is a diagonal matrix whose elements contain the

scale of the structural shocks, while the columns of J, whose diagonal elements are normalised

to 1, measure the relative impact effects of each of the structural shocks on all the remaining

variables, so that the parameters of interest become j = veco(J − IN ) and ψ = vecd(Ψ).

Similarly, the drift τ is often written as (IN−Φ1−. . .−Φp)µ under the assumption of covariance

stationarity, where µ is the unconditional mean of the observed process. We will revisit these

interesting alternative parametrisations below, but as we discussed in section 2.2, they all give

rise to asymptotically equivalent and possibly numerically identical DWH tests.

Let εt = Cε∗t denote the reduced form innovations, so that εt|It−1 ∼ i.i.d.(0,Σ) with

Σ = CC′. As is well known, a Gaussian (pseudo) log-likelihood is only able to identify Σ, which

means the structural shocks ε∗t and their loadings in C are only identified up to an orthogonal

transformation. Specifically, we can use the so-called LQ matrix decomposition13 to relate the

matrix C to the Cholesky decomposition of Σ = ΣLΣ′L as C = ΣLQ, where Q is an N × N

orthogonal matrix, which we can model as a function of N(N − 1)/2 parameters ω by assuming

that |Q| = 1.14 ,15 While ΣL is identified from the Gaussian log-likelihood, ω is not. In fact,

13The LQ decomposition is intimately related to the QR decomposition. Specifically, Q′Σ′L provides the QR
decomposition of the matrix C′,which is uniquely defined if we restrict the diagonal elements of ΣL to be positive
(see e.g. Golub and van Loan (1993) for further details).
14See section 9 of Magnus, Pijls and Sentana (2020) for a detailed discussion of three ways of explicitly para-

metrising a rotation (or special orthogonal) matrix: (i) as the product of Givens matrices that depend on
N(N − 1)/2 Tait-Bryan angles, one for each of the strict upper diagonal elements; (ii) by using the so-called
Cayley transform of a skew-symmetric matrix; and (c) by exponentiating a skew-symmetric matrix. Our proce-
dures apply regardless of the chosen parametrisation.
15 If |Q| = −1 instead, we can change the sign of the ith structural shock and its impact multipliers in the

ith column of the matrix C without loss of generality as long as we also modify the shape parameters of the
distribution of ε∗it to alter the sign of all its non-zero odd moments.
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the underidentification of ω would persist even if we assumed for estimation purposes that ε∗t

followed an elliptical distribution or a location-scale mixture of normals.

Nevertheless, Lanne, Meitz and Saikkonen (2017) show that statistical identification of both

the structural shocks and C (up to permutations and sign changes) is possible assuming (i)

cross-sectional independence of the N shocks and (ii) a non-Gaussian distribution for at least

N − 1 of them. Still, the reliability of the estimated impulse response functions (IRFs) and

associated forecast error variance decomposition (FEVDs) depends on the validity of the assumed

distributions. For that reason, a distributional misspecification diagnostic such our DWH test,

which does not specify any particular alternative hypothesis, seems particularly appropriate.

For simplicity, in the rest of this section we assume that the N structural shocks are cross-

sectionally independent with symmetric marginal distributions. One particularly important

example will be ε∗it|It−1 ∼ i.i.d. t(0, 1,νi). Univariate t distributions are very popular in finance as

a way of capturing fat tails while nesting the traditional Gaussian assumption. Their popularity

is also on the rise in macroeconomics, as illustrated by Brunnermeier et al (2019).

Let θ = [τ ′, vec′(A1), . . . , vec
′(Ap), vec

′(C)]′ = (τ ′,a′1, . . . ,a
′
p, c
′) = (τ ′,a′, c′) denote the

structural parameters characterising the first two conditional moments of yt. In addition, let

% = (%1, . . . ,%N )′ denote the shape parameters, so that φ = (θ′,%′)′. In the case of the Student

t, each distribution depends on a single shape parameter ηi = ν−1i . As in previous sections,

we consider two alternative ML estimators of the structural parameters in θ: a restricted one

which assumes that the shape parameters are known (RMLE), and an unrestricted one that

simultaneously estimates them (UMLE).

Somewhat surprisingly, it turns out that under correct distributional specification, the UMLE

is effi cient for all the model parameters except the standard deviations of the structural shocks.

More formally, the following proposition derives the asymptotic properties of the differences

between the RMLE and UMLE under the null of correct specification:

Proposition 14 If model (18) with cross-sectionally independent symmetric structural shocks
generates a covariance stationary process, then

√
T [µ̂T−µ̂T (%̄)] = op(1),

√
T [âT−âT (%̄)] =

op(1),
√
T [̂T−̂T (%̄)] = op(1), and limT→∞ V {

√
T [ψ̂T−ψ̂T (%̄)]} = Pψψ(φ0)− Iψψ(φ0).

This result implies that we should base the DWH tests on the comparison of the restricted

and unrestricted ML estimators of the elements of ψ, their squares or logs, thereby avoiding the

need for generalised inverses that would arise if we compared the estimators of the N2 elements

of c (see Proposition B1.3).16 As usual, we can obtain two asymptotically equivalent tests by

16 If the autoregressive polynomial (IN − A1L − . . . − ApL
p) had some unit roots, so that (18) generated a

(co-) integrated process, Proposition 14 would remain valid with µ replaced with τ , but its proof would become
more involved because of the non-standard asymptotic distribution of the estimators of the conditional mean
parameters. In contrast, the distribution of the ML estimators of the conditional variance parameters would
remain standard (cf. Theorem 4.2 in Phillips and Durlauf (1986)).
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using the scores with respect to ψ instead of the parameter estimators (see Proposition 3).

Nevertheless, one should not use any of these tests when one suspects that the innovations are

Gaussian not only for the lack of uniformity mentioned after Proposition 10 in section 3.6, but

also because ψ is asymptotically underidentified.

The results in Holly (1982) imply that this DWH test will be asymptotically equivalent to the

LR test of H0 : η = η̄ if and only if rank(Ic%) = N , which we show in the proof of Proposition

B1. In that case, we can prove that the version of the DWH test based on the effi cient scores

of the unrestricted parameter estimators evaluated at the restricted parameter estimators is

numerically identical to the LM test of this null hypothesis, which is entirely analogous to the

discussion that follows Proposition 7.

It might appear that one cannot compare these non-Gaussian ML estimators to the Gaussian

PML ones because the Gaussian pseudo log-likelihood is flat along an N(N − 1)/2-dimensional

manifold of the structural parameters c. However, appearances are sometimes misleading. Under

correct distributional specification, the non-Gaussian estimators will effi ciently estimate the

reduced form covariance matrix, so it is straightforward to develop DWH specification tests

based on µ (or τ ), a and σ = vech(Σ) or its Cholesky factor σL = vech(ΣL), and their

associated scores, even though we cannot do it for for ω, let alone j or ψ.

Proposition B2 contains the asymptotic covariance matrix of the Gaussian pseudo-ML es-

timators of the reduced form parameters, which are asymptotically ineffi cient relative to the

UMLEs when the innovations are non-Gaussian. In turn, Proposition B1 provides the non-

Gaussian scores and information matrix for τ and a. Finally, Proposition B3 provides the

analogous expressions for σL and ω.17 The only unusual feature is that in computing the as-

ymptotic covariance of the estimators of the N(N + 1)/2 parameters in σL in the non-Gaussian

case, one must take into account the sampling variability in the estimation of the N(N − 1)/2

structural parameters in ω, as well as the drift and autoregressive parameters.

The block diagonality of all the asymptotic covariance matrices immediately implies that we

can additively decompose the DWH test that compares all the reduced form parameters into a

component that compares the conditional mean parameters and another one that compares the

residual covariance matrix Σ or its Cholesky decomposition. However, Fiorentini and Sentana

(2020) show that if the true joint density of the structural shocks ε∗t in (18) is the product of N

univariate densities but they are different from the ones assumed for ML estimation purposes,

then the restricted and unrestricted non-Gaussian (pseudo) ML estimators of model (18) remain

consistent for a and j but not for τ or ψ. Thus, the parameters that are effi ciently estimated

17Given that the mapping from σ to σL in expression (D13) of Appendix D.1 is bijective, we can invert it to
obtain the scores and information matrix for σ and ω from the corresponding expression for σL and ω.
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by the unrestricted ML estimator remain once again consistently estimated under distributional

misspecification. Although we cannot exploit the consistency of j to increase the power of the

DWH test that compares the ML estimators of the reduced form variance parameters with the

Gaussian ones because we cannot separately identify them with a Gaussian pseudo log-likelihood,

it makes sense to increase the power of the DWH test that compares the ML estimators of the

mean parameters with the Gaussian ones by saving degrees of freedom and focusing on either

the drifts in τ or the unconditional means in µ even though they do not directly affect the IRFs

and FEVDs. Using the results on invariance to reparametrisation in Proposition 2, the DWH

test of all the mean parameters is asymptotically equivalent whether we parametrise the model

in term of (τ ,a) or (µ,a), and in fact, some of the score versions will be numerically identical.

In contrast, the DWH tests that only focus on either τ or µ will be different.18

4 Monte Carlo evidence

In this section, we assess the finite sample size and power of our proposed DWH tests in

the univariate and multivariate examples that we have been considering by means of extensive

Monte Carlo simulation exercises. In all cases, we evaluate the three asymptotically equivalent

versions of the tests in (1), (3) and (4) using the ingredients in Propositions 8 and 9. To simplify

the presentation, we denote the Wald-style test that compares parameter estimators by DWH1,

the test based on the score of the more effi cient estimator evaluated at the less effi cient one by

DWH2 and, finally, the second score-based version of the test by DWH3.

Univariate GARCH-M Let rMt denote the excess returns on a broad-based portfolio. Drost

and Klaassen (1997) proposed the following model for such a series:

rMt = µt(θ) + σt(θ)ε∗t , µt(θ) = τσt(θ), σ2t (θ) = ω + αr2Mt−1 + βσ2t−1(θ). (19)

The conditional mean and variance parameters are θ′ = (τ , ω, α, β). As explained in Fiorentini

and Sentana (2019), this model can also be written in terms of ϑc = (β, γ, δ)′ and ϑi, where

γ = α/ω, δ = τω1/2 and ϑi = ω (reparametrisation 1) or ϕc = (β, γ)′, ϕim and ϕic, where

γ = α/ω, ϕim = τω1/2 and ϕic = ω (reparametrisation 2).

18The intuition is as follows. In the case of the unconditional mean parametrisation, the block diagonality of
the information matrix not only arises between the conditional mean parameters and the rest, but also between
µ and a, with the same being true for the Gaussian PMLE covariance matrix. As a result, the DWH test of the
conditional mean parameters can be additively separated between the DWH test of µ, which has all the power,
and the DWH test of a, whose asymptotic power is equal to its size. In contrast, neither the information matrix
nor the Gaussian sandwich matrix are block diagonal between τ and a when we rely on the parametrisation
in terms of the drifts, which means that the DWH test based on the drifts is not asymptotically independent
from the DWH test based the dynamic regression coeffi cients a. But since both the DWH test of all the mean
parameters and the DWH test for a are the same in both reparametrisations, the DWH test based on τ must be
different from the DWH test for µ. The ordering of the local power of these two tests is unclear.
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Random draws of ε∗t are obtained from four different distributions: two standardised Student

t with ν = 12 and ν = 8 degrees of freedom, a standardised symmetric fourth-order Gram-

Charlier expansion with an excess kurtosis of 3.2, and another standardised Gram-Charlier

expansion with skewness and excess kurtosis coeffi cients equal to -0.9 and 3.2, respectively. For

a given distribution, random draws are obtained with the NAG library G05DDF and G05FFF

functions, as detailed in Amengual, Fiorentini and Sentana (2013). In all four cases, we generate

20,000 samples of length 2,000 (plus another 100 for initialisation) with β = 0.85, α = 0.1,

τ = 0.05 and ω = 1, which means that δ = ϕim = 0.05, γ = 0.1 and ϑi = ϕic = 1. These

parameter values ensure the strict stationarity of the observed process. Under the null, the

large number of Monte Carlo replications implies that the 95% percent confidence bands for

the empirical rejection percentages at the conventional 1%, 5% and 10% significance levels are

(0.86, 1.14), (4.70, 5.30) and (9.58, 10.42), respectively.

We estimate the model parameters three times: first by Gaussian PML and then by max-

imising the log-likelihood function of the Student t distribution with and without fixing the

degrees of freedom parameter to 12. We initialise the conditional variance processes by setting

σ21 to ω(1 + γr2M )/(1−β), where r2M = 1
T

∑T
1 r

2
Mt provides an estimate of the second moment of

rMt. The Gaussian, unrestricted Student t and restricted Student t log-likelihood functions are

maximised with a quasi-Newton algorithm implemented by means of the NAG library E04LBF

routine with the analytical expressions for the score vector and conditional information matrix

in Fiorentini, Sentana and Calzolari (2003).

Table 1 contains the empirical rejections rates of the three pairwise tests in Propositions

8 and 9, together with the corresponding three-way tests. When comparing the restricted and

unrestricted ML estimators, we also compute the LR test of the null hypothesisH0 : η = η̄. As we

mentioned in section 3.4, the asymptotically equivalent LM test of this hypothesis is numerically

identical to the corresponding DWH3 test because dim(η) = 1. Hence, we obtain exactly the

same statistic whether we compare the entire parameter vector θ or the scale parameter ϑi only.

When the true distribution of the standardised innovations is a Student t with 12 degrees of

freedom, the empirical rejections rates of all tests should be equal to their nominal sizes. This

is in fact what we found except for the DWH1 and DWH2 tests that compare the restricted

and unrestricted ML estimators and scores, which are rather liberal and reject the null roughly

10% more often than expected. A closer inspection of those cases revealed that even though

the small sample variance of both estimators is well approximated by the variance of their

asymptotic distributions, the Monte Carlo distribution of their difference is highly leptokurtic,

so the resulting critical values are larger than those expected under normality. In contrast, the
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DWH3 test, which in this case is invariant to reparametrisation,19 seems to work very well.

When the true distribution is a standardised Student t with ν = 8, only the tests involving

the restricted ML estimators that fix the number of degrees of freedom to 12 should show some

power. And indeed, this is what the second panel of Table 1 shows, with DWH3 having the best

raw (i.e. non-size adjusted) power, and the LR ranking second. In turn, the three-way tests

suffer a slight loss power relative to the pairwise tests that compare the two ML estimators.

Finally, the empirical rejection rates of the tests that compare the unrestricted ML and PML

estimators are close to their significance levels.

For the symmetric and asymmetric standardised Gram-Charlier expansions, most tests show

power close or equal to one. The only exceptions are the DWH1 and DWH2 versions of the tests

comparing the unrestricted ML and PML estimators. Overall, the DWH3 version our proposed

tests seems to outperform the two other versions.

In addition, we find almost no correlation between the DWH tests that compare the re-

stricted and unrestricted ML estimators and the one that compare the Gaussian PMLE with

the unrestricted MLE, as expected from Propositions 4 and 5. This confirms that the distrib-

ution of the simultaneous test can be well approximated by the distribution of the sum of the

two pairwise DWH tests.

Multivariate market model Let rt denote the excess returns on a vector of N assets traded

on the same market as rMT . A very popular model is the so-called market model

rt = a + brMt + Ω1/2ε∗t . (20)

The conditional mean and variance parameters are θ′ = (a′,b′,ω′), where ω = vech(Ω) and

Ω = Ω1/2Ω
′1/2. In this case, Fiorentini and Sentana (2019) show that can write it in terms

of ϑ′c = (a′,b′,$′) and ϑi, with ϑi = |Ω|1/N and Ω◦($) = Ω/|Ω|1/N (reparametrisation 1) or

ϕc = b, ϕim = a and ϕic = vech(Φic) = vech(Ω) (reparametrisation 2).

We consider four standardised multivariate distributions for ε∗t , including two multivariate

Student t with ν = 12 and ν = 8 degrees of freedom, a discrete scale mixture of two normals

(DSMN) with mixing probability 0.2 and variance ratio 10, and an asymmetric, location-scale

mixture (DLSMN) with the same parameters but a difference in the mean vectors of the two

components δ = .5`N , where `N is a vector of N ones (see Amengual and Sentana (2010)

and Appendix E.1, respectively, for further details). For each distribution, we generate 20,000

samples of dimension N = 3 and length T = 500 with a = .112`3, b = `3 and Ω = D1/2RD1/2,

with D = 3.136 I3 and the off diagonal terms of the correlation matrix R equal to 0.3. Finally,
19Proposition 2 implies that the score tests will be numerically invariant to reparametrisations if the Jacobian

used to recompute the conditional expected values of the Hessian matrices At and It and the conditional covariance
matrix of the scores Bt are evaluated at the same parameter estimators as the Jacobian involved in recomputing
the scores with respect to the transformed parameters by means of the chain rule.
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in each replication we generate the strongly exogenous regressor rMt as an i.i.d. normal with an

annual mean return of 7% and standard deviation of 16%.

Table 2 show the results of the size and power assessment of our proposed DWH tests. As

in the previous example, the DWH3 version of the test appears to be the best one here too,

although not uniformly so. When we compare restricted and unrestricted MLE, all versions

of the DWH test perform very well both in terms of size and power despite the fact that the

number of parameters involved is much higher now (three intercepts, three variances and three

covariances). On the other hand, the tests that compare PMLE and unrestricted MLE show

some small sample size distortions, which nevertheless disappear in simulations with larger

sample lengths not reported here.

When the distribution is asymmetric, the DWH2 versions of the test that focus on the scale

parameter are powerful but not extremely so, the rationale being that they are designed to

detect departures from the Student t distribution within the spherical family. In contrast, when

we simultaneously compare a and vech(Ω), power becomes virtually 1 at all significance levels.

Once again, we find little correlation between the statistics that compare the restricted and

unrestricted ML estimators and the ones that compare the Gaussian PMLE with the unrestricted

MLE, as expected from Propositions 4 and 5. This confirms that we can safely approximate the

distribution of the simultaneous test by the distribution of the sum of the two pairwise tests.

Structural VAR Finally, we focus on the model in section 3.8 by simulating samples from

the following bivariate Svar(1) process:(
y1t
y2t

)
=

(
1.2
0.5

)
+

(
0.7 0.5
−0.2 0.8

)
yt−1 +

(
1 0.313

0.583 1

)(
1.2 0
0 1.6

)(
ε∗1t
ε∗2t

)
.

In the size experiment, ε∗1t and ε
∗
2t are two independent standardised Student ts with η1 =

0.15 and η2 = 0.10 respectively, but in the power experiment ε∗1t is drawn from a symmetric

DSMN with mixing probability 0.52 and variance ratio 0.06 while ε∗2t follows an asymmetric

DLSMN with mixing probability 0.3, variance ratio 0.2 and δ = 0.5. The sample length is

T = 2, 000.

We consider three estimators, the Gaussian PMLE, the UMLE that assumes two independent

Student t for the structural shocks, and the RMLE that fixes the shape parameters at their true

values in the size experiment and at ν1 = 8 and ν2 = 24 in the power experiment.

Since the main purpose of Svars is policy analysis, it is of interest to compare the Monte

Carlos means of the estimated IRFs and FEVDs to their true values. Under correct specifica-

tion, all curves are virtually indistinguishable, confirming that the identification and estimation

strategy in Lanne et al (2017) works remarkably well. As Figure 1 shows, though, under incor-

rect specification, the IRFs and FEVDs of the first variable are markedly biased even though the
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pattern of the IRFs is correct because (I−AL)−1J is consistently estimated, as we explained at

the end of section 3.8. Remarkably, the RMLE curves show very little bias, but this is a fluke

that disappears by fixing the values of η1 and η2 to the pseudo-true values of the UMLEs.

Table 3 displays the finite sample size and power of our tests. Given the larger sample size,

we observe lower finite sample size distortions than in the multivariate market model.20 The

three versions of the test show a similar behaviour, with no version uniformly superior to the

others. When the distribution is not Student, power is remarkable and reaches 1 for all tests

except the one that compares the PML and UML estimators of the drifts τ . Even then, the

percentage of rejections of the DWH2 statistic is above 92% at the 1% nominal level. The fact

that in this design only one of the shocks is asymmetric, while the tests based on τ only have

power under asymmetric shocks, might explain why we do not observe a 100% rejection rate.

5 Empirical illustrations

In Fiorentini and Sentana (2019), we illustrated the empirical relevance of our proposed

consistent estimators by fitting the univariate Garch-M model (19) to the daily returns of 200

large cap stocks from the main eurozone markets between 2014 and 2018. When we compared

Gaussian and unrestricted Student t MLEs by means of the score versions of our tests, we

rejected the null at the 5% significance level for 36.5% of the series if we focused on symmetric

alternatives (ϑi) and for 41% when we allowed for asymmetric ones (ϕim, ϕis). In addition, the

DWH test that checks the adequacy of the Student t distribution with 4 degrees of freedom

rejected the null at the 5% significance level for 39.5% of series, while the joint test obtained by

adding the previous statistics up rejected the null for more than half of the series under analysis.

In this section, we apply our procedures to the trivariate Svar in Angelini el al (2019), who

revisited the empirical analysis in Ludvigson, Ma and Ng (2015) and Carriero, Clark and Mar-

cellino (2018). Figure 2 displays the data, which we downloaded from the JAE data archive at

http://qed.econ.queensu.ca/jae/2019-v34.3/angelini-et-al/. It consists of monthly observations

from August 1960 to April 2015 on a macro uncertainty index taken from Jurado, Ludvigson,

and Ng (2015), the rate of growth of the industrial production index, and a financial uncertainty

index constructed by Ludvigson, Ma and Ng (2018). As all these authors convincingly argue,

a joint model of financial and macroeconomic uncertainty is crucial to understand the relation-

ship between uncertainty and the business cycle. We adopt the original Var(4) specification in

Angelini el al (2019), which implies that T = 653 after initialization of the log-likelihood with

20As expected from Proposition 10, though, size distortions become a serious problem in a separate Monte
Carlo exercise in which ε∗1t and ε

∗
2t are two independent standardised Student t with with 66.6̇ and 100 degrees of

freedom, respectively, which are rather diffi cult to distinguish from Gaussian random variables in finite samples.
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4 pre-sample observations. Our main point of departure is that we assume that the structural

innovations follow three independent standardised Student t distributions with νi degrees of

freedom, which allows us to identify the entire matrix of impact multipliers C = JΨ. Thus,

the unrestricted ML procedure estimates 2N + (p+ 1)N2 = 51 parameters, while the restricted

MLE fixes ν1 = ν2 = ν3 = 8 (We tried different values of ranging from 6 to 10 but results were

very similar). Finally, the Gaussian PMLE estimates N(N − 1)/2 = 3 parameters less because

it can only identify CC′ = JΨ2J′ = Σ.

Our PML estimators of the autoregressive matrices coincide with those in Angelini et al

(2019). Further, the restricted and unrestricted MLEs of those parameters are also very similar

because the three estimators are consistent under weak conditions, as we explained in section

3.8. The estimates of the drift, the (scaled) impact multiplier matrix J, the standard deviations

of the structural shocks in Ψ and the unconditional variance of the one period ahead forecast

errors Σ are reported in Table 4. As can be seen, the three estimators of the drift parameters

are quite similar for the first two series, while for the last one the sign of the UML and RML

estimators is reversed with respect to the PML one. A look at the estimators of Σ reveals both

an unbalanced scaling of the data, and a low predictability in the rate of growth of the industrial

production index. The restricted and unrestricted MLEs of J are rather similar. In fact, the

consistency of the non-Gaussian ML estimators of the matrix J is indirectly confirmed by the

extremely high (=.995) time series correlation between the (non-standardised) estimates of each

structural shock obtained as J−1εt(θ) evaluated at the RMLE and UMLE. In contrast, there

is a striking difference in the standard deviation of the third structural shock, which strongly

points to distributional misspecification. However, this conjecture needs to be confirmed by our

formal DWH test statistics, which account for the sampling variability of the estimators.

The three versions of our DWH tests produce qualitatively similar results. For that reason,

in Table 5 we only report the results of the versions that evaluate the score of the more effi -

cient estimators at the less effi cient ones (e.g. the unrestricted Student t scores at the Gaussian

PMLE). According the Monte Carlo results in the previous section, these are the most conser-

vative ones. As expected, we conclude that the null of correct specification of the structural

innovation distributions is clearly rejected. The test statistics that compares the unrestricted

ML estimator of the variance of the Wold innovations ĴΨ̂
2
Ĵ′ with its PML counterpart Σ̄ has a

tiny p-value. Similarly, if we compare the same estimators of the drift parameters, the p-value

of our DWH statistic is .001. Given the additivity of these two test statistics mentioned at the

end of section in section 3.8, the p-value of the joint test is virtually zero. As for the comparison

between the restricted and unrestricted MLEs of the diagonal elements of Ψ, which contain the

27



standard deviations of the structural shocks, the DWH tests massively reject once again. This

rejection is confirmed by the asymptotically equivalent LR test of H0 : ν1 = ν2 = ν3 = 8.

To gauge the extent to which are results might be driven by events in the first part of our

sample, we also consider a subsample that uses the second half of the available observations.

Specifically, it begins in 1988:05, thereby avoiding the October 87 market crash. As can be seen

from Table 6, the model is still rejected but not overwhelmingly so.

In summary, the assumption of independent, non-Gaussian structural shocks is very attrac-

tive because it allows the identification of all the model parameters without any additional

restrictions, but it entails distributional misspecification risks. Our empirical results confirm

that those risks cannot be ignored.

6 Conclusions and directions for further research

We propose an extension of the Durbin-Wu-Hausman specification tests which simultane-

ously compares three or more likelihood-based estimators of the parameters of general multi-

variate dynamic models with non-zero conditional means and possibly time-varying variances

and covariances. Although we focus most of our discussion on the comparison of the three esti-

mators offered by the dominant commercial econometric packages, namely, the Gaussian PML

estimator, as well as ML estimators based on a non-Gaussian distribution, which either jointly

estimate the additional shape parameters or fix them to some plausible values, we also consider

two semiparametric estimators, one of which imposes the assumption that the standardised

innovations follow a spherical distribution.

We also explore several important issues related to the practical implementation of our pro-

posed tests, including the different versions, their numerical invariance to reparametrisations and

their application to subsets of parameters. By explicitly considering a multivariate framework

with non-zero conditional means we are able to cover many empirically relevant applications.

Our results also apply to dynamic structural models, whose focus differs from the conditional

mean and variance, and raise some interesting inference issues that we also study in detail.

Extensions to stochastic volatility models in which the log-likelihood cannot be obtained in

closed-form are conceptually possible as long as the ML estimators and their asymptotic vari-

ances are available, but we leave the interesting computational considerations that they raise

for further research.

To select the right number of degrees of freedom, we need to figure out the rank of the

difference between the estimators’asymptotic covariance matrices. In this respect, we discuss

several situations in which some of the estimators are equally effi cient for some of the parameters
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and prove that the semiparametric estimators share a saddle point effi ciency property: they are

as ineffi cient as the Gaussian PMLE for the parameters that they cannot estimate adaptively.

A comparison of our results with those in Fiorentini and Sentana (2019) imply that the

parameters that are effi ciently estimated by the semiparametric procedures continue to be con-

sistently estimated by the parametric estimators under distributional misspecification. In con-

trast, the remaining parameters, which the semiparametric procedures can only estimate with

the effi ciency of the Gaussian PML estimator, will be inconsistently estimated by distribution-

ally misspecified parametric procedures. For that reason, we focus our tests on the comparison

of the estimators of this second group of parameters, for which the usual effi ciency - consistency

trade off is of first-order importance.

Our Monte Carlo experiments indicate that many of our proposed tests work quite well, but

some versions show noticeable size distortions in small samples. Since we have a fully specified

model under the null, parametric bootstrap versions might be worth exploring. An interesting

extension of our Monte Carlo analysis would look at the power of our tests in models with

time-varying shape parameters or misspecified first and second moment dynamics.

Given the increased popularity of Independent Component Analysis in econometric appli-

cations, as illustrated by the Svars in section 3.8, specification tests that directly target the

maintained assumptions of non-normality and independence of the structural shocks provide a

particularly appropriate complement to our proposed tests (see Amengual, Fiorentini and Sen-

tana (2020)). We could also extend our theoretical results to a broad class of models for which a

pseudo log-likelihood function belonging to the linear exponential family leads to consistent esti-

mators of the conditional mean parameters (see Gouriéroux, Monfort and Trognon (1984a)). For

example, we could use a DWH test to assess the correct distributional specification of Lanne’s

(2006) multiplicative error model for realised volatility by comparing his ML estimator based

on a two-component Gamma mixture with the Gamma-based consistent pseudo ML estimators

in Engle and Gallo (2006). Similarly, we could also use the same approach to test the correct

specification of the count model for patents in Hausman, Hall and Griliches (1984) by comparing

their ML estimator, which assumes a Poisson model with unobserved gamma heterogeneity, with

the consistent pseudo ML estimators in Gouriéroux. Monfort and Trognon (1984b)). All these

extensions constitute interesting avenues for further research.
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Appendix

A Proofs
A.1 Proposition 1

Assuming that θ0 belongs to the interior of its admissible parameter space, the estimators

of θ will be characterised with probability tending to 1 by the first order conditions

∂m̄′T (θ̂T )

∂θ
S̃mT m̄T (θ̂T ) = 0, (A1)

∂n̄′T (θ̃T )

∂θ
S̃nT n̄T (θ̃T ) = 0. (A2)

By analogy, θm and θn will be the pseudo-true values of θ implicitly defined by the exactly

identified moment conditions

J ′m(θm)SmE[mt(θm)] = 0,

J ′n(θn)SnE[nt(θn)] = 0.

Under the null hypothesis that both sets of moments are correctly specified, θm = θn = θ0.

The Wald version of the DWH test in (1) is based on the difference between θ̃T and θ̂T .

Under standard regularity conditions (see e.g. Newey and McFadden (1994)), first-order Taylor

expansions of (A1) and (A2) around θ0 imply that

√
T (θ̂T − θ0) = −

[
J ′m(θ0)SmJm(θ0)

]−1 J ′m(θ0)Sm
√
Tm̄T (θ0) + op(1),

√
T (θ̃T − θ0) = −

[
J ′n(θ0)Sn(θ0)Jn(θ0)

]−1 J ′n(θ0)Sn
√
T n̄T (θ0) + op(1). (A3)

Therefore,

√
T (θ̃T − θ̂T ) =

{
[J ′m(θ0)SmJm(θ0)]

−1 J ′m(θ0)Sm − [J ′n(θ0)SnJn(θ0)]
−1 J ′n(θ0)Sn

}
×
[ √

Tm̄T (θ0)√
T n̄T (θ0)

]
+ op(1). (A4)

On the other hand, the first score version of the DWH test is as a test of the moment

restrictions

J ′m(θn)SmE[mt(θn)] = 0. (A5)

If we knew θn, it would be straightforward to test whether (A5) holds. But since we do not

know it, we replace it by its consistent estimator θ̃T , which satisfies (A2). To account for the

sampling variability that this introduces under the null, we can use again a first-order Taylor

expansion of the sample version of (A5) evaluated at θ̃T around θ0. Given the assumed root-T
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consistency of θ̃T for θ0, we can use (A3) to write this expansion as

J ′m(θ̃T )Sm
√
Tm̄T (θ̃T ) = J ′m(θ0)Sm

√
Tm̄T (θ0) + J ′m(θ0)SmJm(θ0)Sm

√
T (θ̃T − θ0) + op(1)

=J ′m(θ0)Sm
√
Tm̄T (θ0)

−[J ′m(θ0)SmJm(θ0)]
[
Jn(θ0)Sn(θ0)J ′n(θ0)

]−1J ′n(θ0)Sn
√
T n̄T (θ0)+op(1). (A6)

But a comparison between (A6) and (A4) makes clear that

√
T (θ̃T − θ̂T ) =

[
J ′m(θ0)SmJm(θ0)

]−1
[J ′m(θ0)Sm

√
Tm̄T (θ̃T )] + op(1), (A7)

which confirms that the Wald and score versions of the test are asymptotically equivalent because

rank[J ′n(θ0)SnJn(θ0)] = dim(θ) in first-order identified models. Given that m̄T (θ) and n̄T (θ)

are exchangeable, the second equivalence condition trivially holds too. �

A.2 Proposition 2

The Wald-type version of the Hausman test for the original parameters in (1) is infeasible

when ∆ is unknown, in which case it must be computed as

T (θ̃T − θ̂T )′∆∼T (θ̃T − θ̂T ), (A8)

where ∆∼T denotes a consistent estimator of a generalised inverse of ∆, i.e. the asymptotic

covariance matrix of
√
T (θ̃T−θ̂T ), which does not necessarily coincide with a generalised inverse

of a consistent estimator of ∆ because of the potential discontinuities of generalised inverses.

Given the assumed regularity of the reparametrisation, we can apply the delta method to show

that the asymptotic covariance matrix of
√
T (π̃T − π̂T ) will be

∂θ′(π0)

∂π
∆
∂θ(π0)

∂π′
,

which in turn implies that we can use[
∂θ(π̇T )

∂π′

]−1
∆∼T

[
∂θ′(π̇T )

∂π

]−1
as a consistent estimator of its generalised inverse provided that π̇T is a consistent estimator of

π0. Therefore, the Wald-type version of the Hausman test for the original parameters will be

T (π̃T − π̂T )′
[
∂θ(π̇T )

∂π′

]−1
∆∼T

[
∂θ′(π̇T )

∂π

]−1
(π̃T − π̂T ). (A9)

Lemma 1 in Supplemental Appendix B states the numerical invariance of GMM estimators and

criterion functions to reparametrisations when the weighting matrix remains the same, so that

π̃T − π̂T = r(θ̃T )− r(θ̂T ).
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In general, though, one would expect (A8) and (A9) to differ. However, when the mapping from

θ to π is affi ne, the Jacobian of the inverse transformation is the constant matrix A−1, yielding

T (π̃T − π̂T )′A′−1∆∼TA−1(π̃T − π̂T ) = T (θ̃T − θ̂T )′∆∼T (θ̃T − θ̂T ),

as required.

Let us now look at one of the score versions of the DWH test in terms of the original para-

meters, the other one being entirely analogous. We saw in the proof of the previous proposition

that the first-order condition for θ̂T is (A1). Therefore, we can compute the alternative DWH

test in practice as

Tm̄′T (θ̃T )S̃mT
∂m̄T (θ̃T )

∂θ′
Λ∼mT

∂m̄′T (θ̃T )

∂θ
S̃mT m̄T (θ̃T ). (A10)

Lemma 1 also implies that m̄T (π) = m̄T [θ(π)] and θ̃T = θ(π̃T ) when the weighting matrix

used to compute θ̃T and π̃T is common. Given the assumed regularity of the reparametrisation,

we can easily show that the asymptotic covariance matrix of J ′m(π0)Sm
√
T m̄T (π̃T ) will be

Λm =
∂θ′(π0)

∂π
Λm

∂θ(π0)

∂π′
.

As a consequence, it seems natural to use[
∂θ(π̇T )

∂π′

]−1
Λ∼mT

[
∂θ′(π̇T )

∂π

]−1
(A11)

as a consistent estimator of a generalised inverse ofΛm, provided that π̇T is a consistent estimator

of π0. Therefore, we can compute the analogous test in terms of π as

T m̄′T (π̃T )S̃mT
∂m̄T (π̃T )

∂π′

[
∂θ(π̇T )

∂π′

]−1
Λ∼mT

[
∂θ′(π̇T )

∂π

]−1
∂m̄′T (π̃T )

∂π
S̃mT m̄T (π̃T ). (A12)

Combining the chain rule for derivatives with the results in Lemma 1, we can prove that

∂m̄′T (π̃T )

∂π
S̃mT m̄T (π̃T ) =

∂θ′(π̃T )

∂π

∂m̄′T (θ̃T )

∂θ
S̃mT m̄T (θ̃T ),

which in turn implies that

m̄′T (π̃T )S̃mT
∂m̄T (π̃T )

∂π′

[
∂θ(π̇T )

∂π′

]−1
Λ∼mT

[
∂θ′(π̇T )

∂π

]−1
∂m̄′T (π̃T )

∂π
S̃mT m̄T (π̃T )

= m̄′T (θ̃T )S̃mT
∂m̄T (θ̃T )

∂θ′
∂θ(π̃T )

∂π′

[
∂θ(π̇T )

∂π′

]−1
Λ∼mT

[
∂θ′(π̇T )

∂π

]−1
∂θ′(π̃T )

∂π

∂m̄′T (θ̃T )

∂θ
S̃mT m̄T (θ̃T ).

Therefore, (A10) and (A12) will be numerically identical if

∂θ(π̃T )

∂π′

[
∂θ(π̇T )

∂π′

]−1
= Ip.

Suffi cient conditions for this to happen are that the mapping is affi ne, or that we use π̇T = π̃T

in computing (A11). �
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A.3 Proposition 3

Again, we focus on the first result, as the second one is entirely analogous. Let us start from

the asymptotic equivalence relationship (A7). Given that

J ′m(θ0)SmJm(θ0) =

[
J ′1m(θ)SmJ1m(θ) J ′1m(θ)SmJ2m(θ)
J ′2m(θ)SmJ1m(θ) J ′2m(θ)SmJ2m(θ)

]
and

J ′m(θ0)Sm
√
Tm̄T (θ̃T ) =

[
J ′1m(θ)Sm

√
Tm̄T (θ̃T )

J ′2m(θ)Sm
√
Tm̄T (θ̃T )

]
,

the application of the partitioned inverse formula yields

√
T (θ̃1T − θ̂1T ) =

[
J ′m(θ0)SmJm(θ0)

]11
m̄⊥1T (θ̃T ,Sm), where[

J ′m(θ0)SmJm(θ0)
]11

=

[
J ′1m(θ)SmJ1m(θ)

−J ′1m(θ)SmJ2m(θ)[J ′2m(θ)SmJ2m(θ)]−1J ′2m(θ)SmJ1m(θ)

]−1
.

Given that [J ′m(θ0)SmJm(θ0)]
11 will have rank p1 because [J ′m(θ0)SmJm(θ0)] has rank p,

the Wald version of the DWH test that focuses on θ1 only is equivalent to a score version that

looks at m̄⊥1T (θ̃T ,Sn). �

A.4 Proposition 4

Given that



θ̂
2
T − θ̂

1
T

θ̂
3
T − θ̂

2
T

...

θ̂
J−1
T − θ̂J−2T

θ̂
J
T − θ̂

J−1
T


=


−I I 0 . . . 0 0 0

0 −I I . . . 0 0 0
...

...
. . . . . .

...
...
...

0 0 0 . . . −I I 0
0 0 0 . . . 0 −I I





θ̂
1
T

θ̂
2
T

θ̂
3
T
...

θ̂
J−2
T

θ̂
J−1
T

θ̂
J
T


, (A13)

it follows immediately from (5) that

lim
T→∞

V





θ̂
2
T − θ̂

1
T

θ̂
3
T − θ̂

2
T

...

θ̂
J−1
T − θ̂J−2T

θ̂
J
T − θ̂

J−1
T




=


Ω2−Ω1 0 . . . 0 0

0 Ω3−Ω2 . . . 0 0
...

...
. . .

...
...

0 0 . . . ΩJ−1−ΩJ−2 0
0 0 . . . 0 ΩJ−ΩJ−1

 , (A14)

which in turn implies the asymptotic independence of non-overlapping DWH test statistics of

the form (1). But since (A13) holds for any T , all J(J − 1)/2 possible differences between any

two of the J estimators will be linear combinations of the J − 1 adjacent differences in (A14).�

A.5 Proposition 5

Given that Propositions C1-C3 in Supplemental Appendix C and Proposition D3 in Sup-

plemental Appendix D derive all the information bounds, we simply need to compute the off-
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diagonal elements. Let us start with the first row. Straightforward manipulations imply that

E[sθt(φ)s′θ|ηt(φ)|φ] = E{sθt(φ)[s′θt(φ)− s′ηt(φ)I−1ηη (φ)I ′θη(φ)]|φ}

= Iθθ(φ)− Iθη(φ)I−1ηη (φ)I ′θη(φ) = P(φ).

Intuitively, P(φ0) is the covariance matrix of the residuals in the multivariate theoretical regres-

sion of sθt(φ0) on sηt(φ0), which trivially coincides with the covariance matrix between those

residuals and sθt(φ0). Next,

E[sθt(φ)̊s′θt(φ)|φ] = E[Zdt(θ)edt(φ){e′dt(φ)Z′dt(θ)− [̊e′dt(φ)− e̊′dt(θ,0)K̊+ (κ) K̊ (0)]Z′d(φ)}|φ]

= E
[
Zdt(θ)edt(φ)e′dt(φ)Zdt(θ)|φ

]
− E{Zdt(θ)edt(φ)[̊e′dt(φ)− e̊′dt(θ,0)K̊+ (κ) K̊ (0)]Z′d(φ)|φ}

= Iθθ(φ0)−Ws(φ0)W
′
s(φ0) ·

{[
N + 2

N
mss(η0)− 1

]
− 4

N [(N + 2)κ0 + 2]

}
= S̊(φ0)

by virtue of the law of iterated expectations, together with expressions (C33), (C34) and (C35)

in Supplemental Appendix C. Intuitively, S̊(φ0) is the variance of the error in the least squares

projection of sθt(φ0) onto the Hilbert space spanned by all the time-invariant functions of ςt(θ0)

with bounded second moments that have zero conditional means and are conditionally orthogonal

to edt(θ0,0), which trivially coincides with the covariance matrix between those residuals and

sθt(φ0). Given that this Hilbert space includes the linear span of sηt(φ0), it follows immediately

that S̊(φ0) is smaller than P(φ0) in the positive semidefinite sense.

We also know from the proof of proposition D3 in Supplemental Appendix D that

E[sθt(φ)̈s′θt(φ)|φ] = E[Zdt(θ)edt(φ)
{
e′dt(φ)Z′dt(θ)−

[
e′dt(φ)− e′dt(θ, 0)K+ (%)K (0)

]
Z′d(φ)

}
|φ]

= E
[
Zdt(θ)edt(θ,%)e′dt(θ,%)Zdt(θ)|φ

]
−E

{
Zdt(θ)edt(φ)

[
e′dt(φ)− e′dt(θ,0)K+ (%)K (0)

]
Z′d(φ)|φ

}
= Iθθ(φ)− Zd(φ)

[
Mdd(%0)−K (0)K+(%0)K (0)

]
Z′d(φ) = S̈(φ0)

by virtue of the law of iterated expectations, together with expressions (B3) and (C22) in

appendices B and C, respectively. Intuitively, S̈(φ0) is the covariance matrix of the errors in

the projection of sθt(φ0) onto the Hilbert space spanned by all the time-invariant functions of

ε∗t with zero conditional means and bounded second moments that are conditionally orthogonal

to edt(θ0,0), which trivially coincides with the covariance matrix between those residuals and

sθt(φ0). The fact that the residual variance of a multivariate regression cannot increase as

we increase the number of regressors explains why S̊(φ0) is at least as large (in the positive

semidefinite matrix sense) as S̈(φ0), reflecting the fact that the relevant tangent sets become

increasing larger. Finally,

E[sθt(φ)s′θt(θ,0)|φ] = −∂E[s′θt(θ,0)|φ]/∂θ = A(φ)
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thanks to the generalised information equality.

Let us now move on to the second row, and in particular to

E[sθ|ηt(φ)̊s′θt(φ)|φ] = E[{Zdt(θ)edt(φ)

−Iθη(φ)I−1ηη (φ)ert(φ)}
{

e′dt(φ)Z′dt(θ)−
[̊
e′dt(φ)− e̊′dt(θ,0)K̊+ (κ) K̊ (0)

]
Z′d(φ)

}
|φ]

= E[{Zdt(θ)edt(φ)e′dt(φ0)Z
′
dt(φ0)|φ]− E[Zdt(θ)edt(φ)̊e′dt(φ)Z′dt(φ0)|φ]

+E[Zdt(θ)edt(φ)e′dt(θ,0)K+(%0)K (0) Z′d(φ)|φ]− Iθη(φ)I−1ηη (φ)E[ert(φ)e′dt(φ)Z′dt(θ)|φ]

+Iθη(φ)I−1ηη (φ)E[ert(φ)̊e′dt(φ)Z′d(θ)|φ]− Iθη(φ)I−1ηη (φ)E[ert(φ)̊e′dt(θ,0)K̊+ (κ) K̊ (0) Z′d(φ)|φ]

= Iθθ(φ)−Ws(φ0)W
′
s(φ0) ·

{[
N + 2

N
mss(η0)− 1

]
− 4

N [(N + 2)κ0 + 2]

}
= S̊(φ0)

where we have used the fact that

E[ert(φ)e′dt(φ)|φ] = E{E[ert(φ)e′dt(φ)|ςt,φ]|φ} = E[ert(φ)̊e′dt(φ)|φ]

= E {ert(φ) [δ(ςt,η)(ςt/N)− 1] |φ} [ 0 vec′(IN ) ] and

E[ert(φ)e′dt(θ,0)|φ] = E{E[ert(φ)e′dt(θ,0)|ςt,φ]|φ} = E[ert(φ)̊e′dt(θ,0)|φ]

= E {ert(φ) [(ςt/N)− 1] |φ} [ 0 vec′(IN ) ] = 0

by virtue of Lemma 3 in Supplemental Appendix B. Similarly,

E[sθ|ηt(φ)̈s′θt(φ)|φ] = E[{Zdt(θ)edt(φ)

−Iθη(φ)I−1ηη (φ)ert(φ)}{e′dt(φ0)[Z′dt(φ0)− Z′d(φ)]− e′dt(θ0,0)K+(%0)K (0) Z′d(φ)}|φ]

= E[{Zdt(θ)edt(φ)e′dt(φ0)Z
′
dt(φ0)|φ]− E[Zdt(θ)edt(φ)e′dt(φ0)Z

′
d(φ)]|φ]

−E[Zdt(θ)edt(φ)e′dt(θ,0)K+(%0)K (0) Z′d(θ)|φ]

= Iθθ(φ)− Zd(φ)
[
Mdd(%0)−K (0)K+(%0)K (0)

]
Z′d(φ) = S̈(φ0)

because sηt(φ) is orthogonal to edt(θ,0) by virtue of Lemma 3 and

E[ert(φ)}{e′dt(φ0)[Z′dt(φ0)− Z′d(φ)]}|φ] = 0

by the law of iterated expectations. Finally,

E[sθ|ηt(φ)s′θt(θ,0)|φ] = E[{Zdt(θ)edt(φ)− Iθη(φ)I−1ηη (φ)ert(φ)}e′dt(θ,0)Z′dt(φ)|φ] = A(φ)

because of the generalised information equality and the orthogonality of ert(φ) and edt(θ,0).

Let us start the third row with

E [̊sθt(φ)̈s′θt(φ)|φ] = E[{Zdt(θ)edt(φ)− Zd(φ)[̊edt(φ)− K̊ (0) K̊+ (κ) e̊dt(θ,0)]}

×{e′dt(φ0)[Z′dt(φ0)− Z′d(φ)]− e′dt(θ0,0)K+(%0)K (0) Z′d(φ)}|φ]

= Iθθ(φ)− Zd(φ)
[
Mdd(%0)−K (0)K+(%0)K (0)

]
Z′d(φ) = S̈(φ0) because

E{[̊edt(φ)− K̊ (0) K̊+ (κ) e̊dt(θ,0)]e′dt(φ0)[Z
′
dt(φ0)− Z′d(φ)]|φ} = 0
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by the law of iterated expectations. In addition, we have that

E [̊sθt(φ)s′θt(θ,0)|φ] = A(φ), (A15)

which follows immediately from (A21) and the generalised information matrix equality.

Turning to the last off-diagonal element, we can show that

E [̈sθt(φ)s′θt(θ,0)|φ] = E[{Zdt(θ)edt(θ,%)− Zd(θ,%)
[
edt(θ,%)−K (0)K+ (%) edt(θ,0)

]
}

×e′dt(θ,0)Z′dt(θ)|φ] = A(θ)

because edt(θ,0) is conditionally orthogonal to [edt(θ,%)−K (0)K+ (%) edt(θ,0)] by construc-

tion. This result also proves the positive semidefiniteness of S̈(φ0)−A(θ)B−1(φ)A(θ) because

this expression coincides with the residual covariance matrix in the theoretical regression of the

semiparametric effi cient score on the Gaussian pseudo-score.

To prove the second part of the proposition, it is convenient to regard each estimator as an

exactly identified GMM estimator based on the corresponding score, whose asymptotic variance

depends on the asymptotic variance of this score and the corresponding expected Jacobian. In

this regard, note that the information matrix equality applied to the restricted and unrestricted

versions of the effi cient score implies that

−∂E[sθt(φ)|φ]/∂θ′ = E[sθt(φ)s′θt(φ)|φ] = Iθθ(φ) and

−∂E[sθ|ηt(φ)|φ]/∂θ′ = E[sθ|ηt(φ)s′θ|ηt(φ)|φ] = P(φ).

Similarly, we can use the generalised information matrix equality together with some of the

arguments in the proof of Proposition C3 in Supplemental Appendix C to show that

−∂E [̊sθt(φ)|φ]/∂θ = E [̊sθt(φ0)s
′
θt(φ0)|φ] = E[Zdt(θ0)edt(φ0)e

′
dt(φ0)Z

′
dt(θ0)|φ0]

−E
{

Ws(φ0)

[[
δ(ςt,η0)

ςt
N
− 1
]
− 2

(N + 2)κ0 + 2

( ςt
N
− 1
)]

e′dt(φ0)Z
′
dt(θ0)

∣∣∣∣φ0}
= Iθθ(φ0)−Ws(φ0)E

{[{
δ(ςt,η0)

ςt
N
− 1
}
− 2

(N + 2)κ0 + 2

( ςt
N
− 1
)]

e′dt(φ0)

∣∣∣∣φ0}Zd(θ0)

= Iθθ(φ0)-Ws(φ0)E

[{[
δ(ςt,η0)

ςt
N
-1
]
-

2

(N + 2)κ0 + 2

( ςt
N
-1
)}[

δ(ςt,η0)
ςt
N
-1
]∣∣∣∣φ0]W′

s(φ0)

= Iθθ(φ0)−Ws(φ0)W
′
s(φ0) ·

{[
N + 2

N
mss(η0)− 1

]
− 4

N [(N + 2)κ0 + 2]

}
= S̊(φ0) = E [̊sθt(φ)̊s′θt(φ)|φ]. (A16)

The generalised information matrix equality also implies that

−∂E [̈sθt(φ0)|φ0]
∂θ

= E [̊sθt(φ0)s
′
θt(φ0)|φ] = E[Zdt(θ0)edt(φ0)e

′
dt(φ0)Z

′
dt(θ0)|φ0].
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On this basis, we can use standard first-order expansions of
√
T [θ̂T (η0)−θ0] and

√
T (θ̂T−θ0)

to show that

lim
T→∞

E{T [θ̂T (η0)− θ0](θ̂
′
T − θ′0)} = I−1θθ (φ) lim

T→∞
E[T s̄θT (φ)̄s′θ|ηT (φ)}P−1(φ) = I−1θθ (φ).

All the remaining asymptotic covariances are obtained analogously. �

A.6 Proposition 6

Given the effi ciency of θ̂T relative to θ̃T , it follows from Lemma 2 in Hausman (1978) that

√
T (θ̃T − θ̂T )→ N

[
0, C(φ0)− P−1(φ0)

]
.

The other two results follow directly from Proposition 1 after taking into account that

−∂E[sθ|ηt(φ)|φ]/∂θ′ = P(φ) (A17)

−∂E[sθt(θ,0)|φ]/∂θ′ = A(φ)

by the generalised information matrix equality. �

A.7 Proposition 7

The effi ciency of θ̂T (η) relative to θ̂T and Lemma 2 in Hausman (1978) imply that

√
T [θ̂T − θ̂T (η)]→ N

[
0, Iθθ(φ0)− I−1θθ (φ0)

]
under then null of correct specification. The other two results follow directly from Proposition

1 and the partitioned inverse formula after taking into account that (A17) and

−∂E[sθt(θ, η̄)|φ]/∂θ′ = Iθθ(φ)

by the information matrix equality. �

A.8 Proposition 8

The proof of Proposition 6 immediately implies that

√
T (θ̃T − θ̂T )→ N

[
0, Cθ1θ1(φ0)− Pθ1θ1(φ0)

]
under the null. If we combine this result with Proposition 3, we obtain the expressions for the

asymptotic variances of the two asymptotically equivalent score versions. �

A.9 Proposition 9

The proof of Proposition 7 immediately implies that

√
T [θ̂1T − θ̂1T (η)]→ N{0, [Pθ1θ1(φ0)− Iθ1θ1(φ0)]}

under the null. If we combine this result with Proposition 3, we obtain the expressions for the

asymptotic variances of the two asymptotically equivalent score versions. �
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A.10 Proposition 10

The proof of the first part is trivial, except perhaps for the fact that Msr(0) = 0, which

follows from Lemma 3 in Supplemental Appendix B because est(θ0,0) coincides with est(θ0,%0)

under normality.

To prove the second part, we use the fact that after some tedious algebraic manipulations

we can writeMdd (η)−K (0)K+ (κ)K(0) in the spherical case as{
[mll(η)-1]IN 0

0
[
mss(η)- 1

κ+1

]
(IN2+KNN )+

[
mss(η0)-1+

2κ
(κ+1)[(N+2)κ+2]

]
vec(IN )vec′(IN )

}
.

Therefore, given that Zl(φ0) 6= 0, Iθθ(φ)− S̈(φ) will be zero only if mll(η) = 1, which in turn

requires that the residual variance in the multivariate regression of δ(ςt,η0)ε
∗
t on ε

∗
t is zero for

all t, or equivalently, that δ(ςt,η0) = 1. But since the solution to this differential equation is

g(ςt,η) = −.5ςt + C, then the result follows from (C19) in Supplemental Appendix C.

If the true conditional mean were 0, and this was taken into account in estimation, then the

first diagonal block would disappear, and Iθθ(φ)− S̈(φ) could also be 0 if

Zd(θ,%)
[
Mdd (%)−K (0)K+ (%)K (0)

]
Z′d(θ,%) = 0.

Although this condition is unlikely to hold otherwise, it does not strictly speaking require nor-

mality. For example, Amengual, Fiorentini and Sentana (2013), correcting an earlier typo in

Amengual and Sentana (2010), show that

mss(η0) =
Nκ+ 2

(N + 2)κ+ 2

for the Kotz distribution, which immediately implies that

mss(η)− 1

κ+ 1
=

Nκ2

(κ+ 1) (2κ+Nκ+ 2)
and

mss(η0)− 1 +
2κ

(κ+ 1)[(N + 2)κ+ 2]
= − 2κ2

(κ+ 1) (2κ+Nκ+ 2)
.

When N = 1, (IN2 + KNN ) = 2 and vec(IN )vec′(IN ) = 1, which trivially implies that

Iθθ(φ)− S̈(φ) = 0. However, this result fails to hold for N ≥ 2. Specifically, using the explicit

expressions for the commutation matrix in Magnus (1988), it is straightforward to show that

κ2

(κ+ 1) (4κ+ 2)


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

− κ2

(κ+ 1) (2κ+ 1)


1
0
0
1

( 1 0 0 1
)

=


κ2

(κ+1)(2κ+1) 0 0 − κ2

(κ+1)(2κ+1)

0 κ2

(κ+1)(2κ+1)
κ2

(κ+1)(2κ+1) 0

0 κ2

(κ+1)(2κ+1)
κ2

(κ+1)(2κ+1) 0

− κ2

(κ+1)(2κ+1) 0 0 κ2

(κ+1)(2κ+1)

 ,

which can only be 0 under normality. �
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A.11 Proposition 11

Note that Iθθ(φ) − S̊(φ) is Ws(φ)W′
s(φ) times the residual variance in the theoretical

regression of δ(ςt,η0)ςt/N − 1 on (ςt/N)− 1. Therefore, given that Ws(φ) 6= 0, Iθθ(φ)− S̊(φ)

can only be 0 if that regression residual is identically 0 for all t. The solution to the resulting

differential equation is

g(ςt,η) = − N(N + 2)κ

2[(N + 2)κ+ 2]
ln ςt −

1

[(N + 2)κ+ 2]
ςt + C,

which in view of (C19) in Supplemental Appendix C implies that

h(ςt;η)∝ς
N

(N+2)κ+2
−1

t exp

{
− 1

[(N + 2)κ+ 2]
ςt

}
,

i.e. the density of Gamma random variable with mean N and variance N [(N +2)κ0+2]. In this

sense, it is worth recalling that κ ≥ −2/(N + 2) for all spherical distributions, with the lower

limit corresponding to the uniform.

As for the second part, expression (C27) in Supplemental Appendix C implies that in the

spherically symmetric case the difference between P(φ0) and Iθθ(φ0) is given by

Ws(φ0)W
′
s(φ0) ·

[
msr(η0)M−1rr (η0)m

′
sr(η0)

]
,

which is the product of a rank one matrix times a non-negative scalar. Therefore, given that

Ws(φ) 6= 0 andMrr(η0) has full rank, P(φ0) can only coincide with Iθθ(φ0) if the 1× q vector

msr(η0) is identically 0. �

A.12 Proposition 12

Given our assumptions on the mapping rs(.), we can directly work in terms of the ϑ para-

meters. In this sense, since the conditional covariance matrix of yt is of the form ϑiΣ
◦
t (ϑc), it is

straightforward to show that

Zdt(ϑ) =

{
ϑ
−1/2
i [∂µ′t(ϑc)/∂ϑc] Σ

◦−1/2′
t (ϑc)

0

1
2{∂vec

′[Σ◦t (ϑc)]/∂ϑc}[Σ
◦−1/2′
t (ϑc)⊗Σ

◦−1/2′
t (ϑc)]

1
2ϑ
−1
i vec′(IN )

}
=

[
Zϑclt(ϑ) Zϑcst(ϑ)

0 Zϑist(ϑ)

]
. (A18)

Thus, the score vector for ϑ will be[
sϑct(ϑ,η)
sϑit(ϑ,η)

]
=

[
Zϑclt(ϑ)elt(ϑ,η) + Zϑcst(ϑ)est(ϑ,η)

Zϑist(ϑ)est(ϑ,η)

]
, (A19)

where elt(ϑ,η) and est(ϑ,η) are given in expressions (C8) and (C9) in Supplemental Appendix

C, respectively.
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It is then easy to see that the unconditional covariance between sϑct(ϑ,η) and sϑit(ϑ,η) is

E

{[
Zϑclt(ϑ) Zϑcst (ϑ)

] [ Mll(η) 0
0 Mss(η)

] [
0

Z′ϑist(ϑ)

]∣∣∣∣ϑ,η}
=
{2mss(η) +N [mss(η)− 1]}

2ϑi
E

{
1

2

∂vec′[Σ◦t (ϑc)]

∂ϑc
[Σ
◦−1/2′
t (ϑc)⊗Σ

◦−1/2′
t (ϑc)]

∣∣∣∣ϑ,η} vec(IN )

=
{2mss(η) +N [mss(η)− 1]}

2ϑi
Zϑcs(ϑ,η)vec(IN ),

with Zϑcs(ϑ,η) = E[Zϑcst(ϑ)|ϑ,η], where we have exploited the serial independence of ε∗t , as

well as the law of iterated expectations, together with the results in Proposition C1 in Supple-

mental Appendix C.

We can use the same arguments to show that the unconditional variance of sϑit(ϑ,η) will

be given by

E

{[
0 Zϑist(ϑ)

] [ Mll(η) 0
0 Mss(η)

] [
0

Z′ϑist(ϑ)

]∣∣∣∣ϑ,η}
=

1

4ϑ2i
vec′(IN )[mss(η) (IN2 + KNN ) + [mss(η)− 1])vec(IN )vec′(IN )]vec(IN )

=
{2mss(η) +N [mss(η)− 1]}N

4ϑ2i
.

Hence, the residuals from the unconditional regression of sϑct(ϑ,η) on sϑit(ϑ,η) will be:

sϑ1|ϑit(ϑ,η) = Zϑclt(ϑ)elt(ϑ,η) + Zϑcst(ϑ)est(ϑ,η)

− 4ϑ2i
{2mss(η)+N [mss(η)-1]}N

{2mss(η)+N [mss(η)-1]}
2ϑi

Zϑcs(ϑ)vec(IN )
1

2ϑi
vec′(IN )est(ϑ,η)

= Zϑclt(ϑ)elt(ϑ,η) + [Zϑcst(ϑ)− Zϑcs(ϑ,η)]est(ϑ,η).

The first term of sϑc|ϑit(ϑ0,η0) is clearly conditionally orthogonal to any function of ςt(ϑ0).

In contrast, the second term is not conditionally orthogonal to functions of ςt(ϑ0), but since the

conditional covariance between any such function and est(ϑ0,η0) will be time-invariant, it will be

unconditionally orthogonal by the law of iterated expectations. As a result, sϑc|ϑit(ϑ0,η0) will

be unconditionally orthogonal to the spherically symmetric tangent set, which in turn implies

that the spherically symmetric semiparametric estimator of ϑc will be ϑi-adaptive.

To prove Part 1b, note that Proposition C3 in Supplemental Appendix C and (A18) imply

that the spherically symmetric semiparametric effi cient score corresponding to ϑi will be

s̊ϑit(ϑ) = − 1

2ϑi
vec′(IN )vec

{
δ[ςt(ϑ),η]ε∗t (ϑ)ε∗′t (ϑ)− IN

}
− N

2ϑi

{[
δ[ςt(ϑ),η]

ςt(ϑ)

N
− 1

]
− 2

(N + 2)κ+ 2

[
ςt(ϑ)

N
− 1

]}
=

1

2ϑi
{δ[ςt(ϑ),η]ςt(ϑ)−N} − N

2ϑi

{[
δ[ςt(ϑ),η]

ςt(ϑ)

N
− 1

]
− 2

(N + 2)κ+ 2

[
ςt(ϑ)

N
− 1

]}
=

N

ϑi[(N + 2)κ+ 2]

[
ςt(ϑ)

N
− 1

]
.
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But since the iterated spherically symmetric semiparametric estimator of ϑmust set to 0 the sam-

ple average of this modified score, it must be the case that
∑T

t=1 ςt(̊ϑT ) =
∑T

t=1 ς
◦
t (̊ϑcT )/̊ϑiT =

NT , which is equivalent to (12).

To prove Part 1c note that

sϑit(ϑ,0) =
1

2ϑi
[ςt(ϑ)−N ] (A20)

is proportional to the spherically symmetric semiparametric effi cient score s̊ϑit(ϑ), which means

that the residual covariance matrix in the theoretical regression of this effi cient score on the

Gaussian score will have rank p− 1 at most. But this residual covariance matrix coincides with

S̊ (φ)−A (φ)B−1 (φ)A (φ) since

E [̊sθt(φ)s′θt(θ,0)|φ] = E[Zdt(θ)edt(φ)e′dt(θ,0)Z′dt(θ)|φ] = A(θ) (A21)

because the regression residual[
δ(ςt,η)

ςt
N
− 1
]
− 2

(N + 2)κ0 + 2

( ςt
N
− 1
)

is conditionally orthogonal to edt(θ0,0) by the law of iterated expectations, as shown in the

proof of proposition C3 in Supplemental Appendix C.

Tedious algebraic manipulations that exploit the block-triangularity of (A18) and the con-

stancy of Zϑist(ϑ) show that the different information matrices will be block diagonal when

Wϑcs(φ0) is 0. Then, part 2a follows from the fact that Wϑcs(φ0) = −E {∂dt(ϑ0)/∂ϑc|φ0}

will trivially be 0 if E[ln |Σ◦t (ϑc)||φ0] = k ∀ϑc.

Finally, to prove Part 2b note that (A20) implies that the Gaussian PMLE will also satisfy

(12). But since the asymptotic covariance matrices in both cases will be block-diagonal between

ϑc and ϑi when E[ln |Σ◦t (ϑc)||φ0] = k ∀ϑc, the effect of estimating ϑc becomes irrelevant. �

A.13 Proposition 13

We can directly work in terms of the ϕ parameters thanks to our assumptions on the mapping

rg(.). Given the specification for the conditional mean and variance in (14), and the fact that

ε∗t is assumed to be i.i.d. conditional on zt and It−1, it is tedious but otherwise straightforward

to show that the score vector will be sϕ1t(ϕ,%)
sϕict(ϕ,%)
sϕimt(ϕ,%)

 =

 Zϕ1lt(ϕ)elt(ϕ,%) + Zϕ1st(ϕ)est(ϕ,%)
Zϕicst(ϕ)est(ϕ,%)
Zϕimlt(ϕ)elt(ϕ,%)

 , (A22)

where

Zϕ1lt(ϕ) =
{
∂µ�′t (ϕ1)/∂ϕ1+∂vec′[Σ

�1/2
t (ϕ1)]/∂ϕ1 ·(ϕim⊗IN )

}
Σ
�−1/2′
t (ϕ1)Φ

−1/2′
2 ,

Zϕ1st(ϕ) =∂vec′[Σ
�1/2
t (ϕ1)]/∂ϕ1 · [Φ

1/2
2 ⊗Σ

�−1/2′
t (ϕ1)Φ

−1/2′
2 ],

Zϕimlt(ϕ) =Φ
−1/2′
2 =Zϕiml(ϕ),

Zϕicst(ϕ) =∂vec′(Φ1/2)/∂ϕic · (IN⊗Φ
−1/2′
2 ) =Zϕics(ϕ),

 (A23)
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elt(ϕ,%) and est(ϕ,%) are given in (D4) in Supplemental Appendix D, with

ε∗t (ϕ) = Φ
−1/2
ic Σ

�−1/2
t (ϕc)[yt − µ�t (ϕc)−Σ

�1/2
t (ϕc)ϕim]. (A24)

It is then easy to see that the unconditional covariance between sϕct(ϕ,%) and the remaining

elements of the score will be given by

[
Zϕcl(ϕ,%) Zϕcs(ϕ,%)

] [ Mll(%) Mls(%)
M′ls(%) Mss(%)

][
0 Z′ϕiml(ϕ)

Z′ϕics(ϕ) 0

]
with Zϕcl(ϕ,%) = E[Zϕclt(ϕ)|ϕ,%] and Zϕcs(ϕ,%) = E[Zϕcst(ϕ)|ϕ,%], where we have exploited

the serial independence of ε∗t and the constancy of Zϕicst(ϕ) and Zϕimlt(ϕ), together with the

law of iterated expectations and the definition[
Mll(%) Mls(%)
M′ls(%) Mss(%)

]
= V

[
elt(ϕ,%)
est(ϕ,%)

∣∣∣∣ϕ,%] .
Similarly, the unconditional covariance matrix of sϕict(ϕ,%) and sϕimt(ϕ,%) will be[

0 Zϕics(ϕ)
Zϕiml(ϕ) 0

] [
Mll(%) Mls(%)
M′ls(%) Mss(%)

][
0 Z′ϕiml(ϕ)

Z′ϕics(ϕ) 0

]
.

Thus, the residuals from the unconditional least squares projection of sϕct(ϕ,%) on sϕict(ϕ,%)

and sϕimt(ϕ,%) will be:

sϕc|ϕic,ϕimt(ϕ,%) = Zϕclt(ϕ)elt(ϕ,%) + Zϕcst(ϕ)est(ϕ,%)

−
[

Zϕcl(ϕ,%) Zϕcs(ϕ,%)
] [ elt(ϕ,%)

est(ϕ,%)

]
= [Zϕclt(ϕ)− Zϕcl(ϕ,%)]elt(ϕ,%) + [Zϕcst(ϕ)− Zϕcs(ϕ,%)]est(ϕ,%),

because both Zϕics(ϕ) and Zϕiml(ϕ) have full row rank when Φic has full rank in view of the

discussion that follows expression (D13) in Supplemental Appendix D.

Although neither elt(ϕ,%) nor est(ϕ,%) will be conditionally orthogonal to arbitrary func-

tions of ε∗t , their conditional covariance with any such function will be time-invariant. Hence,

sϕc|ϕic,ϕimt(ϕ,%) will be unconditionally orthogonal to ∂ ln f [ε∗t (ϕ);%]/∂% by virtue of the law

of iterated expectations, which in turn implies that the unrestricted semiparametric estimator

of ϕc will be ϕi-adaptive.

To prove Part 1b note that the semiparametric effi cient scores corresponding to ϕic and ϕim

will be given by[
0 Zϕics(ϕ)

Zϕiml(ϕ) 0

]
K (0)K+(%0)

{
ε∗t (ϕ)

vec[ε∗t (ϕ)ε∗′t (ϕ)− IN ]

}
because Zϕicst(ϑ) = Zϕics(ϑ) and Zϕimlt(ϑ) = Zϕiml(ϑ) ∀t. But if (17) and (16) hold, then the

sample averages of elt[ϕc,ϕic(ϕc),ϕim(ϕc); 0] and est[ϕc,ϕic(ϕc),ϕim(ϕc); 0] will be 0, and the

same is true of the semiparametric effi cient score.
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To prove Part 1c note that[
sϕict(ϕ,0)
sϕimt(ϕ,0)

]
=

[
0 Zϕics(ϕ)

Zϕiml(ϕ) 0

] [
ε∗t (ϕ)

vec[ε∗t (ϕ)ε∗′t (ϕ)− IN ]

]
, (A25)

which implies that the residual covariance matrix in the theoretical regression of the semipara-

metric effi cient score on the Gaussian score will have rank p−N(N +3)/2 at most because both

Zϕics(ϕ) and Zϕiml(ϕ) have full row rank when Φic has full rank. But as we saw in the proof

of Proposition 5, that residual covariance matrix coincides with S̈(φ0)−A(θ)B−1(φ)A(θ).

Tedious algebraic manipulations that exploit the block structure of (A23) and the constancy

of Zϕicst(ϕ) and Zϕimlt(ϕ) show that the different information matrices will be block diagonal

when Zϕcl(ϕ,%) and Zϕcs(ϕ,%) are both 0. But those are precisely the necessary and suf-

ficient conditions for sϕct(ϕ,%) to be equal to sϕc|ϕic,ϕimt(ϕ,%), which is also guaranteed by

two conditions in the statement of part 2. In this sense, please note that the reparametrisa-

tion of ϕic and ϕim that satisfies those conditions will be such that the Jacobian matrix of

vech[K−1/2(ϕc)ΦicK
−1/2′(ϕc)] and K−1/2(ϕc)ϕim − l(ϕc) with respect to ϕ evaluated at the

true values is equal to{
−V −1

[
sϕict(ϕ0)
sϕimt(ϕ0)

∣∣∣∣φ0]E [ sϕict(ϕ0)s
′
ϕct

(ϕ0)

sϕimt(ϕ0)s
′
ϕct

(ϕ0)

∣∣∣∣φ0] ∣∣∣∣ IN(N+1)/2
0

∣∣∣∣ 0
IN

}
.

Finally, to prove Part 2b simply note that (A25) implies the Gaussian PMLE will also satisfy

(17) and (16). But since the asymptotic covariance matrices in both cases will be block-diagonal

between ϕc and ϕi when the two conditions in the statement of part 2 hold, the effect of

estimating ϕc becomes irrelevant. �

A.14 Proposition 14

The proof builds up on Proposition B1 in Supplemental Appendix B. Assuming mean

stationarity, the relationship vector of drift parameters τ and the unconditional mean µ is given

by (IN −A1 − . . .−Ap)µ. Hence, the Jacobian from one vector of parameters to the other is

∂

(
τ
a

)
∂(µ′,a′)

=


IN −A1 − . . .−Ap −µ′ ⊗ IN . . . −µ′ ⊗ IN

0 IN2 . . . 0
...

...
. . .

...
0 0 . . . IN2

 .

Consequently, Zlt(θ) for (µ′,a′, c′) becomes
(IN −A1 − . . .−Ap)C

−1′

(yt−1 − µ)⊗C−1′

...
(yt−p − µ)⊗C−1′

0N2×N

 ,
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so that

Iµµ = (IN −A1 − . . .−Ap)C
−1′MllC

−1(IN −A1 − . . .−Ap)
′,

Iaa =

 Γ(0) . . . Γ(p− 1)
...

. . .
...

Γ′(p− 1) . . . Γ(0)

⊗C−1′MllC
−1,

and Iµa = 0. Consequently, the asymptotic variances of the restricted and unrestricted ML

estimators of µ and a will be given by

I−1µµ = (IN −A1 − . . .−Ap)
−1′CM−1ll C′(IN −A1 − . . .−Ap)

−1,

I−1aa =

 Γ(0) . . . Γ(p− 1)
...

. . .
...

Γ′(p− 1) . . . Γ(0)


−1

⊗CM−1ll C′,

where Γ(j) is the jth autocovariance matrix of yt.

Let us now look at the conditional variance parameters. The product rule for differentials

dC = (dJ)Ψ + J(dΨ) immediately implies that

dvec(C) = (Ψ⊗ IN )∆Ndveco(J) + (IN ⊗ J)ENdveco(Ψ),

where EN is the N2 × N matrix such that vec(Ψ) = ENvecd(Ψ) for any diagonal matrix Ψ,

where vecd(Ψ) places the elements in the main diagonal of Ψ in a column vector, and ∆N is an

N2 ×N(N − 1) matrix such that vec(J − IN ) = ∆Nveco(J − IN ), with veco(J − IN ) stacking

by columns all the elements of the zero-diagonal matrix J− IN except those that appear in its

diagonal. Therefore, the Jacobian will be

∂vec(C)

∂(j′,ψ′)
= [ (Ψ⊗ IN )∆N (IN ⊗ J)EN ] = [ ∆N (Ψ⊗ IN−1) (IN ⊗ J)EN ], (A26)

where we have used that Υ∆N = ∆N (∆′NΥ∆N ) for any diagonal matrix Υ and ∆′N (Ψ ⊗

IN )∆N = (Ψ⊗ IN−1) (see Proposition 6 in Magnus and Sentana (2020)).

As a result, the scores with respect to j and ψ will be[
(Ψ⊗ IN−1)∆

′
N

E′N (IN ⊗ J′)

]
(IN ⊗ J−1′)(IN ⊗Ψ−1)est(φ)

=

[
(Ψ⊗ IN−1)∆

′
N (IN ⊗ J−1′)(IN ⊗Ψ−1)

Ψ−1E′N

]
est(φ) =

[
∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)

Ψ−1E′N

]
est(φ).
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Similarly, the information matrix of the unrestricted ML estimators of (j,ψ,%) will be
[

∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)
Ψ−1E′N

]
Mss

[
(Ψ⊗Ψ−1)(IN ⊗ J−1)∆N ENΨ−1

]
M′srE

′
N

[
(Ψ⊗Ψ−1)(IN ⊗ J−1)∆N ENΨ−1

][
∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)

Ψ−1E′N

]
ENMsr

Mrr


=

∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)Mss(Ψ⊗Ψ−1)(IN ⊗ J−1)∆N

Ψ−1E′NMss(Ψ⊗Ψ−1)(IN ⊗ J−1)∆N

M′srE
′
N (Ψ⊗Ψ−1)(IN ⊗ J−1)∆N

∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)MssENΨ−1 ∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)ENMsr

Ψ−1E′NMssENΨ−1 Ψ−1E′NENMsr

M′srE
′
NENΨ−1 Mrr


=

 ∆′N (IN ⊗ J−1′)(Ψ⊗Ψ−1)Mss(Ψ⊗Ψ−1)(IN ⊗ J−1)∆N

Ψ−1MssE
′
N (IN ⊗ J−1)∆N

M′srE
′
N (IN ⊗ J−1)∆N

∆′N (IN ⊗ J−1′)ENMssΨ
−1 ∆′N (IN ⊗ J−1′)ENMsr

Ψ−1MssΨ
−1 Ψ−1Msr

M′srΨ
−1 Mrr

 .
Let us now obtain the asymptotic covariance matrix of the restricted ML estimators of

(j,ψ) which fix % to its true values. Lemmas 4 and 5 contain the inverses of Mss and

[ (Ψ⊗Ψ−1)(IN ⊗ J−1)∆N ENΨ−1 ], respectively. Thus, the asymptotic covariance matrix

of (j,ψ) will be{
∆′N (IN ⊗ J)(Ψ−1 ⊗Ψ)[IN2 −ENE′N (IN ⊗ J)(Ψ−1 ⊗Ψ)]

ΨE′N (IN ⊗ J)

}
M−1ss

×
{

[IN2 − (Ψ−1 ⊗Ψ)(IN ⊗ J′)ENE′N ](Ψ−1 ⊗Ψ)(IN ⊗ J′)∆N (IN ⊗ J′)ENΨ
}
,

which does not have have any special structure, except in the unlikely event that J0 = IN , in

which case the inverse in Lemma 5 would reduce to{
[∆′N (Ψ−1 ⊗Ψ)∆N ]∆′N

ΨE′N

}
,

where we have used the fact that IN2 − ENE′N = ∆N∆′N (see Proposition 4 in Magnus and

Sentana (2020)). Tedious algebraic manipulations then show that the asymptotic covariance

matrix of the restricted ML estimators of (j,ψ) which fix % to its true values when J0 = IN

would be{
[∆′N (Ψ−1 ⊗Ψ)∆N ][∆′N (KNN + Υ)∆N ]−1[∆′N (Ψ−1 ⊗Ψ)∆N ] 0

0 ΨM−1ss Ψ

}
.

The matrix ∆′N (Ψ−1 ⊗ Ψ)∆N is obviously diagonal. In turn, Proposition 5 in Magnus and

Sentana (2020) implies that the matrix ∆′N (KNN + Υ)∆N = ∆′NKNN∆N + ∆′NΥ∆N is the
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sum of a diagonal matrix ∆′NΥ∆N and a symmetric orthogonal matrix ∆′NKNN∆N whose

only N(N −1) non-zero elements are 1s in the positions corresponding to the ij and ji elements

of J for j > i. Therefore, although the parameters in the different columns of J would not

be asymptotically orthogonal when J0 = IN , the dependence seems to be limited to pairs of

elements {J}ij and {J}ji.

We can follow an analogous procedure to find the asymptotic covariance matrix of the unre-

stricted ML estimators of (j,ψ,%) for general J, which will be
∆′N (IN ⊗ J)(Ψ−1 ⊗Ψ)[IN2 −ENE′N (IN ⊗ J)(Ψ−1 ⊗Ψ)] 0

ΨE′N (IN ⊗ J) 0
0 IN


×
[(
M−1ss 0

0 0

)
+

(
ENM−1ss MsrMrrM′srM

−1
ss E′N −ENM−1ss MsrMrr

−MrrM′srM
−1
ss E′N Mrr

)]
×
{

[IN2 − (Ψ−1 ⊗Ψ)(IN ⊗ J′)ENE′N ](Ψ−1 ⊗Ψ)(IN ⊗ J′)∆N (IN ⊗ J′)ENΨ 0
0 0 IN

}

=


∆′N (IN ⊗ J)(Ψ−1 ⊗Ψ)[IN2 −ENE′N (IN ⊗ J)(Ψ−1 ⊗Ψ)]

ΨE′N (IN ⊗ J)
0

M−1ss
×
{

[IN2 − (Ψ−1 ⊗Ψ)(IN ⊗ J′)ENE′N ](Ψ−1 ⊗Ψ)(IN ⊗ J′)∆N (IN ⊗ J′)ENΨ 0
}

+


∆′N (IN ⊗ J)(Ψ−1 ⊗Ψ)[IN2 −ENE′N (IN ⊗ J)(Ψ−1 ⊗Ψ)] 0

ΨE′N (IN ⊗ J) 0
0 IN


×
(

ENM−1ss MsrMrrM′srM
−1
ss E′N −ENM−1ss MsrMrr

−MrrM′srM
−1
ss E′N Mrr

)
×
{

[IN2 − (Ψ−1 ⊗Ψ)(IN ⊗ J′)ENE′N ](Ψ−1 ⊗Ψ)(IN ⊗ J′)∆N (IN ⊗ J′)ENΨ 0
0 0 IN

}
.

Let us look at the second term in the sum. First of all, its northeastern block is

−∆′N (IN ⊗ J)(Ψ−1 ⊗Ψ)[IN2 −ENE′N (IN ⊗ J)(Ψ−1 ⊗Ψ)]ENM−1ss MsrMrr

= ∆′N (IN ⊗ J)(Ψ−1 ⊗Ψ)ENM−1ss MsrMrr

+∆′N (IN ⊗ J)(Ψ−1 ⊗Ψ)ENE′N (IN ⊗ J)(Ψ−1 ⊗Ψ)]ENM−1ss MsrMrr

= ∆′N (IN ⊗ J)ENM−1ss MsrMrr + ∆′N (IN ⊗ J)ENE′N (IN ⊗ J)ENM−1ss MsrMrr

= ∆′N (IN ⊗ J)ENM−1ss MsrMrr + ∆′N (IN ⊗ J)EN (IN � J)M−1ss MsrMrr = 0,

and the same applies to the southwestern one by symmetry.

Turning now to the eastern block, we get

−ΨE′N (IN ⊗ J)ENM−1ss MsrMrr = −ΨM−1ss MsrMrr,

a diagonal matrix, and by symmetry, the same applies to the southern block. The sourtheastern

block is triviallyMrr, which is also diagonal.
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Let us now focus on the northwestern and western blocks, which are given by

∆′N (IN ⊗ J)(Ψ−1 ⊗Ψ)[IN2 −ENE′N (IN ⊗ J)(Ψ−1 ⊗Ψ)]ENM−1ss MsrMrrM′srM
−1
ss E′N

×[IN2 − (Ψ−1 ⊗Ψ)(IN ⊗ J′)ENE′N ](Ψ−1 ⊗Ψ)(IN ⊗ J′)∆N and

ΨE′N (IN ⊗ J)ENM−1ss MsrMrrM′srM
−1
ss E′N

×[IN2 − (Ψ−1 ⊗Ψ)(IN ⊗ J′)ENE′N ](Ψ−1 ⊗Ψ)(IN ⊗ J′)∆N ,

respectively. Given that the northeastern block is 0, these two blocks will be 0 too. Finally,

given that the central block is

ΨE′N (IN ⊗ J)ENM−1ss MsrMrrM′srM
−1
ss E′N (IN ⊗ J′)ENΨ = ΨM−1ss MsrMrrM′srM

−1
ss Ψ,

the second term in the sum reduces to 0 0 0
0 ΨM−1ss MsrMrrM′srM

−1
ss Ψ −ΨM−1ss MsrMrr

0 −MrrMsrM−1ss Ψ Mrr

 . (A27)

This expression confirms that the restricted and unrestricted ML estimators of j are equally

effi cient because the first term in the sum is a bordered version of the asymptotic covariance

matrix of the restricted MLEs of j and ψ.

Expression (A27) also implies that the unrestricted ML estimators of j and % are asymp-

totically independent, and that the unrestricted MLEs of % are as effi cient as its restricted ML

estimators which fix j to its true value and simultaneously estimate ψ and %. In fact, given that

the asymptotic covariance matrix of those restricted estimators would be(
Ψ[M−1ss +M−1ss MsrMrrM′srM

−1
ss ]Ψ −ΨM−1ss MsrMrr

−MrrM′srM
−1
ss Ψ Mrr

)
, (A28)

and that all four blocks are diagonal matrices, it is tedious but otherwise straightforward to

prove that each of the diagonal elements ofMrr coincides with the asymptotic variance of the

MLE of ηi in a univariate Student t log-likelihood that only estimates this parameter and a scale

parameter γi.

The comparison between (A27) and (A28) also indicates that the covariance between the

ML estimators of ψ and % is the same regardless of whether j is estimated or not. The same is

true of the correction to the asymptotic covariance matrix of ψ resulting from estimating %. In

contrast, ΨM−1ss Ψ and E′N (IN ⊗C)M−1ss (IN ⊗C′)EN = E′N (IN ⊗ JΨ)M−1ss (IN ⊗ΨJ′)EN do

not generally coincide unless J0 = IN . �

51



T
A
B
L
E
1:
U
ni
va
ri
at
e
G
A
R
C
H
-M
:
E
m
pi
ri
ca
l
re
je
ct
io
n
ra
te
s.

St
ud
en
t
t 1
2

R
M
L
=
U
M
L

U
M
L
=
P
M
L

U
M
L
=
P
M
L

R
M
L
=
U
M
L

&
U
M
L
=
P
M
L

ϑ
i@

(θ̄
T
,η̄

)
ϑ
i@

(θ̃
T
,η̆
T
)

(ϕ
im
,ϕ

ic
)@

(θ̃
T
,η̆
T

)
ϑ
i@

(θ̄
T
,η̄
T

)

%
D
W
H
1

D
W
H
2

D
W
H
3

L
R

D
W
H
1

D
W
H
2

D
W
H
3

D
W
H
1

D
W
H
2

D
W
H
3

D
W
H
1

D
W
H
2

D
W
H
3

1
9.
64

14
.5
0

0.
95

1.
01

1.
65

0.
81

1.
68

1.
94

1.
25

1.
90

8.
96

13
.8
7

1.
96

5
15
.5
6

18
.7
3

4.
82

5.
15

4.
98

4.
32

5.
65

6.
12

5.
56

6.
57

14
.3
7

18
.9
8

4.
95

10
20
.0
8

21
.5
5

9.
93

10
.3
2

9.
45

8.
68

9.
92

11
.3
5

10
.7
1

11
.7
7

18
.6
5

22
.7
1

8.
85

St
ud
en
t
t 8

R
M
L
=
U
M
L

U
M
L
=
P
M
L

U
M
L
=
P
M
L

R
M
L
=
U
M
L

&
U
M
L
=
P
M
L

ϑ
i@

(θ̄
T
,η̄

)
ϑ
i@

(θ̃
T
,η̆
T
)

(ϕ
im
,ϕ

ic
)@

(θ̃
T
,η̆
T

)
ϑ
i@

(θ̄
T
,η̄
T

)

%
D
W
H
1

D
W
H
2

D
W
H
3

L
R

D
W
H
1

D
W
H
2

D
W
H
3

D
W
H
1

D
W
H
2

D
W
H
3

D
W
H
1

D
W
H
2

D
W
H
3

1
40
.7
8

32
.3
0

38
.3
0

30
.9
2

1.
88

0.
80

3.
03

2.
34

1.
34

3.
02

41
.2
3

34
.5
7

37
.6
9

5
50
.7
5

38
.6
8

57
.5
8

53
.1
5

5.
24

3.
99

6.
96

6.
67

5.
97

8.
20

51
.5
9

42
.5
9

54
.2
6

10
56
.6
6

42
.6
3

67
.2
0

64
.6
2

9.
49

8.
62

10
.8
8

11
.5
4

10
.9
5

13
.2
4

58
.1
2

47
.9
9

63
.4
4

G
C
(0
,3
.2
)

R
M
L
=
U
M
L

U
M
L
=
P
M
L

U
M
L
=
P
M
L

R
M
L
=
U
M
L

&
U
M
L
=
P
M
L

ϑ
i@

(θ̄
T
,η̄

)
ϑ
i@

(θ̃
T
,η̆
T
)

(ϕ
im
,ϕ

ic
)@

(θ̃
T
,η̆
T

)
ϑ
i@

(θ̄
T
,η̄
T

)

%
D
W
H
1

D
W
H
2

D
W
H
3

L
R

D
W
H
1

D
W
H
2

D
W
H
3

D
W
H
1

D
W
H
2

D
W
H
3

D
W
H
1

D
W
H
2

D
W
H
3

1
99
.7
0

10
0.
0

10
0.
0

10
0.
0

27
.8
2

10
.5
8

92
.4
6

41
.0
9

41
.8
3

92
.9
8

99
.9
8

10
0.
0

10
0.
0

5
99
.7
7

10
0.
0

10
0.
0

10
0.
0

41
.8
2

20
.7
1

94
.5
9

55
.5
3

54
.5
7

95
.1
3

99
.9
8

10
0.
0

10
0.
0

10
99
.8
0

10
0.
0

10
0.
0

10
0.
0

50
.2
0

28
.2
5

95
.5
0

63
.3
3

61
.8
9

96
.1
8

99
.9
8

10
0.
0

10
0.
0

G
C
(-
0.
9,
3.
2)

R
M
L
=
U
M
L

U
M
L
=
P
M
L

U
M
L
=
P
M
L

R
M
L
=
U
M
L

&
U
M
L
=
P
M
L

ϑ
i@

(θ̄
T
,η̄

)
ϑ
i@

(θ̃
T
,η̆
T
)

(ϕ
im
,ϕ

ic
)@

(θ̃
T
,η̆
T

)
ϑ
i@

(θ̄
T
,η̄
T

)

%
D
W
H
1

D
W
H
2

D
W
H
3

L
R

D
W
H
1

D
W
H
2

D
W
H
3

D
W
H
1

D
W
H
2

D
W
H
3

D
W
H
1

D
W
H
2

D
W
H
3

1
99
.8
1

10
0.
0

10
0.
0

10
0.
0

47
.6
9

50
.4
4

98
.8
3

10
0.
0

10
0.
0

10
0.
0

99
.9
8

10
0.
0

10
0.
0

5
99
.8
4

10
0.
0

10
0.
0

10
0.
0

61
.4
0

64
.2
3

99
.1
7

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
99
.8
7

10
0.
0

10
0.
0

10
0.
0

68
.6
7

71
.1
3

99
.2
8

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

M
on
te
C
ar
lo
re
je
ct
io
n
p
er
ce
nt
ag
es
.
D
W
H
1:
W
al
d-
ty
p
e
H
au
sm
an
te
st
.
D
W
H
2:
H
au
sm
an
te
st
ba
se
d
on
U
M
L
(R
M
L
)
sc
or
e
co
m
pu
te
d
at
P
M
L
E
(U
M
L
E
).

D
W
H
3:
H
au
sm
an
te
st
ba
se
d
on
P
M
L
(U
M
L
)
sc
or
e
co
m
pu
te
d
at
M
L
E
(R
M
L
E
).
E
xp
ec
te
d
H
es
si
an
an
d
co
va
ri
an
ce
m
at
ri
ce
s
ev
al
ua
te
d
at
R
M
L
E

(θ̄
T
,η̄

)
or

P
M
L
E
an
d
se
qu
en
ti
al
M
M
es
ti
m
at
or

(θ̃
T
,η̆
T

).
G
C
(G
ra
m
-C
ha
rl
ie
r
ex
pa
ns
io
n)
.
Sa
m
pl
e
le
ng
th
=
2,
00
0.
R
ep
lic
at
io
ns
=
20
,0
00
.

52



T
A
B
L
E
2:
M
ul
ti
va
ri
at
e
m
ar
ke
t
m
od
el
:
E
m
pi
ri
ca
l
re
je
ct
io
n
ra
te
s.

St
ud
en
t
t 1
2

R
M
L
=
U
M
L

U
M
L
=
P
M
L

U
M
L
=
P
M
L

R
M
L
=
U
M
L

&
U
M
L
=
P
M
L

ϑ
i@

(θ̄
T
,η̄

)
ϑ
i@

(θ̂
T
,η̂
T
))

(a
,v
ec
h

(Ω
))

@
(θ̂
T
,η̂
T

)
ϑ
i@

(θ̄
T
,η̄

)

%
D
W
H
1

D
W
H
2

D
W
H
3

L
R

D
W
H
1

D
W
H
2

D
W
H
3

D
W
H
1

D
W
H
2

D
W
H
3

D
W
H
1

D
W
H
2

D
W
H
3

1
1.
31

1.
07

0.
98

1.
06

5.
04

0.
09

2.
31

5.
38

0.
46

3.
17

3.
32

1.
12

2.
64

5
5.
10

5.
51

4.
89

5.
64

10
.9
2

1.
29

5.
71

12
.7
7

3.
11

10
.0
5

6.
43

3.
71

5.
90

10
10
.0
9

10
.6
8

9.
77

10
.6
8

15
.7
6

4.
23

9.
29

19
.5
7

7.
18

16
.6
8

9.
64

7.
15

8.
96

St
ud
en
t
t 8

R
M
L
=
U
M
L

U
M
L
=
P
M
L

U
M
L
=
P
M
L

R
M
L
=
U
M
L

&
U
M
L
=
P
M
L

ϑ
i@

(θ̄
T
,η̄

)
ϑ
i@

(θ̂
T
,η̂
T
))

(a
,v
ec
h

(Ω
))

@
(θ̂
T
,η̂
T

)
ϑ
i@

(θ̄
T
,η̄

)

%
D
W
H
1

D
W
H
2

D
W
H
3

L
R

D
W
H
1

D
W
H
2

D
W
H
3

D
W
H
1

D
W
H
2

D
W
H
3

D
W
H
1

D
W
H
2

D
W
H
3

1
41
.0
7

34
.4
6

35
.2
9

27
.9
2

6.
21

0.
09

3.
05

5.
99

0.
31

3.
98

46
.7
8

32
.5
7

40
.5
2

5
57
.3
9

53
.6
9

53
.6
6

49
.1
3

12
.7
6

1.
62

7.
19

14
.1
1

2.
71

11
.6
6

60
.0
4

50
.0
2

55
.1
3

10
66
.3
7

63
.4
8

63
.1
0

60
.2
9

17
.6
1

4.
50

11
.1
6

20
.9
1

6.
35

18
.4
0

67
.0
6

59
.1
5

62
.8
9

D
SM
N
(0
.2
,0
.1
)

R
M
L
=
U
M
L

U
M
L
=
P
M
L

U
M
L
=
P
M
L

R
M
L
=
U
M
L

&
U
M
L
=
P
M
L

ϑ
i@

(θ̄
T
,η̄

)
ϑ
i@

(θ̃
T
,η̆
T
)

(a
,v
ec
h

(Ω
))

@
(θ̃
T
,η̆
T

)
ϑ
i@

(θ̄
T
,η̄
T

)

%
D
W
H
1

D
W
H
2

D
W
H
3

L
R

D
W
H
1

D
W
H
2

D
W
H
3

D
W
H
1

D
W
H
2

D
W
H
3

D
W
H
1

D
W
H
2

D
W
H
3

1
10
0.
0

10
0.
0

10
0.
0

10
0.
0

92
.5
3

40
.9
2

80
.0
0

88
.1
6

11
.5
1

46
.7
4

10
0.
0

10
0.
0

10
0.
0

5
10
0.
0

10
0.
0

10
0.
0

10
0.
0

96
.3
8

75
.6
2

90
.3
9

93
.4
4

30
.0
6

65
.5
5

10
0.
0

10
0.
0

10
0.
0

10
10
0.
0

10
0.
0

10
0.
0

10
0.
0

97
.5
8

88
.4
7

93
.8
5

95
.6
8

43
.9
9

74
.8
6

10
0.
0

10
0.
0

10
0.
0

D
SM
N
(0
.2
,0
.1
,0
.5
)

R
M
L
=
U
M
L

U
M
L
=
P
M
L

U
M
L
=
P
M
L

R
M
L
=
U
M
L

&
U
M
L
=
P
M
L

ϑ
i@

(θ̄
T
,η̄

)
ϑ
i@

(θ̃
T
,η̆
T
)

(a
,v
ec
h

(Ω
))

@
(θ̃
T
,η̆
T

)
ϑ
i@

(θ̄
T
,η̄
T

)

%
D
W
H
1

D
W
H
2

D
W
H
3

L
R

D
W
H
1

D
W
H
2

D
W
H
3

D
W
H
1

D
W
H
2

D
W
H
3

D
W
H
1

D
W
H
2

D
W
H
3

1
10
0.
0

10
0.
0

10
0.
0

10
0.
0

96
.2
5

43
.9
8

86
.7
2

99
.7
9

97
.4
5

98
.1
1

10
0.
0

10
0.
0

10
0.
0

5
10
0.
0

10
0.
0

10
0.
0

10
0.
0

98
.3
0

78
.1
5

93
.8
4

99
.9
4

99
.2
7

99
.4
2

10
0.
0

10
0.
0

10
0.
0

10
10
0.
0

10
0.
0

10
0.
0

10
0.
0

98
.9
5

89
.5
8

96
.2
0

99
.9
9

99
.6
7

99
.7
1

10
0.
0

10
0.
0

10
0.
0

M
on
te
C
ar
lo
re
je
ct
io
n
p
er
ce
nt
ag
es
.
D
W
H
1:
W
al
d-
ty
p
e
H
au
sm
an
te
st
.
D
W
H
2:
H
au
sm
an
te
st
ba
se
d
on
U
M
L
(R
M
L
)
sc
or
e
co
m
pu
te
d
at
P
M
L
E
(U
M
L
E
).

D
W
H
3:
H
au
sm
an
te
st
ba
se
d
on
P
M
L
(U
M
L
)
sc
or
e
co
m
pu
te
d
at
M
L
E
(R
M
L
E
).
E
xp
ec
te
d
H
es
si
an
an
d
co
va
ri
an
ce
m
at
ri
ce
s
ev
al
ua
te
d
at
R
M
L
E

(θ̄
T
,η̄

)
or

P
M
L
E
an
d
se
qu
en
ti
al
M
M
es
ti
m
at
or

(θ̃
T
,η̆
T

).
D
SM
N
(d
is
cr
et
e
sc
al
e
m
ix
tu
re
of
tw
o
no
rm
al
s)
,
D
L
SM
N
(d
is
cr
et
e
lo
ca
ti
on
-s
ca
le
m
ix
tu
re
of
tw
o
no
rm
al
s)
.

Sa
m
pl
e
le
ng
th
=
50
0.
R
ep
lic
at
io
ns
=
20
,0
00
.

53



T
A
B
L
E
3:
St
ru
ct
ur
al
V
A
R
(1
):
E
m
pi
ri
ca
l
re
je
ct
io
n
ra
te
s.

In
de
p
en
de
nt
St
ut
en
t
t (
η
1
=
0
.1
5
,η
2
=
0
.1
0
)

R
ep
lic
at
io
ns
20
,0
00

R
M
L
=
U
M
L

U
M
L
=
P
M
L

U
M
L
=
P
M
L

U
M
L
=
P
M
L

R
M
L
=
U
M
L

&
U
M
L
=
P
M
L

d
ia
g
(C

)@
(θ̄
T
,η̄

)
v
ec
h

(Σ
)@

(θ̂
T
,η̂
T
))

τ
@

(θ̂
T
,η̂
T

)
(τ
,v
ec
h

(Σ
))

@
(θ̂
T
,η̂
T
))

(v
ec
h

(Σ
),
d
ia
g
(C

))
@

(θ̄
T
,η̄

)

%
D
W
H
1
D
W
H
2
D
W
H
3
L
R

D
W
H
1
D
W
H
2
D
W
H
3

D
W
H
1
D
W
H
2
D
W
H
3

D
W
H
1
D
W
H
2
D
W
H
3

D
W
H
1

D
W
H
2

D
W
H
3

1
2.
70

2.
22

1.
11

1.
06

3.
39

2.
06

3.
04

1.
65

1.
16

1.
51

3.
64

2.
09

3.
31

4.
61

2.
76

3.
28

5
7.
26

6.
86

4.
98

5.
11

6.
65

4.
17

5.
86

5.
77

4.
87

5.
42

7.
39

4.
85

6.
63

8.
74

6.
18

6.
54

10
12
.4
0

11
.8
8

9.
76

9.
97

9.
75

6.
51

8.
81

10
.6
1

9.
78

10
.2
6

11
.1
8

7.
87

10
.1
3

12
.2
9

9.
47

9.
70

In
de
p
en
de
nt
D
L
SM
N
(0
.5
2
,0
.0
6
,0
)(
0
.3
0
,0
.2
0
,0
.5
)

R
ep
lic
at
io
ns
5,
00
0

R
M
L
=
U
M
L

U
M
L
=
P
M
L

U
M
L
=
P
M
L

U
M
L
=
P
M
L

R
M
L
=
U
M
L

&
U
M
L
=
P
M
L

d
ia
g
(C

)@
(θ̄
T
,η̄

)
v
ec
h

(Σ
)@

(θ̂
T
,η̂
T
))

τ
@

(θ̂
T
,η̂
T

)
(τ
,v
ec
h

(Σ
))

@
(θ̂
T
,η̂
T
))

(v
ec
h

(Σ
),
d
ia
g
(C

))
@

(θ̄
T
,η̄

)

%
D
W
H
1
D
W
H
2
D
W
H
3
L
R

D
W
H
1
D
W
H
2
D
W
H
3

D
W
H
1
D
W
H
2
D
W
H
3

D
W
H
1
D
W
H
2
D
W
H
3

D
W
H
1

D
W
H
2

D
W
H
3

1
10
0

10
0

10
0
10
0

10
0

10
0

10
0

99
.8
4

92
.8
8

99
.8
0

10
0

10
0

10
0

10
0

10
0

10
0

5
10
0

10
0

10
0
10
0

10
0

10
0

10
0

99
.9
0

97
.0
2

99
.8
6

10
0

10
0

10
0

10
0

10
0

10
0

10
10
0

10
0

10
0
10
0

10
0

10
0

10
0

99
.9
6

98
.1
4

99
.8
8

10
0

10
0

10
0

10
0

10
0

10
0

M
on
te
C
ar
lo
re
je
ct
io
n
p
er
ce
nt
ag
es
.
D
W
H
1:
W
al
d-
ty
p
e
H
au
sm
an
te
st
.
D
W
H
2:
H
au
sm
an
te
st
ba
se
d
on
U
M
L
(R
M
L
)
sc
or
e
co
m
pu
te
d
at
P
M
L
E
(U
M
L
E
).

D
W
H
3:
H
au
sm
an
te
st
ba
se
d
on
P
M
L
(U
M
L
)
sc
or
e
co
m
pu
te
d
at
M
L
E
(R
M
L
E
).
E
xp
ec
te
d
H
es
si
an
an
d
co
va
ri
an
ce
m
at
ri
ce
s
ev
al
ua
te
d
at
R
M
L
E

(θ̄
T
,η̄

)
or

P
M
L
E
an
d
se
qu
en
ti
al
M
M
es
ti
m
at
or

(θ̃
T
,η̆
T

).
D
L
SM
N
(d
is
cr
et
e
lo
ca
ti
on
-s
ca
le
m
ix
tu
re
of
tw
o
no
rm
al
s)
.
Sa
m
pl
e
le
ng
th
=
20
00
.

54



TABLE 4: Parameter estimates. Sample period 1960:08 - 2015:04

PML UML RML
τ ′ 0.013 1.261 0.013 0.008 1.045 -0.007 0.010 1.042 -0.002

1.000 -0.006 0.069 1.000 -0.008 0.063
J 14.045 1.000 0.771 21.354 1.000 0.968

0.157 -0.001 1.000 0.208 -0.001 1.000
Ψ 0.010 0.681 0.199 0.009 0.582 0.020

0.001 -0.011 0.001 0.003 0.007 0.027 0.001 -0.009 0.000
JΨ2J′ × 10 -0.011 4.329 0.007 0.007 5.063 0.305 -0.009 3.733 0.003

0.001 0.007 0.007 0.027 0.305 0.397 0.000 0.003 0.004

TABLE 5: DHW test statistics. Sample period 1960:08 - 2015:04

Test d.f. Statistic p-value
PML vs. UML

τ@(θ̂T , η̂T ) 3 13.90 0.003
vech(Σ)@(θ̂T , η̂T ) 6 28.66 7× 10−5

(τ , vech(Σ))@(θ̂T , η̂T ) 9 42.57 0.0
UML vs. RML

diag(C)@(θ̄T , η̄) 3 343.93 0.0
η = η̄ 3 143.55 0.0

PML vs. UML tests are based on the UML score computed at the PMLE. In turn, UML vs. RML tests
correspond to the UML score computed at the RMLE, and the LR test, respectively.

TABLE 6: DHW test statistics. Sample period 1988:05 - 2015:04

Test d.f. Statistic p-value
PML vs. UML

τ@(θ̂T , η̂T ) 3 5.650 0.130
vech(Σ)@(θ̂T , η̂T ) 6 14.57 0.024

(τ , vech(Σ))@(θ̂T , η̂T ) 9 20.22 0.017
UML vs. RML

diag(C)@(θ̄T , η̄) 3 69.69 0.0
η = η̄ 3 37.82 0.0

PML vs. UML tests are based on the UML score computed at the PMLE. In turn, UML vs. RML tests
correspond to the UML score computed at the RMLE, and the LR test, respectively.
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B Auxiliary results

Lemma 1 Let θ̂T = arg minθ∈Θ m̄′T (θ)S̃mT m̄T (θ) denote the GMM estimator of θ over the
parameter space Θ based on the average influence functions m̄T (θ) and weighting matrix S̃mT ,
and consider a homeomorphic and continuously differentiable transformation π(.) from the orig-
inal parameters θ to a new set of parameters π, with rank [∂π′ (θ) /∂θ] evaluated at θ̂T equal to
p = dim(θ). If θ̂T ∈ int(Θ), then

θ̂T = θ(π̂T ),

π̂T = π(θ̂T ),

and
m̄′T (π̂T )S̃mT m̄T (π̂T ) = m̄′T (θ̂T )S̃mT m̄T (θ̂T ),

where θ(π) is the inverse mapping such that π[θ(π)] = π, m̄T (π) = m̄T [θ(π)] are the average
influence functions written in terms of π, and π̂T = arg minπ∈Π m̄

′
T (π)S̃mT m̄T (π).

Proof. The interior solution assumption implies that the sample first-order condition charac-

terising θ̂T is
∂m̄′T (θ̂T )

∂θ
S̃mT m̄T (θ̂T ) = 0, (B1)

while the corresponding condition for π̂T will be

∂m̄′T (π̂T )

∂π
S̃mT m̄T (π̂T ) =

∂θ′(π̂T )

∂π

∂m̄′T [θ(π̂T )]

∂θ
S̃mT m̄T [θ(π̂T )] = 0 (B2)

by the chain rule for derivatives. Given that rank
[
∂θ′ (π) /∂π

]
evaluated at π(θ̂T ) is p in

view of our assumption on the rank of the direct Jacobian ∂π′ (θ) /∂θ by virtue of the inverse

mapping theorem, the above equations imply that θ̂T = θ(π̂T ), whence the other two results

trivially follow. �
This result confirms the numerical invariance of the GMM criterion to reparametrisations

when the weighting matrix remains the same, a condition satisfied by the most popular choices,

including the identity matrix, as well as the unconditional sample variance of the influence

functions and its long-run counterpart when the initial estimators at which those matrices are

evaluated satisfy πi = π(θi). Obviously, in exactly identified contexts, such as the one implicitly

arising in maximum likelihood estimation, in which the usual suffi cient identification condition

rank{E[∂mt (θ0) /∂θ
′]} = p holds, the weighting matrix becomes irrelevant, at least in large

samples, which allows us to replace the first order conditions (B1) and (B2) by m̄T (θ̂T ) = 0,

and m̄T (π̂T ) = 0, respectively. Aside from this change, the results of the lemma continue to

hold.

Lemma 2 Let ς denote a scalar random variable with continuously differentiable density func-
tion h(ς;η) over the possibly infinite domain [a, b], and let m(ς) denote a continuously differen-
tiable function over the same domain such that E [m(ς)|η] = k(η) <∞. Then

E [∂m(ς)/∂ς|η] = −E [m(ς)∂ lnh(ς;η)/∂ς|η] ,

as long as the required expectations are defined and bounded.

1



Proof. If we differentiate

k(η) = E [m(ς)|η] =

∫ b

a
m(ς)h(ς;η)dς

with respect to ς, we get

0 =

∫ b

a

∂m(ς)

∂ς
h(ς;η)dς+

∫ b

a
m(ς)

∂h(ς;η)

∂ς
dς=

∫ b

a

∂m(ς)

∂ς
h(ς;η)dς+

∫ b

a
m(ς)h(ς;η)

∂ lnh(ς;η)

∂ς
dς,

as required. �

Lemma 3 If ε∗t |It−1;θ0,%0 is i.i.d. D(0, IN ,%) with density function f(ε∗t ;%), where % = 0
denotes normality, then

E
{

edt(θ,0)
[
e′dt(θ,%), e′rt(θ,%)

]∣∣ It−1;θ,%} = [K (0) |0]. (B3)

Proof. We can use the conditional analogue to the generalised information matrix equality (see

e.g. Newey and McFadden (1994)) to show that

E
{

sθt(θ,0)
[
s′θt(θ,%), s′%t(θ,%)

]∣∣ It−1;θ,%} = −E
{[

∂sθt(θ,0)

∂θ′

∣∣∣∣ ∂sθt(θ,0)

∂%′

]∣∣∣∣ It−1;θ,%}
= −E { [hθθt(θ; 0)|0]| It−1;θ,%} = [At(φ)|0]

irrespective of the conditional distribution of ε∗t , where we have used the fact that sθt(θ,0) does

not vary with % when regarded as the influence function for θ̃T . Then, the required result follows

from the martingale difference nature of both edt(θ0,0) and et(θ0,%0). �

Lemma 4 (
Mss Msr

M′sr Mrr

)−1
=

(
KNN + Υ ENMsr

M′srEN Mrr

)−1
(

∆N [∆′N (KNN + Υ)∆N ]−1∆′N 0
0 0

)
+

(
EN 0
0 IN

)(
Mss Msr

M′sr Mrr

)−1(
E′N 0
0 IN

)
,

(B4)

whereMss,Msr,Mrr, Υ and Msr are defined in Proposition D2, and Mss = (IN + E′NΥEN )
is a diagonal matrix of order N with typical element mss(%i).

Proof. Using the partitioned inverse formula, we get(
Mss Msr

M′sr Mrr

)−1
=

[
M−1ss +M−1ssMsrMrrM′srM−1ss −M−1ssMsrMrr

−MrrM′srM−1ss (Mrr −M′srM−1ssMsr)
−1

]
.

Given that Υ is diagonal, we can use Proposition 7 in Magnus and Sentana (2020), which

yields

M−1ss = (KNN + Υ)−1 = ∆N [∆′N (KNN + Υ)∆N ]−1∆′N + EN (IN + E′NΥEN )−1E′N

= ∆N [∆′N (KNN + Υ)∆N ]−1∆′N + ENM−1ss E′N .

2



In turn, Theorem 7.4(i) in Magnus (1988) states that KNNEN = EN , which implies that

MssEN = (KNN + Υ)EN = (IN2 + Υ)EN = EN (IN + E′NΥEN ) = ENMss by virtue of

Proposition 3 in Magnus and Sentana (2020). Then, if we premultiply both sides by M−1ss =

(KNN + Υ)−1, we end up with EN = M−1ss ENMss, whence we finally obtain that M−1ss EN =

ENM−1ss . Thus, M−1ssMsr = ENM−1ss Msr, where M−1ss Msr is a diagonal matrix with typical

element msr(%i)/mss(%i). Therefore M′srM−1ssMsr = M′srE
′
NM−1ss ENMsr = M′srM

−1
ss Msr will

be a diagonal N × N matrix with typical diagonal element m2sr(%i)/mss(%i). In turn, this

implies that Mrr − M′srM−1ssMsr = Mrr − M′srM−1ss Msr is a diagonal matrix with typical

element mrr(νi) − m2sr(%i)/mss(%i), so that Mrr = (Mrr −M′srM−1ss Msr)
−1 is also diagonal.

Moreover, M−1ssMsrMrr = ENM−1ss MsrMrr, where M−1ss MsrMrr is once again diagonal with

typical element [msr(%i)/mss(%i)]/[mrr(νi)−m2sr(%i)/mss(%i)].
If we put all these pieces together, we end up with(
Mss Msr

M′sr Mrr

)−1
=

(
M−1ss + ENM−1ss MsrMrrM′srM

−1
ss E′N −ENM−1ss MsrMrr

−MrrM′srM
−1
ss E′N Mrr

)
=

{
∆N [∆′N (KNN + Υ)∆N ]−1∆′N + EN (M−1ss +M−1ss MsrMrrM′srM

−1
ss )E′N −ENM−1ss MsrMrr

−MrrM′srM
−1
ss E′N Mrr

}
=

(
∆N [∆′N (KNN + Υ)∆N ]−1∆′N 0

0 0

)
+

(
EN 0
0 IN

)(
M−1ss +M−1ss MsrMrrM′srM

−1
ss −M−1ss MsrMrr

−MrrM′srM
−1
ss Mrr

)(
E′N 0
0 IN

)
=

(
∆N [∆′N (KNN + Υ)∆N ]−1∆′N 0

0 0

)
+

(
EN 0
0 IN

)(
Mss Msr

M′sr Mrr

)−1(
E′N 0
0 IN

)
,

as claimed. �

Proposition B1 If model (18) with cross-sectionally independent symmetric structural shocks
generates a covariance stationary process, then:

1. Its information matrix is block diagonal between (τ ′,a′)′ and (c′,%′)′

2. The asymptotic covariance matrix of the restricted and unrestricted ML estimators of
(τ ′,a′)′ will be given by

1 µ′ . . . µ′

µ (Γ(0) + µµ′) . . . (Γ(p− 1) + µµ′)
...

...
. . .

...
µ (Γ′(p− 1) + µµ′) . . . (Γ(0) + µµ′)


−1

⊗CM−1ll C′,

where Γ(p) is the pth autocovariance matrix of yt andMll is defined in Proposition D2.
3. The asymptotic covariance matrices of the restricted and unrestricted ML estimators of c
and % are given by

(IN ⊗C)M−1ss (IN ⊗C′) and[
(IN ⊗C′−1)Mss(IN ⊗C−1) (IN ⊗C′−1)Msr

M′sr(IN ⊗C−1) Mrr

]−1
,

respectively, whereMss,Msr andMrr are also defined in Proposition D2 and the rank of
the difference between the asymptotic variances of these two estimators of c is N .

3



Proof. Given the mapping between the structural and reduced form parameters, the contribu-

tion to the conditional log-likelihood function from observation t (t = 1, . . . , T ) will be

lt(yt;φ) = − ln |C|+ l[ε∗1t(θ);%1] + . . .+ l[ε∗Nt(θ);%N ],

where l[ε∗it(θ);%i] is the univariate log-likelihood function for the i
th structural shock ε∗it(θ),

ε∗t (θ) = C−1εt(θ), and εt(θ) = (yt − τ − Φ1yt−1 − . . . − Φpyt−p). To compute the gradient

and information matrix, we rely on the expressions in Supplemental Appendix D.3 because the

assumed multivariate distribution for ε∗t (θ) is not elliptically symmetric despite the marginal

distributions of its components being symmetric. Given that the conditional mean vector and

covariance matrix of (18) are given by

µt(θ) = τ + A1yt−1 + . . .+ Apyt−p,

Σt(θ) = CC′,

respectively, straightforward algebra shows that

Zlt(θ) =
∂µ′t(θ)

∂θ
Σ
−1/2′
t (θ) =


IN

yt−1 ⊗ IN
...

yt−p ⊗ IN
0N2×N

C−1′,

Zst(θ) =
∂vec′[Σt(θ)]

∂θ
[IN ⊗Σ

−1/2′
t (θ)] =


0N×N2

0N2×N2

...
0N2×N2

IN2

 (IN ⊗C−1′),

which means that the conditional mean and variance parameters are variation free. This fact,

combined with the symmetry of the Student t and the formulas in Proposition D2, immedi-

ately implies that the information matrix will be block diagonal. Specifically, the block of the

information matrix corresponding to the N + pN2 conditional mean parameters (τ ,a) will be

E[Zlt(θ)MllZ
′
lt(θ)] = E


1 y′t−1 . . . y′t−p

yt−1 yt−1y′t−1 . . . yt−1y′t−p
...

...
. . .

...
yt−p yt−py′t−1 . . . yt−py′t−p

⊗C−1′MllC
−1 (B5)

=


1 µ′ . . . µ′

µ (Γ(0) + µµ′) . . . (Γ(p− 1) + µµ′)
...

...
. . .

...
µ (Γ′(p− 1) + µµ′) . . . (Γ(0) + µµ′)

⊗C−1′MllC
−1. (B6)

In turn, the (conditional) information matrix for the unrestricted ML estimators of the N2

structural shock coeffi cients c and the N shape parameters % will be:(
Zst(θ) 0

0 IN

)(
Mss Msr

M′sr Mrr

)(
Zst(θ) 0

0 IN

)
.

4



In this respect, we can use the results in Proposition D2 to prove that(
Mss Msr

M′sr Mrr

)
=

(
KNN + Υ ENMsr

M′srEN Mrr

)
.

Hence, the information matrix will be(
Zst(θ) 0

0 IN

)(
Mss Msr

M′sr Mrr

)(
Zst(θ) 0

0 IN

)
=

[
(IN ⊗C′−1)(KNN + Υ)(IN ⊗C−1) (IN ⊗C′−1)ENMsr

M′srEN (IN ⊗C−1) Mrr

]
.

If we then use the expressions in Lemma 4, we can easily show that the inverse of the

information matrix will be[
(IN ⊗C){∆N [∆′N (KNN + Υ)∆N ]−1∆′N + ENMssE′N}(IN ⊗C) −(IN ⊗C)ENM−1ss MsrMrr

−MrrM′srM
−1
ss E′N (IN ⊗C) Mrr

]
,

where Mss =M−1ss +M−1ss MsrMrrM′srM
−1
ss .

In contrast, if we assume that the shape parameters are fixed at their true values, the

asymptotic covariance matrix of the restricted ML estimators of c will be

(IN ⊗C)M−1ss (IN ⊗C′) = (IN ⊗C)∆N [∆′N (KNN + Υ)∆N ]−1∆′N (IN ⊗C′)

+(IN ⊗C)ENM−1ss E′N (IN ⊗C′).

Therefore, the effi ciency loss from simultaneously estimating the N shape parameters % will be

(IN ⊗C)ENM−1ss MsrMrrM′srM
−1
ss E′N (IN ⊗C′),

which has rank N rather than N2 because ENM−1ss MsrMrrM′srM
−1
ss E′N is a diagonal matrix of

rank N in which the non-zero diagonal elements are

1

ψ2i

m2sr(%i)
m2ss(%i)

[
mrr(%i)−

m2sr(%i)
mss(%i)

]−1
.

Finally, note that since the ranks of (IN ⊗C′−1) andMsr = ENMsr are N2 and N , respec-

tively, Sylvester’s rank inequality implies that

rank[(IN⊗C)ENM−1ss MsrMrr] = N,

so that Holly’s (1982) condition holds. �

Proposition B2 If model (18) with cross-sectionally independent symmetric structural shocks
generates a covariance stationary process, then the asymptotic covariance matrix of the Gaussian
PML estimators is block diagonal between (τ ′,a′)′ and σ, with the first block given by

1 µ′ . . . µ′

µ (Γ(0) + µµ′) . . . (Γ(p− 1) + µµ′)
...

...
. . .

...
µ (Γ′(p− 1) + µµ′) . . . (Γ(0) + µµ′)


−1

⊗Σ

5



and the second block by

[D′N (Σ−1 ⊗Σ−1)DN ]−1D′N (C−1 ⊗C−1)K(C−′ ⊗C−1′)DN [D′N (Σ−1 ⊗Σ−1)DN ]−1,

where K = E[vec(ε∗tε
∗
t − IN )vec(ε∗tε

∗
t − IN )′] is the N2×N2 matrix of fourth-order moments of

the structural shocks.

Proof. The information matrix equality implies that the expected value of the (minus) Hessian

of the Gaussian pseudo log-likelihood usually coincides with the value of the true information

matrix under normality. Therefore, we could exploit the fact thatMll = IN and C−1′MllC
−1 =

Σ−1 under normality to simplify the expressions we have already derived for τ and a in Propo-

sition B1. However, the situation is slightly more complicated for σ because the number of

parameters that can be identified by the Gaussian and non-Gaussian PMLs is different. For

that reason, we use the expressions in Proposition C2 to prove that the bottom block of the

(minus) expected value of the Hessian will be given by

Aσσ =
1

4
D′N (Σ−

1
2 ⊗Σ−

1
2 )(IN2 + KNN )(Σ−

1
2
′ ⊗Σ−

1
2
′)DN =

1

2
D′N (Σ−1 ⊗Σ−1)DN

regardless of the choice of square root matrix in view of the properties of the duplication and

commutation matrix in Magnus and Neudecker (2919).

As for the matrix B, which contains the asymptotic variance of the Gaussian scores, the
symmetry of the marginal distributions of the structural shocks together with the cross-sectional

independence across shocks imply that we will also obtain a block diagonal expression with the

same block for the conditional mean parameters as A. In contrast, the block for the conditional
variance parameters σ will be different. To obtain it, we can use the expressions in Proposition

C2 with C playing the role of Σ
1
2 to exploit the cross-sectional independence of the structural

shocks, which leads to

Bσσ =
1

4
D′N (C−1 ⊗C−1)K(C−′ ⊗C−1′)DN ,

where K is equal to KNN plus a a block diagonal matrix in which each of the N blocks is

diagonal of size N ×N with the following structure:

1 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0 1 0 0 0 0
0 0 0 κii(%i) 0 0 0
0 0 0 0 1 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0 1


.

In the Student t case, κii(%i) = (νi + 2)/(νi − 4). �

Proposition B3 If model (18) with cross-sectionally independent symmetric structural shocks
generates a covariance stationary process, then the scores and information matrix of σL and ω
are given by [

sσL(θ;%)
sω(θ;%)

]
=

[
LN (IN ⊗Σ−1′L )(Q⊗Q)
∂vec′(Q)/∂ω · (IN ⊗Q)

]
est(φ)
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and[
LN (IN ⊗Σ−1′L )(Q⊗Q)
∂vec′(Q)/∂ω · (IN ⊗Q)

]
Mss

[
(Q′ ⊗Q′)(IN ⊗Σ−1L )LN (IN ⊗Q) · ∂vec(Q)/∂ω′

]
.

Proof. As in Proposition 14, the proof builds up on Proposition B1. Specifically, given that

vec(C) = (Q′ ⊗ IN )vec(ΣL) = (Q′ ⊗ IN )L′Nvech(ΣL), straightforward algebra shows that

∂c

∂σ′L
= (Q′ ⊗ IN )L′N .

Similarly, given that we can also write vec(C) = (IN ⊗ΣL)vec(Q), we will have that

∂c

∂ω′
= (IN ⊗ΣL)

∂vec(Q)

∂ω′
,

where ∂vec(Q)/∂ω′ depends on the particular parametrisation of orthogonal matrices chosen

(see Magnus, Pijls and Sentana (2020)). Given that

sc(θ;%) = (IN ⊗C−1′)est(φ),

this direct approach allows us to obtain the scores for σL and ω as[
sσL(θ;%)
sω(θ;%)

]
=

(
∂c′/∂σL
∂c′/∂ω

)
sc(θ;%) =

[
LN (Q⊗ IN )

∂vec′(Q)/∂ω · (IN ⊗Σ′L)

]
sc(θ;%).

But since C = ΣLQ so C−1 = Q′Σ−1L and C−1′ = Σ−1′L Q, we have that[
LN (Q⊗ IN )

∂vec′(Q)/∂ω · (IN ⊗Σ′L)

]
(IN ⊗C−1′) =

[
LN (Q⊗ IN )(IN ⊗Σ−1′L Q)

∂vec′(Q)/∂ω · (IN ⊗Σ′L)(IN ⊗Σ−1′L Q)

]
=

[
LN (IN ⊗Σ−1′L )(Q⊗Q)
∂vec′(Q)/∂ω · (IN ⊗Q)

]
,

whence the expression for the scores and information matrix immediately follows. The depen-

dence of the scores sσL(θ;%) onQ simply reflects the fact that we have defined ε∗t (θ) = C−1εt(θ)

in terms of the true underlying independent shocks. We explain how to compute LN (IN ⊗Σ−1′L )

effi ciently at the end of Appendix D.1. �
To obtain the asymptotic variances of σL, we can alternatively use the following two-step

procedure. First, we go from the structural loading matrix C to Σ. Given that dΣ = (dC)C′+

C(dC′), it immediately follows that

dvec(Σ) = (C⊗ IN )dvec(C) + (IN ⊗C)dvec(C′)

= (C⊗ IN )dvec(C) + (IN ⊗C)KNNdvec(C) = (IN2 + KNN )(C⊗ IN )dvec(C),

so that
∂σ

∂c′
= D+

N (IN2 + KNN )(C⊗ IN ),

where D+
N is the Moore-Penrose inverse of the duplication matrix (see Magnus, 1988). Using

this Jacobian, the delta method allows us to obtain the asymptotic covariance matrix of the

restricted and unrestricted MLEs of the reduced form parameters σ, but not their scores because

rank(∂σ/∂c′) = N(N+1)/2, so we cannot invert it. Then, we can go from σ to σL by exploiting

expression (E13) in Appendix D.1.
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Lemma 5

[(Ψ⊗Ψ−1)(IN⊗J−1)∆N
...ENΨ−1]−1 =

{
∆′N (IN⊗J)(Ψ−1⊗Ψ)[IN2−ENE′N (IN⊗J)(Ψ−1⊗Ψ)]

ΨE′N (IN⊗J)

}
.

Proof. Let us look at the four blocks of{
∆′N (IN⊗J)(Ψ−1⊗Ψ)[IN2−ENE′N (IN⊗J)(Ψ−1⊗Ψ)]

ΨE′N (IN⊗J)

}
[ (Ψ⊗Ψ−1)(IN⊗J−1)∆N ENΨ−1 ].

The northwestern block is

∆′N (IN ⊗ J)(Ψ−1 ⊗Ψ)(Ψ⊗Ψ−1)(IN ⊗ J−1)∆N

−∆′N (IN ⊗ J)(Ψ−1 ⊗Ψ)ENE′N (IN ⊗ J)(Ψ−1 ⊗Ψ)(Ψ⊗Ψ−1)(IN ⊗ J−1)∆N

= ∆′N∆N −∆′N (IN ⊗ J)(Ψ−1 ⊗Ψ)ENE′N∆N = IN(N−1)

by virtue of Proposition 4 in Magnus and Sentana (2020). Similarly, the northeastern block is

∆′N (IN ⊗ J)(Ψ−1 ⊗Ψ)ENΨ−1 −∆′N (IN ⊗ J)(Ψ−1 ⊗Ψ)ENE′N (IN ⊗ J)(Ψ−1 ⊗Ψ)ENΨ−1

= ∆′N (IN ⊗ J)ENΨ−1 −∆′N (IN ⊗ J)ENE′N (IN ⊗ J)ENΨ−1 = 0

thanks to Propositions 2 and 3 in Magnus and Sentana (2020), together with the fact that

the diagonal elements of J are normalised to 1. The same propositions also imply that the

southwestern block will be

ΨE′N (IN ⊗ J)(Ψ⊗Ψ−1)(IN ⊗ J−1)∆N = ΨE′N∆N = 0,

while the sourtheastern one

ΨE′N (IN ⊗ J)ENΨ−1 = Ψ(IN � J)Ψ−1 = IN ,

as claimed. �

C The special case of spherical distributions

C.1 Some useful distribution results

A spherically symmetric random vector of dimension N , ε•t , is fully characterised in Theorem

2.5 (iii) of Fang, Kotz and Ng (1990) as ε•t = etut, where ut is uniformly distributed on the

unit sphere surface in RN , and et is a non-negative random variable independent of ut, whose

distribution determines the distribution of ε•t . The variables et and ut are referred to as the

generating variate and the uniform base of the spherical distribution. Assuming that E(e2t ) <∞,
we can standardise ε•t by setting E(e2t ) = N , so that E(ε•t ) = 0, V (ε•t ) = IN . Specifically, if ε•t
is distributed as a standardised multivariate Student t random vector of dimension N with ν0

degrees of freedom, then et =
√

(ν0 − 2)ζt/ξt, where ζt is a chi-square random variable with N

degrees of freedom, and ξt is an independent Gamma variate with mean ν0 > 2 and variance

8



2ν0. If we further assume that E(e4t ) < ∞, then the coeffi cient of multivariate excess kurtosis
κ0, which is given by E(e4t )/[N(N + 2)]− 1, will also be bounded. For instance, κ0 = 2/(ν0− 4)

in the Student t case with ν0 > 4, and κ0 = 0 under normality. In this respect, note that since

E(e4t ) ≥ E2(e2t ) = N2 by the Cauchy-Schwarz inequality, with equality if and only if et =
√
N

so that ε•t is proportional to ut, then κ0 ≥ −2/(N + 2), the minimum value being achieved in

the uniformly distributed case.

Then, it is easy to combine the representation of spherical distributions above with the higher

order moments of a multivariate normal vector in Balestra and Holly (1990) to prove that the

third and fourth moments of a spherically symmetric distribution with V (ε•t ) = IN are given by

E(ε•tε
•
t
′ ⊗ ε•t ) = 0, (C1)

E(ε•tε
•
t
′⊗ε•tε•t ′) =E[vec(ε•tε

•
t
′)vec′(ε•tε

•
t )] = (κ0+1)[(IN2 +KNN )+vec (IN ) vec′ (IN )], (C2)

where Kmn is the commutation matrix of orders m and n (see e.g. Magnus and Neudecker

(2019)).

C.2 Likelihood, score and Hessian for spherically symmetric distributions

Let exp[c(η) + g(ςt,η)] denote the assumed conditional density of ε∗t given It−1 and the

shape parameters, where c(η) corresponds to the constant of integration, g(ςt,η) to its kernel

and ςt = ε∗′t ε
∗
t . Ignoring initial conditions, the log-likelihood function of a sample of size T for

those values of θ for which Σt(θ) has full rank will take the form LT (φ) =
∑T

t=1 lt(φ), where

lt(φ) = dt(θ) + c(η) + g [ςt(θ),η], dt(θ) = ln |Σ−1/2t (θ)| is the Jacobian, ςt(θ) = ε∗′t (θ)ε∗t (θ),

ε∗t (θ) = Σ
−1/2
t (θ)εt(θ) and εt(θ) = yt − µt(θ).

Let st(φ) denote the score function ∂lt(φ)/∂φ, and partition it into two blocks, sθt(φ) and

sηt(φ), whose dimensions conform to those of θ and η, respectively. If µt(θ), Σt(θ), c(η) and

g [ςt(θ),η] are differentiable, then

sηt(φ) = ∂c(η)/∂η + ∂g [ςt(θ),η] /∂η = ert(φ), (C3)

while

sθt(φ) =
∂dt(θ)

∂θ
+
∂g [ςt(θ),η]

∂ς

∂ςt(θ)

∂θ
= [Zlt(θ),Zst(θ)]

[
elt(φ)
est(φ)

]
= Zdt(θ)edt(φ), (C4)

where

∂dt(θ)/∂θ = −Zst(θ)vec(IN ),

∂ςt(θ)/∂θ = −2{Zlt(θ)ε∗t (θ) + Zst(θ)vec
[
ε∗t (θ)ε∗′t (θ)

]
}, (C5)

Zlt(θ) = ∂µ′t(θ)/∂θ ·Σ−1/2′t (θ), (C6)

Zst(θ) =
1

2
∂vec′ [Σt(θ)] /∂θ·[Σ−1/2′t (θ)⊗Σ

−1/2′
t (θ)], (C7)

elt(θ,η) = δ[ςt(θ),η] · ε∗t (θ), (C8)

est(θ,η) = vec
{
δ[ςt(θ),η] · ε∗t (θ)ε∗′t (θ)−IN

}
, (C9)
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and

δ[ςt(θ),η] = −2∂g[ςt(θ),η]/∂ς (C10)

is a damping factor that reflects the tail-thickness of the distribution assumed for estimation

purposes. Importantly, while both Zdt(θ) and edt(φ) depend on the specific choice of square

root matrix Σ
1/2
t (θ), sθt(φ) does not, a property that inherits from lt(φ). As we shall see in

Supplemental Appendix D, this result is not generally true for non-spherical distributions.

Obviously, sθt(θ,0) reduces to the multivariate normal expression in Bollerslev andWooldridge

(1992), in which case:

edt(θ,0) =

[
elt(θ,0)
est(θ,0)

]
=

{
ε∗t (θ)

vec [ε∗t (θ)ε∗′t (θ)−IN ]

}
.

Assuming further twice differentiability of the different functions involved, we will have that

the Hessian function ht(φ) = ∂st(φ)/∂φ′ = ∂2lt(φ)/∂φ∂φ′ will be

hθθt(φ) =
∂2dt(θ)

∂θ∂θ′
+
∂2g [ςt(θ), η]

(∂ς)2
∂ςt(θ)

∂θ

∂ςt(θ)

∂θ′
+
∂g [ςt(θ), η]

∂ς

∂2ςt(θ)

∂θ∂θ′
, (C11)

hθηt(φ) = ∂ςt(θ)/∂θ · ∂2g [ςt(θ),η] /∂ς∂η′, (C12)

hηηt(φ) = ∂2c(η)/∂η∂η′ + ∂2g [ςt(θ),η] /∂η∂η′,

where

∂2dt(θ)/∂θ∂θ′=2Zst(θ)Z′st(θ)-
1

2

{
vec′

[
Σ−1t (θ)

]
⊗ Ip

}
∂vec

{
∂vec′ [Σt(θ)] /∂θ

}
/∂θ′, (C13)

∂2ςt(θ)/∂θ∂θ′ = 2Zlt(θ)Z′lt(θ) + 8Zst(θ)[IN ⊗ ε∗t (θ)ε∗′t (θ)]Z′st(θ) + 4Zlt(θ)[ε∗′t (θ)⊗ IN ]Z′st(θ)

+4Zst(θ)[ε∗t (θ)⊗ IN ]Z′lt(θ)− 2[ε∗′t (θ)Σ
−1/2′
t (θ)⊗Ip]∂vec[∂µ

′
t(θ)/∂θ]∂θ′

−{vec′[Σ−1/2t (θ)ε∗t (θ)ε∗′t (θ)Σ
−1/2′
t (θ)]⊗ Ip}∂vec{∂vec′[Σt(θ)]/∂θ}/∂θ′.

Note that ∂ςt(θ)/∂θ, ∂2dt(θ)/∂θ∂θ′ and ∂2ςt(θ)/∂θ∂θ′ depend on the dynamic model specifica-

tion, while ∂2g(ς, η)/(∂ς)2, ∂2g(ς, η)/∂ς∂η′ and ∂g(ς, η)/∂η∂η′ depend on the specific spherical

distribution assumed for estimation purposes (see Fiorentini, Sentana and Calzolari (2003) for

expressions for δ(ςt,η), c(η), g(ςt,η) and its derivatives in the multivariate Student t case,

Amengual and Sentana (2010) for the Kotz distribution and discrete scale mixture of normals,

and Amengual, Fiorentini and Sentana (2013) for polynomial expansions).

C.3 Asymptotic distribution

Given correct specification, the results in Crowder (1976) imply that et(φ) = [e′dt(φ), ert(φ)]′

evaluated at φ0 follows a vector martingale difference, and therefore, the same is true of the score

vector st(φ). His results also imply that, under suitable regularity conditions, the asymptotic

distribution of the joint ML estimator will be
√
T (φ̂T − φ0)→ N

[
0, I−1(φ0)

]
, where I(φ0) =

E[It(φ0)|φ0],

It(φ) = V [st(φ)|It−1;φ] = Zt(θ)M(φ)Z′t(θ) = −E [ht(φ)|It−1;φ] ,

Zt(θ) =

(
Zdt(θ) 0

0 Iq

)
=

(
Zlt(θ) Zst(θ) 0

0 0 Iq

)
, (C14)
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andM(φ) = V [et(φ)|φ]. In particular, Crowder (1976) requires: (i) φ0 is locally identified and

belongs to the interior of the admissible parameter space, which is a compact subset of Rp+q; (ii)
the Hessian matrix is non-singular and continuous throughout some neighbourhood of φ0; (iii)

there is uniform convergence to the integrals involved in the computation of the mean vector

and covariance matrix of st(φ); and (iv) −E−1
[
−T−1

∑
t ht(φ)

]
T−1

∑
t ht(φ)

p→ Ip+q, where

E−1
[
−T−1

∑
t ht(φ)

]
is positive definite on a neighbourhood of φ0.

As for θ̃T (η̄), assuming that η̄ coincides with the true value of this parameter vector, the

same arguments imply that
√
T [θ̃T (η̄) − θ0] → N

[
0, I−1θθ (φ0)

]
, where Iθθ(φ0) is the relevant

block of the information matrix.

The next proposition, which originally appeared as Proposition 1 in Fiorentini and Sentana

(2007), generalises Propositions 3 in Lange, Little and Taylor (1989), 1 in Fiorentini, Sentana

and Calzolari (2003) and 5.2 in Hafner and Rombouts (2007), providing detailed expressions for

M(φ) in models with non-zero conditional means:

Proposition C1 If ε∗t |It−1;φ is i.i.d. s(0, IN ,η) with density exp[c(η) + g(ςt,η)], then

M(η) =

 Mll(η) 0 0
0 Mss(η) Msr(η)
0 M′sr(η) Mrr(η)

 , (C15)

Mll(η) = mll(η)IN , (C16)

Mss(η) = mss(η) (IN2 + KNN ) + [mss(η)− 1]vec(IN )vec′(IN ), (C17)

Msr(η) = vec(IN )msr(η), (C18)

mll(η) = E
[
δ2(ςt,η)

ςt
N

∣∣∣η] = E

[
2∂δ(ςt,η)

∂ς

ςt
N

+ δ(ςt,η)

∣∣∣∣η] ,
mss(η) =

N

N + 2

{
1 + V

[
δ(ςt,η)

ςt
N

∣∣∣η]} =
N

N + 2
E

[
2∂δ(ςt,η)

∂ς

( ςt
N

)2∣∣∣∣η]+ 1,

msr(η) = E
{[
δ(ςt,η)

ςt
N
− 1
]
e′rt(φ)

∣∣∣φ} = −E
[
ςt
N

∂δ(ςt,η)

∂η′

∣∣∣∣η] .
Proof. For our purposes it is convenient to rewrite edt(φ0) as

elt(φ0) = δ[ςt(θ0),η0]ε
∗
t (θ0) = δ(ςt,η0)

√
ςtut,

est(φ0) = vec
{
δ[ςt(θ0),η0]ε

∗
t (θ0)ε

∗′
t (θ0)− IN

}
= vec

[
δ(ςt,η0)ςtutu

′
t − IN

]
,

where ςt and ut are mutually independent for any standardised spherical distribution, with

E(ut) = 0, E(utu
′
t) = N−1IN , E(ςt) = N and E(ς2t ) = N(N + 2)(κ0 + 1). Importantly, we only

need to compute unconditional moments because ςt and ut are independent of zt and It−1 by

assumption. Then, it easy to see that

E[elt(φ)|φ] = E[δ(ςt,η)
√
ςt|η] · E(ut) = 0,

and that

E[est(φ)|φ] = vec
{
E [δ(ςt,η0)ςt|η] · E(utu

′
t)− IN

}
= vec(IN ) {E [δ(ςt,η0)(ςt/N)|η]− 1} .
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In this context, we can use expression (2.21) in Fang, Kotz and Ng (1990) to write the density

function of ςt as

h(ςt;η) =
πN/2

Γ(N/2)
ς
N/2−1
t exp[c(η) + g(ςt,η)], (C19)

whence

[δ(ςt,η)(ςt/N)− 1] = − 2

N
[1 + ςt · ∂ lnh(ςt;η)/∂ς] . (C20)

On this basis, we can use Lemma 2 in Supplemental Appendix B to show that E(ςt) = N <∞
implies

E [ςt · ∂ lnh(ςt;η)/∂ς|η] = −E [1] = −1,

which in turn implies that

E [δ(ςt,η)(ςt/N)− 1|η] = 0 (C21)

in view of (C20). Consequently, E[est(φ)|φ] = 0, as required.

Similarly, we can also show that

E[elt(φ)e′lt(φ)|φ] = E
{
δ2(ςt,η)ςtutu

′
t|η
}

= IN · E[δ2(ςt,η0)(ςt/N)|η],

E[elt(φ)e′st(φ)|φ] = E
{
δ(ςt,η)

√
ςtutvec

′ [δ(ςt,η)ςtutu
′
t − IN

]
|η
}

= 0

by virtue of (C1), and

E[est(φ0)e
′
st(φ0)|φ] = E

{
vec

[
δ(ςt,η0)ςtutu

′
t − IN

]
vec′

[
δ(ςt,η0)ςtutu

′
t − IN

]
|η
}

= E [δ(ςt,η)ςt|η]2
1

N(N + 2)
[(IN2 + KNN ) + vec (IN ) vec′ (IN )]

−2E [δ(ςt,η)(ςt/N)|η] vec (IN ) vec′ (IN ) + vec (IN ) vec′ (IN )

=
N

(N + 2)
E [δ(ςt,η)(ςt/N)|η]2 (IN2 + KNN )

+

{
N

(N + 2)
E [δ(ςt,η)(ςt/N)|η]2 − 1

}
vec (IN ) vec′ (IN )]

by virtue of (C2), (C20) and (C21).

Finally, it is clear from (C3) that ert(φ0) will be a function of ςt but not of ut, which

immediately implies that E[elt(φ)e′rt(φ)|φ] = 0, and that

E[est(φ)e′rt(φ)|φ] = E
{
vec

[
δ(ςt,η)ςt · utu′t − IN

]
e′rt(φ)

}
= vec(IN )E

{
[δ(ςt,η)(ςt/N)− 1] e′rt(φ)

}
.

To obtain the expected value of the Hessian, it is also convenient to write hθθt(φ0) in (C11)
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as

−4Zst(θ0)[IN ⊗ {δ[ςt(θ0), η0]ε∗t (θ0)ε∗′t (θ0)− IN}]Z′st(θ0)

+[e′lt(θ0,η0)Σ
−1/2′
t (θ)⊗ Ip]

∂vec

∂θ′

[
∂µ′t(θ)

∂θ

]
+

1

2
{e′st(θ0,η0)[Σ

−1/2
t (θ0)⊗Σ

−1/2
t (θ0)]⊗Ip}

∂vec

∂θ′

{
∂vec′[Σt(θ)]

∂θ

}
−2Zlt(θ0)[e

′
lt(θ0,η0)⊗ IN ]Z′st(θ0)− 2Zst(θ0)[elt(θ0,η0)⊗ IN ]Z′lt(θ0)

−δ[ςt(θ0),η0]Zlt(θ0)Z′lt(θ0)−2Zst(θ0)Z
′
st(θ0)−

2∂δ [ςt(θ0),η0]

∂ς
{Zlt(θ0)ε∗t (θ0)ε∗′t (θ0)Z

′
lt(θ0)

+Zlt(θ0)ε
∗
t (θ0)vec

′[ε∗t (θ0)ε
∗′
t (θ0)]Z

′
st(θ0) + Zst(θ0)vec[ε

∗
t (θ0)ε

∗′
t (θ0)]ε

∗
t (θ0)Z

′
lt(θ0)

+ Zst(θ0)vec[ε
∗
t (θ0)ε

∗′
t (θ0)]vec

′[ε∗t (θ0)ε
∗′
t (θ0)]Z

′
st(θ0)

}
.

Clearly, the first four lines have zero conditional expectation, and the same is true of the

sixth line by virtue of (C1). As for the remaining terms, we can write them as

−δ(ςt,η0)Zlt(θ0)Z′lt(θ0)− 2∂δ(ςt,η0)/∂ς · Zlt(θ0)ςtutu′tZ′lt(θ0)

−2Zst(θ0)Z
′
st(θ0)− 2∂δ(ςt,η0)/∂ς · ς2tZst(θ0)vec(utu′t)vec′(utu′t)Z′st(θ0),

whose conditional expectation will be

−Zlt(θ0)Z
′
lt(θ0)E[δ(ςt;η0) + 2(ςt/N) · ∂δ(ςt,η0)/∂ς|η0]− 2Zst(θ0)Z

′
st(θ0)

−Zst(θ0)
2E[ς2t · ∂δ(ςt,η0)/∂ς|η0]

N(N + 2)
[(IN2 ⊗KNN ) + vec(IN )vec′(IN )]Z′st(θ0).

As for hθηt(φ0), it follows from (C5) and (C12) that we can write it as

{Zlt(θ0)ε∗t (θ0) + Zst(θ0)vec
[
ε∗t (θ0)ε

∗′
t (θ0)

]
} · ∂δ [ςt(θ0),η0] /∂η

′

= [Zlt(θ)ut
√
ςt + Zst(θ)vec(utu

′
t)ςt] · ∂δ(ςt,η)/∂η′,

whose conditional expected value will be Zst(θ0)vec(IN )E[(ςt/N) · ∂δ(ςt,η0)/∂η′|η]. �
Fiorentini, Sentana and Calzolari (2003) provide the relevant expressions for the multivariate

standardised Student t, while the expressions for the Kotz distribution and the DSMN are

given in Amengual and Sentana (2010) (The expression for mss(κ) for the Kotz distribution in

Amengual and Sentana (2010) contains a typo. The correct value is (Nκ+ 2)/[(N + 2)κ+ 2]).

As for I(φ0), while it is relatively straightforward to obtain closed-form expressions in con-

ditionally homoskedastic, dynamic linear models such as multivariate regressions or Vars (see

e.g. Amengual and Sentana (2010)), it is virtually impossible to do so in dynamic conditionally

heteroskedastic models, as one has to resort to numerical or Monte Carlo integration methods to

compute the required expected values (see e.g. Engle and Gonzalez-Rivera (1991) and Gonzalez-

Rivera and Drost (1999)). Nevertheless, see Fiorentini and Sentana (2015, 2018) for closed-form

expressions in the context of tests for univariate or multivariate conditional homoskedasticity,

respectively.
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C.4 Gaussian pseudo maximum likelihood estimators

An important special case of restricted ML estimator arises when η̄ = 0, in which case θ̃T (0)

coincides with the Gaussian PML estimator θ̃T . Unlike what happens with other values of η̄,

θ̃T remains root-T consistent for θ0 under correct specification of µt(θ) and Σt(θ) even though

the true conditional distribution of ε∗t |It−1;φ0 is neither Gaussian nor spherical, provided that
it has bounded fourth moments. The proof is based on the fact that in those circumstances,

the pseudo log-likelihood score, sθt(θ,0), is also a vector martingale difference sequence when

evaluated at θ0, a property that inherits from

edt(θ,0) =

[
elt(θ,0)
est(θ,0)

]
=

{
ε∗t (θ)

vec [ε∗t (θ)ε∗′t (θ)− IN ]

}
.

Importantly, this property is preserved even when the standardised innovations, ε∗t , are not

stochastically independent of It−1.

The asymptotic distribution of the PML estimator of θ is stated in the following result, which

specialises Proposition 1 in Bollerslev and Wooldridge (1992) to models with i.i.d. innovations

with shape parameters %:

Proposition C2 Assume that the regularity conditions A.1 in Bollerslev and Wooldridge (1992)
are satisfied.

1. If ε∗t |It−1;φ is i.i.d.D(0, IN ,%) with tr[K(%)]<∞, where φ = (θ′,%′)′, then
√
T (θ̃T−θ0)→

N [0, Cθθ(θ0,0;φ0)] with

Cθθ(θ,0;φ) = A−1θθ (θ,0;φ)Bθθ(θ,0;φ)A−1θθ (θ,0;φ),

Aθθ(θ,0;φ) = −E [hθθt(θ,0)|φ] = E [Aθθt(θ,0;φ)|φ] ,

Aθθt(θ,0;φ) = −E[hθθt(θ; 0)| It−1;φ] = Zdt(θ)K(0)Z′dt(θ),

Bθθ(θ,0;φ) = V [sθt(θ,0)|φ] = E [Bθθt(θ,0;φ)|φ] ,

Bθθt(θ,0;φ) = V [sθt(θ; 0)| It−1;φ] = Zdt(θ)K(%)Z′dt(θ),

and

K(%) =V [edt(θ,0)| It−1;φ] =

[
IN Φ(%)

Φ′(%) Υ(%)

]
, (C22)

where
Φ(%) = E[ε∗t vec

′(ε∗tε
∗′
t )|φ]

Υ(%) = E[vec(ε∗tε
∗′
t − IN )vec′(ε∗tε

∗′
t − IN )|φ]

depend on the multivariate third and fourth order cumulants of ε∗t , so that Φ(0) = 0 and
Υ(0) = (IN2 + KNN ) if we use % = 0 to denote normality.

2. If ε∗t |It−1;φ0 is i.i.d. s(0, IN ,η0) with κ0 <∞, then (C22) reduces to

K (κ) =

[
IN 0
0 (κ+1) (IN2 +KNN )+κvec(IN )vec′(IN )

]
, (C23)

which only depends on the true distribution through the population coeffi cient of multivari-
ate excess kurtosis

κ = E(ς2t |η)/[N(N + 2)]− 1. (C24)
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Proof. The proof of the first part is based on a straightforward application of Proposition

1 in Bollerslev and Wooldridge (1992) to the i.i.d. case. Since sθt(θ0,0) = Zdt(θ0)edt(θ0,0),

and edt(θ0,0) is a vector martingale difference sequence, then to obtain Bt(φ0) we only need to
compute V [edt(θ0,0)|It−1;φ0], which justifies (C22). Further, we will have that[

elt(θ0,0)
est(θ0,0)

]
=

(
ε∗t (θ0)

vec [ε∗t (θ0)ε
∗′
t (θ0)− IN ]

)
=

[ √
ςtut

vec(ςtutu
′
t − IN )

]
for any spherical distribution, with ςt and ut both mutually and serially independent. Then

(C23) follows from (C1) and (C2). As for At(φ0), we know that its formula, which is valid

regardless of the exact nature of the true conditional distribution, coincides with the expression

for Bt(φ0) under multivariate normality by the (conditional) information matrix equality. �

C.5 Spherically symmetric semiparametric estimators

As is well known, a single scoring iteration without line searches that started from θ̃T and

some root-T consistent estimator of η, say η̃T , would suffi ce to yield an estimator of φ that

would be asymptotically equivalent to the full-information ML estimator φ̂T , at least up to

terms of order Op(T−1/2). Specifically,(
θ̌T − θ̃T
η̌T − η̃T

)
=

[
Iθθ(φ0) Iθη(φ0)
I ′θη(φ0) Iηη(φ0)

]−1
1

T

T∑
t=1

[
sθt(θ̃T , η̃T )

sηt(θ̃T , η̃T )

]
.

If we use the partitioned inverse formula, then it is easy to see that

θ̌T − θ̃T =
[
Iθθ(φ0)− Iθη(φ0)I−1ηη (φ0)I ′θη(φ0)

]−1
× 1

T

T∑
t=1

[
sθt(θ̃T , η̃T )− Iθη(φ0)I−1ηη (φ0)sηt(θ̃T , η̃T )

]
= Iθθ(φ0)

1

T

T∑
t=1

sθ|ηt(θ̃T , η̃T ),

where

Iθθ(φ0) = [Iθθ(φ0)− Iθη(φ0)I−1ηη (φ0)I ′θη(φ0)]
−1

and

sθ|ηt(θ0,η0) = sθt(θ0,η0)− Iθη(φ0)I−1ηη (φ0)sηt(θ0,η0) (C25)

is the residual from the unconditional theoretical regression of the score corresponding to θ,

sθt(φ0), on the score corresponding to η, sηt(φ0). This residual score is sometimes called the

unrestricted parametric effi cient score of θ, and its covariance matrix, P(φ0) = [Iθθ(φ0)]
−1, the

marginal information matrix of θ, or the unrestricted parametric effi ciency bound.

In the spherically symmetric case, we can easily prove that (C25) and its covariance matrix

reduce to

sθ|ηt(φ0) = Zdt(θ0)edt(φ0)−Ws(φ0) ·
[
msr(η0)M−1rr (η0)ert(φ0)

]
(C26)

and

P(φ0) = Iθθ(φ0)−Ws(φ0)W
′
s(φ0) ·

[
msr(η0)M−1rr (η0)m

′
sr(η0)

]
, (C27)
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respectively, where

Ws(φ0) = Zd(θ0)[0
′, vec′(IN )]′ = E[Zdt(θ0)|φ0][0′, vec′(IN )]′

= E

{
1

2

∂vec′ [Σt(θ0)]

∂θ
vec[Σ−1t (θ0)]

∣∣∣∣φ0} = E[Wst(θ0)|φ0] = −E
[
∂dt(θ0)

∂θ

∣∣∣∣φ0] , (C28)

It is worth noting that the last summand of (C25) coincides with Zd(φ0) times the theoret-

ical least squares projection of edt(φ0) on (the linear span of) ert(φ0), which is conditionally

orthogonal to edt(θ0,0) from Proposition 3 of Fiorentini and Sentana (2007). Such an interpre-

tation immediately suggests alternative estimators of θ that replace a parametric assumption on

the shape of the distribution of the standardised innovations ε∗t by a more flexible alternative.

Specifically, Hodgson and Vorkink (2003), Hafner and Rombouts (2007) and other authors have

suggested spherically symmetric semiparametric estimators which allow for any member of the

class of spherically symmetric distribution. To derive such estimators, these authors replace the

linear span of ert(φ0) by the so-called spherically symmetric tangent set, which is the Hilbert

space generated by all time-invariant functions of ςt(θ0) with bounded second moments that

have zero conditional means and are conditionally orthogonal to edt(θ0,0). The next proposi-

tion, which originally appeared as Proposition 7 in Fiorentini and Sentana (2007), provides the

resulting spherically symmetric semiparametric effi cient score and the corresponding effi ciency

bound:

Proposition C3 When ε∗t |It−1,φ is i.i.d. s(0, IN ,η) with −2/(N + 2) < κ0 < ∞, the spheri-
cally symmetric semiparametric effi cient score is given by:

s̊θt(φ0) = sθt(φ0)−Ws(φ0)

{[
δ[ςt(θ0),η0]

ςt(θ0)

N
−1

]
− 2

(N+2)κ0+2

[
ςt(θ0)

N
−1

]}
, (C29)

while the spherically symmetric semiparametric effi ciency bound is

S̊(φ0) = Iθθ(φ0)−Ws(φ0)W
′
s(φ0) ·

{[
N + 2

N
mss(η0)− 1

]
− 4

N [(N + 2)κ0 + 2]

}
. (C30)

Proof. First of all, it is easy to show that for any spherical distribution

e̊dt(θ0,0) = E

[
elt(θ0,0)
est(θ0,0)

∣∣∣∣ ςt;φ0] = E

{
ε∗t (θ0)

vec [ε∗t (θ0)ε
∗′
t (θ0)− IN ]

∣∣∣∣ ςt;φ0}
= E

[ √
ςtut

vec(ςtutu
′
t − IN )

∣∣∣∣ ςt] =
( ςt
N
− 1
)[ 0

vec(IN )

]
, (C31)

and

e̊dt(φ0) = E

[
elt(φ0)
est(φ0)

∣∣∣∣ ςt;φ0]
= E

{
δ[ςt(θ0),η0] · ε∗t (θ0)

vec [δ[ςt(θ0),η0] · ε∗t (θ0)ε∗′t (θ0)− IN ]

∣∣∣∣ ςt;φ0}
= E

{
δ(ςt,η0)

√
ςtut

vec[δ(ςt,η0)ςtutu
′
t − IN ]

∣∣∣∣ ςt} =
[
δ(ςt,η0)

ςt
N
-1
] [ 0

vec(IN )

]
, (C32)
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where we have used again the fact that E(ut) = 0, E(utu
′
t) = N−1IN , and ςt and ut are

stochastically independent.

In addition, we can use the law of iterated expectations to show that

E [̊edt(φ)e′dt(φ)|φ]=E{E[[̊edt(φ)e′dt(φ)|ςt,φ]|φ}=E[edt(φ)̊e′dt(φ)|φ]=E [̊edt(φ)̊e′dt(φ)|φ],

E [̊edt(φ)e′dt(θ,0)|φ]=E{E [̊edt(φ)e′dt(θ,0)|ςt,φ]|φ}=E[edt(φ)̊e′dt(θ,0)|φ]=E [̊edt(φ)̊e′dt(θ,0)|φ]

and

E
[̊
edt(θ,0)e′dt(θ,0)|φ

]
= E

[
edt(θ,0)̊e′dt(θ, 0)|φ

]
= E

[̊
edt(θ,0)̊e′dt(θ,0)|φ

]
.

Hence, to compute these matrices we simply need three scalar moments.

In this respect, we can use (C24) to show that

E

[( ςt
N
− 1
)2∣∣∣∣η] =

(N + 2)κ+ 2

N
, (C33)

so that

E
[̊
edt(θ,0)e′dt(θ,0)|φ

]
=

(N + 2)κ+ 2

N

(
0 0
0 vec(IN )vec′(IN )

)
= K̊ (κ) .

We can also use Lemma 2 in Supplemental Appendix B to show that E(ς2t ) = N(N + 2)(κ+

1) <∞ implies

E
[
ς2t · ∂ lnh(ςt;η)/∂ς

∣∣η] = −E [2ςt|η] = −2N.

If we then combine this result with (C20) and (C21), we will have that for any spherically

symmetric distribution

E
{( ςt

N
− 1
) [
δ(ςt,η0)

ςt
N
− 1
]∣∣∣η} =

2

N
, (C34)

so that

E
[̊
edt(φ)e′dt(θ,0)|φ

]
= K̊ (0) ,

which coincides with the value of E [̊edt(θ,0)e′dt(θ,0)|φ] under normality.

Finally, Proposition C1 immediately implies that

E

{[
δ(ςt,η0)

ςt
N
− 1
]2∣∣∣∣η} =

N + 2

N
mss(η)− 1. (C35)

Therefore, it trivially follows from the expressions for K̊ (0) and K̊ (κ0) above that

E
{[̊

edt(φ)− K̊ (0) K̊+ (κ) e̊dt(θ,0)
]

e′dt(θ,0)
∣∣∣ It−1;φ}

= E
{[̊

edt(φ)− K̊ (0) K̊+ (κ) e̊dt(θ,0)
]

e̊′dt(θ,0)
∣∣∣ It−1;φ} = 0

for any spherically symmetric distribution. In addition, we also know that

E
{[̊

edt(φ)− K̊ (0) K̊+ (κ) e̊dt(θ,0)
]∣∣∣ It−1;φ} = 0.
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Thus, even though
[̊
edt(φ0)− K̊ (0) K̊+ (κ0) e̊dt(θ0,0)

]
is the residual from the theoretical re-

gression of e̊dt(φ) on a constant and e̊dt(θ,0), it turns out that the second summand of (C29)

belongs to the restricted tangent set, which is the Hilbert space spanned by all the time-invariant

functions of ςt(θ0) with bounded second moments that have zero conditional means and are con-

ditionally orthogonal to edt(θ0,0).

Now, if write (C29) as

Zdt(θ)edt(φ)− Zd(φ)̊edt(φ) + Zd(φ)K̊ (0) K̊+ (κ) e̊dt(θ,0),

then we can use the law of iterated expectations to show that the spherically symmetric semi-

parametric effi cient score is indeed unconditionally orthogonal to the restricted tangent set.

Finally, the expression for the semiparametric effi ciency bound will be

E [̊sθt(φ)̊s′θt(φ)|φ] = E

 {
Zdt(θ)edt(φ)− Zd(φ)

[̊
edt(φ)− K̊ (0) K̊+ (κ) e̊dt(θ,0)

]}
×
{

edt(φ)′Z′dt(θ)−
[̊
e′dt(φ)− e̊′dt(θ,0)K̊+ (κ) K̊ (0)

]
Z′d(φ)

} ∣∣∣∣∣∣φ


= E
[
Zdt(θ)edt(φ)e′dt(φ)Zdt(θ)|φ

]
−E

{
Zdt(θ)edt(φ)

[̊
e′dt(φ)− e̊′dt(θ,0)K̊+ (κ) K̊ (0)

]
Z′d(φ)|φ

}
−E

{
Zd(φ)

[̊
edt(φ)− K̊ (0) K̊+ (κ) e̊dt(θ,0)

]
e′dt(φ)Z′d(φ)|φ

}
+E

{
Zd(φ)

[̊
edt(φ)− K̊ (0) K̊+ (κ) e̊dt(θ,0)

] [̊
e′dt(φ)− e̊′dt(θ,0)K̊+ (κ) K̊ (0)

]
Z′d(φ)|φ

}
= Iθθ(φ0)−Ws(φ0)W

′
s(φ0) ·

{[
N + 2

N
mss(η)− 1

]
− 4

N [(N + 2)κ+ 2]

}
by virtue of the law of iterated expectations. �

In the case of the univariate Garch-M model (19), we estimate the model parameters using

reparametrisation 1 in section 4. Specifically,

Zlt(ϑ) =
∂µt(ϑ)/∂ϑ

ϑ
1/2
i σ◦t (ϑc)

=
1

ϑ
1/2
i σ◦t (ϑc)

[
σ◦t (ϑc)

∂δ
∂ϑc

+ δ
2σ◦t (ϑc)

∂σ◦2t (ϑc)
∂ϑc

0

]
=

1

ϑ
1/2
i

[
∂δ
∂ϑc

+ δWst(ϑc)

0

]
,

Zst(ϑ) =
∂σ2t (ϑ)/∂ϑ

2ϑicσ◦2t (ϑc)
=

1

2ϑiσ◦2t (ϑc)

[
ϑi
∂σ◦2t (ϑc)
∂ϑc

σ◦2t (ϑc)

]
=

[
Wst(ϑc)
1
2ϑ
−1
i

]
,

Wst(ϑc) =
1

2σ◦2t (ϑc)

∂σ◦2t (ϑc)

∂ϑc

and

ςt(ϑ) = ε∗2t (ϑ) = ϑ−1i σ◦−2t (ϑc)x
2
t .

On the other hand, we use the natural parametrisation of the multivariate market model in

(20), so that θ′ = (a′,b′,ω′), where ω = vech(Ω). Given the Jacobian matrices:

∂µt(θ)

∂(a′,b′,ω′)
= ( IN INrMt 0 ), (C36)

∂vec[Σt(θ)]

∂(a′,b′,ω′)
= ( 0 0 DN ), (C37)
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because ∂vec(Ω)/∂vech′(Ω) is the duplication matrix of order N (see Magnus and Neudecker,

1988), a direct application of (C4) immediately implies that

sat(θ) = Ω−1δtεt(θ),

sbt(θ) = Ω−1rmtδtεt(θ),

sωt(θ) =
1

2
D′N (Ω−1 ⊗Ω−1)vec[δtεt(θ)ε′t(θ)−Ω],

where εt(θ) = rt − a− brmt.

The last ingredient we need is

Ws(φ0) = [0,0,
1

2
vec′(Ω−1)DN ]′

because

D′N (Ω−
1
2
′ ⊗Ω−

1
2
′)vec(IN ) = D′Nvec(Ω

−1).

In practice, edt(φ) has to be replaced by a semiparametric estimate obtained from the joint

density of ε∗t . However, the spherical symmetry assumption allows us to obtain such an estimate

from a nonparametric estimate of the univariate density of ςt, h (ςt;η), avoiding in this way the

curse of dimensionality. Specifically, if we use expression (C19), then we can estimate δ[ςt(θ),η]

non-parametrically by exploiting that

−2∂g[ςt(θ),η]

∂ς
= −2∂ lnh[ςt(θ),η]

∂ς
+
N − 2

2

1

ςt(θ)
.

We can compute h[ςt(θ);η] either directly by using a kernel for positive random variables

(see Chen (2000)), or indirectly by using a faster standard Gaussian kernel after exploiting the

Box-Cox-type transformation v = ςk (see Hodgson, Linton and Vorkink (2002)). In the second

case, the usual change of variable formula yields

p(v;η) =
πN/2

kΓ(N/2)
v−1+N/2k exp[c(η) + g(v1/k;η)],

whence

g(v1/k;η) = ln p(v;η) +

(
1− N

2k

)
ln v − N

2
ln 2π + ln k − ln Γ(N/2)− c(η)

and
∂g(v1/k;η)

∂v1/k
= k

∂ ln f(v;η)

∂v
v1−1/k +

k −N/2
v1/k

.

We use the second procedure in our Monte Carlo simulations because the distribution of

ςt(θ) becomes more normal-like as N increases, which reduces the advantages of using kernels for

positive variables. Specifically, we use a cubic root transformation to improve the approximation,

with a common bandwidth parameter for both the density and its first derivative. Given that

a proper cross-validation procedure is extremely costly to implement in a Monte Carlo exercise,

we have done some experimentation to choose the optimal bandwidth by scaling up and down

the automatic choices given in Silverman (1986).
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In the univariate case, there is a conceptually simpler alternative that does not require

working with ςt = ε∗2t . In particular, we can exploit the fact that the density of ε
∗
t is the same

as the density of −ε∗t by assigning to ±ε∗t the equally weighted average of the non-parametric
density estimates at ε∗t and −ε∗t . Likewise, we can compute the equally weighted average of the
absolute value of its derivatives and assign its ± value to ε∗t and −ε∗t , respectively.

D The general case of non-spherical distributions

D.1 Likelihood, score and Hessian for non-spherical distributions

In this section, we assume that, conditional on It−1, ε∗t is independent and identically dis-

tributed, or ε∗t |It−1;θ0,%0 ∼ i.i.d. D(0, IN ,%0) for short, where % are some q additional pa-

rameters that determine the shape of the distribution. Importantly, this distribution could

substantially depart from a multivariate normal both in terms of skewness and kurtosis. Let

f(ε∗;%) denote the assumed conditional density of ε∗t given It−1 and those shape parameters

%, which we assume is well defined. Let also φ = (θ′,%)′ denote the p + q parameters of inter-

est, which once again we assume variation free. Ignoring initial conditions, the log-likelihood

function of a sample of size T for those values of θ for which Σt(θ) has full rank will take

the form LT (φ) =
∑T

t=1 lt(φ), where lt(φ) = dt(θ) + ln f [ε∗t (θ),%], dt(θ) = ln |Σ−1/2t (θ)|,
ε∗t (θ) = Σ

−1/2
t (θ)εt(θ), and εt(θ) = yt − µt(θ).

The most common choices of square root matrices are the Cholesky decomposition, which

leads to a lower triangular matrix for a given ordering of yt, or the spectral decomposition, which

yields a symmetric matrix. The choice of square root matrix is non-trivial becauseΣ
1/2
t (θ) affects

the value of the log-likelihood function and its score in multivariate non-spherical contexts. In

what follows, we rely mostly on the Cholesky decomposition because it is much faster to compute

than the spectral one, especially when Σt(θ) is time-varying. Nevertheless, we also discuss some

modifications required for the spectral decomposition later on.

Let st(φ) denote the score function ∂lt(φ)/∂φ, and partition it into two blocks, sθt(φ) and

s%t(φ), whose dimensions conform to those of θ and %, respectively. Assuming that µt(θ),

Σ
1/2
t (θ) and ln f(ε∗,%) are differentiable, it trivially follows that

sθt(θ,%) =
∂dt(θ)

∂θ
+
∂ε′∗t (θ)

∂θ

∂ ln f [ε∗t (θ) ;%]

∂ε∗
.

But since

∂dt(θ)/∂θ = −∂vec
′[Σ

1/2
t (θ)]

∂θ
vec[Σ

−1/2′
t (θ)] = −Zst(θ)vec(IN )

and

∂ε∗t (θ)

∂θ′
= −Σ

−1/2
t (θ)

∂µt(θ)

∂θ′
− [ε∗′t (θ)⊗Σ

−1/2
t (θ)]

∂vec[Σ
1/2
t (θ)]

∂θ′

= −{Z′lt(θ) + [ε∗′t (θ)⊗ IN ]Z′st(θ)}, (D1)
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where
Zlt(θ) = ∂µ′t(θ)/∂θ ·Σ−1/2′t (θ)

Zst(θ) = ∂vec′[Σ
1/2
t (θ)]/∂θ · [IN ⊗Σ

−1/2′
t (θ)]

}
, (D2)

it follows that

sθt(φ) = [Zlt(θ),Zst(θ)]

[
elt(φ)
est(φ)

]
= Zdt(θ)edt(φ), (D3)

s%t(φ) = ∂ ln f [ε∗t (θ) ;%]/∂% = ert(φ),

with

edt(φ) =

[
elt(φ)
est(φ)

]
=

[
−∂ ln f [ε∗t (θ);%]/∂ε∗,
−vec {IN + ∂ ln f [ε∗t (θ);%]/∂ε∗ · ε∗′t (θ)}

]
. (D4)

Similarly, let ht(φ) denote the Hessian function ∂st(φ)/∂φ′ = ∂2lt(φ)/∂φ∂φ′. Assuming

twice differentiability of the different functions involved, expression (D1) implies that

∂elt(θ,%)

∂θ′
= −∂

2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
∂ε∗t (θ)

∂θ′
=
∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
{Z′lt(θ) + [ε∗′t (θ)⊗ IN ]Z′st(θ)} (D5)

because

delt(θ,%) = −d{∂ ln f [ε∗t (θ);%]/∂ε∗}. (D6)

In turn,

dest(θ,%) = −dvec
[
∂ ln f [ε∗t (θ);%]

∂ε∗
· ε∗′t (θ)

]
= −[ε∗t (θ)⊗ IN ]d

{
∂ ln f [ε∗t (θ);%]

∂ε∗

}
−
{

IN ⊗
∂ ln f [ε∗t (θ);%]

∂ε∗

}
dε∗t (θ) (D7)

implies that

∂est(φ)

∂θ′
=
∂est(θ,%)

∂θ′
=−[ε∗t (θ)⊗IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
∂ε∗t (θ)

∂θ′
−
{
IN⊗

∂ ln f [ε∗t (θ);%]

∂ε∗

}
∂ε∗t (θ)

∂θ′

=

{
[ε∗t (θ)⊗IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
+

[
IN⊗

∂ ln f [ε∗t (θ);%]

∂ε∗

]}
{Z′lt(θ)+[ε′∗t (θ)⊗IN ]Z′st(θ)}. (D8)

Finally, (D6) and (D7) trivially imply that

∂2elt(θ,%)

∂θ∂%′
= −∂

2 ln f [ε∗t (θ);%]

∂ε∗∂%′
,

∂2est(θ,%)

∂θ∂%′
= −[ε∗t (θ)⊗ IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂%′
.

Using these results, we can easily obtained the required expressions for

hθθt(φ) = Zlt(θ)
∂elt(φ)

∂θ′
+ Zst(θ)

∂est(φ)

∂θ′

+
[
e′lt(φ)⊗ Ip

] ∂vec[Zlt(θ)]

∂θ′
+
[
e′st(φ)⊗ Ip

] ∂vec[Zst(θ)]

∂θ′
, (D9)

hθ%t(φ) = Zlt(θ)∂elt(φ)/∂%′ + Zst(θ)∂est(φ)/∂%′, (D10)

h%%t(φ) = ∂2 ln f [ε∗t (θ) ;%]/∂%∂%′.
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In this regard, note that since (D6) and (D7) also imply that

∂elt(θ,%)/∂%′ = −∂2 ln f [ε∗t (θ);%]/∂ε∗∂%′, (D11)

∂est(θ,%)/∂%′ = −[ε∗t (θ)⊗ IN ]∂2 ln f [ε∗t (θ);%]/∂ε∗∂%′, (D12)

respectively, it is clear that

Zlt(θ)
∂elt(θ,%)

∂%′
+ Zst(θ)

∂est(θ,%)

∂%′
= −{Zlt(θ) + Zst(θ)[ε∗t (θ)⊗ IN ]}∂

2 ln f [ε∗t (θ) ;%]

∂ε∗∂%′

=
∂ε′∗t (θ)

∂θ

∂2 ln f(ε∗t (θ) ;%)

∂ε∗∂%′

so both ways of computing hθ%t(φ) indeed coincide.

Importantly, while Zlt(θ), Zst(θ), ∂vec[Zlt(θ)]/∂θ′ and ∂vec[Zst(θ)]/∂θ′ depend on the dy-

namic model specification, the first and second derivatives of ln f(ε∗;%) depend on the specific

distribution assumed for estimation purposes.

For the standard (i.e. lower triangular) Cholesky decomposition of Σt(θ), we will have that

dvec(Σt) = [(Σ
1/2
t ⊗ IN ) + (IN ⊗Σ

1/2
t )KNN ]dvec(Σ

1/2
t ).

Unfortunately, this transformation is singular, which means that we must find an analogous

transformation between the corresponding dvech′s. In this sense, we can write the previous

expression as

dvech(Σt) = [LN (Σ
1/2
t ⊗ IN )L′N + LN (IN ⊗Σ

1/2
t )KNNL′N ]dvech(Σ

1/2
t ), (D13)

where LN is the elimination matrix (see Magnus, 1988). We can then use the results in chapter

5 of Magnus (1988) to show that the above mapping will be lower triangular of full rank as long

as Σ
1/2
t has full rank, which means that we can readily obtain the Jacobian matrix of vech(Σ

1/2
t )

from the Jacobian matrix of vech(Σt).

In the case of the symmetric square root matrix, the analogous transformation would be

dvech(Σt) = [D+
N (Σ

1/2
t ⊗ IN )DN + D+

N (IN ⊗Σ
1/2
t )DN ]dvech(Σ

1/2
t ),

whereD+
N = (D′NDN )−1D′N is the Moore-Penrose inverse of the duplication matrix (see Magnus

and Neudecker, 1988).

From a numerical point of view, the calculation of both LN (Σ
1/2
t ⊗ IN )L′N and LN (IN ⊗

Σ
1/2
t )KNNL′N is straightforward. Specifically, given that LNvec(A) = vech(A) for any square

matrixA, the effect of premultiplying by the 12N(N+1)×N2 matrix LN is to eliminate rows N+1,

2N+1 and 2N+2, 3N+1, 3N+2 and 3N+3, etc. Similarly, given that LNKNNvec(A) = vech(A′),

the effect of postmultiplying by KNNL′N is to delete all columns but those in positions 1, N+1,

2N+1,. . . ,N+2, 2N+2,. . . , N+3, 2N+3,. . . , N2.

Let Ft denote the transpose of the inverse of LN (Σ
1/2
t ⊗ IN )L′N + LN (IN ⊗Σ

1/2
t )KNNL′N ,

which will be upper triangular. The fastest way to compute

∂vec′[Σ
1/2
t (θ)]

∂θ
[IN ⊗Σ

−1/2
t (θ)] =

1

2

∂vech′ [Σt(θ)]

∂θ
FtLN (IN ⊗Σ

−1/2
t ) (D14)
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is as follows:

1. From the expression for ∂vec′ [Σt(θ)] /∂θ we can readily obtain ∂vech′ [Σt(θ)] /∂θ by

simply avoiding the computation of the duplicated columns

2. Then we postmultiply the resulting matrix by Ft

3. Next, we construct the matrix

LN (IN ⊗Σ
1/2
t ) = LN


Σ
−1/2
t 0 · · · 0

0 Σ
−1/2
t · · · 0

...
...

. . .
...

0 0 · · · Σ
−1/2
t


by eliminating the first row from the second block, the first two rows from the third block,

. . . , and all the rows but the last one from the last block

4. Finally, we premultiply the resulting matrix by ∂vech′ [Σt(θ)] /∂θ · Ft.

D.2 Asymptotic distribution

Propositions 10.1, 13, C2.1 and D3 already deal explicitly with the general case, so there

is no need to generalise them. In turn, Propositions 6, 7, 8, 9 and their proofs continue to be

valid if we change η by %. The same happens to Proposition 5, provided we erase the row and

columns corresponding to θ̊T and its influence function s̊θt(φ). On the other hand, Propositions

10.2, 11, 12, C2.2 and C3 are specific to the spherically symmetric case. Therefore, the only

proposition that really requires a proper generalisation is Proposition C1.

Proposition D1 If ε∗t |It−1;φ is i.i.d. D(0, IN ,%) with density f(ε∗,%), then

It(φ) = Zt(θ)M(%)Z′t(θ),

Zt(θ) =

(
Zdt(θ) 0

0 Iq

)
=

(
Zlt(θ) Zst(θ) 0

0 0 Iq

)
,

and

M(%) =

[
Mdd(%) Mdr(%)
M′dr(%) Mrr(%)

]
=

 Mll(%) Mls(%) Mlr(%)
M′ls(%) Mss(%) Msr(%)
M′lr(%) M′sr(%) Mrr(%)

 ,
with

Mll(%) = V [elt(φ)|φ] = E
[
∂2 ln f(ε∗t ;%)/∂ε∗∂ε∗′

∣∣%] ,
Mls(%) = E[elt(φ)est(φ)′|φ] = E

[
∂2 ln f(ε∗t ;%)/∂ε∗∂ε∗′ · (ε′∗t ⊗ IN )

∣∣%] ,
Mss(%) = V [est(φ)|φ] = E

[
(ε∗t ⊗ IN ) · ∂2 ln f(ε∗t ;%)/∂ε∗∂ε∗′ · (ε∗′t ⊗ IN )|%

]
−KNN ,

Mlr(%) = E[elt(φ)e′rt(φ)|φ] = −E
[
∂2 ln f(ε∗t ;%)/∂ε∗∂%′|%

]
,

Msr(%) = E[est(φ)e′rt(φ)|φ] = −E
[
(ε∗t ⊗ IN )∂2 ln f(ε∗t ;%)/∂ε∗∂%′|%

]
,

and
Mrr(%) = V [ert(φ)|φ] = −E

[
∂2 ln f(ε∗t ;%)/∂%∂%′|φ

]
.
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Proof. Since the distribution of ε∗t given It−1 is assumed to be i.i.d., then it is easy to see from

(D3) that et(φ) = [e′dt(φ), e′rt(φ)]′ will inherit the martingale difference property of the score

st(φ0). As a result, the conditional information matrix will be given by[
Zlt(θ) Zst(θ) 0

0 0 Iq

] Mll(%) Mls(%) Mlr(%)
M′ls(%) Mss(%) Msr(%)
M′lr(%) M′sr(%) Mrr(%)

 Z′lt(θ) 0
Z′st(θ) 0

0 Iq


=

[
Zlt(θ)Mll(%)Z′lt(θ) + Zst(θ)M′ls(%)Z′lt(θ) + Zlt(θ)Mls(%)Z′st(θ) + Zst(θ)Mss(%)Z′st(θ)

M′lr(%)Z′lt(θ) +M′sr(%)Z′st(θ)

Zlt(θ)Mlr(%) + Zst(θ)Msr(%)
Mrr(%)

]
,

where  Mll(%) Mls(%) Mlr(%)
M′ls(%) Mss(%) Msr(%)
M′lr(%) M′sr(%) Mrr(%)

 = V

 elt(θ,%)
est(θ,%)
ert(θ,%)

∣∣∣∣∣∣θ,%
 ,

which confirms the variance of the score part of the proposition.

As for the expected value of the Hessian expressions, it is easy to see that

E[hθθt(φ)|zt, It−1;φ] = Zlt(θ)E

[
∂elt(θ,%)

∂θ′

∣∣∣∣ zt, It−1;φ]+ Zst(θ)E

[
∂est(θ,%)

∂θ′

∣∣∣∣ zt, It−1;φ]
because

E [elt(θ,%)|zt, It−1;φ] = −E [∂ ln f [ε∗t (θ);%]/∂ε∗|zt, It−1;φ] = 0 (D15)

and

E [est(θ,%)|zt, It−1;φ] = −E [vec{IN + ∂ ln f [ε∗t (θ);%]/∂ε∗ · ε∗t (θ)}|zt, It−1;φ] = 0. (D16)

Expression (D5) then leads to

E

[
∂elt(θ,%)

∂θ′

∣∣∣∣ zt, It−1;φ] = E

[
∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
{Z′lt(θ) + [ε′∗t (θ)⊗ IN ]Z′st(θ)}

∣∣∣∣ zt, It−1;φ]
= E

[
∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′

∣∣∣∣φ]Z′lt(θ) + E

[
∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
[ε′∗t (θ)⊗ IN ]

∣∣∣∣φ]Z′st(θ).

Likewise, equation (D8) leads to

E

[
∂est(θ,%)

∂θ′

∣∣∣∣ zt, It−1;φ] = E

[{
[ε∗t (θ)⊗ IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
+

[
IN ⊗

∂ ln f [ε∗t (θ);%]

∂ε∗

]}
×{Z′lt(θ) + [ε′∗t (θ)⊗ IN ]Z′st(θ)}

∣∣ zt, It−1;φ] = E

[
[ε∗t (θ)⊗ IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′

∣∣∣∣φ]Z′lt(θ)

+E

[
[ε∗t (θ)⊗ IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
[ε′∗t (θ)⊗ IN ]

∣∣∣∣ zt, It−1;φ]Z′st(θ)−KNNZ′st(θ)
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because of (D15) and (D16), which in turn implies

E

{[
IN ⊗

∂ ln f [ε∗t (θ);%]

∂ε∗

]
[ε′∗t (θ)⊗ IN ]

∣∣∣∣ zt, It−1;φ}
= KNNE

{
KNN

[
IN ⊗

∂ ln f [ε∗t (θ);%]

∂ε∗

]
[ε′∗t (θ)⊗ IN ]

∣∣∣∣ zt, It−1;φ}
= KNNE

{[
∂ ln f [ε∗t (θ);%]

∂ε∗
⊗ IN

]
[ε′∗t (θ)⊗ IN ]

∣∣∣∣ zt, It−1;φ}
= KNNE

{[
∂ ln f [ε∗t (θ);%]

∂ε∗
ε′∗t (θ)⊗ IN

]∣∣∣∣ zt, It−1;φ} = −KNN

in view of Theorem 3.1 in Magnus (1988).

As a result, the information matrix equality implies that

Mll(%) = E
{
∂2 ln f [ε∗t (θ);%]/∂ε∗∂ε∗′

∣∣φ}
Mls(%) = E

{
∂2 ln f [ε∗t (θ);%]/∂ε∗∂ε∗′ · [ε′∗t (θ)⊗ IN ]

∣∣φ}
Mss(%) = E

{
[ε∗t (θ)⊗ IN ]∂2 ln f [ε∗t (θ);%]/∂ε∗∂ε∗′ · [ε′∗t (θ)⊗ IN ]

∣∣φ}−KNN

Similarly, equation (D10) implies that

E[hθ%t(φ)|zt, It−1;φ] = E[Zlt(θ)∂elt(θ,%)/∂%′ + Zst(θ)∂est(θ,%)/∂%′|zt, It−1;φ].

But then the information matrix equality together with equations (D11) and (D12) imply that

E[∂elt(θ,%)/∂%′|zt, It−1;φ] = −E{∂2 ln f [ε∗t (θ);%]/∂ε∗∂%′|φ} =Mlr(%),

E[∂est(θ,%)/∂%′|zt, It−1;φ] = −E{[ε∗t (θ)⊗ IN ]∂2 ln f [ε∗t (θ);%]/∂ε∗∂%′|φ} =Msr(%).

Finally, the information matrix equality also implies that

Mrr(%) = −E{∂2 ln f [ε∗t (θ);%]/∂%∂%′|φ},

as required. �

D.3 Cross-sectionally independent disturbances

Let us now specialise the results in the previous two subsections for the case in which the

disturbances are cross-sectionally independent. Specifically, we assume that the conditional

density of ε∗t given It−1 and the shape parameters % can be factorised as

ln f [ε∗t (θ),%] =
∑N

i=1
ln f [ε∗it(θ),%i],

where ε∗t (θ) = [ε∗1t(θ), . . . , ε∗Nt(θ)]′ and % = (%1, . . . ,%N ), with dim(%i) = qi and
∑N

i=1 qi = q.

The main simplification in the expressions for the scores result from the fact that

elt(φ) =


−∂f [ε∗1t(θ);%1]

∂ε∗1
...

−∂f [ε∗Nt(θ);%N ]
∂ε∗N

 ,
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est(φ) = −vec


1 +

∂ ln f [ε∗1t(θ);%1]
∂ε∗1

ε∗1t(θ) . . .
∂ ln f [ε∗1t(θ);%1]

∂ε∗1
ε∗Nt(θ)

...
. . .

...
∂ ln f [ε∗Nt(θ);%N ]

∂ε∗N
ε∗1t(θ) . . . 1 +

∂ ln f [ε∗Nt(θ);%N ]
∂ε∗N

ε∗Nt(θ)


and

ert(φ) =


∂ ln f [ε∗1t(θ);%1]

∂%1
...

∂ ln f [ε∗Nt(θ);%N ]
∂%N

 ,

so that the derivatives involved correspond to the underlying univariate densities.

When any of the N distributions is symmetric, then these expressions simplify further as

−∂f(ε∗it;%i)

∂ε∗i
= δ(ε∗2it ;%i)ε

∗
it.

Additional simplifications in the expressions for the Hessian arise because ∂2 ln f [ε∗t (θ);%]/∂ε∗∂ε∗′,

∂2 ln f [ε∗t (θ);%]/∂ε∗∂%′ and ∂2 ln f [ε∗t (θ);%]/∂%∂%′ are (block) diagonal matrices with represen-

tative elements ∂2 ln f [ε∗it(θ);%i]/∂ε
∗
i ∂ε
∗
i , ∂

2 ln f [ε∗it(θ);%i]/∂ε
∗
i ∂%

′
i and ∂

2 ln f [ε∗it(θ);%i]/∂%i∂%
′
i,

respectively.

As for the information matrix, Proposition D1 simplifies to

Proposition D2 If ε∗t |It−1;φ is i.i.d. D(0, IN ,%) with density f(ε∗,%) =
∏N
i=1 f(ε∗it,%i), then

the information matrix will be given by a special case of Proposition D1 in which Mll will be a
diagonal matrix of order N with typical element

mll(%i) = V

[
∂ ln f(ε∗it;%i)

∂ε∗i

∣∣∣∣%] ,
Mls =MlsE

′
N , where Mls also a diagonal matrix of order N with typical element

mls(%i) = cov

[
∂ ln f(ε∗it;%i)

∂ε∗i
,
∂ ln f(ε∗it;%i)

∂ε∗i
ε∗it

∣∣∣∣%] ,
Mss is the sum of the commutation matrix KNN and a block diagonal matrix Υ of order N2 in
which each of the N diagonal blocks is a diagonal matrix of size N with the following structure:

Υi =



mll(%1) 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0 mll(%i−1) 0 0 0 0
0 0 0 mss(%i)− 1 0 0 0
0 0 0 0 mll(%i+1) 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0 mll(%N )


,

where

mss(%i) = V

[
∂ ln f(ε∗it;%i)

∂ε∗i
ε∗it

∣∣∣∣%] ,
Mlr is an N × q block diagonal matrix with typical diagonal block of size 1× qi

mlr(%i) = −cov
[
∂ ln f(ε∗it;%i)

∂ε∗i
,
∂ ln f(ε∗it;%i)

∂%i

∣∣∣∣%] ,
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Msr = ENMsr, whereMsr another block diagonal matrix of order N × q with typical block of
size 1× qi

msr(%i) = cov

[
∂ ln f(ε∗it;%i)

∂ε∗i
ε∗it,

∂ ln f(ε∗it;%i)

∂%i

∣∣∣∣%] ,
andMrr is an q × q block diagonal matrix with typical block of size qi × qi

mrr(%i) = V

[
∂ ln f(ε∗it;%i)

∂%i

∣∣∣∣%i] .
Proof. The expression forMll follows trivially from the fact that

cov

[
∂ ln f(ε∗it;%i)

∂ε∗i
,
∂ ln f(ε∗jt;%j)

∂ε∗j

∣∣∣∣∣%
]

= 0

for i 6= j because of the cross-sectional independence of the shocks.

The same property also implies thatMls =MlsE
′
N because for i 6= j 6= k

E

[
∂ ln f(ε∗it;%i)

∂ε∗i

∂ ln f(ε∗jt;%j)

∂ε∗j
ε∗it

∣∣∣∣∣%
]

= 0 since E

[
∂ ln f(ε∗jt;%i)

∂ε∗j

∣∣∣∣∣%
]

= 0,

E

[
∂ ln f(ε∗it;%i)

∂ε∗i

∂ ln f(ε∗it;%i)

∂ε∗i
ε∗jt

∣∣∣∣%] = 0 since E
(
ε∗jt
∣∣%) = 0,

E

[
∂ ln f(ε∗it;%i)

∂ε∗i

(
∂ ln f(ε∗jt;%j)

∂ε∗j
ε∗jt + 1

)∣∣∣∣∣%
]

= 0 since E
[
∂ ln f(ε∗it;%i)

∂ε∗i

∣∣∣∣%] = 0

and

E

[
∂ ln f(ε∗it;%i)

∂ε∗i

∂ ln f(ε∗jt;%j)

∂ε∗j
ε∗kt

∣∣∣∣∣%
]

= 0 since E (ε∗kt|%) = 0.

The expression for Mss is slightly more involved. First, most but not all the off-diagonal

terms will be 0. Specifically, when i 6= j

E

[(
∂ ln f(ε∗it;%i)

∂ε∗i
ε∗it + 1

)
∂ ln f(ε∗jt;%j)

∂ε∗j
ε∗it

∣∣∣∣∣%
]

= 0 since E

[
∂ ln f(ε∗jt;%j)

∂ε∗j

∣∣∣∣∣%
]

= 0,

E

[
∂ ln f(ε∗it;%i)

∂ε∗i
ε∗it
∂ ln f(ε∗it;%i)

∂ε∗i
ε∗jt

∣∣∣∣%] = 0 since E
(
ε∗jt
∣∣%) = 0

and

E

[(
∂ ln f(ε∗it;%i)

∂ε∗i
ε∗it + 1

)(
∂ ln f(ε∗jt;%i)

∂ε∗j
ε∗jt + 1

)∣∣∣∣∣%
]

= 0 since E
[
∂ ln f(ε∗it;%i)

∂ε∗i
ε∗it + 1

∣∣∣∣%] = 0

However,

E

[
∂ ln f(ε∗it;%i)

∂ε∗i
ε∗jt
∂ ln f(ε∗jt;%i)

∂ε∗j
ε∗it

∣∣∣∣∣%
]

= 1 since E
[
∂ ln f(ε∗it;%i)

∂ε∗i
ε∗it + 1

∣∣∣∣%] = 0.

In contrast, the diagonal terms, which can only take two forms, are different from 0. Specif-

ically, they will be either

E

[(
∂ ln f(ε∗it;%i)

∂ε∗i
ε∗it + 1

)2∣∣∣∣∣%
]

= mss(%i) since E
[
∂ ln f(ε∗it;%i)

∂ε∗i
ε∗it + 1

∣∣∣∣%] = 0
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or

E

[(
∂ ln f(ε∗it;%i)

∂ε∗i
ε∗jt

)2∣∣∣∣∣%
]

= E

[(
∂ ln f(ε∗it;%i)

∂ε∗i

)2∣∣∣∣∣%
]

= mll(%i) since E
(
ε∗2jt
∣∣%) = 1.

As a result, we can writeMss = KNN + Υ.

The cross-sectional independence of the shocks also implies the block diagonal structure of

Mlr andMrr, as well as the fact thatMsr = ENMsr. As expected, the same expressions are

obtained by taking the expected value of the (minus) Hessian. �
When one of the univariate distributions is symmetric, then mls(%i) =mlr(%i) = 0. One

popular example will be the univariate standardised Student t distribution with ν = η−1 degrees

of freedom, which is such that

ln f [ε∗it(θ); ηi] = c(ηi)−
(
ηi + 1

2ηi

)
log

[
1 +

ηi
1− 2ηi

ε∗2it (θ)

]
,

with

c(ηi) = log

(
ηi + 1

2ηi

)
− log

[
Γ

(
1

2ηi

)]
− 1

2
log

(
1− 2ηi
ηi

)
− 1

2
log π.

Here,

δ(ε∗2t ; η) =
η + 1

1− 2η + ηε∗2t

and

∂ ln f(ε∗it; η)

∂η
=

1

2η(1− 2η)
− 1

2η2

[
ψ

(
η + 1

2η

)
− ψ

(
1

2η

)]
− η + 1

1− 2η + ηε∗2it

ε∗2it
2η(1− 2η)

+
1

2η2
ln

(
1 +

η

1− 2η
ε∗2it

)
.

In addition

mll(%i) =
νi(νi + 1)

(νi − 2)(νi + 3)
,

mss(%i) =
2νi
νi + 3

,

msr(%i) = − 6ν2i
(νi − 2)(νi + 1)(νi + 3)

and

mrr(%i) =
ν4i
4

[
ψ′
(νi

2

)
− ψ′

(
νi + 1

2

)]
− ν4i (νi − 3)(νi + 4)

2(νi − 2)2(νi + 1)(νi + 3)
,

where ψ′ (x) = ∂2 ln Γ(x)/∂x2 is the so-called tri-gamma function (Abramowitz and Stegun

1964), which reduce to 1, 1, 0 and 3/2 respectively, under normality (see Fiorentini, Sentana

and Calzolari (2003)). As a result, when all shocks are in fact Gaussian, Mss = KNN + IN2 ,

which confirms that not all elements of C can be identified with a Gaussian log-likelihood

function because rank(KNN + IN2) = N(N + 1)/2 (see section 4 in Magnus and Sentana (2020)

for a general expression for the eigenvalues of (KNN + Υ).
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D.4 Semiparametric estimators

In Supplemental Appendix C.5 we interpreted the last summand of (C25) as Zd(φ0) times

the theoretical least squares projection of edt(φ0) on (the linear span of) ert(φ0), which is con-

ditionally orthogonal to edt(θ0,0) from Proposition 3 in Fiorentini and Sentana (2007). Such

an interpretation allowed Gonzalez-Rivera and Drost (1999) to replace a parametric assumption

on the shape of the distribution of the standardised innovations ε∗t by a fully non-parametric

alternative. Specifically, in a univariate context they replaced the linear span of ert(φ0) by the

so-called unrestricted tangent set, which is the Hilbert space generated by all the time-invariant

functions of ε∗t with bounded second moments that have zero conditional means and are condi-

tionally orthogonal to edt(θ0,0). The next proposition, which originally appeared as Proposition

6 in Fiorentini and Sentana (2007), describes the resulting semiparametric effi cient score and

the corresponding effi ciency bound for multivariate conditionally heteroskedastic models whose

conditionally mean is not identically zero:

Proposition D3 If ε∗t |It−1;θ,ρ is i.i.d. D(0, IN ,ρ) with density function f(ε∗t ;ρ), where ρ
denotes the possibly infinite dimensional vector of shape parameters and ρ = 0 normality, and
both its Fisher information matrix for location and scale,

Mdd (θ,ρ) = V [edt(θ,%)|It−1;θ,ρ]

= V

{[
elt(θ,ρ)
est(θ,ρ)

]∣∣∣∣θ,ρ} = V

{[
−∂ ln f [ε∗t (θ);ρ]/∂ε∗

−vec {IN + ∂ ln f [ε∗t (θ);ρ]/∂ε∗ · ε∗′t (θ)}

]∣∣∣∣θ,ρ}
and the matrix of third and fourth order central moments K (ρ) in (C22) are bounded, then the
semiparametric effi cient score will be given by:

s̈θt(φ) = sθt(φ)− Zd(θ,ρ)
[
edt(θ,ρ)−K (0)K+(ρ)edt(θ,0)

]
, (D17)

while the semiparametric effi ciency bound is

S̈(φ) = Iθθ(θ,ρ)− Zd(θ,ρ)
[
Mdd(θ,ρ)−K (0)K+(ρ)K (0)

]
Z′d(θ,ρ), (D18)

where + denotes Moore-Penrose inverses and Iθθ(θ,ρ) = E [Zdt(θ)Mdd(θ,ρ)Z′dt(θ)|θ,ρ].

Proof. It trivially follows from expressions (B3) and (C22) in appendices B and C, respectively,

that

E
{[

edt(θ,%)−K (0)K+ (%) edt(θ,0)
]
e′dt(θ,0) |It−1;θ,%

}
= 0

for any distribution. In addition, we also know that

E
{[

edt(θ,%)−K (0)K+ (%) edt(θ,0)
]
|It−1;θ,%

}
= 0.

Hence, the second summand of (D17), which can be interpreted as Zd(φ0) times the residual from

the theoretical regression of edt(φ0) on a constant and edt(θ0,0), belongs to the unrestricted

tangent set, which is the Hilbert space spanned by all the time-invariant functions of ε∗t with zero

conditional means and bounded second moments that are conditionally orthogonal to edt(θ0,0).
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Now, if we write (D17) as

[Zdt(θ)− Zd(θ,%)] edt(θ,%) + Zd(θ,%)K (0)K+ (%) edt(θ,0),

then we can use the law of iterated expectations to show that the semiparametric effi cient

score (D17) evaluated at the true parameter values will be unconditionally orthogonal to the

unrestricted tangent set because so is edt(θ0,0), and E [Zdt(θ)− Zd(θ,%)|θ,%] = 0.

Finally, the expression for the semiparametric effi ciency bound will be

E

[
{Zdt(θ)edt(θ,%)− Zd(θ,%) [edt(θ,%)−K (0)K+ (%) edt(θ,0)]}
×{edt(θ,%)′Z′dt(θ)− [e′dt(θ,%)− e′dt(θ, 0)K+ (%)K (0)] Z′d(θ,%)}

∣∣∣∣θ,%]
= E

[
Zdt(θ)edt(θ,%)e′dt(θ,%)Zdt(θ)|θ,%

]
−E

{
Zdt(θ)edt(θ,%)

[
e′dt(θ,%)− e′dt(θ,0)K+ (%)K (0)

]
Z′d(θ,%)|θ,%

}
−E

{
Zd(θ,%)

[
edt(θ,%)−K (0)K+ (%) edt(θ,0)

]
edt(φ)′Z′dt(θ)|θ,%

}
+E

{
Zd(θ,%)

[
edt(θ,%)−K (0)K+ (%) edt(θ, 0)

] [
e′dt(θ,%)− e′dt(θ, 0)K+ (%)K (0)

]
Z′d(θ,%)|θ,%

}
= Iθθ(θ,%)− Zd(θ,%)

[
Mdd (%)−K (0)K+ (%)K (0)

]
Z′d(θ,%)

by virtue of (C22), (B3) and the law of iterated expectations. �
In the case of the univariate Garch-M model (19), we estimate the model parameters using

reparametrisation 2 in section 4. Specifically, expressions (D2) and (D4) become

Zlt(ϕ) =
∂µt(ϕ)/∂ϕ

ϕ
1/2
ic σ�t (ϕc)

=
1

ϕ
1/2
ic σ�t (ϕc)

 1
2ϕimσ

�−1
t (ϕc)∂σ

�2
t (ϕc)/∂ϕc

σ�t (ϕc)
0

=

 ϕimϕ
−1/2
ic Wϕct(ϕc)

ϕ
−1/2
ic

0

 ,
Zst(ϕ) =

∂σ2t (ϕ)/∂ϕ

2ϕicσ
�2
t (ϕc)

=
1

2ϕicσ
�2
t (ϕc)

 ϕic∂σ
�2
t (ϕc)/∂ϕc

0
σ�2t (ϕc)

 =

 Wϕct(ϕc)
0

1
2ϕ
−1
ic


and

elt(ϕ,%) = −∂ ln f [εt(ϕ);ρ]

∂ε
,

est(ϕ,%) = −
{

1 + εt(ϕ)
∂ ln f [εt(ϕ);ρ]

∂ε

}
,

respectively, where

εt(ϕ) =
ε�t (ϕc)− ϕim

ϕ
1/2
ic

=
xt

ϕ
1/2
ic σ�t (ϕc)

− ϕim

ϕ
1/2
ic

=
xt − ϕimσ�t (ϕc)
ϕ
1/2
ic σ�t (ϕc)

and

Wϕct(ϕc) =
1

2σ�2t (ϕc)

∂σ�2t (ϕc)

∂ϕc
.

Then, a direct application of (D3) yields

sϕt(φ) = [ Zlt(ϕ) Zst(ϕ) ]

[
elt(ϕ,%)
est(ϕ,%)

]
=

[
Wt(ϕc)r

′(ϕi)
∆(ϕic)

] [
elt(ϕ,%)
est(ϕ,%)

]
,
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where

r(ϕi) = ( ϕimϕ
−1/2
ic 1 )′

and

∆(ϕic) =

(
ϕ
−1/2
ic 0

0 1
2ϕ
−1
ic

)
.

On the other hand, we use again the natural parametrisation of the multivariate market

model in (20). As a result, the Jacobian matrix (C36) in Supplemental Appendix C remains

relevant, so that

sat(θ) = −Ω−1/2∂ ln f [ε∗t (θ);ρ]/∂ε∗,

sbt(θ) = −Ω−1/2rmt∂ ln f [ε∗t (θ);ρ]/∂ε∗,

where Ω1/2 is a matrix square root of Ω.

If we choose the Cholesky decomposition, we can use expression (D14) to obtain

sωt(θ) = −1

2
D′NFLN (IN ⊗Ω−

1
2 )vec

{
IN + ∂ ln f [ε∗t (θ);ρ]/∂ε∗ · ε∗′t (θ)

}
,

where F denotes the transpose of the inverse of LN (Ω1/2 ⊗ IN )L′N + LN (IN ⊗Ω1/2)KNNL′N .

Finally, it is worth noting that it is possible to avoid the use of explicit Moore-Penrose

generalised inverses in the computation of the correction by exploiting the fact that

K(ρ)=

(
IN 0
0 DN

)[
IN E[ε∗t vech

′(ε∗tε
∗′
t )|θ,%]

E[vech(ε∗tε
∗′
t )ε′∗t |θ,%] E[vech(ε∗tε

∗′
t )vech′(ε∗tε

∗′
t )− IN |θ,%]

](
IN 0
0 D′N

)
and

K(0) =

(
IN 0
0 IN2 + KNN

)
imply that

K (0)K+(ρ)edt(θ,0) =

(
I 0
0 2D+′

)
×
[

IN E[ε∗t vech
′(ε∗tε

∗′
t )|θ,%]

E[vech(ε∗tε
∗′
t )ε′∗t |θ,%] E[vech(ε∗tε

∗′
t )vech′(ε∗tε

∗′
t )− IN |θ,%]

]−1 [
ε∗t

vech(ε∗tε
∗′
t − I)

]
.

Nevertheless, f(ε∗t ;ρ) has to be replaced by a nonparametric estimator, which increasingly

suffers from the curse of dimensionality as the cross-sectional dimension N increases. In line with

the usual practice, we employ a standard multivariate Gaussian kernel. Once again, we have

done some experimentation to choose optimal bandwidths by scaling up and down the automatic

choices given in Silverman (1986) because a proper cross-validation procedure is extremely costly

to implement in a Monte Carlo exercise when N = 3.
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E Other results

E.1 Standardised two component mixtures of multivariate normals

Consider the following mixture of two multivariate normals

εt ∼
{
N(µ1,Σ1) with probability λ,
N(µ2,Σ2) with probability 1− λ.

Let dt denote a Bernoulli variable which takes the value 1 with probability λ and 0 with

probability 1 − λ. As is well known, the unconditional mean vector and covariance matrix of
the observed variables are:

E(εt) = E[E(εt|dt)] = λµ1 + (1− λ)µ2,

V (εt) = V [E(εt|dt)] + E[V (εt|dt)] = λ(1− λ)(µ1 − µ2)(µ1 − µ2)′ + λΣ1 + (1− λ)Σ2.

Therefore, this random vector will be standardised if and only if

λµ1 + (1− λ)µ2 = 0,

λ(1− λ)(µ1 − µ2)(µ1 − µ2)′ + λΣ1 + (1− λ)Σ2 = I.

Let us initially assume that µ1 = µ2 = 0 but that the mixture is not degenerate, so that

λ 6= 0, 1. Let Σ1LΣ′1L and Σ2LΣ′2L denote the Cholesky decompositions of the covariance

matrices of the two components. Then, we can write

λΣ1 + (1− λ)Σ2 = Σ1L[λIN + (1− λ)Σ−11LΣ2LΣ′2LΣ−1′1L ]Σ′1L = Σ1L(λIN + KLK′L)Σ′1L,

where KL =
√

1− λΣ−11LΣ2L remains a lower triangular matrix. Given that IN = e1e1 +

. . . + eNeN , where ei is the ith vector of the canonical basis, the Cholesky decomposition of

λIN + KLK′L, say JLJ′L, can be computed by means of N rank-one updates that sequentially

add
√
λei
√
λe′i for i = 1, . . . , N . The special form of those vectors can be effi ciently combined

with the usual rank-one update algorithms to speed up this process (see e.g. Sentana (1999) and

the references therein). In any case, the elements of JL will be functions of λ and the N(N+1)/2

elements in KL. If we then choose Σ1L = J−1L , we will guarantee that λΣ1 + (1 − λ)Σ2 = IN .

Therefore, we can achieve a standardised two-component mixture of two multivariate normals

with 0 means by drawing with probability λ one random variable from a distribution with

covariance matrix J−1′L J−1L , and with probability 1−λ from another distribution with covariance
matrix (1− λ)−1KLK′L.

Let us now turn to the case in which the means of the components are no longer 0. The

zero unconditional mean condition is equivalent to µ1 = (1 − λ)δ and µ2 = −λδ, so that δ
measures the difference between the two means. Thus, the unconditional covariance matrix will

be λ(1 − λ)δδ′ + IN after imposing the restrictions on Σ1 and Σ2 in the previous paragraph.

Once again, the Cholesky decomposition of this matrix is very easy to obtain because it can be

regarded as a positive rank-one update of the identity matrix, whose decomposition is trivial.
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Thus, we can parametrise a standardised mixture of two multivariate normals, which usually

involves 2N mean parameters, 2N(N+1)/2 covariance parameters and one mixing parameter, in

terms of the N mean difference parameters in δ, the N(N +1)/2 relative variance parameters in

KL and the mixing parameter λ, the remaining N mean parameters and N(N +1)/2 covariance

ones freed up to target any unconditional mean vector and covariance matrix.

Mencía and Sentana (2009) explain how to standardise Bernoulli location-scale mixtures

of normals, which are a special case of the two component mixtures we have just discussed

in which Σ2 = κΣ1. Straightforward algebra confirms that the standardisation procedure

described above simplifies to the one they provide in their Proposition 1.

E.2 Non-causal ARMA models

Consider the following Ar(2) process:

(1− α1L)(1− α2L)xt = µ+ ξt, (E1)

where ξt is a possibly non-Gaussian i.i.d. sequence, α1, α2 ∈ R, |α1| < 1, |α2| > 1 but α2 6= α−11 .

Higher order process with possibly complex roots can be handled analogously, but the algebra

gets messier. Brockwell and Davis (1987) showed that xt can be written as the following doubly

infinite Ma process

xt =
−α−12 µ

(1− α1)(1− α−12 )
−(. . .+α−22 L−3+α−12 L−2+L−1+α1+α21L+α31L

2+α41L
3+ . . .)

ξt
α2 − α1

,

which they called mixed causal/non-causal because xt effectively depends on past, present and

future values of the underlying innovations. Nevertheless, by looking at the spectral density of

xt they also showed that this process has the following purely causal Ar(2) representation:

(1− α1L)(1− α−12 L)xt = ν + ut, (E2)

where ut is a white noise but not necessarily serially independent sequence, with variance σ2u =

α−22 σ2ξ and ν = −α−12 µ. Thus, the situation is entirely analogous to the well known multiple

invertible and non-invertible representations of Ma processes.

Breidt et al (1991) showed that a non-Gaussian log-likelihood function based on the as-

sumption that the distribution of ξt is i.i.d. with 0 mean and finite variance σ
2
ξ will be able to

consistently estimate the values of the two autoregressive roots that appear in (E1) as well as

the true drift and variance of the innovations. In contrast, a Gaussian log-likelihood function,

which effectively exploits the information in the spectral density of xt, can only consistently

estimate the parameters in (E2).

At first sight, it might appear that one cannot apply the procedures we have developed in

the paper to assess the adequacy of the non-Gaussian distribution chosen for the purposes of

estimating the “structural”parameters because the Gaussian pseudo log-likelihood cannot con-

sistently estimate them. However, under correct specification, the non-Gaussian log-likelihood
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function will also estimate α1, α−12 , −α
−1
2 µ and α−22 σ2ξ consistently. Therefore, one can easily

develop a DWH specification test to check the validity of the distributional assumption for ξt
by comparing the non-Gaussian coeffi cient estimators of those “reduced form”parameters with

the Gaussian ones. The score versions of those tests that we discussed in section 2.1 are also

straightforward. As we have argued in section 3.7, power gains may be obtained by focusing on

ν and σ2u.

E.3 Additional Monte Carlo results

In this section, we look at the sampling distribution of the estimators we used in section 4 to

compute the DWH tests of the univariate Garch-M model and the multivariate market model.

Univariate GARCH-M Table 1S displays the Monte Carlo medians and interquartile ranges

of the estimators. The results broadly confirm the theoretical predictions in terms of bias and rel-

ative effi ciency. It is worth noticing that the bias of the restricted (unrestricted) Student t max-

imum likelihood estimators of the scale parameter is negative (positive) when the log-likelihood

is misspecified, which suggests that our tests will have good power for pairwise comparisons

involving this parameter, at least for the distributions considered in the exercise. In turn, the

location parameter estimators are biased only when the true distribution is asymmetric.

Multivariate market model Table 2S displays the Monte Carlo medians and interquartile

ranges of the estimators for several representative parameters in addition to the global scale

parameter ϑi = |Ω|1/N . Specifically, we exploit the exchangeability of our design to pool the
results of all the elements of the vectors of intercepts a and slopes b, and the “vectors”of residual

covariance parameters vecd(Ω◦), vecl(Ω◦), vecd(Ω) and vecl(Ω). Once again, the results are

in line with the theoretical predictions. Moreover, the biases of the restricted and unrestricted

Student t maximum likelihood estimators of the global scale parameter have opposite signs,

as in the univariate case. Finally, the location parameters are only biased in the asymmetric

distribution simulations. Therefore, we expect tests that involve the intercepts to increase power

in that case, but to result in a waste of degrees of freedom otherwise.
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TABLE 1S: Univariate GARCH-M: Parameter estimators.

Parameter β γ δ, ϕim ϑi, ϕic η = 1/ν
True value 0.85 0.1 0.05 1.0

RML 0.8467 0.0960 0.0506 1.0404 0.0833
(0.0375) (0.0348) (0.0314) (0.4132)

UML 0.8467 0.0959 0.0507 1.0397 0.0815
Student t12 (0.0376) (0.0350) (0.0315) (0.4125) (0.0276)

PML 0.8464 0.0956 0.0508 1.0420
(0.0392) (0.0363) (0.0324) (0.4331)

RML 0.8467 0.0956 0.0505 1.0137 0.0833
(0.0383) (0.0344) (0.0315) (0.3986)

UML 0.8468 0.0959 0.0504 1.0392 0.1232
Student t8 (0.0381) (0.0343) (0.0314) (0.4077) (0.0276)

PML 0.8460 0.0955 0.0504 1.0439
(0.0423) (0.0384) (0.0333) (0.4539)

RML 0.8461 0.0955 0.0506 0.8706 0.0833
(0.0437) (0.0383) (0.0278) (0.3817)

UML 0.8470 0.0967 0.0502 1.3990 0.3604
GC(0,3.2) (0.0371) (0.0338) (0.0254) (0.5748) (0.0264)

PML 0.8460 0.0956 0.0506 1.0425
(0.0429) (0.0377) (0.0327) (0.4476)

RML 0.8460 0.0956 0.1117 0.8601 0.0833
(0.0436) (0.0386) (0.0358) (0.3848)

UML 0.8475 0.0970 0.1723 1.5853 0.3865
GC(-.9,3.2) (0.0356) (0.0321) (0.0380) (0.6728) (0.0265)

PML 0.8459 0.0956 0.0511 1.0453
(0.0431) (0.0381) (0.0326) (0.4626)

Monte Carlo medians and (interquartile ranges) of RML (Student t-based maximum likelihood with
12 degrees of freedom), UML (unrestricted Student t-based maximum likelihood), and PML (Gaussian
pseudo maximum likelihood) estimators. GC (Gram-Charlier expansion). Sample length=2,000. Repli-
cations=20,000.
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