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B Proofs

For the sake of brevity, Assumption 1 is maintained throughout.

Proposition 1

Consider the differential of (2),

dφK(yi,ρ) = −1

2
tr{P−1(ρ)d[P(ρ)]} − 1

2
y′id[P−1(ρ)]yi

= −1

2
vec[P−1(ρ)]′vec{d[P(ρ)]}+

1

2
y′iP

−1(ρ)d[P(ρ)]P−1(ρ)yi

= −1

2
vec[P−1(ρ)]′vec{d[P(ρ)]}+

1

2
[y′iP

−1(ρ)⊗ y′iP
−1(ρ)]vec{d[P(ρ)]}

= −1

2
{vec[P−1(ρ)]′ − y′iP

−1(ρ)⊗ y′iP
−1(ρ)}vec{d[P(ρ)]}

= −1

2
{vec[P−1(ρ)P(ρ)P−1(ρ)]′ − vec[P−1(ρ)yiy

′
iP
−1(ρ)]′}vec{d[P(ρ)]}

=
1

2
{[P−1(ρ)⊗P−1(ρ)]vec[yiy

′
i −P(ρ)]}′vec{d[P(ρ)]}

Transposing and simplifying terms, we can get the fist order condition:

1

2

∂vec′[P(ρ)]

∂ρ
[P−1(ρ)⊗P−1(ρ)]vec[yiy

′
i −P(ρ)] = 0.

Then, using the fact that

vec[P(ρ)] = vec(IK) + L̃
′
ρ+ KL̃

′
ρ,

so that
∂P(ρ)

∂ρ′
= L̃

′
+ KL̃

′
,

the result follows. �

Proposition 2

Starting from the expression for the score in (3), we can derive Hessian matrix by differencing once

again, namely

dsKi(ρ) =
1

2
(L̃ + L̃K)[d{vec[P−1(ρ)yiy

′
iP
−1(ρ)]} − d{vec[P(ρ)]}]

=
1

2
(L̃ + L̃K)[vec{d[P−1(ρ)]yiy

′
iP
−1(ρ)}

+vec{P−1(ρ)yiy
′
id[P−1(ρ)]} − d{vec[P−1(ρ)]}]

=
1

2
(L̃ + L̃K)[−vec{P−1(ρ)d[P(ρ)]P−1(ρ)yiy

′
iP
−1(ρ)}

−vec{P−1(ρ)yiy
′
iP
−1(ρ)d[P(ρ)]P−1(ρ)}+ vec{P−1(ρ)d[P(ρ)]P−1(ρ)}]

=
1

2
(L̃ + L̃K){−[P−1(ρ)yiy

′
iP
−1(ρ)]⊗P−1(ρ)

−P−1(ρ)⊗ [P−1(ρ)yiy
′
iP
−1(ρ)] + P−1(ρ)⊗P−1(ρ)}vec{d[P(ρ)]}.

Hence, dsKi(ρ) can be written as in (6) after noticing that vec{d[P(ρ)]} = (L̃ + L̃K). �
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Proposition 3

Part (a) follows from the i.i.d. assumption on {yi} together with either expression (10) or (11), while
part (b) is a direct application of the Delta method to the result in part (a). �

Lemma 1

As in Chen and Fan (2006), we need to compute

n2 =

∫ 1

0
[1{u1 ≤ U1} − u1]W 1

ρ12
dU1 +

∫ 1

0
[1{u2 ≤ U2} − u2]W 2

ρ12
dU2,

with W j
ρ12 =

∫
[∂sρ12(u1, u2; ρ12)/∂uj ]c(u1, u2; ρ12)duj for j = 1, 2. Then, the result follows from

W j
ρ12

=

∫ [
1 + ρ212

(1− ρ212)2
y−j −

2ρ12
(1− ρ212)2

yj

]
φ(yj)dy−j =

1 + ρ212
(1− ρ212)2

yj

and the fact that∫ y

−∞
H1(x)Φ(x)dx =

H1(y)

2

1√
2π

exp

(
−y

2

2

)
+

1

2
√

2
H2(y)

[
1 + erf

(
y√
2

)]
and ∫ ∞

y
H1(x)[1− Φ(x)]dx =

H1(y)

2

1√
2π

exp

(
−y

2

2

)
− 1

2
√

2
H2(y)

[
erfc

(
y√
2

)]
,

where erf(z) = 2π−1/2
∫ z
0 e
−t2dt and erfc(z) = 1−erf(z). Analogous calculations in the trivariate case

yield the corresponding correction. �

Proposition 4

Under the maintained assumption of a Gaussian copula, it is straightforward to obtain the variance

of the score in (4) using the moments of the bivariate normal, whose reciprocal is AV ar(ρ̂).

To obtain the asymptotic variance of ρ̌ =
∑

i y1iy2i/
∑

i y
2
2i, consider the following vector of influence

functions:

m̌2i(θ) = (y1iy2i − σ22ρ, y22i − σ22)′

where θ = (ρ, σ22)
′. Then, we can easily compute

Ǎ2 = E

[
∂m̌2i(θ)

∂θ′

]
= −

(
σ22 ρ
0 1

)
and B̌2 = V ar[m̌2i(θ)] =

(
1 + ρ2 2ρ

2ρ 2

)
,

so that imposing σ2 = 1 and applying the sandwich formula yields V ar(ρ̌) = (1 − ρ2)2/(1 + ρ2) as the

(1, 1) element of Ǎ
−1
2 B̌2Ǎ

−1′
2 .

As for ρ̃ =
∑

i(y1i− ȳ1)(y2i− ȳ2)/
∑

i y
2
2i, where ȳj = N−1

∑
i yji, we consider the following alternative

vector of influence functions:

m̃2i(θ) = [y1iy2i − (µ1µ2 + σ22ρ), y22i − (µ22 + σ22), y1i − µ1, y2i − µ2]′

2



where θ = (ρ, σ22, µ1, µ2)
′. Then, we can compute

Ã2 = E

[
∂m̃2i(θ)

∂θ′

]
= −


σ22 ρ µ2 µ1
0 1 0 2µ2
0 0 1 0
0 0 0 1

 and B̃2 = V ar [m̃2i(θ)] =

(
B̌2 0
0 P(ρ)

)
,

so that imposing the Gaussian copula assumption and applying the sandwich formula yields V ar(ρ̃) =

(1− ρ2)2 as the (1, 1) element of Ã
−1
2 B̃2Ã

−1′
2 . �

Proposition 5

Analogous calculations to the ones used in the proof of Lemma 1 allow us to obtain

nµji (ρ) = H1(yji) and nσ2j i
(ρ) =

√
2H2(yji) for j = 1, 2.

Hence, the asymptotic variance of the ML estimator of ρ can be obtained as

AV ar(ρ̂np) =
V ar[snpρi (ρ)]

{V ar[sρi (ρ)]}2 = (1− ρ2)2.

As for the other estimators, letting Bnp
2 = V ar[m2i(θ) + n2i(θ)], we can show that AV ar(ρ̂np) coincides

with the common asymptotic variance of ρ̌np and ρ̃np, which is given by

AV ar(ρ̃np) = AV ar(ρ̌np) = (1− ρ2)2

because B̌
np
2 and B̃

np
2 have all the elements equal to zero except the (1, 1) one, which is equal to (1− ρ2).

�

Proposition 6

First, we can obtain the asymptotic variance of ρ̂ as AV ar(ρ̂) = A−1(ρ), where the expressions

for the expected (minus) Hessian A(ρ) are reported in Online Appendix C. Then, regarding the ML

estimator β̂
(1)
, we can exploit

β̂
(1)

=

[
1 ρ̂23
ρ̂23 1

]−1 [
ρ̂12
ρ̂13

]
to obtain the asymptotic variance of say β̂(1)2 by applying the Delta method, namely

AV ar(β̂
(1)
2 ) = ∇β̂(1)′2 (ρ)AV ar(ρ̂)∇β̂(1)2 (ρ)

where

∇β̂(1)2 (ρ) =

[
1

1− ρ223
,− ρ23

1− ρ223
,
2ρ12ρ23 − ρ13(1 + ρ223)

(1− ρ223)2

]′
.

3



This yields

AV ar(β̂
(1)
2 ) = −(((−1 + ρ223)

3(1 + ρ223) + ρ612(1 + 3ρ223)− 2ρ512ρ13ρ23(5 + 7ρ223)

+ρ613(−1 + 3ρ223 + 2ρ423) + ρ213(−1 + ρ223)
2(1 + 3ρ223 + 2ρ423)

+ρ413(1− 6ρ223 + ρ423 + 4ρ623)− 2ρ12ρ13ρ23(3(−1 + ρ223)
2(1 + ρ223)

+4ρ213(−1 + ρ223)(1 + ρ223)
2 + ρ413(1 + 7ρ223 + 4ρ423))

−4ρ312ρ13ρ23(4(−1 + ρ423) + ρ213(4 + 11ρ223 + 5ρ423))

+ρ412(−3− 2ρ223 + 5ρ423 + 3ρ213(1 + 11ρ223 + 8ρ423))

+ρ212(3(−1 + ρ223)
2(1 + ρ223) + ρ413(1 + 25ρ223 + 26ρ423 + 8ρ623) +

2ρ213(−2− 11ρ223 + 4ρ423 + 9ρ623)))

/((−1 + ρ223)
3(−1 + ρ412 + ρ413 − 2ρ212ρ

2
13ρ

2
23 + ρ423))).

In turn, to obtain the asymptotic variance of

β̌
(1)

=

( ∑
i y
2
2i

∑
i y2iy3i∑

i y2iy3i
∑

i y
2
3i

)−1( ∑
i y1iy2i∑
i y1iy3i

)
we consider the following vector of influence functions:

m̌3i(θ) = (y1iy2i −
√
σ21σ

2
2ρ12, y1iy3i −

√
σ21σ

2
3ρ13, y2iy3i −

√
σ22σ

2
3ρ23, y

2
1i − σ21, y22i − σ22, y23i − σ23)′

where θ = (ρ12, ρ13, ρ23, σ
2
1, σ

2
2, σ

3
2)
′. Then, under the assumption of a Gaussian copula we will have

Ǎ3 = E

[
∂m̌3i(θ)

∂θ′

]
= −



1 0 0 ρ12/2 ρ12/2 0
0 1 0 ρ13/2 0 ρ13/2
0 0 1 0 ρ23/2 ρ23/2
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


and

B̌3 = V ar[m̌3i(θ)] =



1 + ρ212 ρ12ρ13 + ρ23 ρ12ρ23 + ρ13 2ρ12 2ρ12 2ρ13ρ23
ρ12ρ13 + ρ23 1 + ρ213 ρ13ρ23 + ρ12 2ρ13 2ρ12ρ23 2ρ13
ρ12ρ23 + ρ13 ρ13ρ23 + ρ12 1 + ρ223 2ρ12ρ13 2ρ23 2ρ23

2ρ12 2ρ13 2ρ12ρ13 3 2ρ212 2ρ213
2ρ12 2ρ12ρ23 2ρ23 2ρ212 3 2ρ223

2ρ13ρ23 2ρ13 2ρ23 2ρ213 2ρ223 3

 ,

which allow us to obtain AV ar(θ̌) as Ǎ
−1
3 B̌3Ǎ

−1′
3 . We can then use the Delta method to obtain the

asymptotic variance of β̌(1)2 . Specifically, we have

∇β̌(1)2 (θ) =

[
1

1− ρ223
,
−ρ23

1− ρ223
,
2ρ12ρ23 − ρ13 − ρ13ρ223

(1− ρ223)2
,
ρ12 − ρ13ρ23
2(1− ρ223)

,−ρ12 − ρ13ρ23
2(1− ρ223)

, 0

]′
,

and therefore

AV ar(β̌
(1)
2 ) =

1− ρ212 − ρ213 + 2ρ12ρ13ρ23 − ρ223
(1− ρ223)2

.
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Finally, to obtain the asymptotic variance of

β̃
(1)

=

(
N−1

∑
i y
2
2i − ȳ22 N−1

∑
i y2iy3i − ȳ2ȳ3

N−1
∑

i y2iy3i − ȳ2ȳ3 N−1
∑

i y
2
3i − ȳ23

)−1(
N−1

∑
i y1iy2i − ȳ1ȳ2

N−1
∑

i y1iy3i − ȳ1ȳ3

)
we consider the following vector of influence functions:

m̃3i(θ) =



y1iy2i − µ1µ2 −
√
σ21σ

2
2ρ12

y1iy3i − µ1µ3 −
√
σ21σ

2
3ρ13

y2iy3i − µ2µ3 −
√
σ22σ

2
3ρ23

y1i − µ1
y2i − µ2
y3i − µ3

y21i − (µ21 + σ21)
y22i − (µ22 + σ22)
y23i − (µ23 + σ23)


where θ = (ρ12, ρ13, ρ23, σ

2
1, σ

2
2, σ

3
2, µ1, µ2, µ3)

′. Then, under the assumption of a Gaussian copula we will

have

Ã3 = E

[
∂m̃3i(θ)

∂θ′

]
=

(
Ǎ3 0
0 −I3

)
and B̃3 = V ar[m̃3i(θ)] =

(
Ǎ3 0
0 P(ρ)

)
,

which allow us to obtain AV ar(θ̃) as Ã
−1
3 B̃3Ã

−1′
3 . We can then use the Delta method to obtain the

asymptotic variance of β̃(1)2 . Specifically, we have

∇β̃(1)2 (θ) =

[
1

1− ρ223
,
−ρ23

1− ρ223
,
2ρ12ρ23 − ρ13 − ρ13ρ223

(1− ρ223)2
,
ρ12 − ρ13ρ23
2(1− ρ223)

,−ρ12 − ρ13ρ23
2(1− ρ223)

, 0, 0, 0, 0

]′
,

and therefore

AV ar(β̃
(1)
2 ) =

1− ρ212 − ρ213 + 2ρ12ρ13ρ23 − ρ223
(1− ρ223)2

,

as desired. �

Proposition 7

We first compute the variance of the ML correlation estimator by using the correction for the trivari-

ate case given in Lemma 1. Specifically, the resulting diagonal elements for the variance of the corrected

scores are

V11 = Vci (ρ12, ρ13, ρ23), V22 = Vci (ρ13, ρ12, ρ23) and V33 = Vci (ρ23, ρ12, ρ13),

where

Vci (ρ12, ρ13, ρ23) =
1 + 2ρ212 + ρ412 − ρ213 − 4ρ12ρ13ρ23 − 2ρ312ρ13ρ23 − ρ223 + 3ρ213ρ

2
23 + ρ212ρ

2
13ρ

2
23

(1− ρ212 − ρ213 − ρ223 + 2ρ12ρ13ρ23)
2

.

In turn, the corresponding off-diagonal elements are

V12 = Vcij(ρ12, ρ13, ρ23), V13 = Vcij(ρ13, ρ23, ρ12) and V23 = Vcij(ρ23, ρ12, ρ13),

with

V c
ij(ρ12, ρ13, ρ23) = [5ρ12ρ13 + ρ312ρ13 + ρ12ρ

3
13 − 2ρ23 − 3ρ212ρ23 − ρ412ρ23 − 3ρ213ρ23

−2ρ212ρ
2
13ρ23 − ρ413ρ23 + 2ρ12ρ13ρ

2
23 + ρ312ρ13ρ

2
23 + ρ12ρ

3
13ρ

2
23 + 2ρ323

−ρ212ρ323 − ρ213ρ323 + ρ12ρ13ρ
4
23]/[2(1− ρ212 − ρ213 + 2ρ12ρ13ρ23 − ρ223)2].
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These quantities, together with the expressions for the expected (minus) Hessian in Online Appendix

C, allow us to compute the corrected asymptotic variance of the ML estimators via the usual sandwich

formula H(ρ)−1Vc(ρ)H(ρ)−1.

As for the moment-based estimators, we can also correct the corresponding moment conditions using

the following terms:

nµji (θ) = −H1(yji) and nσ2j i
(θ) = −

√
2H2(yji) for j = 1, 2, 3

and

nσjhi(θ) = −1

2
(y2ji + y2hi − 2)ρhj , for h = 1, 2, 3, and h 6= j.

As in the bivariate case, if we define Bnp
3 = V ar[m3i(θ) + n3i(θ)], then we will have

B̌
np
3 =


r12 r123 r132 0
r123 r13 r231 0
r132 r231 r23 0
0 0 0 0

 and B̃
np
3 =

(
B̌
np
3 0
0 0

)
,

where

rjh = (1− ρ2jh)2 and rjhk =
1

2
[ρ3jhρjk − 2ρ2jhρhk + 2(1− ρ2jk)ρhk + ρjhρjk(ρ

2
jk + ρ2hk − 1)].

Finally, the corrected variance of both moment estimators of the regression coeffi cients β can be

obtained by combining the Delta method with the sandwich formula, and it turns out to be the same as

the corrected variance of the ML estimators. �

Proposition 8

The combination of i.i.d. data with Assumption 1 implies that under standard regularity conditions

we can effectively prove consistency by showing that the expected value of the score in (3) is zero. Let us

start by considering the case in which P(ρ) is unrestricted, so that ρ contains the K(K−1)/2 off-diagonal

elements of the correlation matrix. But since

E(y2i ) = 1 and ρij = E(yiyj),

then P(ρ∞) = E(yy). More generally, consider P(ρ), where ρ is a p × 1 vector with p < K(K − 1)/2.

In this case,

E[sρi(y;ρ)] =
∂vecl′[P(ρ)]

∂ρ
E[sKi{vecl[P(ρ)]}] = 0,

where the first equality follows from the chain rule and the last one from the fact that P(ρ) is correctly

specified. �
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C Trivariate copula expressions

C.1 Score

Applying the general formula in (3) to the trivariate case yields

sρ12(y1, y2, y3, ρ12, ρ13, ρ23) =
1

(1− ρ212 − ρ213 + 2ρ12ρ13ρ23 − ρ223)2

×
[
y21(ρ12 − ρ13ρ23)(ρ223 − 1)− ρ312 + ρ212ρ13[(3 + y23)ρ23 − y2y3]

+ρ13[y
2
2(ρ23 − ρ213ρ23) + y2y3(ρ

2
13 − ρ223 − 1) + ρ23(y

2
3 + ρ213 + ρ223 − 1)]

−ρ12[−1− y22(−1 + ρ213)− 2y2y3ρ23 + ρ223 + y23ρ
2
23 + ρ213(1 + y23 + 2ρ223)]

+y1{−y3(ρ23 + ρ212ρ23 + ρ213ρ23 − 2ρ12ρ13 − ρ323)

+y2[1 + ρ212 − 2ρ12ρ13ρ23 − ρ223 − ρ213(1− 2ρ223)]}
]

sρ13(y1, y2, y3, ρ12, ρ13, ρ23) = sρ12(y1, y3, y2, ρ13, ρ12, ρ23),

and

sρ23(y1, y2, y3, ρ12, ρ13, ρ23) = sρ12(y2, y3, y1, ρ23, ρ12, ρ13).

C.2 Hessian

The expected value of the (minus) Hessian under correct of specification of the correlation matrix is given

by

E[−hi(ρ∞)] =

 h11(ρ12∞, ρ13∞, ρ23∞) h12(ρ12∞, ρ13∞, ρ23∞) h13(ρ12∞, ρ13∞, ρ23∞)
h22(ρ12∞, ρ13∞, ρ23∞) h23(ρ12∞, ρ13∞, ρ23∞)

h33(ρ12∞, ρ13∞, ρ23∞)


where

h11(ρ12, ρ13, ρ23) =
1 + ρ212 − 2ρ12ρ13ρ23 − ρ223 − ρ213(1− 2ρ223)

(1− ρ212 − ρ213 − ρ223 + 2ρ12ρ13ρ23)
2

h22(ρ12, ρ13, ρ23) = h11(ρ13, ρ12, ρ23),

h33(ρ12, ρ13, ρ23) = h11(ρ23, ρ12, ρ13),

h12(ρ12, ρ13, ρ23) =
ρ323 + 2ρ12ρ13 − ρ23(1 + ρ212 + ρ213)

(1− ρ212 − ρ213 − ρ223 + 2ρ12ρ13ρ23)
2
,

h13(ρ12, ρ13, ρ23) = h12(ρ12, ρ23, ρ13)

and

h23(ρ12, ρ13, ρ23) = h12(ρ13, ρ23, ρ12).

D Spearman’s calculations

D.1 Alternative estimators

Alternative estimators to ρ̃IS , which is based on the moment conditions (14), can be obtained as

follows.

7



Given that u1i and u2i are uniform by definition, one could exploit the fact that E(uji) = 1/2 and

V ar(uji) = 1/12 to estimate ρ based on the single moment condition

E

(
u1iu2i −

1

4
− 1

12
ρ

)
= 0,

whence

ρ̃IIS = 12

(
1

N

N∑
i=1

u1iu2i −
1

4

)
. (D1)

A third estimator in which the mean of each component is substracted before computing the cross-

moment is given by

ρ̃IIIS =
1

1/12

N∑
i=1

(
u1i −

1

2

)(
u2i −

1

2

)
. (D2)

Finally, the fourth estimator we could consider, which is the closest to the one Matlab implements, is

ρ̃IVS = 1− 6(N + 1)2

N(N2 − 1)

N∑
i=1

(u1i − u2i)2,

which in large samples can be interpreted in terms of the following moment conditions

E[mIV
i (θ)] = E




u1iu2i − 1
2(µ21 + σ21)− 1

2(µ22 + σ22)− 1
12(ρ− 1)

u1i − µ1
u2i − µ2

u21i − (µ21 + σ21)
u22i − (µ22 + σ22)


 = 0. (D3)

D.2 Asymptotic variances

Regarding ρ̃IS , we can easily compute the expected value of the Jacobian and variance of the moment

conditions to obtain the asymptotic variance for θ in (14). In particular,

AI(θ) = E

[
∂mI

i (θ)

∂θ′

]
= −


√
σ21σ

2
2 µ2 µ1

1
2ρ
√
σ22/σ

2
1

1
2ρ
√
σ21/σ

2
2

0 1 0 0 0
0 0 1 0 0
0 2µ1 0 1 0
0 0 2µ2 0 1

 ,

and

BI(θ) = V ar[mI
i (θ)]

=


E22 − E211 E21 − E11E10 E12 − E11E01 E31 − E11E20 E13 − E11E02

V ar(u1i) cov(u1i, u2i) E30 − E20E10 cov(u1i, u
2
2i)

V ar(u2i) cov(u21i, u2i) E03 − E02E01
E40 − E220 cov(u21i, u

2
2i)

E04 − E202

 ,

where Eh,j denotes E(uh1iu
j
2i).

As for ρ̃IIS , it is straightforward to prove that (D1) implies AV ar(ρ̂) = 144× V ar(u1iu2i).

8



To obtain the asymptotic variance of ρ̃IIIS from (D2), it is convenient to use the following moment

conditions

E


u1iu2i − 1

2µ1 −
1
2µ2 −

1
12ρ+ 1

4
u1i − µ1
u2i − µ2

u21i − (µ21 + σ21)
u22i − (µ22 + σ22)

 = E[mIII
i (θ)] = 0,

whence

AIII(θ) = E

[
∂mIII

i (θ)

∂θ′

]
= −


1/12 1/2 1/2 0 0

0 1 0 0 0
0 0 1 0 0
0 2µ1 0 1 0
0 0 2µ2 0 1

 .

In addition, it is easy to see that BIII(θ) = V [mIII
i (θ)] coincides with BI(θ).

Finally, we can use (D3) to show that BIV (θ) = V [mIV
i (θ)] is equal to BI(θ) and

AIV (θ) = E

[
∂mIV

i (θ)

∂θ′

]
= −


1/12 µ1 µ2 1/2 1/2

0 1 0 0 0
0 0 1 0 0
0 2µ1 0 1 0
0 0 2µ2 0 1

 ,

whence we can obtain the asymptotic variance of ρ̃IVS .

E Description of the marginal distributions used in Section 5

E.1 Tukey distribution

The Tukey lambda distribution is a continuous, symmetric probability distribution defined in terms

of its quantile function

Q(p, λ) =

{
1
λ [pλ − (1− p)λ], if λ 6= 0

ln[p/(1− p)], if λ = 0,

where λ is its single shape parameter. It nests the logistic distribution for λ = 0 and the uniform

distribution for both λ = 1 and λ = 2. In Figure 6a, we plot the density of a Tukey random variable with

parameter λ = 1.5.

E.2 Asymmetric Laplace distribution

The Asymmetric Laplace distribution is a continuous probability distribution consisting of two ex-

ponential distributions of unequal scale, adjusted to ensure continuity and normalization. Its density

is

f(x;m,κ, λ) =
λ

κ+ 1/κ

{
exp[(λ/k)(x−m)], x ≤ m
exp[−λκ(x−m)], x > m

The quantiles for this distribution can be easily obtained from those of the two underlying exponen-

tial distributions. In Figure 6b, we plot the density of an Asymmetric Laplace random variable with

parameters m = 0, k = 2 and λ = 1.
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E.3 Weibull distribution

The probability density function of the Weibull distribution is

f(x; k, λ) =

{
k
λ(xλ)k−1 exp[−(x/λ)k], x ≥ 0

0, x < 0
(E1)

where k > 0 is the shape parameter and λ > 0 is the scale parameter. Its quantile function is

F−1(p; k, λ) = λ[− ln(1 − p)]k. When k = 0, it particularizes to the exponential distribution with

parameter λ−1. We plot the density of a Weibull random variable with parameters k = 0.75 and λ = 1

in Figure 6c.

E.4 Mixture of Weibull distributions

This distribution is generated by mixing a regular Weibull distribution and a mirror image of another

Weibull distribution whose support is the negative real line. Suppose that x1 follows a Weibull distribution

with shape and scale parameters k1 and λ1, and that −x2 follows a Weibull distribution with shape and
scale parameters k2 and λ2. Further, let α denote the mixing probability associated to the first component.

Then, the nonstandardized mixture x has density given by

f(x; k1, k2, λ1, λ2, α) = αf(x; k1, λ1) + (1− α)f(x; k2, λ2),

where f(x; k, λ) is given in (E1). We standardize x to achieve zero mean and unit variance. The quantiles

for this distribution can be easily obtained from those of the two underlying Weibull distributions. In

Figure 6d we plot the density of a mixture of Weibull random variables with parameters k1 = 5, λ1 = 10,

k2 = 5, λ1 = 2 and mixing probability α = .98.
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