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B Proofs

For the sake of brevity, Assumption 1 is maintained throughout.

Proposition 1

Consider the differential of (2),

Wi (yep) = —ir(PPP()]} — Sy/dP~ (p)ly:
- _%vec[P*1(p)]’vec{d[P(p)]} + %yQP’l(p)d[P(p)]P’l(p)yi
- —%vec[P_l(p)]/vec{d[P(p)]} + l[yéP_l(p) ®y P~ (p)lvec{d[P(p)]}
= {vePp) ~ ¥IP(p) @ yIP () uee{dP(p)]}

= *%{UGC[P‘I(p)P(p)P‘l(p)]’ —vecPH(p)yiyiP ™ (p)] Jvec{d[P(p)]}
1

= P (p) @ P (p)lveclyiy; — P(p)]} vec{d[P(p)]}

Transposing and simplifying terms, we can get the fist order condition:

1 '[P

L 2P b1 () & P (p)ucely.y! — P(p)] = 0.

2 ap

Then, using the fact that
vec|P(p)] = vec(Ix) + L'p+KLp,

so that
IP(p)

op'
the result follows. OJ

-1 + KL,

Proposition 2

Starting from the expression for the score in (3), we can derive Hessian matrix by differencing once

again, namely

dsiilp) = 3L+ EK)afveclP (p)yiy(P~(p)]} — d{vecP (o))}

= ;L+Landd “o)lyyiP o)
oee{P (p)ysy{d[P(p)]} — d{veclP(p)]}]
= S+ EK)[veclP (p)AP (PP (p)yiy/ P (p)}
—ueelP~ Py P ()P ()P m»+de Hp)P (PP ()}
)

= (L +LK){~[P ! (p)yiyiP~ (P)] “Hp)
—P Hp) @ [P~ (p)yiyiP ™ (p)] + P~ (p) ® P~} (p)}vec{d[P(p)]}.
Hence, dsg;(p) can be written as in (6) after noticing that vec{d[P(p)]} = (L 4+ LK). O



Proposition 3

Part (a) follows from the 4.i.d. assumption on {y;} together with either expression (10) or (11), while
part (b) is a direct application of the Delta method to the result in part (a). O

Lemma 1

As in Chen and Fan (2006), we need to compute

1 1
ng = / [1{11,1 S Ul} — ul]WpllgdUl +/ [1{UQ S UQ} — 'LLQ]WP212dU2,
0 0

with W7

P12

= [[0sp,, (u1,u2; p1a)/Oujlc(ur, ug; pro)du; for j =1,2. Then, the result follows from

: 1+ pf 2015 1+ pi
W) —/[ Sy — yj | (y;)dy—; = 5
P12 (L=p1p)?" 7 (=pf)?™ ] 777 (1= p3y)2™

and the fact that

/_': Hy(2)®(z)dz = le(y) \/1277 exp <—y22> + 2551{2@) [1 +erf (\%)]

and

/yoo Hi(z)[1 — ®(z)]dz = Hl;y) \/12?eXp <—y22> - 2\1@H2(y) [erfc (\%)] ’

where erf(z) = 2r~1/2 Iy et dt and erfc(z) = 1—erf(z). Analogous calculations in the trivariate case

yield the corresponding correction. ([l

Proposition 4

Under the maintained assumption of a Gaussian copula, it is straightforward to obtain the variance
of the score in (4) using the moments of the bivariate normal, whose reciprocal is AVar(p).
To obtain the asymptotic variance of p = > y1;92i/ >.; ¥3;, consider the following vector of influence
functions:
1155 (0) = (Uitor — 02p. 12 — o2
1y;(0) = (Y1:y2i — 02p,Y2; — 03)

where 6 = (p,03)". Then, we can easily compute

Oy, (0)
06’

Ay=E [ ] = < ‘B% f ) and By = Var|[thy; ()]

L+p% 2p
2p 2 )7
so that imposing 02 = 1 and applying the sandwich formula yields Var(p) = (1 — p?)?/(1 + p?) as the
(1,1) element of A;lﬂgAQ_U.
Asfor p =3 (v1i— 1) (y2i — 92)/ >_; y3;, where ; = N~ 5" y,;, we consider the following alternative

vector of influence functions:

My (0) = [y1iy2i — (Batta + 03p), Y3 — (B3 + 05), y1i — By, Ya2i — o)



where 0 = (p, 03, i1, j15)’. Then, we can compute

" o5 p pe 3

<~ [omy(0)] 0 1 0 2y = ~ oq_( B2 O

Ay =F [W] ==l 00 1 o0 and By = Var [my;(0)] = ( 0 P(p )
00 0 1

so that imposing the Gaussian copula assumption and applying the sandwich formula yields Var(p) =
(1 —p?)? as the (1,1) element of A;1B2A;1/. O

Proposition 5

Analogous calculations to the ones used in the proof of Lemma 1 allow us to obtain
nyyi (p) = Hi(yji) and ngz; (p) = V2Ha(yz0) for j=1,2.

Hence, the asymptotic variance of the ML estimator of p can be obtained as

I 0 N
AVarl™) = sz - 70

As for the other estimators, letting B5” = Var[ma;(0) + ny;(0)], we can show that AVar(p™) coincides

with the common asymptotic variance of p™” and p"P, which is given by
AVar(5") = AVar(5®) = (1 - p?)?

because By’ and By have all the elements equal to zero except the (1,1) one, which is equal to (1 — p2).
(]

Proposition 6

First, we can obtain the asymptotic variance of p as AVar(p) = A~!(p), where the expressions

for the expected (minus) Hessian A(p) are reported in Online Appendix C. Then, regarding the ML

R
B(l) _ { 1 ;023] [012]
paz 1 P13

to obtain the asymptotic variance of say Bgl) by applying the Delta method, namely

. ~(1 .
estimator ,3( ), we can exploit

AVar(B)) = VA (p)AVar (p) VA (p)

where 5 7
(1 1 p 2p12p23 — p13(1 + p
Vﬁg)(p)— — 232 LP12 231 13( . 53) .
— P23 (1= p33)

- 1 — p3s



This yields

A

AVar(BgY) = =((=1+ p3)* (1 + pBs) + pla(L + 3033) — 2pTap13025(5 + Tp3s)
+p55(—1 4 3p33 + 2033) + pTa(—1 + p33)° (1 + 3p33 + 2033)
(1 — 6pb3 + ps + 4p53) — 2p12p13023(3(—1 + p33)* (1 + p33)
+4p35(—1 + p33) (1 + p33)® + pis(1 + Tpds + 4p23))
—4pTop13pa3(4(—1 + pa3) + pi3(4 + 11pds + 5pa3))
+pia(—3 — 2p33 + 5p33 + 3pT3(1 + 11pb3 + 8pa3))
+p3a(3(—1 + phs)* (1 + p33) + pis(1 + 25055 + 26055 + 8pS3) +
2p73(—2 — 11pds + 4p33 + 9p%3)))
J((=1+ p53)* (=1 + pla + pl3 — 2072013053 + P33)))-

In turn, to obtain the asymptotic variance of

—1
B(l) _ ( DY D Y2l > < >i Y1iYai >
Do Y20y D ygz > i Y1iysi

we consider the following vector of influence functions:

Y — e 2.2 e 2.2 P 2 2 2 2 .2 2 2 2\/
m3i(9) —(ylzsz_ 0103012, Y1iY3i — \/ 0103013, Y2iY3i — 0203p23ay1i_017y2i_027y3i_03)

where 0 = (py9, P13, P23, 03, 03,05)". Then, under the assumption of a Gaussian copula we will have

10 0 p1a/2 p1a/2 0
0 1 0 py3/2 0 p13/2
i omg;(0)] 0 0 1 0  po3/2 pog/2
Ay=p |20
00 0 0 0 1 0 0
0 0 O 0 1 0
0 0 0 0 0 1
and
1+ pi, P12013 ‘f; P23 P12P23 + P13 2pP12 2019 2p13p2s
P12P13 Tt P23 1+ pis P13P23 EP12 2p13  2p12p23  2p13
= - P12P23 T+ P13 P13P23 T P12 1+ pag 201913 2p23 2p93
Bs = Var|ms;(0)] = )
i23:(6)] 2p12 2p13 2p12P13 3 2% 2pi5
2p12 2p12pP23 2p93 20%2 3 20%3
2p13P23 2p13 2pa3 20t 23 3

which allow us to obtain AVar(@) as AglﬁgAgll. We can then use the Delta method to obtain the

asymptotic variance of Bgl). Specifically, we have

VB(D(H) _ 1 —pos 2P12P23 — P13 — P13P33 P12 — P13P2s _ P12 — P13P23
2 1—p33"1—p3s’ (1 p33)? D 2(1-p33) 0 2(1—p3) T

and therefore

. 1— 2 2 9 2
AVar(ﬁgl)) _ P12 pﬁt p§1§2013,023 P23
23



Finally, to obtain the asymptotic variance of
_ _ _ _ o\ -1 _ _
B(l) _ ( N3 -9 NTUX, yaiysi — 520 > < N=EY yriai — 10 >
N7 yiyzi — o3 NP3 03 — 3 N~ y1iysi — 173

we consider the following vector of influence functions:

Y1iY2i — Mo — U%U%Pm
Y1iY3i — M3 — V/ U%ngm
Y2iY3i — Moty — v/ U§U§P23

_ Y1i — HUq
m3;(0) = Y2i — o
Y3i — U3

ygz - (Hz + U;)
y%i - (M% + 0%)
y3; — (p3 +03)

where 0 = (py9, P13, P23, O3, 0%, 5, [i1, fig, ii3)'. Then, under the assumption of a Gaussian copula we will

A;=F [‘W] - < ‘5(‘)3 _‘}3 > and Bj = Var[ms;(0)] = < ‘5(‘)3 P?p) > :

have

which allow us to obtain AVar(é) as Aglf’ng;l/. We can then use the Delta method to obtain the

asymptotic variance of Bgl). Specifically, we have

% 1 —P23  2P12P23 — P13 — P13P%3 P12 — P13P23 P12 — P13P23 I
Vi3 (6) =[ , , , - 0,0,0,0/
2 1- P%3 1- P%g (1- P%?,)Q 2(1 - P%g) 2(1 - 933)
and therefore ) ) )
AVar(Bg)) _1—pir— P1?i + 2@12513,023 — P
(1- P23)
as desired. OJ

Proposition 7

We first compute the variance of the ML correlation estimator by using the correction for the trivari-
ate case given in Lemma 1. Specifically, the resulting diagonal elements for the variance of the corrected
scores are

Vi = Vz'c(ﬂ127,013,,023)a Voo = Vf(P13,P127023) and V33 = Vf(ﬁz& P12, P13)a

where

1+ 2p3, + ply — pig — 4p1op13Pas — 2032013023 — Pas + 3Pi3P3s + Plapispss
(1 — p3y — pl3 — P33 + 2p12P13P3)°

In turn, the corresponding off-diagonal elements are

Vi (P12, P13, P23) =

Vig = V%(0127P137P23)> Vig = ij(/’ma P23, P12) and Vaz = V%(P23:P127P13)7
with
4
Vii(p12: P13, P23) = [Bprapiz + Plapiz + pr1apts — 2pa3 — 3pTapaz — Plapas — 3PizPas

—2pT20T3P23 — Plapas + 212013033 + Plap13P33 + P12PisP3s + 2053
—9%2033 - ,0%3033 + 012013P§13]/[2(1 —ply — P%s + 2p19p13023 — 033)2]~



These quantities, together with the expressions for the expected (minus) Hessian in Online Appendix
C, allow us to compute the corrected asymptotic variance of the ML estimators via the usual sandwich
formula H(p) 1 Ve(p)H(p) L.

As for the moment-based estimators, we can also correct the corresponding moment conditions using

the following terms:
i (0) = —Hi(ysi) and ng2; (6) = —V2Hs(y;i) for j=1,2,3

and

1 )
no'jhi(e) = _§(y]2’b + yf2n - 2)phja for h =1,2,3, and h # j.

As in the bivariate case, if we define B3” = Var[ms;(0) + ns;(0)], then we will have

T2 T123 T132 O o
- 0 ~ np B 0
B — r123 T13 T231 and B — 3 ,
3 r132 T231 7T23 O 3 0 O
0 0 0 0

where

1
rin = (1= pf)* and rine = lp5nps = 20500 + 200 = 5)pwk + a5 + P — 1)

Finally, the corrected variance of both moment estimators of the regression coefficients 3 can be
obtained by combining the Delta method with the sandwich formula, and it turns out to be the same as

the corrected variance of the ML estimators. O

Proposition 8

The combination of i.7.d. data with Assumption 1 implies that under standard regularity conditions
we can effectively prove consistency by showing that the expected value of the score in (3) is zero. Let us
start by considering the case in which P(p) is unrestricted, so that p contains the K (K —1)/2 off-diagonal

elements of the correlation matrix. But since
E(y})=1 and p;; = E(ysy;),

then P(p,,) = E(yy). More generally, consider P(p), where p is a p x 1 vector with p < K(K —1)/2.
In this case,

Blsity: ) = 2 Bl fuectP o)) -

where the first equality follows from the chain rule and the last one from the fact that P(p) is correctly
specified. O



C Trivariate copula expressions
C.1 Score

Applying the general formula in (3) to the trivariate case yields
1
(1= piy — pTs + 2p12P13P23 — P33)*
x [Z/%(Pm - P13,023)(P%3 -1) - 0?2 + ,0%2013[(3 + y%)ﬁ23 — Y2y3]

Spip (Y1,Y2, Y3, P12: P13+ P23)

+013[Y5 (Pas — Plapas) + v2ys(pls — P33 — 1) + pos(y3 + pis + p3s — 1)]
—p1a[—1 — y5(—1+ pl3) — 2y2y3pas + P33 + Y3p5s + pis(1 + Y3 + 2p3s)]

+y1{—y3(pa3 + Papas + Plapas — 2p12P13 — Pos)
+y2[1 + ply — 2p12P13P23 — P%?) - 0%3(1 - 2:033)}}]

Sﬂlg(y17 Y2, Y3, P125 P13, P23) = Spia (Y1, Y3, Y2, P13 P125 P23 )

and

Sposg (yla Y2,Y3; P12y P13» p23) = Spiy (y27 Y3, Y1, P23, P12, pl3)'

C.2 Hessian

The expected value of the (minus) Hessian under correct of specification of the correlation matrix is given

by
h11(P12005 P1300s P2300)  112(P12005 P1300 P2300)  P13(P12005 P13005 P2300)
E[_hl (poo)] = h22 (p12oov P1300> :02300) h23 (p12ooa P1300s p23oo)
h33(P12005 13001 P2300)
where . 2 oo g
hi1(P1gs Prss pos) = + Ply — 2P12P13P23 — Pa3 — Pis( P33)
(1- P%z - P%:s - P%s + 2P12P13023)2
ha22(p12; P13, 923) = h11(013a P12, ,023)7
h33(p1a; P13> P23) = P11(pass P12, P13),
3 2 2
Pas + 2p12p13 — Pa3(1 + pia + pi3)
h12(,012>0137p23) = )
(1 — piy — pis — P33 + 2p12013P23)°
h13(p12; P13) P23) = h12(,012, P23, ;013)
and

ha3(p12; P13, P23) = P12(p135 P23, P12)-

D Spearman’s calculations

D.1 Alternative estimators

Alternative estimators to bg, which is based on the moment conditions (14), can be obtained as

follows.



Given that wy; and ug; are uniform by definition, one could exploit the fact that E(u;;) = 1/2 and

Var(uj;) = 1/12 to estimate p based on the single moment condition

1 1
E (uuu% 1 12P> =

=12 ( Zuhum — ) . (D1)

A third estimator in which the mean of each component is substracted before computing the cross-

HUT — 1 i ul‘_l u24_1 (D2)
R VITEC A G 2

Finally, the fourth estimator we could consider, which is the closest to the one Matlab implements, is

whence

moment is given by

N

- N+1
pg‘/:l N2—1 ;ulz u21 »

which in large samples can be interpreted in terms of the following moment conditions

uigug; — 5 (ki +0%) — (13 +03) — 13(p — 1)
— H1
Em!V(0)]=FE Ui — flo =0. (D3)
“11 (13 + o)
u3; — (13 + 03)

D.2 Asymptotic variances

Regarding [){g, we can easily compute the expected value of the Jacobian and variance of the moment

conditions to obtain the asymptotic variance for @ in (14). In particular,

oloy ey 3pVo3/0f 3py/0l/0)
0

; 0 10 0

AL@9) = E [amazse)] = - 0 0 1 0 0 :
0 24 O 1 0
0 0 2 0 1

and

BI(H) = Var[mf(e)]
By — E% Ey — EnFEiyg Eis— EnEy Esi — EnFEyy Ei3 — E11Ege

Var(uli) CO’U(UM, 'UQZ') E30 — E20E10 COU(UM‘, u%z)
= VCLT’(UQZ') cov(u%i, UQi) E03 - E02E01 s
Eyo — E3, cov(uf;, u3;)
E04 - E[%Z

where E}, ; denotes E(ulad).
As for plf| it is straightforward to prove that (D1) implies AVar(p) = 144 x Var(ui;uz;).



To obtain the asymptotic variance of ﬁ{gH from (D2), it is convenient to use the following moment

conditions . . . .
ULiU2; — 5H1 — M2 — 5P T 1
UL — M
E u2; — o = E[m;'/(9)] = 0,
uf; — (13 + o)
u3; — (5 + 03)
whence
1/12 1/2 1/2 0 0
III 0 1 0 0O
Af”(e):E[ami,(e)]z— 0O 0 1 00
00 0 24, 0 1 0
0 0 2uy 0 1

In addition, it is easy to see that BY1(6) = V[m!!!(0)] coincides with B(8).
Finally, we can use (D3) to show that BV (8) = V[m!"(8)] is equal to B!(8) and

12y opy 12 12

v o 1 0 0 0

AV (0) = E [W] - o o 1 o o |,
0 24 0 1 0
0 0 2u 0 1

whence we can obtain the asymptotic variance of f)gv.

E Description of the marginal distributions used in Section 5

E.1 Tukey distribution

The Tukey lambda distribution is a continuous, symmetric probability distribution defined in terms
of its quantile function
MRM_{Mw—u—mﬂ,ﬁA¢o
In[p/(1 = p)], if A=0,
where A is its single shape parameter. It nests the logistic distribution for A = 0 and the uniform
distribution for both A =1 and A = 2. In Figure 6a, we plot the density of a Tukey random variable with

parameter A = 1.5.

E.2 Asymmetric Laplace distribution

The Asymmetric Laplace distribution is a continuous probability distribution consisting of two ex-
ponential distributions of unequal scale, adjusted to ensure continuity and normalization. Its density

is

flzym, kN = A {eXP[(A//ﬂ)(w—m)], r<m

k+1/k |exp[-As(z —m)], x>m
The quantiles for this distribution can be easily obtained from those of the two underlying exponen-
tial distributions. In Figure 6b, we plot the density of an Asymmetric Laplace random variable with

parameters m =0, k =2 and A = 1.



E.3 Weibull distribution
The probability density function of the Weibull distribution is

S exp[—(z/NY, >0

El
0, z <0 (B

[k, A) = {
where k£ > 0 is the shape parameter and A > 0 is the scale parameter. Its quantile function is
F~Yp;k,\) = M—In(1 — p)]*. When k = 0, it particularizes to the exponential distribution with
parameter A~!. We plot the density of a Weibull random variable with parameters k = 0.75 and A = 1

in Figure 6c.

E.4 Mixture of Weibull distributions

This distribution is generated by mixing a regular Weibull distribution and a mirror image of another
Weibull distribution whose support is the negative real line. Suppose that x; follows a Weibull distribution
with shape and scale parameters k1 and A1, and that —xo follows a Weibull distribution with shape and
scale parameters ko and Ao. Further, let o denote the mixing probability associated to the first component.

Then, the nonstandardized mixture xz has density given by
f@i ke, ko, A, A2, @) = aof (25 k1, A1) + (1 — a) f (25 k2, A2),

where f(z;k, \) is given in (E1). We standardize x to achieve zero mean and unit variance. The quantiles
for this distribution can be easily obtained from those of the two underlying Weibull distributions. In
Figure 6d we plot the density of a mixture of Weibull random variables with parameters ky = 5, A; = 10,

ko = 5, A1 = 2 and mixing probability a = .98.
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