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1 Introduction

As is well known, short term reversal strategies regularly invest in those stocks that have underper-
formed in the past month, while momentum strategies typically invest in stocks that outperformed over
the previous months of the past year. However, most of the literature has focused on assessing the ex-
cess returns obtained by various trading strategies rather than on precisely analyzing the cross-sectional
dependence between stock returns this month and those characteristics at the time investment decisions
are made. Such an analysis is important not only because it can potentially lead to better decisions, but
also because it can shed some light on the sources of the dependence.

There are several different ways of characterizing dependence. The most straightforward one is by
means of linear relationships, as it is often done in the extensive growth convergence literature in macro-
economics, which we will revisit in section 7. Specifically, a researcher could cross-sectionally regress
individual stock returns this month on a constant and returns over previous months, and look at the size
and significance of the Pearson correlation coefficient. However, a few high-leverage observations can un-
duly affect the value and sign of the estimated coefficients. As a case in point, Figures la (reversals) and
1b (momentum) contain the results of cross-sectionally regressing individual stock returns in the CRSP
database in August 2007 on a constant and returns over previous months. The problem with this linear
approach is that the OLS coefficient estimates may be extremely sensitive to a few outliers, as illustrated
in Figure 1b, in which the slightly negative slope is largely driven by the southeasternmost stocks. In
fact, if we trim the sample of 2,463 observations by simply excluding those five stocks whose cumulative
return over the period September 2006 - June 2007 exceeded 300%, we obtain a positive correlation.

A procedure which is far less sensitive to outliers involves rank regressions, whereby one regresses the
cross-sectional rank of stocks this month on a constant and their cross-sectional rank over the relevant
period in the past. Figures lc (reversals) and 1d (momentum) contain the scatterplots of the corre-
sponding normalized ranks for the same month, the associated regression lines and Spearman correlation
coefficients. This procedure is closely related to the concept of “copula”, which allows us to separate
joint distributions from marginal ones by fixing the latter. In the case of rank regressions, in particular,
the empirical marginal distributions are discrete uniform by construction.

But this is not the only possibility. A closely related approach is to look at the dependence between
the so-called Gaussian ranks, which are simple monotonic transformations of the usual ranks obtained by
applying the standard normal quantile function. In fact, one may convincingly argue that scatterplots

of Gaussian ranks are easier to interpret than scatterplots of uniform ranks, if only because empirical



researchers are more used to analyzing real data with approximately Gaussian marginals than uniform
ones (see Joe (2015) for a more formal justification). Figures le (reversals) and 1f (momentum) show the
scatterplots of the Gaussian ranks, the corresponding regression lines, and the Gaussian rank correlation
coefficients. As can be seen, both the Spearman and Gaussian rank correlation coefficients confirm the
presence of momentum and short term reversals in individual stock returns.!

Boudt et al (2012) study the numerical sensitivity of different correlation coefficients with respect
to observations with unusually large magnitudes. While those results are very useful, the purpose of
our paper is to study the usual statistical properties —namely consistency and asymptotic efficiency— of
Gaussian rank correlations, which are the Pearson correlation coefficients of the Gaussian ranks. We also
consider Gaussian rank regressions, which coincide with OLS applied to those ranks. We show that these
procedures are as efficient as maximum likelihood when the true copula is Gaussian and the margins are
non-parametrically estimated, and remain consistent for their population analogues otherwise, thereby
inheriting the properties of the Gaussian pseudo maximum likelihood estimators of first and second
moments. Therefore, Gaussian rank correlations and regressions are robust in both the statistical and
econometric senses of the word: they are not too sensitive to outliers and they remain consistent under
misspecification of the copula.

We also compare these estimators to Spearman and Pearson correlations based on the original data.
In addition, we compare the regression counterparts to the Gaussian rank correlations with both standard
OLS and some of its robust versions, specifically the least trimmed squares and least median of squares
estimators proposed by Rousseeuw (1984, 1985).

Finally, we apply the aforementioned procedures to study two important empirical issues: (i) the
relationship between migration and growth rates across US states over the twentieth century using the
data set in chapter 11 of Barro and Xala-i-Martin (2003); and (ii) the augmented Solow growth model
in Mankiw, Romer and Weil (1992) (MRW, henceforth), which Temple (1998) re-assessed using alterna-
tive robust regression techniques. Our results confirm that Gaussian rank procedures are insensitive to
outliers, unlike Pearson correlations and OLS regressions. Thus, they are indeed doubly robust.

The rest of the paper is organised as follows. In Section 2, we introduce Gaussian copulas, and derive
the first and second derivatives of the associated log-likelihood function. Then, in Section 3 we obtain

the asymptotic variance of the maximum likelihood estimators and compare them to some closely related

'In Amengual, Sentana and Tian (2020) we also study the combined effect of short term reversals and momentum by
running a multiple regression of individual stock returns r;¢—1 on a constant, rs—1¢—2, and ri—2+—12. Given the very low
dependence between the two regressors, the multiple regression coefficients are very close to the pairwise correlations, which
in turn implies that the conclusions derived from Figure 1 are by and large preserved.



moment estimators, both when the marginal distributions are known, and when they are replaced by
their (re-scaled) empirical cumulative distribution function (cdf) counterparts. In Section 4, we extend
those results to realistic situations in which the true copula is not Gaussian. Next, Section 5 compares
the theoretical properties of Gaussian rank correlations and regression to those of the well known Pearson
and Spearman counterparts, while Section 6 looks at their behaviour in finite samples by means of an
extensive Monte Carlo exercise. The results of our empirical applications can be found in Section 7,
followed by our conclusions and directions for futher research. Finally, some practical considerations of
interest for practitioners are discussed in the appendix, while proofs and auxiliary results are relegated

to the Online Appendix.

2 Theoretical background

2.1 Econometric model

Let x denote a vector of K continuous random variables. The traditional way of modelling the
dependence between the elements of x is through the joint cdf Fi(x) or the associated density function
fr(x) when it is well defined. These functions are often recursively factorized for a predetermined
ordering as the sequence of conditional distributions of zj given xj_1,2g—2,...,21 (k= 2,..., K) times
the marginal distribution of z;.

In contrast, the standard copula approach first transforms each of the elements of x into a uniform
random variable by means of the probability integral transform uy, = Gy (), where Gg(.) is the marginal
cdf of zp, which we assume known until Section 3.2, and then models the dependence of the random
vector u = (uq,...,ux) through a joint distribution function Ck(u) with uniform marginals defined
over the unit hypercube in RX. This distribution function is known as the copula distribution function,
and the associated density as the copula density function.

Although there are many well known examples of bivariate copulas, some of them are popular simply
because they are mathematically convenient, as opposed to being motivated by empirical observations
on real life phenomena. More importantly, they are difficult to generalize to multiple dimensions. On
the other hand, the Gaussian copula is a popular choice both in bivariate and multivariate contexts since
it is easily scalable. Moreover, as it name suggests, it is the copula function that corresponds to the
multivariate Gaussian distribution, which remains dominant in multivariate statistical analysis.

More formally, definey = (y1,...,yx), where y = ® (uz), ®(.) denotes the univariate standard nor-
mal cumulative distribution function and ®~1(.) the corresponding quantile function. The Gaussian cop-

ula with correlation matrix P(p) is derived from the cdf of a multivariate random vector y ~ N[0, P(p)].



In what follows, we assume that:

Assumption 1 P(p) is a potentially restricted positive definite correlation matriz which contains K (K —
1)/2 twice continuously differentiable functions of the p < %K(K — 1) free parameters in p, such that
P(0) =1Ig.

In the unrestricted case in which p = vecl[P(p)], where vecl(P) is the vec-type operator which stacks
by columns the elements in the strict lower triangle of the matrix P, P(p) is trivially twice differentiable.
The same is true for many popular restricted parametrizations, such as an equicorrelated one-factor
structure. In turn, the requirement that p = 0 yields the independent copula is just a convenient
normalization.

Under Assumption 1, the Gaussian copula density function will be given by

wlusp) = P2 exp { <5y IP )~ Tuly | = [P 2 exp {30 =<0} (1)

where ¢(p) = y'P~!(p)y and ¢(0) = y'y. Figures 2a-b display a bivariate Gaussian copula density with
Gaussian rank correlation .25 and Gaussian margins.

We can directly use the Gaussian ranks to write the likelihood function as

6k (3:p) = (2) PP 2 exp | 5y P oy | = 2n) KPR e [~ gsto)| @)

which we use to obtain ML estimators of p.

In principle, we could consider more complex models by conditioning on past values of x or present
and past values of some exogenous variables z (see e.g. Patton (2012) and Fan and Patton (2014) for
detailed reviews), but for the sake of clarity we will only explicitly cover unconditional distributions

without conditioning variables.
2.2 The score vector and the Hessian matrix

Before studying the asymptotic properties of our proposed estimators, it is convenient to obtain
generic expressions for the score and Hessian of a K-dimensional Gaussian copula or equivalently, of a
multivariate Gaussian distribution for a vector of random variables y.

If we assume i.7.d. observations, the relevant log-likelihood function for a sample of uniform ranks of
size N will take the form Zf\i 1 Incx(u;; p), where ci (uy; p) is given by (1), or analogously, for a sample
of N Gaussian ranks, Zf\;l In ¢(yi; p), where ¢ (yi; p) is given by (2). In the unrestricted case, letting L
and K denote the (strictly lower triangular) elimination matrix of order K and the commutation matrix

of orders K, K, respectively (see Magnus (1988) for details), we can prove the following result:



Proposition 1 Let s;(p) denote the score function 0ln ¢pg (yi; p)/0p with p = vecl(P). Then
1= = _ _
si(p) = 5 (L + LK)[P~!(p) © P~ (p)]vecly:y; — P(p)]. 3)

Maximum likelihood (ML) estimation of p usually requires a numerical optimization procedure. How-

ever, given that in the bivariate case the score (3) takes the form

1 2 e 2 2 _ 1) — 3
5:(p) = (Lt pD)yriyi — p(yi; + vz = 1) = p” @)
g (1-p?)?

(cf eq. (2.54) in Martin, Hurn and Harris (2013)), it is possible to obtain a numerically convenient
closed-form expression for the ML estimator of p. Specifically,
Corollary 1 In the bivariate case, the ML estimator of p, p, will be the real root to the cubic equation

N
spi(p) =0 (5)
i=1

that leads to the largest log-likelihood value, where s,;(p) is given by (4).

Algebraic solutions to any cubic equation have been available since at least the early 16th century
even though they remain relatively unknown. What is well known, though, is that every cubic equation
with real coefficients has at least one real solution, while the other two solutions can be either real or a
pair of complex conjugates. In Section 3.2 we revisit the uniqueness of the real root to equation (5).

Another example of practical interest that we will consider in the next sections arises when imposing
an equicorrelated structure on P(p). Using the general expression (3), we can get the corresponding score

by using the fact that

Seqi(p) = Ly (i —1) 281 (PLE (K —1)/2)5
where {(_1)/2 denotes a column vector of K (K —1)/2 ones. If we exploit the equicorrelated structure
of

P(p) = plicli + (1 - p)Ik,

then we can write
1 pe KKIK

P =1 N (e e

As a result,
Ceiic—1y2(L+ LK) P! (p) @ P~ (p)] = vec[—a’Ix + (P E? — VK — 2ab + 2abK )l L)
with

and b = — .
1—p (L=p)?+p(1=p)K

Hence, we obtain:



Corollary 2 Assume that P(p) has an equicorrelated structure with scalar parameter p. Then, the ML
estimator of p, p, will solve
N
0= Z Seqi (10)7
i=1

where
1
Seqi(p) = itr{[faQIK + (—2ab — b* K + 2abK + B K3l [yiy: — P(p)]}.

In any case, and regardless of the restrictions, P(p) will be positive definite because of the penalty
term induced by the Jacobian in the log-likelihood function.

In practice, the log-likelihood score is often used not only as the input to a steepest ascent, Berndt,
Hall, Hall, and Hausman (1974) or quasi-Newton numerical optimization routine, but also to estimate
the asymptotic covariance matrix of the ML parameter estimators. Nevertheless, both of these uses could
be problematic. First, the results of Fiorentini et al. (1996) and many others suggest that alternative
gradient methods, such as scoring or Newton—Raphson, usually show much better convergence properties,
particularly when the parameters are close to the optimum, which in this case could be obtained by using
the closed-form sample correlation coefficients of the Gaussian ranks as starting values.

Similarly, it is well known that the outer-product-of-the-score standard errors and test statistics can
be very badly behaved in finite samples (Davidson and MacKinnon, 1993).

For both these reasons, we derive analytical expressions for the elements of the Hessian matrix. In

the unrestricted case, in particular:

Proposition 2 Let h;(p) denote the Hessian function 0s;(p)/0p’ = 0*In ¢y (yi; p)/0pdp’, with p =
vecl(P). Then

hip) = B+ TK){- [P (p)yiyP(p)] © P~ (p)

~PY(p) @ [P H(p)yiyiP (p)] + PL(p) @ P (p)}(L' + KL). (6)

On this basis, we can easily show that:

Corollary 3 In the bivariate case, the Hessian of p is given by

hoi(p) = 1—p* + 2y1,92ip(3 + p?) — (¥}, + v3,) (1 + 3p?)
pz(p - <1_p2)3 .

In turn:

Corollary 4 Assume that P(p) has an equicorrelated structure with scalar parameter p. Then, the
Hessian of p is given by
heqi(P) = Ui i1y 20 (PLrc (i 1) j2) UK ()~ 1) 2



2.3 Partial correlation and regression

When there are three or more variables involved, the interest of the researcher may lie in the corre-
lation between two of them after partialling out the effect of the others. For example, in the case of three
variables, y1, y2 and y3, the partial correlation of the first two given the third is given by the well known

expression:

P12 — P13P23
P12.3 = 5 5 (7)

V1= pisy/1 - pi
In this case, the ML estimator of p;5 3 can be directly obtained by plugging the ML estimators of p;9, p13

and py3 in (7) by virtue of the invariance property of ML estimation. In that regard, it is straightforward

to prove that the Jacobian of p;, 3 with respect to p;9, p13 and py3 will be given by

Op123 _ 1

Op12 \/1_/’%3\/1_@3’
% _ P23 — P12P13
O (et VI
Op123 P13 — P12P23

.
Ofas V1=t (1= p3y)*

The concept of partial correlation is intimately related to the idea of linear regression. Specifically,

given that the Gaussian ranks have zero mean and unit variance by construction, the coefficients of the
least squares projection of some y onto the remaining elements of y, y(), which we denote by ,B(k)
henceforth, will coincide with the partial correlation of y; with each of the elements of y() given the

other K — 2. In matrix notation, we can write

BY =P 5Pk, (8)

where P ;) is the block of the correlation matrix that excludes the k" row and column, while the vector
P (1) contains its k" column except the 1.

Once again, the ML estimators of B%) will be the result of plugging the ML estimators of P in (8).
In that regard, the Jacobian of ,B(k) with respect to p will be given by

C

S op —P iy (P ) © Pfl))

_ (%ec(P(kk)) _1 P
k) @ Pury) ——o7— +P

op' (kk) op' 9)
because

3 -1 -1 -1 -1 —
dB™ = dP 5 Py + Py APy = —P 5 APy Py + Py dP .

In some cases, the magnitude of a coefficient may be important on its own. The growth regressions

in MRW are one such example. Given that by construction Gaussian ranks lose the information on the



original scale of the variables, it would be necessary to re-scale the coefficients appropriately. Relying on
sample standard deviations to do so, however, seems unwise in the presence of high leverage observations.
In Appendix A we show how to take this into consideration by adjusting regression slopes and intercept

using interquartile ranges.

3 Asymptotic properties under correct specification

3.1 When margins are known

3.1.1 Information matrix equality

Under the maintained assumption of a Gaussian copula, computing the (minus) expectation of the
Hessian is straightforward since (6) only involves squares and second-order cross products of correlated
Gaussian variables. Specifically, letting p, denote the true vector of the correlation parameters, which

are such that P(py) = E(yy’), we can show that in the general unrestricted case

~ ()] = 5 (£ + )P () & P~ (o] (£ + KE), (10)

which in the bivariate case reduces to

Similarly, in the restricted equicorrelated case

K(K + p5 — 2Kpg + K*pg — 1)
2(1 = po)?[1 + (K — 1)pp]*

_E[heqi(Po)] =

which trivially reduces to the previous expression for K = 2.
Similarly, computing the variance of the score vector under the maintained assumption that the copula
is Gaussian is also straightforward because (3) involves fourth powers and fourth-order cross products of

correlated Gaussian variables. Indeed, we can easily show that in the unrestricted case
Var(si(po)] = %(i + LK)[P~(pg) @ P~ (py)|Var[vee(yiy I[P~ (po) @ P~ (pp)|(L' + KL). (1)
Not surprisingly, we can combine the usual formulas for
Varlvec(yiy;)] = Elvec(yiy;)vec(yiy;)'] — vec[P(po)lvec[P(py)]'

with the properties of the commutation and elimination matrices to show that (10) and (11) coincide.



3.1.2 Asymptotic distribution of the ML estimators

Under standard regularity conditions, we can exploit the expressions in the previous subsection,
together with the delta method, to obtain the asymptotic variance of the ML estimators of p and 3,

which in turn characterize their asymptotic distributions:
Proposition 3 a) Let py denote the ML estimator of p in model (2). Then,
VN(bx = po) > N[0T (py)
where T(p,) =Varls:(po)] = — Elhi(py)].
b) Let B%“) denote the ML estimator of B%) in (8). Then,
VN(BY — ) 4 N10,98Y) ()T (pg) VAW (1))

where V3% (p) = 08%) (p) /0p' is given in (9).
3.2 Replacing margins with empirical cdf’s

The marginal distributions of the K variables in the observed vector x are rarely known in practice.
The most common solution is a two-step estimation procedure, whereby the margins Gy (zy) are replaced
by their (re-scaled) empirical cdf counterparts Gk(:vk) Thus, the proposed estimators can be viewed
as functions of the Gaussian ranks obtained from the (uniform) sample ranks, where the scaling factor
N/(N + 1) is simply introduced to avoid potential problems with the copula density blowing up at the
boundary of [0, 1]%. Smoothed versions of the empirical cdf can also be used, but the asymptotic effects
are the same up to first-order.

The use of sample ranks has two implications. First, the exact discrete uniform nature of their
distribution simplifies some of the previous expressions. Specifically, the sample averages of all the odd-
order Hermite polynomials of the Gaussian ranks will be identically zero, while the sample averages of
the even-order ones will converge to zero at faster than square root N rates. Among other things, this
in turn implies that the real solution to the cubic equation in (5), which defines the unrestricted ML
estimator of p in the bivariate case, will be unique for N > 6.

Second, it effectively transforms the Gaussian ML estimation procedure we have considered so far into
a sequential semiparametric procedure, which requires us to take into account the sample uncertainty
resulting from its non-parametric first-stage (see Newey and McFadden (1994)).

Following Chen and Fan (2006), we can obtain the variance of a generic influence function mg(p)

adjusted for non-parametric estimation of the margins by computing the variance of the adjusted function

mg(p,0) = my(p,0) + ng(p),

9



where
1 .
ng = Z/O [H{U; < uj} = uy]Wduy,

with

Wj = // am(ﬁ(lg{;i“,UK)cK(ul, ey UK ¢)du1...duj_1duj+1...duK.
J
In the case of the correlation parameters, one can capture the resulting inflation in variance by adding
linear combinations of second order Hermite polynomials of each of the variables (in Gaussian form) to
the original scores sp;(p, 0), as the following result shows:

Lemma 1 a) In the bivariate case, the correction to s, (p) is given by

_p [Ha(yw) + Hz(yzi)]
1= p? V2 '

b) In the trivariate case, the correction to s, i (P12, P13, P23) 5 given by

npi (p)

P12 — P13P23 [H2(Z/1i) + Ha(y2:)
1 — p3y — pis — Phs + 201201303 V2 ’

and the same applies to s, i and sp,.; by suitably changing the subscripts.

Tp,yi (P12: P13s P23) =

Analogous expressions apply for general K.

3.3 Efficiency comparison with other moment estimators

3.3.1 Correlation measures

Obvious consistent moment-based estimators of p in the bivariate case are p = N1 vaz 1 Y13y2; and
p=p/ \/% , with 5% = N1 Zf\il yiz These are the sample covariance and correlation coefficients of
the Gaussian ranks y; and y9, respectively, which impose that their population mean is 0. Nevertheless,
these estimators are generally inefficient relative to the ML estimator when the margins are known:

Proposition 4 When the bivariate copula is Gaussian and the margins are known, the asymptotic vari-
ances of p, p and p, which are the ML estimator of p, and the sample correlation and covariance coeffi-
cients of the Gaussian ranks, respectively, are

1

5) — ﬂ SN (1 22 o
AVar(p) = , AVar(p) = (1—p*)° and AVar(p) = T

1+ p?

so that
AVar(p) < AVar(p) < AVar(p),

with equality if and only if p = 0.

Although when K = 3 the asymptotic variances of these three estimators, which we omit for the sake
of brevity, are different, exactly the same ranking applies, as we show in the proof of Proposition 6.
Interestingly, though, when the margins are non-parametrically estimated, we obtain the following

modified version of Proposition 4:

10



Proposition 5 When the bivariate copula is Gaussian and the margins are replaced by their empirical
cdfs, the asymptotic variances of p, p and p, which are the ML estimator of p, and the sample correlation
and covariance coefficients of the Gaussian ranks, respectively, are given by

AVar(p) = AVar(p) = AVar(p) = (1 — p*)% (12)

In other words, all the alternative moment estimators of p are equally efficient and their asymptotic
variance coincide with the one corresponding to the sample Pearson correlation of the Gaussian ranks
with known margins.

Importantly, we show in the proof of Proposition 7 that exactly the same result applies to the un-
restricted trivariate case. As a result, with non-parametric margins no efficiency gains accrue from
maximizing the log-likelihood function (2) by implicitly solving the non-linear equations in (3), at least
up to the usual first-order terms.

Figure 3a reports the asymptotic variances for the unconstrained ML estimators in both bivariate and
equicorrelated trivariate contexts assuming known margins, which we denote by M Lx_o and M Lg_3,
respectively. It also includes plots for the same estimators in the more realistic situation in which margins
are estimated non-parametrically, which we denote by M LVP . As expected, the relative rankings coincide
with the statements of Propositions 4 and 5. In particular, the gains from increasing K disappear when
the margins are non-parametrically estimated, as the asymptotic variance of M LN is the same regardless

of the cross-sectional dimension.
3.3.2 Partial correlation coefficients and regression

As mentioned earlier, the concept of partial correlation is intimately related to the idea of linear
regression. Therefore a natural alternative estimator to the ML ones described in Section 2.3 is given by
simply applying OLS to the Gaussian ranks of the original data.

We will restrict attention to the trivariate case for the rest of the subsection. Specifically, in the case
of three variables, y1, y2 and ys3, without loss of generality we consider the regression of y; onto ys and
Ys:

= a+ B8y + 8 ys +e. (13)

~(1 - ~(1
Let ,8( ), 6(1) and ﬂ( ) denote the ML, the OLS without intercept, and the OLS with intercept
estimators of 1) = (By,B3)" in (13), respectively. In view of the discussion following Proposition 4, it is
not surprising that both OLS estimators are generally inefficient relative to the ML estimator when the

margins are known, as the following proposition shows:

11



Proposition 6 When the copula is Gaussian and the margins are known, the asymptotic variances of

B(l), ,B(l) and B(l) in (18), are such that

AVar(Bg-l)) < AVar(Bg.l)) = AVar(Bgl)), j=23.

Nevertheless, these gains disappear when the margins are non-parametrically estimated by the em-

pirical cdf:

Proposition 7 When the copula is Gaussian and the margins are replaced by their empirical cdfs, the
~(1) = ~(1
asymptotic variances of ,6( ), 6(1) and B( ) in (13), are such that

AVar(B) = Avar(B) = avar(3") j=2,3.

In fact, it is easy to prove that B(l) and B(l) numerically coincide because the sample means of the
estimated Gaussian ranks are identically 0. Therefore, with non-parametric margins researchers can use
standard OLS routines to efficiently estimate the Gaussian rank regression coefficients without the need
to numerically maximise the log-likelihood function (2).

Figure 3b is the counterpart to Figure 3a for regression coefficients instead of correlations. As can
be seen, the general patterns are in line with the results in Propositions 6 and 7. Specifically, when the

margins are non-parametrically estimated, OLS is as efficient as ML, as stated in Proposition 7.

4 Misspecification analysis

4.1 Pseudo-true values

In the context of multivariate location-scale models with non-normal observations, many empirical
researchers continue to use the Gaussian pseudo-maximum likelihood estimators advocated by Bollerslev
and Wooldridge (1992) among others because they remain consistent for the (conditional) mean and
variance parameters as long as those moments are correctly specified. However, no such result seems to
be available for copulas. The following result characterizes the analogous property for the Gaussian rank

correlations:

Proposition 8 Assume there exists p., that solves P(p) = E(yy’'), where P(p) is the potentially
restricted, but correctly specified correlation matriz of the Gaussian ranks y in Assumption 1. Then, the
Gaussian pseudo-ML estimator of the p x 1 vector of free parameters p, with p < %K(K — 1), remains
consistent even when the true copula is not Gaussian.

The same is true of the K(K — 1)/2 sample Gaussian rank correlation coefficients p;; if P(p) were
unrestricted. In fact, it is easy to see that in the unrestricted case, the pseudo-true values of the ML

estimators coincide with the population values of the usual Pearson correlation coefficients of the Gaussian

ranks.

12



An interesting question worth investigating is the behavior of these correlation coefficients for some
well-known non-Gaussian copulas. In particular, we consider the Clayton copula and the Student ¢ copula.
The first one is a member of the Archimidean family, whose copula function admits an explicit formula,
a popular feature when modeling dependence. Figures 2c-d display a bivariate Clayton copula density
with Gaussian rank correlation .25 and Gaussian margins. Figures 2e-f does the same but for the Student
t copula. As is well known, the Student ¢ copula, which nests the Gaussian copula, is a very popular
example of elliptical copula; see Amengual and Sentana (2020) for tests of one versus the other.

Figure 4a presents the population Gaussian rank correlation p., as a function of the dependence
parameter 6 of a Clayton copula. Similarly, Figure 4b presents the analogous functions for several Student
t copulas that differ in the number of degrees of freedom, with 6 denoting the value of the correlation of

the bivariate Student ¢ distributions underlying those copulas.
4.2 Asymptotic distribution

In Section 3.1.2, we derived the asymptotic distribution of the ML estimator of the Gaussian rank
correlations when the true copula is Gaussian. In this section, in contrast, we find the asymptotic variance
when the true copula is not Gaussian. To do so, we simply need to combine the expected value of the
Hessian in (10) with the asymptotic variance of the average score in (11), which depends on the true
copula through the fourth moments in Var[vec(y;y;)]. Given that the Gaussian ranks are a non-linear
transformation of the uniform ranks, we are forced to resort to numerical quadrature for the calculation
of the fourth moments of the Gaussian ranks.

Figure 5a shows the asymptotic variance of the pseudo-ML estimator of the Gaussian rank correlation
as a function of the dependence parameter of the Clayton copula. Similarly, Figure 5b contains analogous
results for the Student ¢ copulas. Not surprisingly, the asymptotic variance converges to the values in

Proposition 4 as the degrees of freedom of the t copula increase without bound.

5 Comparison with alternative estimators

For the sake of brevity, in this section we restrict the analysis to the bivariate case.
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5.1 Spearman correlation

Consider the following moment conditions for the uniform ranks

UiU — Pfbo — U%U%P
ULy — M
Elm{(9)] = E Un; — fho =0, (14)
uf; — (ui + o%)

u3; — (43 + 03)

where 6 = (p, fi1, 19, 03,03)". Let pL denote method of moments estimator of p based on (14). Given
that u; and wug are uniform ranks, we can interpret this estimator as a sample version of the Spearman
correlation coefficient.?

As expected, the value of the Spearman correlation coefficient is zero for the independence copula.
In addition, given that its asymptotic standard error is 1 in that case, tests of indepedence between two
random variables based on their Spearman correlation coefficient will have exactly same power against

identical sequences of local alternatives as independence tests based on their Gaussian rank correlation.
5.2 Pearson correlation

Pearson correlations are applied directly to the original data x. If the data were Gaussian (uniform)
then we would end up with the same figures as for the Gaussian (Spearman) rank correlation. To make
the comparisons more interesting, in this section we consider four alternative marginal distributions for

the raw data:

1. Weibull,
2. Asymmetric Laplace,
3. Tukey (symmetric), and

4. Mixture of two Weibulls.

Figure 6 displays the densities of these distributions, whose descriptions appear in Online Appendix E.
Once more, we resort to numerical integration to obtain the relevant cross-moments involved in com-
puting both the pseudo-true values and the asymptotic variances of the Pearson correlation coefficients.
A convenient feature of the four marginal distributions above is that there are closed-form expressions

for the corresponding quantile functions, which speeds up the calculations.

2In Online Appendix D.1, we consider three alternative estimators of the Spearman correlation, while in Online Appendix
D.2 we also study the asymptotic properties of all of them under the assumption that the data is generated from a Gaussian
copula.
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5.3 Comparison

In Figure 7a we report the pseudo-true values of the Pearson and Spearman correlation coefficients
when the true copula is Gaussian for the four marginal distributions in the previous section. As can be
seen, the bias is more pronounced for the Pearson correlations, especially for the mixture of Weibulls.

In turn, Figure 7b presents the asymptotic variances for the Pearson, Spearman and Gaussian rank
correlations for the same data generating processes (DGP). Not surprisingly, the Gaussian rank correlation
estimator has smaller variance than the Spearman correlation coefficent for all values of p # 0, which in
turn is more precise than its Pearson counterpart.

Once again, however, the pseudo-true value of the Pearson correlation coefficients are zero for the
independence copula. In addition, given that its asymptotic standard error is 1 under the same circum-
stances, indepedence tests based on the Pearson, Spearman or Gaussian rank correlation coeflicients will

have exactly the same power against identical sequences of local alternatives.

6 Monte Carlo Evidence

6.1 Design and estimation details

In this section, we study the finite sample performance of the different estimators discussed in
previous sections by means of an extensive Monte Carlo exercise, with several experimental designs
aimed to assess the estimators under both correct specification and misspecification. In all cases, we
consider 10,000 replications.

We first simulate and estimate bivariate and trivariate —equicorrelated— copula models for correlation
parameters —.25, —.1, —.05, .05, .1 and .25 when the true copula is Gaussian. Then, we study the effects of
misspecification by simulating from a Student ¢ copula with 8 degrees of freedom and the same correlation
parameters for the underlying multivariate distribution. Importantly, we also consider a third DGP which
consists of a Gaussian copula contaminated with five atypical observations that we keep fixed across
samples. As we shall see, the impact of those five ouliers is more dramatic the smaller the sample size.
In that respect, in all our designs we consider four samples sizes: N=50, 200, 800 and 3,200. As for
the margins, we use the asymmetric Laplace distributions in Section 5.2 with location, scale, and shape

parameter values equal to 0, 10 and 0.9, respectively (see Online Appendix E for details).?

3We have also repeated the entire Monte Carlo exercise using log-normal marginal distributions instead. The results,
which are available upon request, indicate that the behavior of the different estimators is qualitatively very similar to the
reported in this section.
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6.2 Sampling distribution of the different estimators

Table 1 contains means and standard deviations of the Monte Carlo sampling distributions for the
Pearson, Spearman and Gaussian rank correlation estimators in the bivariate case for both Gaussian and
Student ¢ copulas.

By and large, the behavior of these different estimators when the copula is Gaussian, which is reported
in the first six columns, is in accordance with the asymptotic results in Section 3.3. In particular, the bias
arising in the Pearson correlation coefficients is in line with the pseudo-true values reported in Figure 7
for asymmetric Laplace margins. In turn, the last six columns show that when the copula is Student ¢, the
bias seems to be systematically smaller for the Gaussian rank correlations despite the misspecification.

In turn, Table 2 looks at the trivariate regression case, in which we consider not only Gaussian rank
regressions and OLS but also Least trimmed squares (LTS). This last estimator is such that a fraction
% of the observations corresponding to the largest /N OLS residuals is considered unrepresentative and
subsequently omitted from the calculations; see Rousseeuw (1984, 1985) for further details.

Once again, the sampling distributions of the Gaussian rank-based betas present lower biases than the
corresponding OLS estimates based on the raw data. Remarkably, the performance of the LTS estimator
with k = .5 is not very good, as it shows considerable biases. Moreover, when the copula is Student ¢,
the standard deviations for the Gaussian rank-based betas are about 10% smaller than the ones for the

OLS and LTS coefficients based on the raw data.
6.3 Finite sample inference

In order to gauge the extent to which our proposed asymptotic corrections for non-parametric esti-
mation of the marginal cdfs work in finite samples, we also look at the t tests associated to the estimated
Pearson and Gaussian rank correlation coefficients in the bivariate case, as well as the t and F tests in
the trivariate case. We do so under both correct specification and misspecification of the copula.

Specifically, the first two columns of Table 3 report the finite sample sizes at the 5% level of the F
tests of Hy : B = B(py) for both OLS and Gaussian ranks in the trivariate case when a Gaussian copula
is used to generate the data, while the next two columns do the same for the two-sided t tests of the
same null hypothesis.* In turn, the last four columns report analogous rejection rates of Hy : 3 = B.,(0),
where B,,(0) is the pseudo-true value of the Gaussian rank regression coefficient vector corresponding

to a Student ¢ copula with 8 degrees of freedom and equicorrelation parameter 6 for the underlying

'Tables 4 and 5 in Amengual, Sentana and Tian (2020) contain the rejection rates at the 1% and 10% significance levels
too.
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multivariate distribution. Given the number of Monte Carlo replications, the 95% asymptotic confidence
interval for the rejection probabilities for all those tests is (4.57,5.43).

For small samples of N = 50, none of the test statistics seem to follow their asymptotic distributions.
However, the size distortions become much smaller in samples of size 800. Therefore, the correction for
non-parametric first-stage estimation of the margins does not seem to work well unless the sample size is
large. The same pattern is present for the t tests in the bivariate case, which for the sake of brevity we
omit here (see Table 3 in Amengual, Sentana and Tian (2020)).

In addition, in the case of the regression tests, the univariate t tests present smaller size distortions
than the joint F tests irrespective of whether we look at OLS and LTS applied to raw data or Gaussian

rank-based coefficients.
6.4 The effect of outliers

The tougher DGP we consider is the one in which the original Gaussian copula is contaminated with

five extreme observations taken as
(XI,XQ,Xg) =X X (—.5, 1, 0) X IQRy + 6563 X M E Dy

where xo = (5,6,7,8,9)", while IQRy and M FEDgy denote the interquartile range and median of the
standardized asymmetric Laplace distribution, respectively. Those observations aim to induce additional
negative dependence between x; and x9 while reducing dependence between both z1 and x3 and z9 and
x3.

Results for the bivariate case are reported in Table 4. In addition to means and standard deviations,
we also report the frequency of estimates bigger than zero. According to this last statistic, the Spearman
correlation coefficient is the winner and Pearson’s the worst by far, with the Gaussian rank correlation
close to Spearman’s.

Tables 7 and 8 in Amengual, Sentana and Tian (2020) do the same as Table 4 here but for the
regression coefficients Bél) and Bél), respectively. Importantly, the Gaussian rank regression coefficients
do not only outperform OLS but also the LTS robust estimator. Nevertheless, we should emphasize that
the effect of the contaminated sample is quite strong in terms of the biases of correlations and regression

coefficients, particularly for sample sizes of 50 and 200 observations.
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7 Empirical applications

7.1 Migration and growth rates

As mentioned in the introduction, we apply the different estimators discussed in previous sections to
study the relationship between migration and growth rates across US states over the twentieth century
using the dataset in chapter 11 of Barro and Xala-i-Martin (2003). Specifically, we look at the relationship
between the annual rate of net migration into region ¢ between years ¢t — T and ¢, m;+, and (log) per
capita income at the beginning of the period, In(Y; 7_¢), to assess whether there exists a positive effect
of per capita income on migration across US states.

We first consider OLS (black solid line), LTS (red dotted line) and also Least median of squares (LMS,
red dashed line) applied to the original data. As is well known, LMS minimizes the median of the square
residuals instead of the mean square residual; see Rousseeuw (1984, 1985) for further details. Figure 8a
replicates the scatter plot in Figure 11.10 in Barro and Xala-i-Martin (2003), with log of 1900 per capita
income on the horizontal axis and the average net migration rate for 48 U.S. states or territories from
1900 to 1990 on the vertical axis. As can be seen, the three procedures deliver a positive relationship
between those varables as the theory predicts. Nevertheless, it can be easily noticed that the OLS slope
is more pronounced than the LTS and LMS, which are very close to each other. This discrepancy is
mostly driven by Florida, Arizona, California, and Nevada (the four points with m;; > .025), which have
notably higher net migration rates than the values predicted by their initial levels of income.

In Figure 8b we transform the original data into Gaussian ranks and then we compute their Pearson
correlation coefficient, which coincides with the Gaussian rank correlation of the raw observations. We also
report LTS and LMS applied to the transformed data. Interestingly, now the three lines look very much

alike, confirming that Gaussian rank procedures are insensitive to outliers, unlike Pearson correlations.
7.2 The augmented Solow growth model

In an influential paper, MRW proposed an augmented version of the Solow growth model which takes
not only physical capital but also human capital into account. They also showed that their augmented
model improves the performance of the textbook Solow model in two important respects: (i) the OLS
regression R? increases from .59 to .78, and (ii) the implied Cobb-Douglas coefficients are much closer to
their predicted values.

Nevertheless, Temple (1998) highlighted that an important characteristic of the cross-section growth

data used by MRW is that it contains many influential observations which could substantially alter the
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validity of their empirical conclusions. For that reason, he used reweighted least squares (RWLS) —a
particular case of Rousseeuw (1984) LTS estimator— to deal with outliers. His results showed that the
augmented Solow growth model continues to perform well not only in the full sample but also in several
alternative subsamples.

We apply our proposed Gaussian regression procedures to the same data set.” Using the same country
groups as MRW, the results reported in Panel A of Table 5 also support the augmented Solow growth
model because the R? are high for all groups of countries except the OECD, and the signs of the coefficients
coincide with the theoretical predictions. At the same time, we also find that our proposed Gaussian rank
regression prodedure shrinks considerably the coefficient of In(n + g + ), where n is population growth,
g is physical capital growth and ¢ is the depreciation rate. In addition, the R? are also smaller for LTS
and Gaussian rank regressions when we use the country classification by Temple (1998). By and large,
we can conclude that although the original MRW results are not very accurate because of the presence

of outliers, their main conclusions are not severely influenced by them.
8 Conclusions and directions for futher research

In this paper we study the asymptotic properties of both Pearson correlation coefficients of Gaussian
ranks, and Gaussian rank regressions, namely OLS applied to those ranks. We show that these pro-
cedures are as efficient as maximum likelihood when the true copula is Gaussian and the margins are
non-parametrically estimated, and remain consistent for their population analogues otherwise. We com-
pare them to Spearman and Pearson correlations, and their regression counterparts based on raw data.
Empirical applications to migration and growth rates across US states, the augmented Solow growth
model, and individual stocks momentum and reversals during the global financial crisis confirm that
Gaussian rank procedures are insensitive to outliers, unlike Pearson correlations and OLS regressions.
Thus, they are doubly robust.

Several important topics deserve further investigation. From the theoretical point of view, we would
like to extend our study of the properties of the Gaussian rank correlation and regression procedures under
misspecification of the Gaussian copula to a situation in which the margins are non-parametrically esti-
mated by means of the empirical cumulative distribution function. The study of the statistical properties
of Spearman correlations and uniform rank regressions in those circumstances is also worth exploring.

In addition, we could compare the finite sample size and power of (conditional) independence tests

>Unfortunately, the data reported by MRW only contains two decimal figures, which prevents us from exactly replicating
their empirical results.
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based on the different correlation and regression procedures that we have considered, which is especially
relevant given their markedly different sensitivity to outliers.

Finally, the modification of our procedures to deal with instrumental variables and panel data would
substantially widen their scope. In that respect, it is important to remember that in their comment
to Islam (1995), Lee, Pesaran and Smith (1998) highlighted that the conclusions of the cross-sectional
growth empirics literature might be altered in the context of dynamic panel data models.

All these extensions constitute very interesting avenues for further research.
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Appendix
A Some practical considerations

Uniform or Gaussian ranks make sense when the original variables are continuous. But if one or
more of the explanatory variables is a dummy, they should be left unchanged, although strictly speaking,
rank transformations would only change the two values that a dummy can take, which will depend on
the original fraction of 0’s and 1’s.

Correlation coefficients are invariant to the scale of the variables involved, so the comparison between
Pearson, Spearman and Gaussian rank correlations is straightforward. In some important contexts, such
as autoregressions, the same is true of regression coefficients. Similarly, if the main objective of the
empirical analysis is to assess whether or not a specific regression coefficient is zero, the scale of the
variables is also irrelevant.

Nevertheless, in some cases the magnitude of a coefficient may be important on its own. Given
that by construction Gaussian ranks lose the information on the original scale of the variables, it would
be necessary to re-scale the regression slope coefficients appropriately. Relying on sample standard
deviations to do so, however, seems unwise in the presence of high leverage observations. For that reason,

our suggestion is to use the following simple transformation:

. IQR
61|2 - ﬂllQ—ZQREi;;’

where [, is the Gaussian rank regression coefficient in the regression of y; on ya, while 1 QR(z;) is the
theoretical interquartile range of the relevant raw variable.

However, since those interquartile ranges are usually unknown and must be replaced by their sample
counterparts, it becomes necessary to adjust the standard errors of the different estimators of B’l‘p to
take into account both the sampling variability of the sample interquartile ranges and their covariability
with the Gaussian rank correlation coefficients. We can do so by relying on standard GMM methods.

Specifically, if we write the estimators as the solution to the exactly identified system of moment conditions

Y1y2 — Hifo — U%U%P

Y1 —

Y2 — Mo

yi — pjod

E Y5 — 1305 = E[m{(9)] = 0,
H{zy < qi025) —0.25
H{z1 <qors} —0.75
I{ze < g2025} —0.25
{ze < g2075} —0.75

then the only thing we need is the expected Jacobian matrix of the above moment conditions and
the variance of the associated influence functions. The non-differentiability of the influence functions
corresponding to the quartiles may appear problematic at first sight, but it can be easily dealt with
by using the procedures discussed in Koenker and Bassett (1978). As for the covariance matrix of the
influence functions, the additional terms we need would be cov(1{z; < gi;},v;), cov(1{z; < q@l},yjz-),
cov(H{z; < qiy},viy;) and cov({z; < gy}, H{x; < qji}) for i, 5 € {1,2}. In this regard, it is well known
that if ¢;; < g; , then

cov(Hz; < qig}, Hw < qin}) = Fi(qi)[1 — Fiqix)l,
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Similarly, we can use the results in Babu and Rao (1989) to show that
cov(H{zi < qiph,yi) = E(M{zi <qigtyi) — E(H{xi < qi})E(ys)
= E{yilyi < O Fi(qi)]} Figis)-

Not surprisingly, we obtain the same asymptotic variance for the quantiles of x; if we rely on the infor-

mation matrix equality

Y 01{x; < g1y} _OE(M{z; < giy})
0q;,1 0q;,1

1
N - = fi(ai),

1=1
where the approximation error is o,(1) (see e.g. Van der Vaart (1998)).

Either way, we can finally show that

cov(Hw; < qiih,v?) = E{yl|yi < @ F(qi))}Fi(ai) — E(v?)Fi(gi)
= [E{lly < ' [Fi(qi)]} — 1Fi(a,)

and
cov(1{zi < qii},viv;) = B{lyiyilyi < @ [Fi(:.)]} Fi(ain) — E(viv) Fi(gia)-

Obviously, these adjustments only make sense when the regressors are continuous variables. If some
of the regressors are dummy variables, we would only need to scale the regression coefficient by IQR(x1)
to get to the desired scale.

Similar issues arise with the intercept. In many empirical regressions, either the fitted line is restricted
to go through the origin, or the only parameters of interest are the slopes. In some cases, though, the
magnitude of the intercept itself may be relevant. Given that Gaussian rank regressions based on non-
parametric marginal cdfs will have a zero intercept even if we added a constant to the regressions, it is
also convenient to have a robust estimator of the coefficient of the constant. By analogy with the usual
OLS intercept estimator, in the bivariate case we could consider

med(x1) — ﬁlQﬁgfimed(mg),
where med(z;) denotes the (population) median of the corresponding observed variable. The asymptotic
distribution of this estimator can be easily obtained by adapting the GMM procedures for the adjusted

slope coefficients that we have described above to an extended set of influence functions that also includes
1{.%'1 S q1,0.5} — 0.5 and 1{{122 S QQ’0.5} —0.5.

Once again, if z9 or any of the other regressors were a dummy variable, no adjustment for scale would
be necessary because it would usually be sufficient to compare the median of x; when the dummy is 0

with its median when it is one.
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Table 3: 5% finite sample sizes of F and t tests

F tests t tests (two-sided)
Gaussian copula Student t copula Gaussian copula Student t copula
OLS Gaussian OLS Gaussian OLS Gaussian OLS Gaussian
po/8 Bo
Panel A: N =50
=25 -.38 13.8 17.0 16.6 18.7 10.2 11.8 11.8 12.9
-.10 -.11 12.2 17.7 15.1 20.5 9.4 12.7 11.3 13.6
=05 -.05 11.5 17.8 15.4 20.0 9.1 12.6 11.2 13.5
.05 .05 11.5 18.0 15.3 19.8 9.3 12.5 11.2 13.7
.10 .09 11.8 18.3 16.3 19.2 9.4 12.9 11.7 13.1
25 .20 13.5 18.0 16.4 18.8 10.0 12.6 11.4 12.7
Panel B: N = 200
-.25 -.33 7.6 8.4 8.7 9.4 6.6 7.5 7.2 7.7
-.10 -.11 6.7 8.8 8.3 9.6 5.9 7.1 7.2 7.6
=05 -.05 6.5 8.9 8.1 8.9 5.9 7.8 7.0 7.3
.05 .05 6.6 9.2 8.0 9.2 6.1 7.6 6.9 7.6
.10 .09 6.5 8.9 8.1 9.1 6.1 7.3 6.8 7.7
.25 .20 7.2 8.7 8.2 8.9 6.4 7.4 7.0 7.5
Panel C: N = 800
-.25 -.83 5.8 5.7 6.2 6.4 5.4 5.7 5.6 6.0
-.10 -.11 5.2 6.0 6.0 6.2 5.3 5.6 5.8 5.9
=05 -.05 5.3 6.4 6.1 6.4 5.2 5.9 5.7 5.8
05 .05 5.8 6.3 6.1 6.5 5.6 5.9 5.5 5.7
.10 .09 5.3 6.0 6.0 6.0 5.3 5.7 5.8 5.7
.25 .20 5.5 6.3 5.9 6.4 5.5 5.9 5.6 5.9
Panel D: N = 3,200
-.25 -.83 4.9 5.3 5.1 5.6 4.9 5.0 5.1 5.4
-.10 -.11 4.9 5.4 5.1 5.2 4.9 5.4 5.0 5.3
-.05 -.05 5.3 5.3 5.1 5.3 5.1 5.3 5.1 5.2
.05 .05 5.2 5.3 5.1 5.3 5.2 5.3 5.2 5.3
.10 .09 5.1 5.7 5.4 5.7 5.2 5.5 5.1 5.6
25 .20 4.8 4.9 5.1 5.0 5.0 4.9 5.1 5.2

Notes: Results based on 10,000 replications. DGP: Asymmetric Laplace margins with location, scale, and shape
parameter values 0, 10 and 0.9, respectively (see Online Appendix E for details); Gaussian copula with parameter
po (left) and Student ¢ copula with 8 degrees of freedom and correlation parameter 6 (right). The first four columns
report the finite sample sizes of the F tests of Hy : 8 = B(p,) for the trivariate case when a Gaussian copula is used
to generate the data, and the analogous rejection rates of Hy : 3 = B, (6), where B_,(0) is the pseudo-true value of
the Gaussian rank regression coefficient vector corresponding to a Student ¢ copula with 8 degrees of freedom and
equicorrelation parameter 6 for the underlying multivariate distribution. The last four coulumns do the same but
for the two sided t tests. For each dependence measure, we substract the pseudo-true value and then standardize
using feasible standard error estimates. OLS denotes the usual OLS regression applied to the simulated raw data;
while Gaussian refers to OLS regression applied to the Gaussian ranks of the simulated data.
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Table 4: Correlation parameter estimators, contaminated sample

Pearson Spearman Gaussian
Mean Std.Dev. (p>0)% Mean Std.Dev. (p>0)% Mean Std.Dev. (p>0)%
Po
Panel A: N =50
-.25 -.758 .052 .000 -.441 .106 .000 -.498 .095 .000
-.10 -.718 .060 .000 -.336 .110 .001 -.401 .100 .000
-.05 -.706 .062 .000 -.302 .109 .002 -.369 .099 .000
.05 -.680 .067 .000 -.234 .109 .014 -.308 .099 .000
.10 -.668 .070 .000 -.200 110 .033 -.276 .100 .002
.25 -.631 .078 .000 -.099 105 178 -.182 .094 .022
Panel B: N =200
-.25 -.508 .042 .000 -.293 .064 .000 -.344 .059 .000
-.10 -.424 .046 .000 -.160 .065 .007 -.215 .061 .000
-.05 -.396 .048 .000 -.116 067 .043 -.172 .063 .003
.05 -.340 .051 .000 -.028 .067 .339 -.086 .063 .086
.10 -.312 .052 .000 .016 .066 .601 -.043 .062 .239
.25 -.228 .057 .000 .149 .063 .992 .085 .059 921
Panel C: N = 800
-.25 -.334 .028 .000 -.253 .033 .000 -.282 .032 .000
-.10 -.213 .030 .000 -.112 .034 .001 -.139 .034 .000
-.05 -.172 .030 .000 -.066 .035 .029 -.092 .034 .004
.05 -.092 .031 .002 .028 .035 785 .003 .034 .b37
.10 -.050 .031 .055 .076 .035 .985 .052 .034 .936
.25 071 .032 .987 216 .033 1.00 194 .032 1.00
Panel D: N = 3,200
-.25 -.267 .016 .000 -.243 .017 .000 -.260 .017 .000
-.10 -.129 .017 .000 -.100 .018 .000 -.112 .017 .000
-.05 -.083 .017 .000 -.052 .018 .002 -.063 .017 .000
.05 .009 .017 .700 .043 .018 992 .036 017 981
.10 .054 .017 999 .090 .018 1.00 .085 .018 1.00
.25 .193 .016 1.00 .233 .017 1.00 .233 .016 1.00

Notes: Results based on 10,000 replications. DGP: Gaussian copula with parameter p, and asymmetric Laplace
margins with location, scale, and shape parameter values 0, 10 and 0.9, respectively (see Online Appendix E for
details) with 5 outliers given by XP“er = (9,8,7,6,5) IQR; and Xguthier = — 5x0utlier e report the mean,
standard deviation and the fraction of parameter estimates that are positive of the sampling distribution of the
following estimators: Pearson denotes the usual Pearson correlation applied to the simulated raw data, Spearman
refers to the pL in section 5.1 applied to the empirical cdf of the simulated data, while Gaussian refers to the
Pearson correlation applied to the Gaussian ranks of the simulated data.
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Figure 1: Short term reversal and momentum, August 2007

Figure 1a: STR, Stock returns Figure 1b: MOM, Stock returns
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Figure 1c: STR, Uniform ranks
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Figure le: STR, Gaussian ranks Figure 1f: MOM, Gaussian ranks

Notes: The data is collected from CRSP. STR refers to short term reversal and MOM to momentum. Red lines
in the top panels represent the regression lines of the original data, with beta coefficients: -.019 in Figure 1a and
-.004 in Figure 1b; red lines in the middle panels correspond to the Spearman rank correlation: -.062 and .023 in
Figures 1c and 1d, respectively; and red lines in the bottom panels represent the Gaussian rank correlation: -.040
in Figure le and .030 in Figure 1f.
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Figure 2: Gaussian, Clayton and Student copulas with Gaussian margins

Figure 2a: Bivariate Gaussian copula
with Gaussian margins
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Figure 2c: Bivariate Clayton copula
with Gaussian margins

Figure 2b: Contours of a bivariate

Gaussian copula with Gaussian margins
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Figure 2d: Contours of a bivariate
Clayton copula with Gaussian margins
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Figure 2e: Bivariate Gaussian copula Figure 2f: Contours of a bivariate
with Student ¢ margins Student ¢ copula with Gaussian margins
3 ‘ —— ‘
000V
00—
5l /
015 005
1 / e
g / /
01 S / / »
I Q
S of / Z
[ g
0.05 g2 e s
7, 1 ‘\ . 1
AN N ° o
A R “0.
2 NN S oot
0 e , 2 o
0 3 .
2 3 2 a1 0 12 3
Y2 -3 Y1 Y1

Notes: Figures 2a.b report a Gaussian copula, Figures 2c.d a Clayton copula, and Figures 2e.f a Student ¢ copula
with 8 degrees of freedom. All of them are represented with standard normal margins and have been calibrated so

that their Gaussian rank correlation coefficient is .25.
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Figure 3: Asymptotic variance of Gaussian rank correlation and regression coefficients

Figure 3a: Correlation coefficients
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Notes: M Li—5 and M Ly _3 denote the unconstrained ML estimators in both bivariate and trivariate cases assum-

ing known margins; M LY" denotes the unconstrained ML estimators in both bivariate and trivariate contexts when
margins are estimated non-parametrically; while OLS denotes the slope coefficients in a multiple linear regression.
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Figure 4: Pseudo-true values of the Gaussian rank correlation coeflicient

Figure 4a: Clayton copula
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Notes: p., is the pseudo-true value of the Gaussian rank correlation. In Figure 4a, 6 denotes the dependence
parameter of the Clayton copula, while in Figure 4b it represents the value of the correlation of the bivariate
Student ¢ distributions underlying the copulas. We use numerical integration to obtain the relevant cross-moments
involved in the Gaussian rank expressions when the true copula is either Clayton or Student . Computations
involving the Clayton copula are done in Mathematica (Cartesian rule) while those for the Student ¢ copula in
Matlab (Simpson rule).
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Figure 5: Asymptotic variance of the ML estimator of the Gaussian rank correlation

Figure 5a: Clayton copula
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Notes: In Figure 5a, 6 denotes the dependence parameter of the Clayton copula, while in Figure 5b it represents
the value of the correlation of the bivariate Student ¢ distributions underlying the copulas. We use numerical
integration to obtain the relevant cross-moments involved in the Gaussian rank expressions when the true copula
is either Clayton or Student ¢. Computations involving the Clayton copula are done in Mathematica (Cartesian
rule) while those for the Student ¢ copula in Matlab (Simpson rule).
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Figure 6: Alternative marginal distributions

Figure 6a: Tukey density Figure 6b: Asymmetric Laplace density
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Figure 6¢: Weibull density Figure 6d: Mixture of Weibulls density
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Notes: Weibull random variable with parameters k£ = 0.75 and A = 1. Asymmetric Laplace random variable with
parameters m = 0, k = 2 and A\ = 1. Tukey random variable with parameter A = 1.5. Mixture of Weibulls random
variable with parameters k; = 5, A\; = 10, k; = 5, , A\; = 2 and mixing probability a = .98. See Online Appendix
E for a description of the marginal distributions.
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Figure 7: Pseudo-true values and asymptotic variances of Pearson, Spearman and Gaussian rank
correlations

Figure 7a: Pseudo-true values (dicrepancy)
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Figure 7b: Asymptotic variance
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Notes: py denotes the Gaussian copula correlation while p., denotes the pseudo-true value of the Spearman and
Pearson correlation coefficients. Tukey random variable with parameter A = 1.5; Weibull random variable with
parameters k = 0.75 and A\ = 1; asymmetric Laplace random variable with parameters m = 0, k = 2 and A = 1;
mixture of Weibulls random variable with parameters k1 = 5, A\ = 10, ko = 5, , A1 = 2 and mixing probability
a = .98. See Online Appendix E for a description of the marginal distributions.
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Figure 8: Determinants of migration across US states

Figure 8a: Annual Migration Rate, 1900-1987
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Figure 8b: Annual Migration Rate, 1900-1987 (Gaussian ranks)
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Notes: Data set in chapter 11 of Barro and Xala-i-Martin (2003): log of 1900 per capita income on the horizontal
axis and the average net migration rate for 48 US states or territories from 1900 to 1990 on the vertical axis. The
top panel contains the original raw data while the corresponding Gaussian ranks are plotted in the bottom panel.
Estimators: OLS denotes the usual OLS regression, LTS refers to the Least Trimmed Squares, which classifies
some observations as unrepresentative and subsequently omits them from the sample, while LMS refers to the
Least Median of Squares, which minimizes the median square residuals instead of the mean square residuals (see

Rousseeuw 1984, 1985 for details).
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B Proofs

For the sake of brevity, Assumption 1 is maintained throughout.

Proposition 1

Consider the differential of (2),

Wi (yep) = —ir(PPP()]} — Sy/dP~ (p)ly:
- _%vec[P*1(p)]’vec{d[P(p)]} + %yQP’l(p)d[P(p)]P’l(p)yi
- —%vec[P_l(p)]/vec{d[P(p)]} + l[yéP_l(p) ®y P~ (p)lvec{d[P(p)]}
= {vePp) ~ ¥IP(p) @ yIP () uee{dP(p)]}

= *%{UGC[P‘I(p)P(p)P‘l(p)]’ —vecPH(p)yiyiP ™ (p)] Jvec{d[P(p)]}
1

= P (p) @ P (p)lveclyiy; — P(p)]} vec{d[P(p)]}

Transposing and simplifying terms, we can get the fist order condition:

1 '[P

L 2P b1 () & P (p)ucely.y! — P(p)] = 0.

2 ap

Then, using the fact that
vec|P(p)] = vec(Ix) + L'p+KLp,

so that
IP(p)

op'
the result follows. OJ

-1 + KL,

Proposition 2

Starting from the expression for the score in (3), we can derive Hessian matrix by differencing once

again, namely

dsiilp) = 3L+ EK)afveclP (p)yiy(P~(p)]} — d{vecP (o))}

= ;L+Landd “o)lyyiP o)
oee{P (p)ysy{d[P(p)]} — d{veclP(p)]}]
= S+ EK)[veclP (p)AP (PP (p)yiy/ P (p)}
—ueelP~ Py P ()P ()P m»+de Hp)P (PP ()}
)

= (L +LK){~[P ! (p)yiyiP~ (P)] “Hp)
—P Hp) @ [P~ (p)yiyiP ™ (p)] + P~ (p) ® P~} (p)}vec{d[P(p)]}.
Hence, dsg;(p) can be written as in (6) after noticing that vec{d[P(p)]} = (L 4+ LK). O



Proposition 3

Part (a) follows from the 4.i.d. assumption on {y;} together with either expression (10) or (11), while
part (b) is a direct application of the Delta method to the result in part (a). O

Lemma 1

As in Chen and Fan (2006), we need to compute

1 1
ng = / [1{11,1 S Ul} — ul]WpllgdUl +/ [1{UQ S UQ} — 'LLQ]WP212dU2,
0 0

with W7

P12

= [[0sp,, (u1,u2; p1a)/Oujlc(ur, ug; pro)du; for j =1,2. Then, the result follows from

: 1+ pf 2015 1+ pi
W) —/[ Sy — yj | (y;)dy—; = 5
P12 (L=p1p)?" 7 (=pf)?™ ] 777 (1= p3y)2™

and the fact that

/_': Hy(2)®(z)dz = le(y) \/1277 exp <—y22> + 2551{2@) [1 +erf (\%)]

and

/yoo Hi(z)[1 — ®(z)]dz = Hl;y) \/12?eXp <—y22> - 2\1@H2(y) [erfc (\%)] ’

where erf(z) = 2r~1/2 Iy et dt and erfc(z) = 1—erf(z). Analogous calculations in the trivariate case

yield the corresponding correction. ([l

Proposition 4

Under the maintained assumption of a Gaussian copula, it is straightforward to obtain the variance
of the score in (4) using the moments of the bivariate normal, whose reciprocal is AVar(p).
To obtain the asymptotic variance of p = > y1;92i/ >.; ¥3;, consider the following vector of influence
functions:
1155 (0) = (Uitor — 02p. 12 — o2
1y;(0) = (Y1:y2i — 02p,Y2; — 03)

where 6 = (p,03)". Then, we can easily compute

Oy, (0)
06’

Ay=E [ ] = < ‘B% f ) and By = Var|[thy; ()]

L+p% 2p
2p 2 )7
so that imposing 02 = 1 and applying the sandwich formula yields Var(p) = (1 — p?)?/(1 + p?) as the
(1,1) element of A;lﬂgAQ_U.
Asfor p =3 (v1i— 1) (y2i — 92)/ >_; y3;, where ; = N~ 5" y,;, we consider the following alternative

vector of influence functions:

My (0) = [y1iy2i — (Batta + 03p), Y3 — (B3 + 05), y1i — By, Ya2i — o)



where 0 = (p, 03, i1, j15)’. Then, we can compute

" o5 p pe 3

<~ [omy(0)] 0 1 0 2y = ~ oq_( B2 O

Ay =F [W] ==l 00 1 o0 and By = Var [my;(0)] = ( 0 P(p )
00 0 1

so that imposing the Gaussian copula assumption and applying the sandwich formula yields Var(p) =
(1 —p?)? as the (1,1) element of A;1B2A;1/. O

Proposition 5

Analogous calculations to the ones used in the proof of Lemma 1 allow us to obtain
nyyi (p) = Hi(yji) and ngz; (p) = V2Ha(yz0) for j=1,2.

Hence, the asymptotic variance of the ML estimator of p can be obtained as

I 0 N
AVarl™) = sz - 70

As for the other estimators, letting B5” = Var[ma;(0) + ny;(0)], we can show that AVar(p™) coincides

with the common asymptotic variance of p™” and p"P, which is given by
AVar(5") = AVar(5®) = (1 - p?)?

because By’ and By have all the elements equal to zero except the (1,1) one, which is equal to (1 — p2).
(]

Proposition 6

First, we can obtain the asymptotic variance of p as AVar(p) = A~!(p), where the expressions

for the expected (minus) Hessian A(p) are reported in Online Appendix C. Then, regarding the ML

R
B(l) _ { 1 ;023] [012]
paz 1 P13

to obtain the asymptotic variance of say Bgl) by applying the Delta method, namely

. ~(1 .
estimator ,3( ), we can exploit

AVar(B)) = VA (p)AVar (p) VA (p)

where 5 7
(1 1 p 2p12p23 — p13(1 + p
Vﬁg)(p)— — 232 LP12 231 13( . 53) .
— P23 (1= p33)

- 1 — p3s



This yields

A

AVar(BgY) = =((=1+ p3)* (1 + pBs) + pla(L + 3033) — 2pTap13025(5 + Tp3s)
+p55(—1 4 3p33 + 2033) + pTa(—1 + p33)° (1 + 3p33 + 2033)
(1 — 6pb3 + ps + 4p53) — 2p12p13023(3(—1 + p33)* (1 + p33)
+4p35(—1 + p33) (1 + p33)® + pis(1 + Tpds + 4p23))
—4pTop13pa3(4(—1 + pa3) + pi3(4 + 11pds + 5pa3))
+pia(—3 — 2p33 + 5p33 + 3pT3(1 + 11pb3 + 8pa3))
+p3a(3(—1 + phs)* (1 + p33) + pis(1 + 25055 + 26055 + 8pS3) +
2p73(—2 — 11pds + 4p33 + 9p%3)))
J((=1+ p53)* (=1 + pla + pl3 — 2072013053 + P33)))-

In turn, to obtain the asymptotic variance of

—1
B(l) _ ( DY D Y2l > < >i Y1iYai >
Do Y20y D ygz > i Y1iysi

we consider the following vector of influence functions:

Y — e 2.2 e 2.2 P 2 2 2 2 .2 2 2 2\/
m3i(9) —(ylzsz_ 0103012, Y1iY3i — \/ 0103013, Y2iY3i — 0203p23ay1i_017y2i_027y3i_03)

where 0 = (py9, P13, P23, 03, 03,05)". Then, under the assumption of a Gaussian copula we will have

10 0 p1a/2 p1a/2 0
0 1 0 py3/2 0 p13/2
i omg;(0)] 0 0 1 0  po3/2 pog/2
Ay=p |20
00 0 0 0 1 0 0
0 0 O 0 1 0
0 0 0 0 0 1
and
1+ pi, P12013 ‘f; P23 P12P23 + P13 2pP12 2019 2p13p2s
P12P13 Tt P23 1+ pis P13P23 EP12 2p13  2p12p23  2p13
= - P12P23 T+ P13 P13P23 T P12 1+ pag 201913 2p23 2p93
Bs = Var|ms;(0)] = )
i23:(6)] 2p12 2p13 2p12P13 3 2% 2pi5
2p12 2p12pP23 2p93 20%2 3 20%3
2p13P23 2p13 2pa3 20t 23 3

which allow us to obtain AVar(@) as AglﬁgAgll. We can then use the Delta method to obtain the

asymptotic variance of Bgl). Specifically, we have

VB(D(H) _ 1 —pos 2P12P23 — P13 — P13P33 P12 — P13P2s _ P12 — P13P23
2 1—p33"1—p3s’ (1 p33)? D 2(1-p33) 0 2(1—p3) T

and therefore

. 1— 2 2 9 2
AVar(ﬁgl)) _ P12 pﬁt p§1§2013,023 P23
23



Finally, to obtain the asymptotic variance of
_ _ _ _ o\ -1 _ _
B(l) _ ( N3 -9 NTUX, yaiysi — 520 > < N=EY yriai — 10 >
N7 yiyzi — o3 NP3 03 — 3 N~ y1iysi — 173

we consider the following vector of influence functions:

Y1iY2i — Mo — U%U%Pm
Y1iY3i — M3 — V/ U%ngm
Y2iY3i — Moty — v/ U§U§P23

_ Y1i — HUq
m3;(0) = Y2i — o
Y3i — U3

ygz - (Hz + U;)
y%i - (M% + 0%)
y3; — (p3 +03)

where 0 = (py9, P13, P23, O3, 0%, 5, [i1, fig, ii3)'. Then, under the assumption of a Gaussian copula we will

A;=F [‘W] - < ‘5(‘)3 _‘}3 > and Bj = Var[ms;(0)] = < ‘5(‘)3 P?p) > :

have

which allow us to obtain AVar(é) as Aglf’ng;l/. We can then use the Delta method to obtain the

asymptotic variance of Bgl). Specifically, we have

% 1 —P23  2P12P23 — P13 — P13P%3 P12 — P13P23 P12 — P13P23 I
Vi3 (6) =[ , , , - 0,0,0,0/
2 1- P%3 1- P%g (1- P%?,)Q 2(1 - P%g) 2(1 - 933)
and therefore ) ) )
AVar(Bg)) _1—pir— P1?i + 2@12513,023 — P
(1- P23)
as desired. OJ

Proposition 7

We first compute the variance of the ML correlation estimator by using the correction for the trivari-
ate case given in Lemma 1. Specifically, the resulting diagonal elements for the variance of the corrected
scores are

Vi = Vz'c(ﬂ127,013,,023)a Voo = Vf(P13,P127023) and V33 = Vf(ﬁz& P12, P13)a

where

1+ 2p3, + ply — pig — 4p1op13Pas — 2032013023 — Pas + 3Pi3P3s + Plapispss
(1 — p3y — pl3 — P33 + 2p12P13P3)°

In turn, the corresponding off-diagonal elements are

Vi (P12, P13, P23) =

Vig = V%(0127P137P23)> Vig = ij(/’ma P23, P12) and Vaz = V%(P23:P127P13)7
with
4
Vii(p12: P13, P23) = [Bprapiz + Plapiz + pr1apts — 2pa3 — 3pTapaz — Plapas — 3PizPas

—2pT20T3P23 — Plapas + 212013033 + Plap13P33 + P12PisP3s + 2053
—9%2033 - ,0%3033 + 012013P§13]/[2(1 —ply — P%s + 2p19p13023 — 033)2]~



These quantities, together with the expressions for the expected (minus) Hessian in Online Appendix
C, allow us to compute the corrected asymptotic variance of the ML estimators via the usual sandwich
formula H(p) 1 Ve(p)H(p) L.

As for the moment-based estimators, we can also correct the corresponding moment conditions using

the following terms:
i (0) = —Hi(ysi) and ng2; (6) = —V2Hs(y;i) for j=1,2,3

and

1 )
no'jhi(e) = _§(y]2’b + yf2n - 2)phja for h =1,2,3, and h # j.

As in the bivariate case, if we define B3” = Var[ms;(0) + ns;(0)], then we will have

T2 T123 T132 O o
- 0 ~ np B 0
B — r123 T13 T231 and B — 3 ,
3 r132 T231 7T23 O 3 0 O
0 0 0 0

where

1
rin = (1= pf)* and rine = lp5nps = 20500 + 200 = 5)pwk + a5 + P — 1)

Finally, the corrected variance of both moment estimators of the regression coefficients 3 can be
obtained by combining the Delta method with the sandwich formula, and it turns out to be the same as

the corrected variance of the ML estimators. O

Proposition 8

The combination of i.7.d. data with Assumption 1 implies that under standard regularity conditions
we can effectively prove consistency by showing that the expected value of the score in (3) is zero. Let us
start by considering the case in which P(p) is unrestricted, so that p contains the K (K —1)/2 off-diagonal

elements of the correlation matrix. But since
E(y})=1 and p;; = E(ysy;),

then P(p,,) = E(yy). More generally, consider P(p), where p is a p x 1 vector with p < K(K —1)/2.
In this case,

Blsity: ) = 2 Bl fuectP o)) -

where the first equality follows from the chain rule and the last one from the fact that P(p) is correctly
specified. O



C Trivariate copula expressions
C.1 Score

Applying the general formula in (3) to the trivariate case yields
1
(1= piy — pTs + 2p12P13P23 — P33)*
x [Z/%(Pm - P13,023)(P%3 -1) - 0?2 + ,0%2013[(3 + y%)ﬁ23 — Y2y3]

Spip (Y1,Y2, Y3, P12: P13+ P23)

+013[Y5 (Pas — Plapas) + v2ys(pls — P33 — 1) + pos(y3 + pis + p3s — 1)]
—p1a[—1 — y5(—1+ pl3) — 2y2y3pas + P33 + Y3p5s + pis(1 + Y3 + 2p3s)]

+y1{—y3(pa3 + Papas + Plapas — 2p12P13 — Pos)
+y2[1 + ply — 2p12P13P23 — P%?) - 0%3(1 - 2:033)}}]

Sﬂlg(y17 Y2, Y3, P125 P13, P23) = Spia (Y1, Y3, Y2, P13 P125 P23 )

and

Sposg (yla Y2,Y3; P12y P13» p23) = Spiy (y27 Y3, Y1, P23, P12, pl3)'

C.2 Hessian

The expected value of the (minus) Hessian under correct of specification of the correlation matrix is given

by
h11(P12005 P1300s P2300)  112(P12005 P1300 P2300)  P13(P12005 P13005 P2300)
E[_hl (poo)] = h22 (p12oov P1300> :02300) h23 (p12ooa P1300s p23oo)
h33(P12005 13001 P2300)
where . 2 oo g
hi1(P1gs Prss pos) = + Ply — 2P12P13P23 — Pa3 — Pis( P33)
(1- P%z - P%:s - P%s + 2P12P13023)2
ha22(p12; P13, 923) = h11(013a P12, ,023)7
h33(p1a; P13> P23) = P11(pass P12, P13),
3 2 2
Pas + 2p12p13 — Pa3(1 + pia + pi3)
h12(,012>0137p23) = )
(1 — piy — pis — P33 + 2p12013P23)°
h13(p12; P13) P23) = h12(,012, P23, ;013)
and

ha3(p12; P13, P23) = P12(p135 P23, P12)-

D Spearman’s calculations

D.1 Alternative estimators

Alternative estimators to bg, which is based on the moment conditions (14), can be obtained as

follows.



Given that wy; and ug; are uniform by definition, one could exploit the fact that E(u;;) = 1/2 and

Var(uj;) = 1/12 to estimate p based on the single moment condition

1 1
E (uuu% 1 12P> =

=12 ( Zuhum — ) . (D1)

A third estimator in which the mean of each component is substracted before computing the cross-

HUT — 1 i ul‘_l u24_1 (D2)
R VITEC A G 2

Finally, the fourth estimator we could consider, which is the closest to the one Matlab implements, is

whence

moment is given by

N

- N+1
pg‘/:l N2—1 ;ulz u21 »

which in large samples can be interpreted in terms of the following moment conditions

uigug; — 5 (ki +0%) — (13 +03) — 13(p — 1)
— H1
Em!V(0)]=FE Ui — flo =0. (D3)
“11 (13 + o)
u3; — (13 + 03)

D.2 Asymptotic variances

Regarding [){g, we can easily compute the expected value of the Jacobian and variance of the moment

conditions to obtain the asymptotic variance for @ in (14). In particular,

oloy ey 3pVo3/0f 3py/0l/0)
0

; 0 10 0

AL@9) = E [amazse)] = - 0 0 1 0 0 :
0 24 O 1 0
0 0 2 0 1

and

BI(H) = Var[mf(e)]
By — E% Ey — EnFEiyg Eis— EnEy Esi — EnFEyy Ei3 — E11Ege

Var(uli) CO’U(UM, 'UQZ') E30 — E20E10 COU(UM‘, u%z)
= VCLT’(UQZ') cov(u%i, UQi) E03 - E02E01 s
Eyo — E3, cov(uf;, u3;)
E04 - E[%Z

where E}, ; denotes E(ulad).
As for plf| it is straightforward to prove that (D1) implies AVar(p) = 144 x Var(ui;uz;).



To obtain the asymptotic variance of ﬁ{gH from (D2), it is convenient to use the following moment

conditions . . . .
ULiU2; — 5H1 — M2 — 5P T 1
UL — M
E u2; — o = E[m;'/(9)] = 0,
uf; — (13 + o)
u3; — (5 + 03)
whence
1/12 1/2 1/2 0 0
III 0 1 0 0O
Af”(e):E[ami,(e)]z— 0O 0 1 00
00 0 24, 0 1 0
0 0 2uy 0 1

In addition, it is easy to see that BY1(6) = V[m!!!(0)] coincides with B(8).
Finally, we can use (D3) to show that BV (8) = V[m!"(8)] is equal to B!(8) and

12y opy 12 12

v o 1 0 0 0

AV (0) = E [W] - o o 1 o o |,
0 24 0 1 0
0 0 2u 0 1

whence we can obtain the asymptotic variance of f)gv.

E Description of the marginal distributions used in Section 5

E.1 Tukey distribution

The Tukey lambda distribution is a continuous, symmetric probability distribution defined in terms
of its quantile function
MRM_{Mw—u—mﬂ,ﬁA¢o
In[p/(1 = p)], if A=0,
where A is its single shape parameter. It nests the logistic distribution for A = 0 and the uniform
distribution for both A =1 and A = 2. In Figure 6a, we plot the density of a Tukey random variable with

parameter A = 1.5.

E.2 Asymmetric Laplace distribution

The Asymmetric Laplace distribution is a continuous probability distribution consisting of two ex-
ponential distributions of unequal scale, adjusted to ensure continuity and normalization. Its density

is

flzym, kN = A {eXP[(A//ﬂ)(w—m)], r<m

k+1/k |exp[-As(z —m)], x>m
The quantiles for this distribution can be easily obtained from those of the two underlying exponen-
tial distributions. In Figure 6b, we plot the density of an Asymmetric Laplace random variable with

parameters m =0, k =2 and A = 1.



E.3 Weibull distribution
The probability density function of the Weibull distribution is

S exp[—(z/NY, >0

El
0, z <0 (B

[k, A) = {
where k£ > 0 is the shape parameter and A > 0 is the scale parameter. Its quantile function is
F~Yp;k,\) = M—In(1 — p)]*. When k = 0, it particularizes to the exponential distribution with
parameter A~!. We plot the density of a Weibull random variable with parameters k = 0.75 and A = 1

in Figure 6c.

E.4 Mixture of Weibull distributions

This distribution is generated by mixing a regular Weibull distribution and a mirror image of another
Weibull distribution whose support is the negative real line. Suppose that x; follows a Weibull distribution
with shape and scale parameters k1 and A1, and that —xo follows a Weibull distribution with shape and
scale parameters ko and Ao. Further, let o denote the mixing probability associated to the first component.

Then, the nonstandardized mixture xz has density given by
f@i ke, ko, A, A2, @) = aof (25 k1, A1) + (1 — a) f (25 k2, A2),

where f(z;k, \) is given in (E1). We standardize x to achieve zero mean and unit variance. The quantiles
for this distribution can be easily obtained from those of the two underlying Weibull distributions. In
Figure 6d we plot the density of a mixture of Weibull random variables with parameters ky = 5, A; = 10,

ko = 5, A1 = 2 and mixing probability a = .98.
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