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1 Introduction

As is well known, short term reversal strategies regularly invest in those stocks that have underper-

formed in the past month, while momentum strategies typically invest in stocks that outperformed over

the previous months of the past year. However, most of the literature has focused on assessing the ex-

cess returns obtained by various trading strategies rather than on precisely analyzing the cross-sectional

dependence between stock returns this month and those characteristics at the time investment decisions

are made. Such an analysis is important not only because it can potentially lead to better decisions, but

also because it can shed some light on the sources of the dependence.

There are several different ways of characterizing dependence. The most straightforward one is by

means of linear relationships, as it is often done in the extensive growth convergence literature in macro-

economics, which we will revisit in section 7. Specifically, a researcher could cross-sectionally regress

individual stock returns this month on a constant and returns over previous months, and look at the size

and significance of the Pearson correlation coeffi cient. However, a few high-leverage observations can un-

duly affect the value and sign of the estimated coeffi cients. As a case in point, Figures 1a (reversals) and

1b (momentum) contain the results of cross-sectionally regressing individual stock returns in the CRSP

database in August 2007 on a constant and returns over previous months. The problem with this linear

approach is that the OLS coeffi cient estimates may be extremely sensitive to a few outliers, as illustrated

in Figure 1b, in which the slightly negative slope is largely driven by the southeasternmost stocks. In

fact, if we trim the sample of 2,463 observations by simply excluding those five stocks whose cumulative

return over the period September 2006 - June 2007 exceeded 300%, we obtain a positive correlation.

A procedure which is far less sensitive to outliers involves rank regressions, whereby one regresses the

cross-sectional rank of stocks this month on a constant and their cross-sectional rank over the relevant

period in the past. Figures 1c (reversals) and 1d (momentum) contain the scatterplots of the corre-

sponding normalized ranks for the same month, the associated regression lines and Spearman correlation

coeffi cients. This procedure is closely related to the concept of “copula”, which allows us to separate

joint distributions from marginal ones by fixing the latter. In the case of rank regressions, in particular,

the empirical marginal distributions are discrete uniform by construction.

But this is not the only possibility. A closely related approach is to look at the dependence between

the so-called Gaussian ranks, which are simple monotonic transformations of the usual ranks obtained by

applying the standard normal quantile function. In fact, one may convincingly argue that scatterplots

of Gaussian ranks are easier to interpret than scatterplots of uniform ranks, if only because empirical
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researchers are more used to analyzing real data with approximately Gaussian marginals than uniform

ones (see Joe (2015) for a more formal justification). Figures 1e (reversals) and 1f (momentum) show the

scatterplots of the Gaussian ranks, the corresponding regression lines, and the Gaussian rank correlation

coeffi cients. As can be seen, both the Spearman and Gaussian rank correlation coeffi cients confirm the

presence of momentum and short term reversals in individual stock returns.1

Boudt et al (2012) study the numerical sensitivity of different correlation coeffi cients with respect

to observations with unusually large magnitudes. While those results are very useful, the purpose of

our paper is to study the usual statistical properties —namely consistency and asymptotic effi ciency—of

Gaussian rank correlations, which are the Pearson correlation coeffi cients of the Gaussian ranks. We also

consider Gaussian rank regressions, which coincide with OLS applied to those ranks. We show that these

procedures are as effi cient as maximum likelihood when the true copula is Gaussian and the margins are

non-parametrically estimated, and remain consistent for their population analogues otherwise, thereby

inheriting the properties of the Gaussian pseudo maximum likelihood estimators of first and second

moments. Therefore, Gaussian rank correlations and regressions are robust in both the statistical and

econometric senses of the word: they are not too sensitive to outliers and they remain consistent under

misspecification of the copula.

We also compare these estimators to Spearman and Pearson correlations based on the original data.

In addition, we compare the regression counterparts to the Gaussian rank correlations with both standard

OLS and some of its robust versions, specifically the least trimmed squares and least median of squares

estimators proposed by Rousseeuw (1984, 1985).

Finally, we apply the aforementioned procedures to study two important empirical issues: (i) the

relationship between migration and growth rates across US states over the twentieth century using the

data set in chapter 11 of Barro and Xala-i-Martin (2003); and (ii) the augmented Solow growth model

in Mankiw, Romer and Weil (1992) (MRW, henceforth), which Temple (1998) re-assessed using alterna-

tive robust regression techniques. Our results confirm that Gaussian rank procedures are insensitive to

outliers, unlike Pearson correlations and OLS regressions. Thus, they are indeed doubly robust.

The rest of the paper is organised as follows. In Section 2, we introduce Gaussian copulas, and derive

the first and second derivatives of the associated log-likelihood function. Then, in Section 3 we obtain

the asymptotic variance of the maximum likelihood estimators and compare them to some closely related

1 In Amengual, Sentana and Tian (2020) we also study the combined effect of short term reversals and momentum by
running a multiple regression of individual stock returns rt,t−1 on a constant, rt−1,t−2, and rt−2,t−12. Given the very low
dependence between the two regressors, the multiple regression coeffi cients are very close to the pairwise correlations, which
in turn implies that the conclusions derived from Figure 1 are by and large preserved.
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moment estimators, both when the marginal distributions are known, and when they are replaced by

their (re-scaled) empirical cumulative distribution function (cdf) counterparts. In Section 4, we extend

those results to realistic situations in which the true copula is not Gaussian. Next, Section 5 compares

the theoretical properties of Gaussian rank correlations and regression to those of the well known Pearson

and Spearman counterparts, while Section 6 looks at their behaviour in finite samples by means of an

extensive Monte Carlo exercise. The results of our empirical applications can be found in Section 7,

followed by our conclusions and directions for futher research. Finally, some practical considerations of

interest for practitioners are discussed in the appendix, while proofs and auxiliary results are relegated

to the Online Appendix.

2 Theoretical background

2.1 Econometric model

Let x denote a vector of K continuous random variables. The traditional way of modelling the

dependence between the elements of x is through the joint cdf FK(x) or the associated density function

fK(x) when it is well defined. These functions are often recursively factorized for a predetermined

ordering as the sequence of conditional distributions of xk given xk−1, xk−2, . . . , x1 (k = 2, . . . ,K) times

the marginal distribution of x1.

In contrast, the standard copula approach first transforms each of the elements of x into a uniform

random variable by means of the probability integral transform uk = Gk(xk), where Gk(.) is the marginal

cdf of xk, which we assume known until Section 3.2, and then models the dependence of the random

vector u = (u1, . . . , uK)′ through a joint distribution function CK(u) with uniform marginals defined

over the unit hypercube in RK . This distribution function is known as the copula distribution function,

and the associated density as the copula density function.

Although there are many well known examples of bivariate copulas, some of them are popular simply

because they are mathematically convenient, as opposed to being motivated by empirical observations

on real life phenomena. More importantly, they are diffi cult to generalize to multiple dimensions. On

the other hand, the Gaussian copula is a popular choice both in bivariate and multivariate contexts since

it is easily scalable. Moreover, as it name suggests, it is the copula function that corresponds to the

multivariate Gaussian distribution, which remains dominant in multivariate statistical analysis.

More formally, define y = (y1, . . . , yK)′, where yk = Φ−1(uk), Φ(.) denotes the univariate standard nor-

mal cumulative distribution function and Φ−1(.) the corresponding quantile function. The Gaussian cop-

ula with correlation matrix P(ρ) is derived from the cdf of a multivariate random vector y ∼ N [0,P(ρ)].
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In what follows, we assume that:

Assumption 1 P(ρ) is a potentially restricted positive definite correlation matrix which contains K(K−
1)/2 twice continuously differentiable functions of the p ≤ 1

2K(K − 1) free parameters in ρ, such that
P(0) = IK .

In the unrestricted case in which ρ = vecl[P(ρ)], where vecl(P) is the vec-type operator which stacks

by columns the elements in the strict lower triangle of the matrix P, P(ρ) is trivially twice differentiable.

The same is true for many popular restricted parametrizations, such as an equicorrelated one-factor

structure. In turn, the requirement that ρ = 0 yields the independent copula is just a convenient

normalization.

Under Assumption 1, the Gaussian copula density function will be given by

cK(u;ρ) = |P(ρ)|−1/2 exp

{
−1

2
y′[P−1(ρ)− IK ]y

}
= |P(ρ)|−1/2 exp

{
−1

2
[ς(ρ)− ς(0)]

}
, (1)

where ς(ρ) = y′P−1(ρ)y and ς(0) = y′y. Figures 2a-b display a bivariate Gaussian copula density with

Gaussian rank correlation .25 and Gaussian margins.

We can directly use the Gaussian ranks to write the likelihood function as

φK(y;ρ) = (2π)−K/2|P(ρ)|−1/2 exp

[
−1

2
y′P−1(ρ)y

]
= (2π)−K/2|P(ρ)|−1/2 exp

[
−1

2
ς(ρ)

]
, (2)

which we use to obtain ML estimators of ρ.

In principle, we could consider more complex models by conditioning on past values of x or present

and past values of some exogenous variables z (see e.g. Patton (2012) and Fan and Patton (2014) for

detailed reviews), but for the sake of clarity we will only explicitly cover unconditional distributions

without conditioning variables.

2.2 The score vector and the Hessian matrix

Before studying the asymptotic properties of our proposed estimators, it is convenient to obtain

generic expressions for the score and Hessian of a K-dimensional Gaussian copula or equivalently, of a

multivariate Gaussian distribution for a vector of random variables y.

If we assume i.i.d. observations, the relevant log-likelihood function for a sample of uniform ranks of

size N will take the form
∑N

i=1 ln cK(ui;ρ), where cK(ui;ρ) is given by (1), or analogously, for a sample

of N Gaussian ranks,
∑N

i=1 lnφ(yi;ρ), where φK(yi;ρ) is given by (2). In the unrestricted case, letting L̃

and K denote the (strictly lower triangular) elimination matrix of order K and the commutation matrix

of orders K,K, respectively (see Magnus (1988) for details), we can prove the following result:
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Proposition 1 Let si(ρ) denote the score function ∂ lnφK(yi;ρ)/∂ρ with ρ = vecl(P). Then

si(ρ) =
1

2
(L̃ + L̃K)[P−1(ρ)⊗P−1(ρ)]vec[yiy

′
i −P(ρ)]. (3)

Maximum likelihood (ML) estimation of ρ usually requires a numerical optimization procedure. How-

ever, given that in the bivariate case the score (3) takes the form

sρi(ρ) =
(1 + ρ2)y1iy2i − ρ(y21i + y22i − 1)− ρ3

(1− ρ2)2 , (4)

(cf eq. (2.54) in Martin, Hurn and Harris (2013)), it is possible to obtain a numerically convenient

closed-form expression for the ML estimator of ρ. Specifically,

Corollary 1 In the bivariate case, the ML estimator of ρ, ρ̂, will be the real root to the cubic equation

N∑
i=1

sρi(ρ) = 0 (5)

that leads to the largest log-likelihood value, where sρi(ρ) is given by (4).

Algebraic solutions to any cubic equation have been available since at least the early 16th century

even though they remain relatively unknown. What is well known, though, is that every cubic equation

with real coeffi cients has at least one real solution, while the other two solutions can be either real or a

pair of complex conjugates. In Section 3.2 we revisit the uniqueness of the real root to equation (5).

Another example of practical interest that we will consider in the next sections arises when imposing

an equicorrelated structure on P(ρ). Using the general expression (3), we can get the corresponding score

by using the fact that

seqi(ρ) = `′K(K−1)/2si(ρ`K(K−1)/2),

where `K(K−1)/2 denotes a column vector of K(K − 1)/2 ones. If we exploit the equicorrelated structure

of

P(ρ) = ρ`′K`K + (1− ρ)IK ,

then we can write

P−1(ρ) =
1

1− ρIK −
ρ`K`

′
K

(1− ρ)2 + ρ(1− ρ)K
.

As a result,

`′K(K−1)/2(L̃ + L̃K)[P−1(ρ)⊗P−1(ρ)] = vec[−a2IK + (b2K2 − b2K − 2ab+ 2abK)`K`
′
K ]′

with

a =
1

1− ρ and b = − ρ

(1− ρ)2 + ρ(1− ρ)K
.

Hence, we obtain:
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Corollary 2 Assume that P(ρ) has an equicorrelated structure with scalar parameter ρ. Then, the ML
estimator of ρ, ρ̂, will solve

0 =
N∑
i=1

seqi(ρ),

where
seqi(ρ) =

1

2
tr{[−a2IK + (−2ab− b2K + 2abK + b2K2)`K`

′
K ][yiy

′
i −P(ρ)]}.

In any case, and regardless of the restrictions, P(ρ̂) will be positive definite because of the penalty

term induced by the Jacobian in the log-likelihood function.

In practice, the log-likelihood score is often used not only as the input to a steepest ascent, Berndt,

Hall, Hall, and Hausman (1974) or quasi-Newton numerical optimization routine, but also to estimate

the asymptotic covariance matrix of the ML parameter estimators. Nevertheless, both of these uses could

be problematic. First, the results of Fiorentini et al. (1996) and many others suggest that alternative

gradient methods, such as scoring or Newton—Raphson, usually show much better convergence properties,

particularly when the parameters are close to the optimum, which in this case could be obtained by using

the closed-form sample correlation coeffi cients of the Gaussian ranks as starting values.

Similarly, it is well known that the outer-product-of-the-score standard errors and test statistics can

be very badly behaved in finite samples (Davidson and MacKinnon, 1993).

For both these reasons, we derive analytical expressions for the elements of the Hessian matrix. In

the unrestricted case, in particular:

Proposition 2 Let hi(ρ) denote the Hessian function ∂si(ρ)/∂ρ′ = ∂2 lnφK(yi;ρ)/∂ρ∂ρ′, with ρ =
vecl(P). Then

hi(ρ) =
1

2
(L̃ + L̃K){−[P−1(ρ)yiy

′
iP
−1(ρ)]⊗P−1(ρ)

−P−1(ρ)⊗ [P−1(ρ)yiy
′
iP
−1(ρ)] + P−1(ρ)⊗P−1(ρ)}(L̃′ + KL̃

′
). (6)

On this basis, we can easily show that:

Corollary 3 In the bivariate case, the Hessian of ρ is given by

hρi(ρ) =
1− ρ4 + 2y1iy2iρ(3 + ρ2)− (y21i + y22i)(1 + 3ρ2)

(1− ρ2)3 .

In turn:

Corollary 4 Assume that P(ρ) has an equicorrelated structure with scalar parameter ρ. Then, the
Hessian of ρ is given by

heqi(ρ) = `′K(K−1)/2hi(ρ`K(K−1)/2)`K(K−1)/2.
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2.3 Partial correlation and regression

When there are three or more variables involved, the interest of the researcher may lie in the corre-

lation between two of them after partialling out the effect of the others. For example, in the case of three

variables, y1, y2 and y3, the partial correlation of the first two given the third is given by the well known

expression:

ρ12.3 =
ρ12 − ρ13ρ23√

1− ρ213
√

1− ρ223
. (7)

In this case, the ML estimator of ρ12.3 can be directly obtained by plugging the ML estimators of ρ12, ρ13

and ρ23 in (7) by virtue of the invariance property of ML estimation. In that regard, it is straightforward

to prove that the Jacobian of ρ12.3 with respect to ρ12, ρ13 and ρ23 will be given by

∂ρ12.3
∂ρ12

=
1√

1− ρ213
√

1− ρ223
,

∂ρ12.3
∂ρ13

= − ρ23 − ρ12ρ13(
1− ρ213

) 3
2
√

1− ρ223
,

∂ρ12.3
∂ρ23

= − ρ13 − ρ12ρ23√
1− ρ213

(
1− ρ223

) 3
2

.

The concept of partial correlation is intimately related to the idea of linear regression. Specifically,

given that the Gaussian ranks have zero mean and unit variance by construction, the coeffi cients of the

least squares projection of some yk onto the remaining elements of y, y(k), which we denote by β
(k)

henceforth, will coincide with the partial correlation of yk with each of the elements of y(k) given the

other K − 2. In matrix notation, we can write

β(k) = P−1(kk)P(k)k, (8)

where P(kk) is the block of the correlation matrix that excludes the kth row and column, while the vector

P(k)k contains its kth column except the 1.

Once again, the ML estimators of β(k) will be the result of plugging the ML estimators of P in (8).

In that regard, the Jacobian of β(k) with respect to ρ will be given by

∇β(k)(ρ) =
∂β(k)

∂ρ′
= −P(k)k(P

−1
(kk) ⊗P−1(kk))

∂vec(P(kk))

∂ρ′
+ P−1(kk)

∂P(k)k

∂ρ′
(9)

because

dβ(k) = dP−1(kk)P(k)k + P−1(kk)dP(k)k = −P−1(kk)dP(kk)P
−1
(kk) + P−1(kk)dP(k)k.

In some cases, the magnitude of a coeffi cient may be important on its own. The growth regressions

in MRW are one such example. Given that by construction Gaussian ranks lose the information on the
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original scale of the variables, it would be necessary to re-scale the coeffi cients appropriately. Relying on

sample standard deviations to do so, however, seems unwise in the presence of high leverage observations.

In Appendix A we show how to take this into consideration by adjusting regression slopes and intercept

using interquartile ranges.

3 Asymptotic properties under correct specification

3.1 When margins are known

3.1.1 Information matrix equality

Under the maintained assumption of a Gaussian copula, computing the (minus) expectation of the

Hessian is straightforward since (6) only involves squares and second-order cross products of correlated

Gaussian variables. Specifically, letting ρ0 denote the true vector of the correlation parameters, which

are such that P(ρ0) = E(yy′), we can show that in the general unrestricted case

−E[hi(ρ0)] =
1

2
(L̃ + L̃K)[P−1(ρ0)⊗P−1(ρ0)](L̃

′
+ KL̃

′
), (10)

which in the bivariate case reduces to

−E[hρi(ρ0)] =
1 + ρ20(
1− ρ20

)2 .
Similarly, in the restricted equicorrelated case

−E[heqi(ρ0)] =
K(K + ρ20 − 2Kρ20 +K2ρ20 − 1)

2(1− ρ0)2[1 + (K − 1)ρ0]
2

,

which trivially reduces to the previous expression for K = 2.

Similarly, computing the variance of the score vector under the maintained assumption that the copula

is Gaussian is also straightforward because (3) involves fourth powers and fourth-order cross products of

correlated Gaussian variables. Indeed, we can easily show that in the unrestricted case

V ar[si(ρ0)] =
1

4
(L̃ + L̃K)[P−1(ρ0)⊗P−1(ρ0)]V ar[vec(yiy

′
i)][P

−1(ρ0)⊗P−1(ρ0)](L̃
′
+ KL̃

′
). (11)

Not surprisingly, we can combine the usual formulas for

V ar[vec(yiy
′
i)] = E[vec(yiy

′
i)vec(yiy

′
i)
′]− vec[P(ρ0)]vec[P(ρ0)]

′

with the properties of the commutation and elimination matrices to show that (10) and (11) coincide.
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3.1.2 Asymptotic distribution of the ML estimators

Under standard regularity conditions, we can exploit the expressions in the previous subsection,

together with the delta method, to obtain the asymptotic variance of the ML estimators of ρ and β,

which in turn characterize their asymptotic distributions:

Proposition 3 a) Let ρ̂N denote the ML estimator of ρ in model (2). Then,

√
N(ρ̂N − ρ0)

d→ N [0,I−1(ρ0)]

where I(ρ0) =V ar[si(ρ0)] = −E[hi(ρ0)].

b) Let β̂
(k)
N denote the ML estimator of β(k) in (8). Then,

√
N(β̂

(k)
N − β

(k)
0 )

d→ N [0,∇β(k)(ρ0)I−1(ρ0)∇β
(k)(ρ0)

′],

where ∇β(k)(ρ) = ∂β(k)(ρ)/∂ρ′ is given in (9).

3.2 Replacing margins with empirical cdf’s

The marginal distributions of the K variables in the observed vector x are rarely known in practice.

The most common solution is a two-step estimation procedure, whereby the margins Gk(xk) are replaced

by their (re-scaled) empirical cdf counterparts Ĝk(xk). Thus, the proposed estimators can be viewed

as functions of the Gaussian ranks obtained from the (uniform) sample ranks, where the scaling factor

N/(N + 1) is simply introduced to avoid potential problems with the copula density blowing up at the

boundary of [0, 1]K . Smoothed versions of the empirical cdf can also be used, but the asymptotic effects

are the same up to first-order.

The use of sample ranks has two implications. First, the exact discrete uniform nature of their

distribution simplifies some of the previous expressions. Specifically, the sample averages of all the odd-

order Hermite polynomials of the Gaussian ranks will be identically zero, while the sample averages of

the even-order ones will converge to zero at faster than square root N rates. Among other things, this

in turn implies that the real solution to the cubic equation in (5), which defines the unrestricted ML

estimator of ρ in the bivariate case, will be unique for N > 6.

Second, it effectively transforms the Gaussian ML estimation procedure we have considered so far into

a sequential semiparametric procedure, which requires us to take into account the sample uncertainty

resulting from its non-parametric first-stage (see Newey and McFadden (1994)).

Following Chen and Fan (2006), we can obtain the variance of a generic influence function mφ(ρ)

adjusted for non-parametric estimation of the margins by computing the variance of the adjusted function

mc
φ(ρ,0) = mφ(ρ,0) + nφ(ρ),

9



where

nφ =

K∑
j=1

∫ 1

0
[1{Uj ≤ uj} − uj ]W j

φduj ,

with

W j
φ =

∫
...

∫
∂mφ(u1, ..., uK)

∂uj
cK(u1, ..., uK ;φ)du1...duj−1duj+1...duK .

In the case of the correlation parameters, one can capture the resulting inflation in variance by adding

linear combinations of second order Hermite polynomials of each of the variables (in Gaussian form) to

the original scores sρi(ρ,0), as the following result shows:

Lemma 1 a) In the bivariate case, the correction to sρi (ρ) is given by

nρi (ρ) =
ρ

1− ρ2

[
H2(y1i) +H2(y2i)√

2

]
.

b) In the trivariate case, the correction to sρ12i (ρ12, ρ13, ρ23) is given by

nρ12i (ρ12, ρ13, ρ23) =
ρ12 − ρ13ρ23

1− ρ212 − ρ213 − ρ223 + 2ρ12ρ13ρ23

[
H2(y1i) +H2(y2i)√

2

]
,

and the same applies to sρ13i and sρ23i by suitably changing the subscripts.

Analogous expressions apply for general K.

3.3 Effi ciency comparison with other moment estimators

3.3.1 Correlation measures

Obvious consistent moment-based estimators of ρ in the bivariate case are ρ̌ = N−1
∑N

i=1 y1iy2i and

ρ̃ = ρ̌/
√
σ̃21σ̃

2
2, with σ̃

2
k = N−1

∑N
i=1 y

2
ki. These are the sample covariance and correlation coeffi cients of

the Gaussian ranks y1 and y2, respectively, which impose that their population mean is 0. Nevertheless,

these estimators are generally ineffi cient relative to the ML estimator when the margins are known:

Proposition 4 When the bivariate copula is Gaussian and the margins are known, the asymptotic vari-
ances of ρ̂, ρ̃ and ρ̌, which are the ML estimator of ρ, and the sample correlation and covariance coeffi -
cients of the Gaussian ranks, respectively, are

AV ar(ρ̂) =
(1− ρ2)2

1 + ρ2
, AV ar(ρ̃) = (1− ρ2)2 and AV ar(ρ̌) =

1

1 + ρ2
,

so that
AV ar(ρ̂) ≤ AV ar(ρ̃) ≤ AV ar(ρ̌),

with equality if and only if ρ = 0.

Although when K = 3 the asymptotic variances of these three estimators, which we omit for the sake

of brevity, are different, exactly the same ranking applies, as we show in the proof of Proposition 6.

Interestingly, though, when the margins are non-parametrically estimated, we obtain the following

modified version of Proposition 4:
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Proposition 5 When the bivariate copula is Gaussian and the margins are replaced by their empirical
cdfs, the asymptotic variances of ρ̂, ρ̃ and ρ̌, which are the ML estimator of ρ, and the sample correlation
and covariance coeffi cients of the Gaussian ranks, respectively, are given by

AV ar(ρ̂) = AV ar(ρ̃) = AV ar(ρ̌) = (1− ρ2)2. (12)

In other words, all the alternative moment estimators of ρ are equally effi cient and their asymptotic

variance coincide with the one corresponding to the sample Pearson correlation of the Gaussian ranks

with known margins.

Importantly, we show in the proof of Proposition 7 that exactly the same result applies to the un-

restricted trivariate case. As a result, with non-parametric margins no effi ciency gains accrue from

maximizing the log-likelihood function (2) by implicitly solving the non-linear equations in (3), at least

up to the usual first-order terms.

Figure 3a reports the asymptotic variances for the unconstrained ML estimators in both bivariate and

equicorrelated trivariate contexts assuming known margins, which we denote by MLK=2 and MLK=3,

respectively. It also includes plots for the same estimators in the more realistic situation in which margins

are estimated non-parametrically, which we denote byMLNP . As expected, the relative rankings coincide

with the statements of Propositions 4 and 5. In particular, the gains from increasing K disappear when

the margins are non-parametrically estimated, as the asymptotic variance ofMLNP is the same regardless

of the cross-sectional dimension.

3.3.2 Partial correlation coeffi cients and regression

As mentioned earlier, the concept of partial correlation is intimately related to the idea of linear

regression. Therefore a natural alternative estimator to the ML ones described in Section 2.3 is given by

simply applying OLS to the Gaussian ranks of the original data.

We will restrict attention to the trivariate case for the rest of the subsection. Specifically, in the case

of three variables, y1, y2 and y3, without loss of generality we consider the regression of y1 onto y2 and

y3:

y1 = α+ β
(1)
2 y2 + β

(1)
3 y3 + ε. (13)

Let β̂
(1)
, β̌

(1)
and β̃

(1)
denote the ML, the OLS without intercept, and the OLS with intercept

estimators of β(1) = (β2, β3)
′ in (13), respectively. In view of the discussion following Proposition 4, it is

not surprising that both OLS estimators are generally ineffi cient relative to the ML estimator when the

margins are known, as the following proposition shows:
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Proposition 6 When the copula is Gaussian and the margins are known, the asymptotic variances of
β̂
(1)
, β̌

(1)
and β̃

(1)
in (13), are such that

AV ar(β̂
(1)
j ) ≤ AV ar(β̌(1)j ) = AV ar(β̃

(1)
j ), j = 2, 3.

Nevertheless, these gains disappear when the margins are non-parametrically estimated by the em-

pirical cdf:

Proposition 7 When the copula is Gaussian and the margins are replaced by their empirical cdfs, the
asymptotic variances of β̂

(1)
, β̌

(1)
and β̃

(1)
in (13), are such that

AV ar(β̂
(1)
j ) = AV ar(β̌

(1)
j ) = AV ar(β̃

(1)
j ) j = 2, 3.

In fact, it is easy to prove that β̌
(1)
and β̃

(1)
numerically coincide because the sample means of the

estimated Gaussian ranks are identically 0. Therefore, with non-parametric margins researchers can use

standard OLS routines to effi ciently estimate the Gaussian rank regression coeffi cients without the need

to numerically maximise the log-likelihood function (2).

Figure 3b is the counterpart to Figure 3a for regression coeffi cients instead of correlations. As can

be seen, the general patterns are in line with the results in Propositions 6 and 7. Specifically, when the

margins are non-parametrically estimated, OLS is as effi cient as ML, as stated in Proposition 7.

4 Misspecification analysis

4.1 Pseudo-true values

In the context of multivariate location-scale models with non-normal observations, many empirical

researchers continue to use the Gaussian pseudo-maximum likelihood estimators advocated by Bollerslev

and Wooldridge (1992) among others because they remain consistent for the (conditional) mean and

variance parameters as long as those moments are correctly specified. However, no such result seems to

be available for copulas. The following result characterizes the analogous property for the Gaussian rank

correlations:

Proposition 8 Assume there exists ρ∞ that solves P(ρ∞) = E(yy′), where P(ρ) is the potentially
restricted, but correctly specified correlation matrix of the Gaussian ranks y in Assumption 1. Then, the
Gaussian pseudo-ML estimator of the p × 1 vector of free parameters ρ, with p ≤ 1

2K(K − 1), remains
consistent even when the true copula is not Gaussian.

The same is true of the K(K − 1)/2 sample Gaussian rank correlation coeffi cients ρ̃kj if P(ρ) were

unrestricted. In fact, it is easy to see that in the unrestricted case, the pseudo-true values of the ML

estimators coincide with the population values of the usual Pearson correlation coeffi cients of the Gaussian

ranks.
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An interesting question worth investigating is the behavior of these correlation coeffi cients for some

well-known non-Gaussian copulas. In particular, we consider the Clayton copula and the Student t copula.

The first one is a member of the Archimidean family, whose copula function admits an explicit formula,

a popular feature when modeling dependence. Figures 2c-d display a bivariate Clayton copula density

with Gaussian rank correlation .25 and Gaussian margins. Figures 2e-f does the same but for the Student

t copula. As is well known, the Student t copula, which nests the Gaussian copula, is a very popular

example of elliptical copula; see Amengual and Sentana (2020) for tests of one versus the other.

Figure 4a presents the population Gaussian rank correlation ρ∞ as a function of the dependence

parameter θ of a Clayton copula. Similarly, Figure 4b presents the analogous functions for several Student

t copulas that differ in the number of degrees of freedom, with θ denoting the value of the correlation of

the bivariate Student t distributions underlying those copulas.

4.2 Asymptotic distribution

In Section 3.1.2, we derived the asymptotic distribution of the ML estimator of the Gaussian rank

correlations when the true copula is Gaussian. In this section, in contrast, we find the asymptotic variance

when the true copula is not Gaussian. To do so, we simply need to combine the expected value of the

Hessian in (10) with the asymptotic variance of the average score in (11), which depends on the true

copula through the fourth moments in V ar[vec(yiy′i)]. Given that the Gaussian ranks are a non-linear

transformation of the uniform ranks, we are forced to resort to numerical quadrature for the calculation

of the fourth moments of the Gaussian ranks.

Figure 5a shows the asymptotic variance of the pseudo-ML estimator of the Gaussian rank correlation

as a function of the dependence parameter of the Clayton copula. Similarly, Figure 5b contains analogous

results for the Student t copulas. Not surprisingly, the asymptotic variance converges to the values in

Proposition 4 as the degrees of freedom of the t copula increase without bound.

5 Comparison with alternative estimators

For the sake of brevity, in this section we restrict the analysis to the bivariate case.
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5.1 Spearman correlation

Consider the following moment conditions for the uniform ranks

E[mI
i (θ)] = E




u1iu2i − µ1µ2 −
√
σ21σ

2
2ρ

u1i − µ1
u2i − µ2

u21i − (µ21 + σ21)
u22i − (µ22 + σ22)


 = 0, (14)

where θ = (ρ, µ1, µ2, σ
2
1, σ

2
2)
′. Let ρ̃IS denote method of moments estimator of ρ based on (14). Given

that u1 and u2 are uniform ranks, we can interpret this estimator as a sample version of the Spearman

correlation coeffi cient.2

As expected, the value of the Spearman correlation coeffi cient is zero for the independence copula.

In addition, given that its asymptotic standard error is 1 in that case, tests of indepedence between two

random variables based on their Spearman correlation coeffi cient will have exactly same power against

identical sequences of local alternatives as independence tests based on their Gaussian rank correlation.

5.2 Pearson correlation

Pearson correlations are applied directly to the original data x. If the data were Gaussian (uniform)

then we would end up with the same figures as for the Gaussian (Spearman) rank correlation. To make

the comparisons more interesting, in this section we consider four alternative marginal distributions for

the raw data:

1. Weibull,

2. Asymmetric Laplace,

3. Tukey (symmetric), and

4. Mixture of two Weibulls.

Figure 6 displays the densities of these distributions, whose descriptions appear inOnlineAppendixE.

Once more, we resort to numerical integration to obtain the relevant cross-moments involved in com-

puting both the pseudo-true values and the asymptotic variances of the Pearson correlation coeffi cients.

A convenient feature of the four marginal distributions above is that there are closed-form expressions

for the corresponding quantile functions, which speeds up the calculations.

2 In Online Appendix D.1, we consider three alternative estimators of the Spearman correlation, while in Online Appendix
D.2 we also study the asymptotic properties of all of them under the assumption that the data is generated from a Gaussian
copula.
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5.3 Comparison

In Figure 7a we report the pseudo-true values of the Pearson and Spearman correlation coeffi cients

when the true copula is Gaussian for the four marginal distributions in the previous section. As can be

seen, the bias is more pronounced for the Pearson correlations, especially for the mixture of Weibulls.

In turn, Figure 7b presents the asymptotic variances for the Pearson, Spearman and Gaussian rank

correlations for the same data generating processes (DGP). Not surprisingly, the Gaussian rank correlation

estimator has smaller variance than the Spearman correlation coeffi cent for all values of ρ 6= 0, which in

turn is more precise than its Pearson counterpart.

Once again, however, the pseudo-true value of the Pearson correlation coeffi cients are zero for the

independence copula. In addition, given that its asymptotic standard error is 1 under the same circum-

stances, indepedence tests based on the Pearson, Spearman or Gaussian rank correlation coeffi cients will

have exactly the same power against identical sequences of local alternatives.

6 Monte Carlo Evidence

6.1 Design and estimation details

In this section, we study the finite sample performance of the different estimators discussed in

previous sections by means of an extensive Monte Carlo exercise, with several experimental designs

aimed to assess the estimators under both correct specification and misspecification. In all cases, we

consider 10,000 replications.

We first simulate and estimate bivariate and trivariate —equicorrelated—copula models for correlation

parameters −.25,−.1,−.05, .05, .1 and .25 when the true copula is Gaussian. Then, we study the effects of

misspecification by simulating from a Student t copula with 8 degrees of freedom and the same correlation

parameters for the underlying multivariate distribution. Importantly, we also consider a third DGP which

consists of a Gaussian copula contaminated with five atypical observations that we keep fixed across

samples. As we shall see, the impact of those five ouliers is more dramatic the smaller the sample size.

In that respect, in all our designs we consider four samples sizes: N=50, 200, 800 and 3,200. As for

the margins, we use the asymmetric Laplace distributions in Section 5.2 with location, scale, and shape

parameter values equal to 0, 10 and 0.9, respectively (see Online Appendix E for details).3

3We have also repeated the entire Monte Carlo exercise using log-normal marginal distributions instead. The results,
which are available upon request, indicate that the behavior of the different estimators is qualitatively very similar to the
reported in this section.
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6.2 Sampling distribution of the different estimators

Table 1 contains means and standard deviations of the Monte Carlo sampling distributions for the

Pearson, Spearman and Gaussian rank correlation estimators in the bivariate case for both Gaussian and

Student t copulas.

By and large, the behavior of these different estimators when the copula is Gaussian, which is reported

in the first six columns, is in accordance with the asymptotic results in Section 3.3. In particular, the bias

arising in the Pearson correlation coeffi cients is in line with the pseudo-true values reported in Figure 7

for asymmetric Laplace margins. In turn, the last six columns show that when the copula is Student t, the

bias seems to be systematically smaller for the Gaussian rank correlations despite the misspecification.

In turn, Table 2 looks at the trivariate regression case, in which we consider not only Gaussian rank

regressions and OLS but also Least trimmed squares (LTS). This last estimator is such that a fraction

κ of the observations corresponding to the largest κN OLS residuals is considered unrepresentative and

subsequently omitted from the calculations; see Rousseeuw (1984, 1985) for further details.

Once again, the sampling distributions of the Gaussian rank-based betas present lower biases than the

corresponding OLS estimates based on the raw data. Remarkably, the performance of the LTS estimator

with κ = .5 is not very good, as it shows considerable biases. Moreover, when the copula is Student t,

the standard deviations for the Gaussian rank-based betas are about 10% smaller than the ones for the

OLS and LTS coeffi cients based on the raw data.

6.3 Finite sample inference

In order to gauge the extent to which our proposed asymptotic corrections for non-parametric esti-

mation of the marginal cdfs work in finite samples, we also look at the t tests associated to the estimated

Pearson and Gaussian rank correlation coeffi cients in the bivariate case, as well as the t and F tests in

the trivariate case. We do so under both correct specification and misspecification of the copula.

Specifically, the first two columns of Table 3 report the finite sample sizes at the 5% level of the F

tests of H0 : β = β(ρ0) for both OLS and Gaussian ranks in the trivariate case when a Gaussian copula

is used to generate the data, while the next two columns do the same for the two-sided t tests of the

same null hypothesis.4 In turn, the last four columns report analogous rejection rates of H0 : β = β∞(θ),

where β∞(θ) is the pseudo-true value of the Gaussian rank regression coeffi cient vector corresponding

to a Student t copula with 8 degrees of freedom and equicorrelation parameter θ for the underlying

4Tables 4 and 5 in Amengual, Sentana and Tian (2020) contain the rejection rates at the 1% and 10% significance levels
too.
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multivariate distribution. Given the number of Monte Carlo replications, the 95% asymptotic confidence

interval for the rejection probabilities for all those tests is (4.57,5.43).

For small samples of N = 50, none of the test statistics seem to follow their asymptotic distributions.

However, the size distortions become much smaller in samples of size 800. Therefore, the correction for

non-parametric first-stage estimation of the margins does not seem to work well unless the sample size is

large. The same pattern is present for the t tests in the bivariate case, which for the sake of brevity we

omit here (see Table 3 in Amengual, Sentana and Tian (2020)).

In addition, in the case of the regression tests, the univariate t tests present smaller size distortions

than the joint F tests irrespective of whether we look at OLS and LTS applied to raw data or Gaussian

rank-based coeffi cients.

6.4 The effect of outliers

The tougher DGP we consider is the one in which the original Gaussian copula is contaminated with

five extreme observations taken as

(x1,x2,x3) = x0 × (−.5, 1, 0)× IQR0 + `5`
′
3 ×MED0

where x0 = (5, 6, 7, 8, 9)′, while IQR0 and MED0 denote the interquartile range and median of the

standardized asymmetric Laplace distribution, respectively. Those observations aim to induce additional

negative dependence between x1 and x2 while reducing dependence between both x1 and x3 and x2 and

x3.

Results for the bivariate case are reported in Table 4. In addition to means and standard deviations,

we also report the frequency of estimates bigger than zero. According to this last statistic, the Spearman

correlation coeffi cient is the winner and Pearson’s the worst by far, with the Gaussian rank correlation

close to Spearman’s.

Tables 7 and 8 in Amengual, Sentana and Tian (2020) do the same as Table 4 here but for the

regression coeffi cients β(1)2 and β(1)3 , respectively. Importantly, the Gaussian rank regression coeffi cients

do not only outperform OLS but also the LTS robust estimator. Nevertheless, we should emphasize that

the effect of the contaminated sample is quite strong in terms of the biases of correlations and regression

coeffi cients, particularly for sample sizes of 50 and 200 observations.
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7 Empirical applications

7.1 Migration and growth rates

As mentioned in the introduction, we apply the different estimators discussed in previous sections to

study the relationship between migration and growth rates across US states over the twentieth century

using the dataset in chapter 11 of Barro and Xala-i-Martin (2003). Specifically, we look at the relationship

between the annual rate of net migration into region i between years t − T and t, mi,t, and (log) per

capita income at the beginning of the period, ln(Yi,T−t), to assess whether there exists a positive effect

of per capita income on migration across US states.

We first consider OLS (black solid line), LTS (red dotted line) and also Least median of squares (LMS,

red dashed line) applied to the original data. As is well known, LMS minimizes the median of the square

residuals instead of the mean square residual; see Rousseeuw (1984, 1985) for further details. Figure 8a

replicates the scatter plot in Figure 11.10 in Barro and Xala-i-Martin (2003), with log of 1900 per capita

income on the horizontal axis and the average net migration rate for 48 U.S. states or territories from

1900 to 1990 on the vertical axis. As can be seen, the three procedures deliver a positive relationship

between those varables as the theory predicts. Nevertheless, it can be easily noticed that the OLS slope

is more pronounced than the LTS and LMS, which are very close to each other. This discrepancy is

mostly driven by Florida, Arizona, California, and Nevada (the four points with mi,t > .025), which have

notably higher net migration rates than the values predicted by their initial levels of income.

In Figure 8b we transform the original data into Gaussian ranks and then we compute their Pearson

correlation coeffi cient, which coincides with the Gaussian rank correlation of the raw observations. We also

report LTS and LMS applied to the transformed data. Interestingly, now the three lines look very much

alike, confirming that Gaussian rank procedures are insensitive to outliers, unlike Pearson correlations.

7.2 The augmented Solow growth model

In an influential paper, MRW proposed an augmented version of the Solow growth model which takes

not only physical capital but also human capital into account. They also showed that their augmented

model improves the performance of the textbook Solow model in two important respects: (i) the OLS

regression R2 increases from .59 to .78, and (ii) the implied Cobb-Douglas coeffi cients are much closer to

their predicted values.

Nevertheless, Temple (1998) highlighted that an important characteristic of the cross-section growth

data used by MRW is that it contains many influential observations which could substantially alter the
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validity of their empirical conclusions. For that reason, he used reweighted least squares (RWLS) —a

particular case of Rousseeuw (1984) LTS estimator—to deal with outliers. His results showed that the

augmented Solow growth model continues to perform well not only in the full sample but also in several

alternative subsamples.

We apply our proposed Gaussian regression procedures to the same data set.5 Using the same country

groups as MRW, the results reported in Panel A of Table 5 also support the augmented Solow growth

model because the R2 are high for all groups of countries except the OECD, and the signs of the coeffi cients

coincide with the theoretical predictions. At the same time, we also find that our proposed Gaussian rank

regression prodedure shrinks considerably the coeffi cient of ln(n+ g + δ), where n is population growth,

g is physical capital growth and δ is the depreciation rate. In addition, the R2 are also smaller for LTS

and Gaussian rank regressions when we use the country classification by Temple (1998). By and large,

we can conclude that although the original MRW results are not very accurate because of the presence

of outliers, their main conclusions are not severely influenced by them.

8 Conclusions and directions for futher research

In this paper we study the asymptotic properties of both Pearson correlation coeffi cients of Gaussian

ranks, and Gaussian rank regressions, namely OLS applied to those ranks. We show that these pro-

cedures are as effi cient as maximum likelihood when the true copula is Gaussian and the margins are

non-parametrically estimated, and remain consistent for their population analogues otherwise. We com-

pare them to Spearman and Pearson correlations, and their regression counterparts based on raw data.

Empirical applications to migration and growth rates across US states, the augmented Solow growth

model, and individual stocks momentum and reversals during the global financial crisis confirm that

Gaussian rank procedures are insensitive to outliers, unlike Pearson correlations and OLS regressions.

Thus, they are doubly robust.

Several important topics deserve further investigation. From the theoretical point of view, we would

like to extend our study of the properties of the Gaussian rank correlation and regression procedures under

misspecification of the Gaussian copula to a situation in which the margins are non-parametrically esti-

mated by means of the empirical cumulative distribution function. The study of the statistical properties

of Spearman correlations and uniform rank regressions in those circumstances is also worth exploring.

In addition, we could compare the finite sample size and power of (conditional) independence tests

5Unfortunately, the data reported by MRW only contains two decimal figures, which prevents us from exactly replicating
their empirical results.

19



based on the different correlation and regression procedures that we have considered, which is especially

relevant given their markedly different sensitivity to outliers.

Finally, the modification of our procedures to deal with instrumental variables and panel data would

substantially widen their scope. In that respect, it is important to remember that in their comment

to Islam (1995), Lee, Pesaran and Smith (1998) highlighted that the conclusions of the cross-sectional

growth empirics literature might be altered in the context of dynamic panel data models.

All these extensions constitute very interesting avenues for further research.
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Appendix

A Some practical considerations

Uniform or Gaussian ranks make sense when the original variables are continuous. But if one or

more of the explanatory variables is a dummy, they should be left unchanged, although strictly speaking,

rank transformations would only change the two values that a dummy can take, which will depend on

the original fraction of 0’s and 1’s.

Correlation coeffi cients are invariant to the scale of the variables involved, so the comparison between

Pearson, Spearman and Gaussian rank correlations is straightforward. In some important contexts, such

as autoregressions, the same is true of regression coeffi cients. Similarly, if the main objective of the

empirical analysis is to assess whether or not a specific regression coeffi cient is zero, the scale of the

variables is also irrelevant.

Nevertheless, in some cases the magnitude of a coeffi cient may be important on its own. Given

that by construction Gaussian ranks lose the information on the original scale of the variables, it would

be necessary to re-scale the regression slope coeffi cients appropriately. Relying on sample standard

deviations to do so, however, seems unwise in the presence of high leverage observations. For that reason,

our suggestion is to use the following simple transformation:

β∗1|2 = β1|2
IQR(x1)

IQR(x2)
,

where β1|2 is the Gaussian rank regression coeffi cient in the regression of y1 on y2, while IQR(xj) is the

theoretical interquartile range of the relevant raw variable.

However, since those interquartile ranges are usually unknown and must be replaced by their sample

counterparts, it becomes necessary to adjust the standard errors of the different estimators of β∗1|2 to

take into account both the sampling variability of the sample interquartile ranges and their covariability

with the Gaussian rank correlation coeffi cients. We can do so by relying on standard GMM methods.

Specifically, if we write the estimators as the solution to the exactly identified system of moment conditions

E



y1y2 − µ1µ2 −
√
σ21σ

2
2ρ

y1 − µ1
y2 − µ2
y21 − µ21σ21
y22 − µ22σ22

1{x1 ≤ q1,0.25} − 0.25
1{x1 ≤ q1,0.75} − 0.75
1{x2 ≤ q2,0.25} − 0.25
1{x2 ≤ q2,0.75} − 0.75


= E[mq

i (θ)] = 0,

then the only thing we need is the expected Jacobian matrix of the above moment conditions and

the variance of the associated influence functions. The non-differentiability of the influence functions

corresponding to the quartiles may appear problematic at first sight, but it can be easily dealt with

by using the procedures discussed in Koenker and Bassett (1978). As for the covariance matrix of the

influence functions, the additional terms we need would be cov(1{xi ≤ qi,l}, yj), cov(1{xi ≤ qi,l}, y2j ),
cov(1{xi ≤ qi,l}, yiyj) and cov(1{xi ≤ qi,l}, 1{xj ≤ qj,k}) for i, j ∈ {1, 2}. In this regard, it is well known
that if qi,l ≤ qi,k, then

cov(1{xi ≤ qi,l}, 1{xi ≤ qi,k}) = Fi(qi,l)[1− Fi(qi,k)],
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Similarly, we can use the results in Babu and Rao (1989) to show that

cov(1{xi ≤ qi,l}, yi) = E(1{xi ≤ qi,l}yi)− E(1{xi ≤ qi,l})E(yi)

= E{yi|yi ≤ Φ−1[Fi(qi,l)]}Fi(qi,l).

Not surprisingly, we obtain the same asymptotic variance for the quantiles of xi if we rely on the infor-

mation matrix equality

1

N

N∑
i=1

∂1{xi ≤ qi,l}
∂qi,l

≈ ∂E(1{xi ≤ qi,l})
∂qi,l

= fi(qi,l),

where the approximation error is op(1) (see e.g. Van der Vaart (1998)).

Either way, we can finally show that

cov(1{xi ≤ qi,l}, y2i ) = E{y2i |yi ≤ Φ−1[Fi(qi,l)]}Fi(qi,l)− E(y2i )Fi(qi,l)

= [E{y2i |yi ≤ Φ−1[Fi(qi,l)]} − 1]Fi(qi,l)

and

cov(1{xi ≤ qi,l}, yiyj) = E{yiyj |yi ≤ Φ−1[Fi(qi,l)]}Fi(qi,l)− E(yiyj)Fi(qi,l).

Obviously, these adjustments only make sense when the regressors are continuous variables. If some

of the regressors are dummy variables, we would only need to scale the regression coeffi cient by IQR(x1)

to get to the desired scale.

Similar issues arise with the intercept. In many empirical regressions, either the fitted line is restricted

to go through the origin, or the only parameters of interest are the slopes. In some cases, though, the

magnitude of the intercept itself may be relevant. Given that Gaussian rank regressions based on non-

parametric marginal cdfs will have a zero intercept even if we added a constant to the regressions, it is

also convenient to have a robust estimator of the coeffi cient of the constant. By analogy with the usual

OLS intercept estimator, in the bivariate case we could consider

med(x1)− β12
IQR(x2)

IQR(x1)
med(x2),

where med(xj) denotes the (population) median of the corresponding observed variable. The asymptotic

distribution of this estimator can be easily obtained by adapting the GMM procedures for the adjusted

slope coeffi cients that we have described above to an extended set of influence functions that also includes

1{x1 ≤ q1,0.5} − 0.5 and 1{x2 ≤ q2,0.5} − 0.5.

Once again, if x2 or any of the other regressors were a dummy variable, no adjustment for scale would

be necessary because it would usually be suffi cient to compare the median of x1 when the dummy is 0

with its median when it is one.
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Table 3: 5% finite sample sizes of F and t tests

F tests t tests (two-sided)
Gaussian copula Student t copula Gaussian copula Student t copula
OLS Gaussian OLS Gaussian OLS Gaussian OLS Gaussian

ρ0/θ β0
Panel A: N = 50

-.25 -.33 13.8 17.0 16.6 18.7 10.2 11.8 11.8 12.9
-.10 -.11 12.2 17.7 15.1 20.5 9.4 12.7 11.3 13.6
-.05 -.05 11.5 17.8 15.4 20.0 9.1 12.6 11.2 13.5
.05 .05 11.5 18.0 15.3 19.8 9.3 12.5 11.2 13.7
.10 .09 11.8 18.3 16.3 19.2 9.4 12.9 11.7 13.1
.25 .20 13.5 18.0 16.4 18.8 10.0 12.6 11.4 12.7

Panel B: N = 200
-.25 -.33 7.6 8.4 8.7 9.4 6.6 7.5 7.2 7.7
-.10 -.11 6.7 8.8 8.3 9.6 5.9 7.1 7.2 7.6
-.05 -.05 6.5 8.9 8.1 8.9 5.9 7.8 7.0 7.3
.05 .05 6.6 9.2 8.0 9.2 6.1 7.6 6.9 7.6
.10 .09 6.5 8.9 8.1 9.1 6.1 7.3 6.8 7.7
.25 .20 7.2 8.7 8.2 8.9 6.4 7.4 7.0 7.5

Panel C: N = 800
-.25 -.33 5.8 5.7 6.2 6.4 5.4 5.7 5.6 6.0
-.10 -.11 5.2 6.0 6.0 6.2 5.3 5.6 5.8 5.9
-.05 -.05 5.3 6.4 6.1 6.4 5.2 5.9 5.7 5.8
.05 .05 5.8 6.3 6.1 6.5 5.6 5.9 5.5 5.7
.10 .09 5.3 6.0 6.0 6.0 5.3 5.7 5.8 5.7
.25 .20 5.5 6.3 5.9 6.4 5.5 5.9 5.6 5.9

Panel D: N = 3, 200
-.25 -.33 4.9 5.3 5.1 5.6 4.9 5.0 5.1 5.4
-.10 -.11 4.9 5.4 5.1 5.2 4.9 5.4 5.0 5.3
-.05 -.05 5.3 5.3 5.1 5.3 5.1 5.3 5.1 5.2
.05 .05 5.2 5.3 5.1 5.3 5.2 5.3 5.2 5.3
.10 .09 5.1 5.7 5.4 5.7 5.2 5.5 5.1 5.6
.25 .20 4.8 4.9 5.1 5.0 5.0 4.9 5.1 5.2

Notes: Results based on 10,000 replications. DGP: Asymmetric Laplace margins with location, scale, and shape
parameter values 0, 10 and 0.9, respectively (see Online Appendix E for details); Gaussian copula with parameter
ρ0 (left) and Student t copula with 8 degrees of freedom and correlation parameter θ (right). The first four columns
report the finite sample sizes of the F tests of H0 : β = β(ρ0) for the trivariate case when a Gaussian copula is used
to generate the data, and the analogous rejection rates of H0 : β = β∞(θ), where β∞(θ) is the pseudo-true value of
the Gaussian rank regression coeffi cient vector corresponding to a Student t copula with 8 degrees of freedom and
equicorrelation parameter θ for the underlying multivariate distribution. The last four coulumns do the same but
for the two sided t tests. For each dependence measure, we substract the pseudo-true value and then standardize
using feasible standard error estimates. OLS denotes the usual OLS regression applied to the simulated raw data;
while Gaussian refers to OLS regression applied to the Gaussian ranks of the simulated data.
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Table 4: Correlation parameter estimators, contaminated sample

Pearson Spearman Gaussian
Mean Std.Dev. (ρ̂>0)% Mean Std.Dev. (ρ̂>0)% Mean Std.Dev. (ρ̂>0)%

ρ0
Panel A: N = 50

-.25 -.758 .052 .000 -.441 .106 .000 -.498 .095 .000
-.10 -.718 .060 .000 -.336 .110 .001 -.401 .100 .000
-.05 -.706 .062 .000 -.302 .109 .002 -.369 .099 .000
.05 -.680 .067 .000 -.234 .109 .014 -.308 .099 .000
.10 -.668 .070 .000 -.200 .110 .033 -.276 .100 .002
.25 -.631 .078 .000 -.099 .105 .178 -.182 .094 .022

Panel B: N = 200
-.25 -.508 .042 .000 -.293 .064 .000 -.344 .059 .000
-.10 -.424 .046 .000 -.160 .065 .007 -.215 .061 .000
-.05 -.396 .048 .000 -.116 .067 .043 -.172 .063 .003
.05 -.340 .051 .000 -.028 .067 .339 -.086 .063 .086
.10 -.312 .052 .000 .016 .066 .601 -.043 .062 .239
.25 -.228 .057 .000 .149 .063 .992 .085 .059 .921

Panel C: N = 800
-.25 -.334 .028 .000 -.253 .033 .000 -.282 .032 .000
-.10 -.213 .030 .000 -.112 .034 .001 -.139 .034 .000
-.05 -.172 .030 .000 -.066 .035 .029 -.092 .034 .004
.05 -.092 .031 .002 .028 .035 .785 .003 .034 .537
.10 -.050 .031 .055 .076 .035 .985 .052 .034 .936
.25 .071 .032 .987 .216 .033 1.00 .194 .032 1.00

Panel D: N = 3, 200
-.25 -.267 .016 .000 -.243 .017 .000 -.260 .017 .000
-.10 -.129 .017 .000 -.100 .018 .000 -.112 .017 .000
-.05 -.083 .017 .000 -.052 .018 .002 -.063 .017 .000
.05 .009 .017 .700 .043 .018 .992 .036 .017 .981
.10 .054 .017 .999 .090 .018 1.00 .085 .018 1.00
.25 .193 .016 1.00 .233 .017 1.00 .233 .016 1.00

Notes: Results based on 10,000 replications. DGP: Gaussian copula with parameter ρ0 and asymmetric Laplace
margins with location, scale, and shape parameter values 0, 10 and 0.9, respectively (see Online Appendix E for
details) with 5 outliers given by Xoutlier

1 = (9, 8, 7, 6, 5)′IQR1 and Xoutlier
2 = −.5Xoutlier

1 . We report the mean,
standard deviation and the fraction of parameter estimates that are positive of the sampling distribution of the
following estimators: Pearson denotes the usual Pearson correlation applied to the simulated raw data, Spearman
refers to the ρ̃IS in section 5.1 applied to the empirical cdf of the simulated data, while Gaussian refers to the
Pearson correlation applied to the Gaussian ranks of the simulated data.
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Figure 1: Short term reversal and momentum, August 2007

Figure 1a: STR, Stock returns Figure 1b: MOM, Stock returns
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Figure 1c: STR, Uniform ranks Figure 1d: MOM, Uniform ranks
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Figure 1e: STR, Gaussian ranks Figure 1f: MOM, Gaussian ranks
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Notes: The data is collected from CRSP. STR refers to short term reversal and MOM to momentum. Red lines
in the top panels represent the regression lines of the original data, with beta coeffi cients: -.019 in Figure 1a and
-.004 in Figure 1b; red lines in the middle panels correspond to the Spearman rank correlation: -.062 and .023 in
Figures 1c and 1d, respectively; and red lines in the bottom panels represent the Gaussian rank correlation: -.040

in Figure 1e and .030 in Figure 1f.
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Figure 2: Gaussian, Clayton and Student copulas with Gaussian margins

Figure 2a: Bivariate Gaussian copula Figure 2b: Contours of a bivariate
with Gaussian margins Gaussian copula with Gaussian margins
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Figure 2c: Bivariate Clayton copula Figure 2d: Contours of a bivariate
with Gaussian margins Clayton copula with Gaussian margins
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Figure 2e: Bivariate Gaussian copula Figure 2f: Contours of a bivariate
with Student t margins Student t copula with Gaussian margins

0.05

2 3

0.1

2
0 1

0.15

0
12 2

3

0.001

0.
00

1

0.001

0.
00

1

0.01

0.
01

0.01

0.01

0.01

0.0
5

0.05

0.05

0.1

0.1

0.15

3 2 1 0 1 2 3
3

2

1

0

1

2

3

Notes: Figures 2a.b report a Gaussian copula, Figures 2c.d a Clayton copula, and Figures 2e.f a Student t copula
with 8 degrees of freedom. All of them are represented with standard normal margins and have been calibrated so
that their Gaussian rank correlation coeffi cient is .25.
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Figure 3: Asymptotic variance of Gaussian rank correlation and regression coeffi cients

Figure 3a: Correlation coeffi cients
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Figure 3b: Regression coeffi cients
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Notes: MLK=2 andMLK=3 denote the unconstrained ML estimators in both bivariate and trivariate cases assum-
ing known margins;MLNP denotes the unconstrained ML estimators in both bivariate and trivariate contexts when
margins are estimated non-parametrically; while OLS denotes the slope coeffi cients in a multiple linear regression.
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Figure 4: Pseudo-true values of the Gaussian rank correlation coeffi cient

Figure 4a: Clayton copula
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Figure 4b: Student t copula
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Notes: ρ∞ is the pseudo-true value of the Gaussian rank correlation. In Figure 4a, θ denotes the dependence
parameter of the Clayton copula, while in Figure 4b it represents the value of the correlation of the bivariate
Student t distributions underlying the copulas. We use numerical integration to obtain the relevant cross-moments
involved in the Gaussian rank expressions when the true copula is either Clayton or Student t. Computations
involving the Clayton copula are done in Mathematica (Cartesian rule) while those for the Student t copula in
Matlab (Simpson rule).
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Figure 5: Asymptotic variance of the ML estimator of the Gaussian rank correlation

Figure 5a: Clayton copula
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Figure 5b: Student t copula
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Notes: In Figure 5a, θ denotes the dependence parameter of the Clayton copula, while in Figure 5b it represents
the value of the correlation of the bivariate Student t distributions underlying the copulas. We use numerical
integration to obtain the relevant cross-moments involved in the Gaussian rank expressions when the true copula
is either Clayton or Student t. Computations involving the Clayton copula are done in Mathematica (Cartesian
rule) while those for the Student t copula in Matlab (Simpson rule).
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Figure 6: Alternative marginal distributions

Figure 6a: Tukey density Figure 6b: Asymmetric Laplace density
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Figure 6c: Weibull density Figure 6d: Mixture of Weibulls density
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Notes: Weibull random variable with parameters k = 0.75 and λ = 1. Asymmetric Laplace random variable with
parameters m = 0, k = 2 and λ = 1. Tukey random variable with parameter λ = 1.5. Mixture of Weibulls random
variable with parameters k1 = 5, λ1 = 10, k2 = 5, , λ1 = 2 and mixing probability α = .98. See Online Appendix
E for a description of the marginal distributions.
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Figure 7: Pseudo-true values and asymptotic variances of Pearson, Spearman and Gaussian rank
correlations

Figure 7a: Pseudo-true values (dicrepancy)
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Figure 7b: Asymptotic variance
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Notes: ρ0 denotes the Gaussian copula correlation while ρ∞ denotes the pseudo-true value of the Spearman and
Pearson correlation coeffi cients. Tukey random variable with parameter λ = 1.5; Weibull random variable with
parameters k = 0.75 and λ = 1; asymmetric Laplace random variable with parameters m = 0, k = 2 and λ = 1;
mixture of Weibulls random variable with parameters k1 = 5, λ1 = 10, k2 = 5, , λ1 = 2 and mixing probability
α = .98. See Online Appendix E for a description of the marginal distributions.
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Figure 8: Determinants of migration across US states

Figure 8a: Annual Migration Rate, 1900-1987
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Figure 8b: Annual Migration Rate, 1900-1987 (Gaussian ranks)
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Notes: Data set in chapter 11 of Barro and Xala-i-Martin (2003): log of 1900 per capita income on the horizontal
axis and the average net migration rate for 48 US states or territories from 1900 to 1990 on the vertical axis. The
top panel contains the original raw data while the corresponding Gaussian ranks are plotted in the bottom panel.
Estimators: OLS denotes the usual OLS regression, LTS refers to the Least Trimmed Squares, which classifies
some observations as unrepresentative and subsequently omits them from the sample, while LMS refers to the
Least Median of Squares, which minimizes the median square residuals instead of the mean square residuals (see
Rousseeuw 1984, 1985 for details).
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B Proofs

For the sake of brevity, Assumption 1 is maintained throughout.

Proposition 1

Consider the differential of (2),

dφK(yi,ρ) = −1

2
tr{P−1(ρ)d[P(ρ)]} − 1

2
y′id[P−1(ρ)]yi

= −1

2
vec[P−1(ρ)]′vec{d[P(ρ)]}+

1

2
y′iP

−1(ρ)d[P(ρ)]P−1(ρ)yi

= −1

2
vec[P−1(ρ)]′vec{d[P(ρ)]}+

1

2
[y′iP

−1(ρ)⊗ y′iP
−1(ρ)]vec{d[P(ρ)]}

= −1

2
{vec[P−1(ρ)]′ − y′iP

−1(ρ)⊗ y′iP
−1(ρ)}vec{d[P(ρ)]}

= −1

2
{vec[P−1(ρ)P(ρ)P−1(ρ)]′ − vec[P−1(ρ)yiy

′
iP
−1(ρ)]′}vec{d[P(ρ)]}

=
1

2
{[P−1(ρ)⊗P−1(ρ)]vec[yiy

′
i −P(ρ)]}′vec{d[P(ρ)]}

Transposing and simplifying terms, we can get the fist order condition:

1

2

∂vec′[P(ρ)]

∂ρ
[P−1(ρ)⊗P−1(ρ)]vec[yiy

′
i −P(ρ)] = 0.

Then, using the fact that

vec[P(ρ)] = vec(IK) + L̃
′
ρ+ KL̃

′
ρ,

so that
∂P(ρ)

∂ρ′
= L̃

′
+ KL̃

′
,

the result follows. �

Proposition 2

Starting from the expression for the score in (3), we can derive Hessian matrix by differencing once

again, namely

dsKi(ρ) =
1

2
(L̃ + L̃K)[d{vec[P−1(ρ)yiy

′
iP
−1(ρ)]} − d{vec[P(ρ)]}]

=
1

2
(L̃ + L̃K)[vec{d[P−1(ρ)]yiy

′
iP
−1(ρ)}

+vec{P−1(ρ)yiy
′
id[P−1(ρ)]} − d{vec[P−1(ρ)]}]

=
1

2
(L̃ + L̃K)[−vec{P−1(ρ)d[P(ρ)]P−1(ρ)yiy

′
iP
−1(ρ)}

−vec{P−1(ρ)yiy
′
iP
−1(ρ)d[P(ρ)]P−1(ρ)}+ vec{P−1(ρ)d[P(ρ)]P−1(ρ)}]

=
1

2
(L̃ + L̃K){−[P−1(ρ)yiy

′
iP
−1(ρ)]⊗P−1(ρ)

−P−1(ρ)⊗ [P−1(ρ)yiy
′
iP
−1(ρ)] + P−1(ρ)⊗P−1(ρ)}vec{d[P(ρ)]}.

Hence, dsKi(ρ) can be written as in (6) after noticing that vec{d[P(ρ)]} = (L̃ + L̃K). �

1



Proposition 3

Part (a) follows from the i.i.d. assumption on {yi} together with either expression (10) or (11), while
part (b) is a direct application of the Delta method to the result in part (a). �

Lemma 1

As in Chen and Fan (2006), we need to compute

n2 =

∫ 1

0
[1{u1 ≤ U1} − u1]W 1

ρ12
dU1 +

∫ 1

0
[1{u2 ≤ U2} − u2]W 2

ρ12
dU2,

with W j
ρ12 =

∫
[∂sρ12(u1, u2; ρ12)/∂uj ]c(u1, u2; ρ12)duj for j = 1, 2. Then, the result follows from

W j
ρ12

=

∫ [
1 + ρ212

(1− ρ212)2
y−j −

2ρ12
(1− ρ212)2

yj

]
φ(yj)dy−j =

1 + ρ212
(1− ρ212)2

yj

and the fact that∫ y

−∞
H1(x)Φ(x)dx =

H1(y)

2

1√
2π

exp

(
−y

2

2

)
+

1

2
√

2
H2(y)

[
1 + erf

(
y√
2

)]
and ∫ ∞

y
H1(x)[1− Φ(x)]dx =

H1(y)

2

1√
2π

exp

(
−y

2

2

)
− 1

2
√

2
H2(y)

[
erfc

(
y√
2

)]
,

where erf(z) = 2π−1/2
∫ z
0 e
−t2dt and erfc(z) = 1−erf(z). Analogous calculations in the trivariate case

yield the corresponding correction. �

Proposition 4

Under the maintained assumption of a Gaussian copula, it is straightforward to obtain the variance

of the score in (4) using the moments of the bivariate normal, whose reciprocal is AV ar(ρ̂).

To obtain the asymptotic variance of ρ̌ =
∑

i y1iy2i/
∑

i y
2
2i, consider the following vector of influence

functions:

m̌2i(θ) = (y1iy2i − σ22ρ, y22i − σ22)′

where θ = (ρ, σ22)
′. Then, we can easily compute

Ǎ2 = E

[
∂m̌2i(θ)

∂θ′

]
= −

(
σ22 ρ
0 1

)
and B̌2 = V ar[m̌2i(θ)] =

(
1 + ρ2 2ρ

2ρ 2

)
,

so that imposing σ2 = 1 and applying the sandwich formula yields V ar(ρ̌) = (1 − ρ2)2/(1 + ρ2) as the

(1, 1) element of Ǎ
−1
2 B̌2Ǎ

−1′
2 .

As for ρ̃ =
∑

i(y1i− ȳ1)(y2i− ȳ2)/
∑

i y
2
2i, where ȳj = N−1

∑
i yji, we consider the following alternative

vector of influence functions:

m̃2i(θ) = [y1iy2i − (µ1µ2 + σ22ρ), y22i − (µ22 + σ22), y1i − µ1, y2i − µ2]′

2



where θ = (ρ, σ22, µ1, µ2)
′. Then, we can compute

Ã2 = E

[
∂m̃2i(θ)

∂θ′

]
= −


σ22 ρ µ2 µ1
0 1 0 2µ2
0 0 1 0
0 0 0 1

 and B̃2 = V ar [m̃2i(θ)] =

(
B̌2 0
0 P(ρ)

)
,

so that imposing the Gaussian copula assumption and applying the sandwich formula yields V ar(ρ̃) =

(1− ρ2)2 as the (1, 1) element of Ã
−1
2 B̃2Ã

−1′
2 . �

Proposition 5

Analogous calculations to the ones used in the proof of Lemma 1 allow us to obtain

nµji (ρ) = H1(yji) and nσ2j i
(ρ) =

√
2H2(yji) for j = 1, 2.

Hence, the asymptotic variance of the ML estimator of ρ can be obtained as

AV ar(ρ̂np) =
V ar[snpρi (ρ)]

{V ar[sρi (ρ)]}2 = (1− ρ2)2.

As for the other estimators, letting Bnp
2 = V ar[m2i(θ) + n2i(θ)], we can show that AV ar(ρ̂np) coincides

with the common asymptotic variance of ρ̌np and ρ̃np, which is given by

AV ar(ρ̃np) = AV ar(ρ̌np) = (1− ρ2)2

because B̌
np
2 and B̃

np
2 have all the elements equal to zero except the (1, 1) one, which is equal to (1− ρ2).

�

Proposition 6

First, we can obtain the asymptotic variance of ρ̂ as AV ar(ρ̂) = A−1(ρ), where the expressions

for the expected (minus) Hessian A(ρ) are reported in Online Appendix C. Then, regarding the ML

estimator β̂
(1)
, we can exploit

β̂
(1)

=

[
1 ρ̂23
ρ̂23 1

]−1 [
ρ̂12
ρ̂13

]
to obtain the asymptotic variance of say β̂(1)2 by applying the Delta method, namely

AV ar(β̂
(1)
2 ) = ∇β̂(1)′2 (ρ)AV ar(ρ̂)∇β̂(1)2 (ρ)

where

∇β̂(1)2 (ρ) =

[
1

1− ρ223
,− ρ23

1− ρ223
,
2ρ12ρ23 − ρ13(1 + ρ223)

(1− ρ223)2

]′
.

3



This yields

AV ar(β̂
(1)
2 ) = −(((−1 + ρ223)

3(1 + ρ223) + ρ612(1 + 3ρ223)− 2ρ512ρ13ρ23(5 + 7ρ223)

+ρ613(−1 + 3ρ223 + 2ρ423) + ρ213(−1 + ρ223)
2(1 + 3ρ223 + 2ρ423)

+ρ413(1− 6ρ223 + ρ423 + 4ρ623)− 2ρ12ρ13ρ23(3(−1 + ρ223)
2(1 + ρ223)

+4ρ213(−1 + ρ223)(1 + ρ223)
2 + ρ413(1 + 7ρ223 + 4ρ423))

−4ρ312ρ13ρ23(4(−1 + ρ423) + ρ213(4 + 11ρ223 + 5ρ423))

+ρ412(−3− 2ρ223 + 5ρ423 + 3ρ213(1 + 11ρ223 + 8ρ423))

+ρ212(3(−1 + ρ223)
2(1 + ρ223) + ρ413(1 + 25ρ223 + 26ρ423 + 8ρ623) +

2ρ213(−2− 11ρ223 + 4ρ423 + 9ρ623)))

/((−1 + ρ223)
3(−1 + ρ412 + ρ413 − 2ρ212ρ

2
13ρ

2
23 + ρ423))).

In turn, to obtain the asymptotic variance of

β̌
(1)

=

( ∑
i y
2
2i

∑
i y2iy3i∑

i y2iy3i
∑

i y
2
3i

)−1( ∑
i y1iy2i∑
i y1iy3i

)
we consider the following vector of influence functions:

m̌3i(θ) = (y1iy2i −
√
σ21σ

2
2ρ12, y1iy3i −

√
σ21σ

2
3ρ13, y2iy3i −

√
σ22σ

2
3ρ23, y

2
1i − σ21, y22i − σ22, y23i − σ23)′

where θ = (ρ12, ρ13, ρ23, σ
2
1, σ

2
2, σ

3
2)
′. Then, under the assumption of a Gaussian copula we will have

Ǎ3 = E

[
∂m̌3i(θ)

∂θ′

]
= −



1 0 0 ρ12/2 ρ12/2 0
0 1 0 ρ13/2 0 ρ13/2
0 0 1 0 ρ23/2 ρ23/2
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


and

B̌3 = V ar[m̌3i(θ)] =



1 + ρ212 ρ12ρ13 + ρ23 ρ12ρ23 + ρ13 2ρ12 2ρ12 2ρ13ρ23
ρ12ρ13 + ρ23 1 + ρ213 ρ13ρ23 + ρ12 2ρ13 2ρ12ρ23 2ρ13
ρ12ρ23 + ρ13 ρ13ρ23 + ρ12 1 + ρ223 2ρ12ρ13 2ρ23 2ρ23

2ρ12 2ρ13 2ρ12ρ13 3 2ρ212 2ρ213
2ρ12 2ρ12ρ23 2ρ23 2ρ212 3 2ρ223

2ρ13ρ23 2ρ13 2ρ23 2ρ213 2ρ223 3

 ,

which allow us to obtain AV ar(θ̌) as Ǎ
−1
3 B̌3Ǎ

−1′
3 . We can then use the Delta method to obtain the

asymptotic variance of β̌(1)2 . Specifically, we have

∇β̌(1)2 (θ) =

[
1

1− ρ223
,
−ρ23

1− ρ223
,
2ρ12ρ23 − ρ13 − ρ13ρ223

(1− ρ223)2
,
ρ12 − ρ13ρ23
2(1− ρ223)

,−ρ12 − ρ13ρ23
2(1− ρ223)

, 0

]′
,

and therefore

AV ar(β̌
(1)
2 ) =

1− ρ212 − ρ213 + 2ρ12ρ13ρ23 − ρ223
(1− ρ223)2

.

4



Finally, to obtain the asymptotic variance of

β̃
(1)

=

(
N−1

∑
i y
2
2i − ȳ22 N−1

∑
i y2iy3i − ȳ2ȳ3

N−1
∑

i y2iy3i − ȳ2ȳ3 N−1
∑

i y
2
3i − ȳ23

)−1(
N−1

∑
i y1iy2i − ȳ1ȳ2

N−1
∑

i y1iy3i − ȳ1ȳ3

)
we consider the following vector of influence functions:

m̃3i(θ) =



y1iy2i − µ1µ2 −
√
σ21σ

2
2ρ12

y1iy3i − µ1µ3 −
√
σ21σ

2
3ρ13

y2iy3i − µ2µ3 −
√
σ22σ

2
3ρ23

y1i − µ1
y2i − µ2
y3i − µ3

y21i − (µ21 + σ21)
y22i − (µ22 + σ22)
y23i − (µ23 + σ23)


where θ = (ρ12, ρ13, ρ23, σ

2
1, σ

2
2, σ

3
2, µ1, µ2, µ3)

′. Then, under the assumption of a Gaussian copula we will

have

Ã3 = E

[
∂m̃3i(θ)

∂θ′

]
=

(
Ǎ3 0
0 −I3

)
and B̃3 = V ar[m̃3i(θ)] =

(
Ǎ3 0
0 P(ρ)

)
,

which allow us to obtain AV ar(θ̃) as Ã
−1
3 B̃3Ã

−1′
3 . We can then use the Delta method to obtain the

asymptotic variance of β̃(1)2 . Specifically, we have

∇β̃(1)2 (θ) =

[
1

1− ρ223
,
−ρ23

1− ρ223
,
2ρ12ρ23 − ρ13 − ρ13ρ223

(1− ρ223)2
,
ρ12 − ρ13ρ23
2(1− ρ223)

,−ρ12 − ρ13ρ23
2(1− ρ223)

, 0, 0, 0, 0

]′
,

and therefore

AV ar(β̃
(1)
2 ) =

1− ρ212 − ρ213 + 2ρ12ρ13ρ23 − ρ223
(1− ρ223)2

,

as desired. �

Proposition 7

We first compute the variance of the ML correlation estimator by using the correction for the trivari-

ate case given in Lemma 1. Specifically, the resulting diagonal elements for the variance of the corrected

scores are

V11 = Vci (ρ12, ρ13, ρ23), V22 = Vci (ρ13, ρ12, ρ23) and V33 = Vci (ρ23, ρ12, ρ13),

where

Vci (ρ12, ρ13, ρ23) =
1 + 2ρ212 + ρ412 − ρ213 − 4ρ12ρ13ρ23 − 2ρ312ρ13ρ23 − ρ223 + 3ρ213ρ

2
23 + ρ212ρ

2
13ρ

2
23

(1− ρ212 − ρ213 − ρ223 + 2ρ12ρ13ρ23)
2

.

In turn, the corresponding off-diagonal elements are

V12 = Vcij(ρ12, ρ13, ρ23), V13 = Vcij(ρ13, ρ23, ρ12) and V23 = Vcij(ρ23, ρ12, ρ13),

with

V c
ij(ρ12, ρ13, ρ23) = [5ρ12ρ13 + ρ312ρ13 + ρ12ρ

3
13 − 2ρ23 − 3ρ212ρ23 − ρ412ρ23 − 3ρ213ρ23

−2ρ212ρ
2
13ρ23 − ρ413ρ23 + 2ρ12ρ13ρ

2
23 + ρ312ρ13ρ

2
23 + ρ12ρ

3
13ρ

2
23 + 2ρ323

−ρ212ρ323 − ρ213ρ323 + ρ12ρ13ρ
4
23]/[2(1− ρ212 − ρ213 + 2ρ12ρ13ρ23 − ρ223)2].

5



These quantities, together with the expressions for the expected (minus) Hessian in Online Appendix

C, allow us to compute the corrected asymptotic variance of the ML estimators via the usual sandwich

formula H(ρ)−1Vc(ρ)H(ρ)−1.

As for the moment-based estimators, we can also correct the corresponding moment conditions using

the following terms:

nµji (θ) = −H1(yji) and nσ2j i
(θ) = −

√
2H2(yji) for j = 1, 2, 3

and

nσjhi(θ) = −1

2
(y2ji + y2hi − 2)ρhj , for h = 1, 2, 3, and h 6= j.

As in the bivariate case, if we define Bnp
3 = V ar[m3i(θ) + n3i(θ)], then we will have

B̌
np
3 =


r12 r123 r132 0
r123 r13 r231 0
r132 r231 r23 0
0 0 0 0

 and B̃
np
3 =

(
B̌
np
3 0
0 0

)
,

where

rjh = (1− ρ2jh)2 and rjhk =
1

2
[ρ3jhρjk − 2ρ2jhρhk + 2(1− ρ2jk)ρhk + ρjhρjk(ρ

2
jk + ρ2hk − 1)].

Finally, the corrected variance of both moment estimators of the regression coeffi cients β can be

obtained by combining the Delta method with the sandwich formula, and it turns out to be the same as

the corrected variance of the ML estimators. �

Proposition 8

The combination of i.i.d. data with Assumption 1 implies that under standard regularity conditions

we can effectively prove consistency by showing that the expected value of the score in (3) is zero. Let us

start by considering the case in which P(ρ) is unrestricted, so that ρ contains the K(K−1)/2 off-diagonal

elements of the correlation matrix. But since

E(y2i ) = 1 and ρij = E(yiyj),

then P(ρ∞) = E(yy). More generally, consider P(ρ), where ρ is a p × 1 vector with p < K(K − 1)/2.

In this case,

E[sρi(y;ρ)] =
∂vecl′[P(ρ)]

∂ρ
E[sKi{vecl[P(ρ)]}] = 0,

where the first equality follows from the chain rule and the last one from the fact that P(ρ) is correctly

specified. �
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C Trivariate copula expressions

C.1 Score

Applying the general formula in (3) to the trivariate case yields

sρ12(y1, y2, y3, ρ12, ρ13, ρ23) =
1

(1− ρ212 − ρ213 + 2ρ12ρ13ρ23 − ρ223)2

×
[
y21(ρ12 − ρ13ρ23)(ρ223 − 1)− ρ312 + ρ212ρ13[(3 + y23)ρ23 − y2y3]

+ρ13[y
2
2(ρ23 − ρ213ρ23) + y2y3(ρ

2
13 − ρ223 − 1) + ρ23(y

2
3 + ρ213 + ρ223 − 1)]

−ρ12[−1− y22(−1 + ρ213)− 2y2y3ρ23 + ρ223 + y23ρ
2
23 + ρ213(1 + y23 + 2ρ223)]

+y1{−y3(ρ23 + ρ212ρ23 + ρ213ρ23 − 2ρ12ρ13 − ρ323)

+y2[1 + ρ212 − 2ρ12ρ13ρ23 − ρ223 − ρ213(1− 2ρ223)]}
]

sρ13(y1, y2, y3, ρ12, ρ13, ρ23) = sρ12(y1, y3, y2, ρ13, ρ12, ρ23),

and

sρ23(y1, y2, y3, ρ12, ρ13, ρ23) = sρ12(y2, y3, y1, ρ23, ρ12, ρ13).

C.2 Hessian

The expected value of the (minus) Hessian under correct of specification of the correlation matrix is given

by

E[−hi(ρ∞)] =

 h11(ρ12∞, ρ13∞, ρ23∞) h12(ρ12∞, ρ13∞, ρ23∞) h13(ρ12∞, ρ13∞, ρ23∞)
h22(ρ12∞, ρ13∞, ρ23∞) h23(ρ12∞, ρ13∞, ρ23∞)

h33(ρ12∞, ρ13∞, ρ23∞)


where

h11(ρ12, ρ13, ρ23) =
1 + ρ212 − 2ρ12ρ13ρ23 − ρ223 − ρ213(1− 2ρ223)

(1− ρ212 − ρ213 − ρ223 + 2ρ12ρ13ρ23)
2

h22(ρ12, ρ13, ρ23) = h11(ρ13, ρ12, ρ23),

h33(ρ12, ρ13, ρ23) = h11(ρ23, ρ12, ρ13),

h12(ρ12, ρ13, ρ23) =
ρ323 + 2ρ12ρ13 − ρ23(1 + ρ212 + ρ213)

(1− ρ212 − ρ213 − ρ223 + 2ρ12ρ13ρ23)
2
,

h13(ρ12, ρ13, ρ23) = h12(ρ12, ρ23, ρ13)

and

h23(ρ12, ρ13, ρ23) = h12(ρ13, ρ23, ρ12).

D Spearman’s calculations

D.1 Alternative estimators

Alternative estimators to ρ̃IS , which is based on the moment conditions (14), can be obtained as

follows.
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Given that u1i and u2i are uniform by definition, one could exploit the fact that E(uji) = 1/2 and

V ar(uji) = 1/12 to estimate ρ based on the single moment condition

E

(
u1iu2i −

1

4
− 1

12
ρ

)
= 0,

whence

ρ̃IIS = 12

(
1

N

N∑
i=1

u1iu2i −
1

4

)
. (D1)

A third estimator in which the mean of each component is substracted before computing the cross-

moment is given by

ρ̃IIIS =
1

1/12

N∑
i=1

(
u1i −

1

2

)(
u2i −

1

2

)
. (D2)

Finally, the fourth estimator we could consider, which is the closest to the one Matlab implements, is

ρ̃IVS = 1− 6(N + 1)2

N(N2 − 1)

N∑
i=1

(u1i − u2i)2,

which in large samples can be interpreted in terms of the following moment conditions

E[mIV
i (θ)] = E




u1iu2i − 1
2(µ21 + σ21)− 1

2(µ22 + σ22)− 1
12(ρ− 1)

u1i − µ1
u2i − µ2

u21i − (µ21 + σ21)
u22i − (µ22 + σ22)


 = 0. (D3)

D.2 Asymptotic variances

Regarding ρ̃IS , we can easily compute the expected value of the Jacobian and variance of the moment

conditions to obtain the asymptotic variance for θ in (14). In particular,

AI(θ) = E

[
∂mI

i (θ)

∂θ′

]
= −


√
σ21σ

2
2 µ2 µ1

1
2ρ
√
σ22/σ

2
1

1
2ρ
√
σ21/σ

2
2

0 1 0 0 0
0 0 1 0 0
0 2µ1 0 1 0
0 0 2µ2 0 1

 ,

and

BI(θ) = V ar[mI
i (θ)]

=


E22 − E211 E21 − E11E10 E12 − E11E01 E31 − E11E20 E13 − E11E02

V ar(u1i) cov(u1i, u2i) E30 − E20E10 cov(u1i, u
2
2i)

V ar(u2i) cov(u21i, u2i) E03 − E02E01
E40 − E220 cov(u21i, u

2
2i)

E04 − E202

 ,

where Eh,j denotes E(uh1iu
j
2i).

As for ρ̃IIS , it is straightforward to prove that (D1) implies AV ar(ρ̂) = 144× V ar(u1iu2i).
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To obtain the asymptotic variance of ρ̃IIIS from (D2), it is convenient to use the following moment

conditions

E


u1iu2i − 1

2µ1 −
1
2µ2 −

1
12ρ+ 1

4
u1i − µ1
u2i − µ2

u21i − (µ21 + σ21)
u22i − (µ22 + σ22)

 = E[mIII
i (θ)] = 0,

whence

AIII(θ) = E

[
∂mIII

i (θ)

∂θ′

]
= −


1/12 1/2 1/2 0 0

0 1 0 0 0
0 0 1 0 0
0 2µ1 0 1 0
0 0 2µ2 0 1

 .

In addition, it is easy to see that BIII(θ) = V [mIII
i (θ)] coincides with BI(θ).

Finally, we can use (D3) to show that BIV (θ) = V [mIV
i (θ)] is equal to BI(θ) and

AIV (θ) = E

[
∂mIV

i (θ)

∂θ′

]
= −


1/12 µ1 µ2 1/2 1/2

0 1 0 0 0
0 0 1 0 0
0 2µ1 0 1 0
0 0 2µ2 0 1

 ,

whence we can obtain the asymptotic variance of ρ̃IVS .

E Description of the marginal distributions used in Section 5

E.1 Tukey distribution

The Tukey lambda distribution is a continuous, symmetric probability distribution defined in terms

of its quantile function

Q(p, λ) =

{
1
λ [pλ − (1− p)λ], if λ 6= 0

ln[p/(1− p)], if λ = 0,

where λ is its single shape parameter. It nests the logistic distribution for λ = 0 and the uniform

distribution for both λ = 1 and λ = 2. In Figure 6a, we plot the density of a Tukey random variable with

parameter λ = 1.5.

E.2 Asymmetric Laplace distribution

The Asymmetric Laplace distribution is a continuous probability distribution consisting of two ex-

ponential distributions of unequal scale, adjusted to ensure continuity and normalization. Its density

is

f(x;m,κ, λ) =
λ

κ+ 1/κ

{
exp[(λ/k)(x−m)], x ≤ m
exp[−λκ(x−m)], x > m

The quantiles for this distribution can be easily obtained from those of the two underlying exponen-

tial distributions. In Figure 6b, we plot the density of an Asymmetric Laplace random variable with

parameters m = 0, k = 2 and λ = 1.

9



E.3 Weibull distribution

The probability density function of the Weibull distribution is

f(x; k, λ) =

{
k
λ(xλ)k−1 exp[−(x/λ)k], x ≥ 0

0, x < 0
(E1)

where k > 0 is the shape parameter and λ > 0 is the scale parameter. Its quantile function is

F−1(p; k, λ) = λ[− ln(1 − p)]k. When k = 0, it particularizes to the exponential distribution with

parameter λ−1. We plot the density of a Weibull random variable with parameters k = 0.75 and λ = 1

in Figure 6c.

E.4 Mixture of Weibull distributions

This distribution is generated by mixing a regular Weibull distribution and a mirror image of another

Weibull distribution whose support is the negative real line. Suppose that x1 follows a Weibull distribution

with shape and scale parameters k1 and λ1, and that −x2 follows a Weibull distribution with shape and
scale parameters k2 and λ2. Further, let α denote the mixing probability associated to the first component.

Then, the nonstandardized mixture x has density given by

f(x; k1, k2, λ1, λ2, α) = αf(x; k1, λ1) + (1− α)f(x; k2, λ2),

where f(x; k, λ) is given in (E1). We standardize x to achieve zero mean and unit variance. The quantiles

for this distribution can be easily obtained from those of the two underlying Weibull distributions. In

Figure 6d we plot the density of a mixture of Weibull random variables with parameters k1 = 5, λ1 = 10,

k2 = 5, λ1 = 2 and mixing probability α = .98.
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