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B Proofs
Proposition 1

1) An element of the unconditional RF (15) will have perfect unconditional correlation with an

element of the unconditional SF (14) if and only if there are real numbers a and b such that

mU (c) = a+ bpU (�):

This relationship will hold if and only if we can �nd a, b and $U (c) such that

b
�
E(R�2jG)� !U (�)E(R�jG)

�
= 1; b!U (�) = �$U (c); a = $U (c);

for any given !U (�). Therefore, a solution will exist if and only if E(R�2jG)�!U (�)E(R�jG) is

a nonzero constant.

Similarly, an element of the unconditional SF (16) will have perfect unconditional correlation

with an element of the unconditional RF (12) if and only if there are real numbers � and � such

that

pU (�) = �+ �mU (c) :

This relationship will hold if and only if we can �nd �, � and !U (�) such that

�
�
E(p�2jG)�$U (c)E(p

�jG)
�
= 1; �$U (c) = �!U (�); �+ �$U (c) = 0;

for any given $U (c). Therefore, a solution will exist if and only if E(p�2jG)�$U (c)E(p
�jG) is

a nonzero constant.

Note that the speci�c relationship between the dual points is

!U (�)

E(R�2jG)� !U (�)E(R�jG)
= �$U (c) or

$U (c)

E(p�2jG)�$U (c)E(p�jG)
= �!U (�):

2) In this case, the previous duality conditions must simultaneously hold at two di¤erent

points. Starting from the unconditional RF, then E(R�2jG)� !U (�1)E(R�jG) and E(R�2jG)�

!U (�2)E(R
�jG) must be nonzero constants, which is true if and only if E(R�2jG) and E(R�jG)

are constant too. If we start from the unconditional SF, a similar argument requires constant

E(p�2jG) and E(p�jG). Obviously, both conditions are equivalent since

E(R�2jG) = 1=E(p�2jG) and E(R�jG) = E(p�jG)=E(p�2jG):

If these moments are constant, then the linear combinations E(R�2jG)�!U (�)E(R�jG) and

E(p�2jG)�$U (c)E(p
�jG) will trivially be constant too for all values of � and c. �
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Lemma 1:

Given that all portfolios in Pc must have constant cost, the de�nition of an extended SDF m is

equivalent to

E[m(Rw + r0w�1)] = w; 8w 2 R; 8w�1 2 I:

This equation will be satis�ed if and only if

E(mR) = 1; and E(mrjG) = 0:

The �rst condition can be re-written as

E(mRjG) = h; with E(h) = 1; h 2 I;

and the last condition as

E(mx�1jG) = E(mRjG)C(x�1jG) = hC(x�1jG):

Therefore, m will be an extended SDF if and only if

E(mxjG) = hC(xjG); with E(h) = 1; h 2 I;

which completes the proof. �

Proposition 2:

We start by introducing some concepts that will shorten the proof considerably. We de�ne the

extended return associated to the cost representing portfolio

R�e = p�=C(p�) = p�=E(p�2); (B1)

and the unconditional mean representing portfolio in the space of extended arbitrage portfolios

r�e = p� � C(p�)R�e = p� � E(p�)R�e; (B2)

which coincides with the residual from the unconditional projection of p� onto the unconditional

span of p�.

We can decompose any portfolio p satisfying the constraints in (17) as its unconditional

projection onto the unconditional linear span hR�e; r�ei, which coincides with hp�; p�i, where R�e
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is de�ned in (B1) and r�e in (B2), plus some unconditionally orthogonal residual u. Speci�cally,

p = ~p+ u;

~p =

0@ R�e

r�e

1A0

E�1

0@ R�2e R�er
�
e

R�er
�
e r�2e

1AE

0@ pR�e

pr�e

1A
=

0@ R�e

r�e

1A0 24 E
�
R�2e

�
0

0 E (r�e)

35�1 24 1=E(p�2)

� � E(p�)=E(p�2)

35
Hence

~p =
1=E(p�2)

E(R�2e )
R�e +

� � E(p�)=E(p�2)
E(p� � E(p�)R�e)

r�e = R�e + !E(�)r
�
e ;

where

!E(�) =
� � E(R�e)
E(r�e)

:

It is easy to see that ~p satis�es the constraints in (17). First,

E(~p) = E(R�e) + !E(�)E(r
�
e) =

E(p�)

E(p�2)
+

�
� � E(p�)=E(p�2)

E(r�e)

�
E(r�e) = �:

Also

C(~p) = C(R�e) + !E(�)C(r
�
e) = 1:

Finally,

E(p2) = E(~p2) + E(u2)

by construction. Therefore, the solution to (17) is ~p, which coincides with pE(�) in (18). �

Interestingly, the elements of the extended RF do not generally belong to the conditional

RF, unlike the elements of the unconditional RF. Nevertheless, we only need to re-scale pE(�)

by g(�) to �nd a return on the conditional RF.

Proposition 3:

1) We can express the USF (14) as

mU (c) = [E(p
�2)�$U (c)E(p

�)]R�e �$U (c)r
�
e +$U (c);

where R�e is de�ned in (B1) and r
�
e in (B2).

Then we only have to re-scale the risky part mU (c) � $U (c) by its average cost E(p�2) �

$U (c)E(p
�) when it is not 0 to get an extended return on the extended RF (18). Speci�cally,

R�e �
$U (c)

E(p�2)�$U (c)E(p�)
r�e
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will be equal to an element on the extended RF for the corresponding !E(�).

2) We can represent the extended RF (18) as

pE(�) =

�
1� !E(�)E(p�)

E(p�2)

�
p� + !E(�)p

�:

Hence, for each !E(�) such that 1� !E(�)E(p
�) 6= 0, we can re-scale pE(�) by its constant

position on p� to obtain

p� +
!E(�)E(p

�2)

1� !E(�)E(p�)
p�;

which coincides with the traded part of an SDF on the unconditional SF (14) corresponding to

$U (c). �

Finally, note that � and c are related by

$U (c)� E(p�)$U (c)!E(�) + E(p
�2)!E(�) = 0

at the dual points. Thus, the two duality exceptions are analogous to the conditional duality

exceptions studied in Appendix C.

Proposition 4:

Once again, we start by introducing some concepts that will shorten the proof considerably. We

de�ne the extended mean and cost representing portfolios

p�e =
1

E(R�2)
R�; p�e = r� +

E(R�)

E(R�2)
R�; (B3)

respectively, which are the two unique elements of Pc that represent unconditional means and

average costs on Pc.

We can decompose any extended SDFm satisfying the constraints in (20) as its unconditional

projection onto the unconditional linear span hp�e; 1� p�ei, where p�e and p�e are de�ned in (B3),

plus some unconditionally orthogonal residual u. In particular,

m = ~m+ u;

~m =

0@ p�e

1� p�e

1A0

E�1

0@ p�2e p�e(1� p�e)

p�e(1� p�e) (1� p�e)2

1AE

0@ mp�e

m(1� p�e)

1A
=

0@ p�e

1� p�e

1A0 24 E(p�2e ) 0

0 E(1� p�e)

35�1 24 1=E(R�2)

c� E(R�)=E(R�2)

35 ;
where R� is de�ned in (8).
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If we de�ne

$E(c) =
c� E(p�e)
E(1� p�e)

then we can write

~m =
1=E(R�2)

E(p�2e )
p�e +

c� E(R�)=E(R�2)
E(1� p�e)

(1� p�e) = p�e +$E(c)[1� p�e]:

It is easy to see that ~m satis�es the constraints in (20). First,

E( ~m) = E(p�e) +$E(c)E(1� p�e) =
E(R�)

E(R�2)
+ [

c� E(R�)=E(R�2)
E(1� p�e)

]E(1� p�e) = c:

Also

E( ~mxjG) = E(p�exjG) +$E(c)E[(1� p�e)xjG]

=
1

E(R�2)
E(R�xjG) +$E(c)

�
E((1� r�)xjG)� E(R�)

E(R�2)
E(R�xjG)

�
= hC(xjG); h =

�
1�$E(c)E(R

�)

E(R�2)

�
E(R�2jG) +$E(c)E(R

�jG);

where r� is de�ned in (10), with

E(h) =

�
1�$E(c)E(R

�)

E(R�2)

�
E(R�2) +$E(c)E(R

�) = 1:

Finally,

E(m2) = E( ~m2) + E(u2)

by construction. Therefore, the solution to (20) is ~m, which coincides with mE(c) in (21). �

It is also worth noting that the elements of the extended SF do not generally belong to

the conditional SF, unlike the elements of the unconditional SF. Nevertheless, we only need to

re-scale mE(c) by its mispricing factor h(c) to �nd a proper SDF on the conditional SF.

Proposition 5:

1) We can express the extended SF (21) as

mE(c) =

�
1�$E(c)E(R

�)

E(R�2)

�
R� �$E(c)r

� +$E(c);

where R� is de�ned in (8) and r� in (10).

Then we only have to re-scale the risky part mE(c)�$E(c) by its constant conditional cost

E�1(R�2)[1�$E(c)E(R
�)] when it is di¤erent from 0 to get a return on the unconditional RF

(12). Speci�cally,

R� � $E(c)

[1�$E(c)E(R�)]=E(R�2)
r�
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will be equal to an element on the unconditional RF given by the corresponding !U (�).

2) We can express the unconditional RF (12) as

pU (�) = [E(R
�2jG)� !U (�)E(R�jG)]p� + !U (�)p�:

If we then re-scale pU (�) by its average position on p� when E(R�2)�!U (�)E(R�) 6= 0, then

we obtain

[E(R�2)� !U (�)E(R�)]�1f[E(R�2jG)� !U (�)E(R�jG)]p� + !U (�)p�g;

which is the traded component of an extended SDF on the extended SF (21) given by the

corresponding $E(c). �

Finally, note that � and c are related by

E(R�2)$E(c)� E(R�)$E(c)!U (v) + !U (v) = 0:

at the dual points. Thus, the two duality exceptions are analogous to the conditional duality

exceptions in Appendix C.

Proposition 6

1) This follows directly from (12) and (9).

2) First, (16) implies that mU (c) has a �xed weight on R for some c if and only if

E(p�2jG)�$U (c)E(p
�jG) (B4)

is constant at that c. This condition coincides with Proposition 1.1. Second, the mU (c) associ-

ated to the value of c that makes (B4) constant has constant weights on r if and only if point

1) holds.

Alternatively, we could start from the expression for mU (c) in (14), so that an equivalent

condition would be the existence of a $ 2 R such that p� � $p� has constant weights on the

payo¤s x. �

Proposition 7

1) This follows directly from point 1 of Proposition 5 holding at any ! 2 R.

2) First, (16) implies that mU (c) has a �xed weight on R at any c if and only if (B4) is constant

at any c. This condition coincides with Proposition 1.2. Second, the same condition implies

that all mU (c)
0s will have constant weights on r if and only if point 1) holds.
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Alternatively, we could also start from the expression formU (c) in (14), so that an equivalent

condition would be p� and p� having constant weights on the payo¤s x. �

Minimum distance points

The elements of the unconditional and extended RFs are de�ned in (12) and (18), respec-

tively. Similarly, the elements of the unconditional and extended SFs de�ned in (14) and (21),

respectively. The following proposition characterises the minimum distance (in the unconditional

mean square error sense) between unconditional and extended frontiers:

Proposition B1 1. If E(R�jG) 6= E(R�) then the minimum mean square di¤erence between
the unconditional and extended RFs is

E(R� �R�e)2 �
E2(R� �R�e)
E(r�e � r�)

;

which is attained at a common �� such that

!E(��) = !U (��) =
E(R� �R�e)
E(r�e � r�)

:

Otherwise, any common value of � gives the same minimum value for E(R� �R�e)2.

2. If E(p�jG) 6= E(p�) then the minimum mean square di¤erence between the unconditional
and extended SFs is

E(p� � p�e)2 �
E2(p� � p�e)
E(p� � p�e)

;

which is attained at a common value �c such that

$E(�c) = $U (�c) =
E(p� � p�e)
E(p� � p�e)

:

Otherwise, any common value of c gives the same minimum value for E(p� � p�e)2.

Proof. Let us assume that E(R�jG) 6= E(R�), so that r�e 6= r�, where R� is de�ned in (8),

r� in (10), and r�e in (B2). We want to compute the minimum distance between elements of

unconditional RF and the extended RF, which we denoted by pU (�1) in (12) and pE(�2) in (18)

respectively.

We initially impose that �1 and �2 are such that !U (�1) = !E(�2) = !. Then the di¤erence

between the corresponding elements on the unconditional and extended RFs will be

pU (�1)� pE(�2) = (R� �R�e) + !(r� � r�e);

where R�e is de�ned in (B1).

Therefore

min
(�1;�2)2R2

E[pU (�1)� pE(�2)]2 s:t: !U (�1) = !E(�2)

7



will coincide with the least squares projection of R��R�e onto hr�e � r�ai. This implies that when

!U (�1) = !E(�2) = !, this minimum square error will be

E(R� �R�e)2 �
E2(R� �R�e)
E(r�e � r�)

;

which is achieved at

�! =
E[(R� �R�e)(r�e � r�)]

E(r�e � r�)2
=
E(R� �R�e)
E(r�e � r�)

:

Note that the corresponding means on the unconditional and extended RFs satisfy ��1 =

��2 = �� even though there is not an intercept in the previous projection.

Let us now show that if �1 6= �� or �2 6= �� then the mean square error would actually increase.

In that case the corresponding di¤erence is

pU (�1)� pE(�2) = [R� + !U (�1)r�]� [R�e + !E(�2)r�e ]

= (R� �R�e) + �!(r� � r�e) + (!U (�1)� �!)r� + (�! � !E(�2))r�e ;

and the mean square error is

E[pU (�1)� pE(�2)]2 = E[(R� �R�e) + �!(r� � r�e)]2

+E[(!U (�1)� �!)r� + (�! � !E(�2))r�e ]2

+2Ef[(R� �R�e) + �!(r� � r�e)][(!U (�1)� �!)r� + (�! � !E(�2))r�e ]g:

The third component is always 0 for the following reasons. First,

(R� �R�e) + �!(r� � r�e) = (1� g(�))R�

from (12) and (18), and

Ef[(1� g(�))R�]r�g = 0

after recalling that E(R�r�jG) = 0 and applying the law of iterated expectations. Second,

(R� �R�e) + �!(r� � r�e) = pU (��)� pE(��)

where pU (��) is trivially an extended return with the same expectation as pE(��). Hence, Propo-

sition 2 implicitly identi�es pE(��) as the least squares projection of pU (��) onto hR�e; r�ei, so

that

Ef[pU (��)� pE(��)]r�eg = 0:
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In addition, we can see that any choice di¤erent from !U (��1) = !E(��2) = �! increases the

second component of E[pU (�1)� pE(�2)]2.

On the other hand, if E(R�jG) = E(R�), so that r�e = r�, then

pU (�1)� pE(�2) = [R� + !U (�1)r�]� [R�e + !E(�2)r�e ] = (R� �R�e) + [!U (�1)� !E(�2)]r�

and

E[pU (�1)� pE(�2)]2 = E(R� �R�e)2 + [!U (�1)� !E(�2)]2E(r�);

which, jointly with E(R� �R�e) = 0, give the desired result.

A similar argument applies to the distance between the unconditional and extended SFs,

described in (14) and (21), with the relevant least squares projection being p��p�e onto hp� � p�ei,

where p�e and p
�
e are de�ned in (B3). �

Importantly, we can show that

min
(�1;�2)2R2

E[pU (�1)� pE(�2)]2 = min
�2R

E[p2U (�)]� E[p2E(�)] = E[p2U (��)]� E[p2E(��)]

and

min
(c1;c2)2R2

E[mU (c1)�mE(c2)]
2 = min

c2R
E[m2

U (c)]� E[m2
E(c)] = E[m2

U (�c)]� E[m2
E(�c)]:

Therefore Proposition B1 also speci�es the elements on the extended and unconditional frontiers

with the same mean that have the minimum di¤erence in variances.

C Conditional return and SDF frontiers

In this Appendix we focus on those bounds that are optimal with respect to conditional

moments, as in the �rst column of Figure 1.

Hansen and Richard (1987) de�ne the Conditional Return Mean-Variance Frontier (RF) as

the highest lower bound on conditional variances for a given pro�le of conditional expected

returns that can be achieved by portfolios in P , but whose price is always one. Thus, the

conditional RF will be given by the set of active portfolio strategies that solve the non-standard

optimisation problem

min
p2P

E(p2jG) s:t: E(pjG) = � 2 I; C(pjG) = 1; (C1)

where, importantly, both the objective function and the �rst restriction are random variables in

I. Hansen and Richard (1987) go on to show that the active portfolio strategies that solve (C1)
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can be represented as

pC(�) = R� + !(�)r�; !(�) =
� � E(R�jG)
E(r�jG) ; (C2)

where R� and r� are de�ned in (8) and (10), respectively.

In turn, Gallant, Hansen and Tauchen (1990) de�ne the Conditional SDF Mean-Variance

Frontier (SF) as the highest lower bound on the conditional variance of the SDFs de�ned in (6)

which correctly price all the active portfolios in P . Hence, the conditional SF will be given by

the set of scalar random variables that solve the non-standard optimisation problem

min
m2L2

E(m2jG) s:t: E(mjG) = c 2 I; E(mxjG) = C(xjG); (C3)

where, once again, both the objective function and the �rst restriction are random variables in I.

Gallant, Hansen and Tauchen (1990) go on to show that the solution to (C3) can be represented

as

mC(c) = p� +$(c)(1� p�); $(c) =
c� E(p�jG)
E(1� p�jG) ; (C4)

where p� and p� are de�ned in (5). As a result, both the conditional RF and SF are spanned by

(R�; r�) and (p�; p�), just like their unconditional counterparts, which implies that we could also

use the sieve managed portfolios introduced in section 3 to estimate these conditional frontiers.

The conditional frontiers are hyperbolas on conditional mean - volatility space for a given

value of the variables in the information set.

We can easily extend to active strategies the well-known duality results obtained by Hansen

and Jagannathan (1991) for passive strategies. Let � and c denote some speci�c conditional

mean choices for the conditional RF and SF de�ned in (C2) and (C4), respectively. Then:

1. Any element of the conditional SF such that C(p�jG) � $(c)C(p�jG) 6= 0 has perfect

conditional correlation with some element of the conditional RF.

2. Any element of the conditional RF such that 1 � !(�)C(p�jG) 6= 0 will have perfect

conditional correlation with some element of the conditional SF.

The �rst point follows from the fact that we can express the elements of the conditional SF

in (C4) as

mC(c) = [C(p
�jG)�$(c)C(p�jG)]R� �$(c)r� +$(c);

10



which means that we only have to re-scale its risky part mC(c) � $(c) by its conditional cost

C(p�jG)�$(c)C(p�jG) when it is not 0 to get a conditional RF return (C2). As for the second

point, we can express the elements of the conditional RF in (C2) as

pC(�) = C�1(p�jG)[1� !(�)C(p�jG)]p� + !(�)p�;

and then re-scale pC(�) by its position on p� when 1� !(�)C(p�jG) 6= 0 to get the traded part

of an SDF on the conditional SF.

Strictly speaking, though, in general there will be two duality exceptions. Still, in both cases

we can establish a link between an element of one frontier and the asymptotes of the other.

The �rst duality exception occurs when c is such that C(p�jG)�$(c)C(p�jG) = 0. In that

case,

mC(c) = (1� r�)=E(R�jG);

which does not have a position on R� as required by the conditional RF. Intuitively, we need

the cost of the traded element of mC(c) to be di¤erent from zero for every possible realisation

of the signals in order to be able to construct a return. However, as we let j�j grow without

bound, the term r� becomes the main driver of pC(�), in the sense that

lim
�!�1

E

"�
pC(�)

�
� r�

E(r�jG)

�2�����G
#
= lim
�!�1

1

�2
E

"�
R� � E(R�jG)

E(r�jG) r
�
�2�����G

#
= 0;

and we can relate (1� r�)=E(R�jG) to the asymptotes of the conditional RF

lim
�!�1

p
V ar[pC(�)jG]

�
= �

s
1� E(r�jG)
E(r�jG) :

The second duality exception occurs when the value of � is such that 1� !(�)C(p�jG) = 0.

In that case, the return on the mean representing portfolio will be

pC(�) = p�=C(p�jG);

which does not have a position on p� as required by the conditional SF. However, as we let jcj

grow without bound, the term 1� p� becomes the main driver of mC(c), in the sense that

lim
c!�1

E

"�
mC(c)

c
� 1� p�
E(1� p�)

�2�����G
#
= lim
c!�1

1

c2
E

(�
p� � C(p�jG)

E(1� p�)(1� p
�)

�2�����G
)
= 0;

and we can relate p�=C(p�jG) to the asymptotes of the conditional SF

lim
c!�1

p
V ar[mC(c)jG]

c
= �

s
E(p�jG)

1� E(p�jG) :
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Interestingly, none of these duality exceptions can occur when C(p�jG) = 0.

Perhaps the best known result of Hansen and Richard (1987) is that while unconditional

frontier portfolios always lie on the conditional frontier, the converse is not generally true.

Similarly, Gallant, Hansen and Tauchen (1990) show that while SDFs on the unconditional

frontier always belong to the conditional frontier, the converse is not generally true either. In

this context, we can interpret the absence of duality between the unconditional RF and SF

as re�ecting the fact that an element of the unconditional RF corresponds to a return on the

conditional RF whose dual point on the conditional SF does not correspond to an element on

the unconditional SF, and vice versa.

D Hybrid approaches with managed portfolios

Given that the choice of managed portfolios is empirically relevant, Ferson and Siegel (2003)

and Bekaert and Liu (2004) derive tighter passive SF bounds obtained from some managed

portfolios constructed from a model of the conditional moments of the original returns x.

Ferson and Siegel (2003) construct a passive SF from a payo¤ vector with two managed

portfolios, both of which are returns on the unconditional RF (12). Speci�cally, they rely on

[pU (�1); pU (�2)] (D1)

where �1 6= �2 denote two arbitrarily chosen expected returns,

pU (�) = x
0
�

1

e01E
�1(xx0jG)e1

E�1(xx0jG)e1

+[
� � E(R�)
E(r�)

][E�1(xx0jG)E(xjG)� E(xjG)0E�1(xx0jG)e1
e01E

�1(xx0jG)e1
E�1(xx0jG)e1]

�
;

e1 = (1;0
0)0 = C(xjG) for x =(R; r0)0, and

E(R�) = E

�
E(xjG)0E�1(xx0jG)e1
e01E

�1(xx0jG)e1

�
;

E(r�) = E

�
E(xjG)0E�1(xx0jG)E(xjG)� [E(xjG)

0E�1(xx0jG)e1]2
e01E

�1(xx0jG)e1

�
;

which requires a speci�cation for E(xjG) and E(xx0jG).

Ferson and Siegel (2003) motivate the choice of (D1) on the grounds that these two portfolios

optimally use conditioning information from the point of view of an unconditional mean-variance

investor. In fact, they refer to the elements of the passive SF for [pU (�1); pU (�2)] as �uncondi-

tionally e¢ cient�SDF bounds. However, Proposition 5 implies that their procedure generates

12



the elements of the extended SF in (20), so that they e¤ectively bound the unconditional vari-

ances of extended SDFs, which are not necessarily true SDFs because they will not generally

provide the correct pseudo-prices for random cost payo¤s in P .

Bekaert and Liu (2004) consider a di¤erent type of optimality in choosing their managed

portfolios. In particular, they obtain the minimum unconditional variance of any SDF m with

unconditional mean c that pseudo prices some single payo¤ x. Given that such a bound depends

not only on c but also on x, Bekaert and Liu (2004) then �nd the managed portfolio x(c) 2 P

that yields the highest possible bound, which they call the �optimally scaled�bound. In this

way, they generate the whole unconditional SF by means of a passive SF-like object which prices

on average a �single�payo¤ that nevertheless changes with c. Strictly speaking, therefore, the

frontier that they obtain is not a standard passive SF.

For a given c, they compute the optimal payo¤ as

x(c) = x0
�
E�1(xx0jG)e1 �

�
c� E(p�)
1� E(p�)

�
E�1(xx0jG)E(xjG)

�
; (D2)

where

E(p�) = E[E(xjG)0E�1(xx0jG)e1];

E(p�) = E[E(xjG)0E�1(xx0jG)E(xjG)];

which again requires a speci�cation for E(xjG) and E(xx0jG).

The expression for x(c) in (D2) motivates an interpretation of the equality between the

�optimally scaled�bounds and the unconditional SF in (13) by means of a dual�s dual argument

because x(c) is unconditionally proportional to an element on the extended RF. In any case,

Proposition 3 shows that one should be careful when trying to use the frontier obtained by

Bekaert and Liu (2004) to guide asset allocation because its unconditional dual object is the

extended RF, whose elements are not necessarily returns.

Importantly, Ferson and Siegel (2003) and Bekaert and Liu (2004) obtained di¤erent SDF

bounds because they applied their methods to di¤erent payo¤s, not because their methods were

fundamentally di¤erent. In particular, if the payo¤ vector to price contained two extended

returns on the extended RF in (18) instead of the two returns on the unconditional RF in (D1),

then the solution to the Ferson and Siegel�s approach would be the unconditional SF. Similarly,

if instead of (D2), which can be interpreted as the traded component of a particular point on

the unconditional SF, we used the traded component of a point on the extended SF with mean

13



c, then the solution of Bekaert and Liu�s approach would be the extended SF, as Abhyankar,

Basu and Stremme (2007) show.

A potential shortcoming of these two hybrid approaches, though, is the need to specify a

conditional model to construct their optimal managed portfolios. If the conditional model is

misspeci�ed then neither Ferson and Siegel (2003) will obtain the extended SF nor Bekaert and

Liu (2004) the unconditional SF. Nevertheless, the objects that they compute will still provide

valid passive SF bounds due to the fact that they work with managed portfolios.

E Monte Carlo design

E.1 General set-up

We mimic our empirical set-up by generating one gross return, R, and two excess returns,

(r1; r2), as well as two predictors, (z1; z2). We generate the latter as two independent AR(1)

processes with a standard normal steady state distributions, so that the only relevant parameters

are their autocorrelations. Then, we sequentially generate the three payo¤s as follows. We

construct r1 as the sum of its projection onto the conditional span of r� plus a conditionally

orthogonal residual u1, i.e.:

r1 =
E(r1jz)
E(r�jz)r

� + u1;

which requires simulated values for (r�; u1) together with a speci�cation for the functions E(r1jz)

and E(r�jz). As a general rule, we will use logistic transformations of the form

1

2
(b1 + b2) + (b2 � b1)

�
1

1 + e�q(z1 sin a+z2 cos a)
� 0:5

�
; (E5)

where b1 < b2 denote the lower and upper bounds of the range of the function, q controls its

degree of nonlinearity and a determines the relative weight of the two predictors. Given that

the stationary distribution of z1 sin a+ z2 cos a is also standard normal, it is easy to see that the

mean of (E5) is (b1 + b2)=2.

Having thus simulated r1, we use (10) to generate r2 given r� for some weight functions

w�1(z) and w
�
2(z). Finally, we generate R from (9) as

R = R� + r� = R� + w�1(z)r1 + w
�
2(z)r2;

which requires simulated values for R� together with a speci�cation for the weight functions

w�1(z) and w
�
2(z).
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As for (R�; r�; u1), we generate them as

N

26664
0BBB@

E (R�jz)

E (r�jz)

0

1CCCA ;

0BBB@
V ar (R�jz) �E (R�jz)E (r�jz) 0

�E (R�jz)E (r�jz) E (r�jz) (1� E (r�jz)) 0

0 0 V ar (u1jz)

1CCCA
37775 ;

which requires four additional functions. To guarantee the positive de�niteness of this covariance

matrix, we choose those functions so that V ar(R�jz) > 0, 0 < E(r�jz) < 1, V ar(u1jz) � 0 and

V ar(R�jz)
E2(R�jz) >

E(r�jz)
1� E(r�jz) : (E6)

To help the calibration of the functions E(R�jz), V ar(R�jz) and E(r�jz), we explicitly re-

late them to the maximum conditional Sharpe ratio and the location of the conditional global

minimum variance (GMV) portfolio, whose return can be represented as

_R = R� +
E(R�jz)
1� E(r�jz)r

�:

Speci�cally,

E(r�jz) = S2(z)

1 + S2(z)
; (E7)

E(R�jz) = E( _Rjz)
1 + S2(z)

; (E8)

V ar(R�jz) = V ar( _Rjz) + E2(R�jz)S2(z); (E9)

where S(z) is the maximum conditional Sharpe ratio and [E( _Rjz); V ar( _Rjz)] are the Cartesian

coordinates of the conditional GMV portfolio. Importantly, (E9) implies that condition (E6) is

equivalent to V ar( _Rjz) > 0.

The main advantage of this simulation procedure is that we map the nine di¤erent elements

appearing in the conditional �rst and second moments of (R; r1; r2) into nine functions of z

with a direct interpretation. To simplify the design, we systematically keep three of those nine

functions constant. In particular, we make E( _Rjz) = E( _R), which implies that the conditional

GMV portfolio belongs to the URF. We also set V ar(u1jz) = V ar(u1) and w�2(z) = w�2 6= 0, so

that we can recover r2 from r� and r1.

E.2 The null implicit in the conditional moment restrictions (28)

The null hypothesis that the unconditional SF shares an element with the Hansen-Jagannathan

frontier, characterised in Proposition 6.2, can be decomposed into two components: the exis-

tence of a passive element on the unconditional RF and the existence of a dual point to it on

the unconditional SF.
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Proposition 1.1 states that an element of the unconditional SF has a dual point on the

unconditional RF when

E(p�2jG)�$U (c)E(p
�jG) = 1�$U (c)E(R

�jG)
E(R�2jG) =  (c);

is a nonzero constant, which we can express as the existence of real numbers  (c) and $U (c)

such that

 (c)E(R�2jz) +$U (c)E(R
�jz) = 1:

In view of (16), we can represent the corresponding element on the unconditional SF as

 (c)R� + $U (c)(1 � r�). When  (c) 6= 0, this SDF will have �xed weights if and only if

�r� � ($U (c)= (c))r
� has constant weights on r, which is the condition for the element on the

unconditional RF at !U (�) = �$U (c)= (c) being passive. If we denote by (w!1 ; w
!
2 ) the weights

of this unconditional RF element on (r1; r2), then the weight functions that de�ne r� and r�

must satisfy

�w�1(z) + !U (�)w�1(z) = w!1 ; �w�2(z) + !U (�)w�2 = w!2 :

On the other hand, we can use (E8)-(E9) to rewrite the duality condition as

 (c)

"
V ar( _Rjz) + E2( _Rjz)

1 + S2(z)

#
+$U (c)

E( _Rjz)
1 + S2(z)

= 1:

Given our maintained assumption of a constant conditional mean for _R, we interpret this

duality condition as implicitly de�ning

V ar( _Rjz) = 1

 (c)
� E( _R)

�
E( _R) +

$U (c)

 (c)

�
1

1 + S2(z)

=
1

 (c)
+ E( _R)[!U (�)� E( _R)]

1

1 + S2(z)
:

Finally, we impose the duality condition in such a way that the design satis�es two desirable

properties: (i) V ar( _Rjz) > 0 and (ii)

E(mU (c)jz) =  (c)[E(R�jz)� !U (�)(1� E(r�jz))] 2 [0; 1]

for the passive USF element. Given that both V ar( _Rjz) and E(mU (c)jz) are a¢ ne in E(r�jz),

which is between 0 and 1, it su¢ ces to look at the extreme values. In particular, when E(r�jz) =

0, we will have that

V ar( _Rjz) = 1

 (c)
+ E( _R)[!U (�)� E( _R)]; E[mU (c)jz] = � (c)[!U (�)� E( _R)]:
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In contrast, when E(r�jz) = 1, we will have

V ar( _Rjz) = 1

 (c)
; E[mU (c)jz] = 0:

Moreover, the natural sign for the term !U (�)�E( _R) is positive because we would like the dual

return to the SDF to be MV e¢ cient, while the natural sign for  (c) is negative because this

parameter is associated to the weight of the passive SDF on R.

Therefore, the condition E[mU (c)jz] 2 [0; 1] imposes a lower bound on E(r�jz), or equiva-

lently on S2(z), while V ar( _Rjz) > 0 imposes an upper bound on E(r�jz). We can then exploit

(E5) to re-write those bounds in terms of b1 and b2. In particular, the lower bound b1 can be

obtained from the value of E(r�jz) that makes E(mU (c)jz) = 1, i.e.

� (c)(!U (�)� E( _R))(1� b1) = 1, b1 = 1 +
1

 (c)(!U (�)� E( _R))
;

which satis�es b1 < 1 because the second term is negative. In turn, the upper bound b2 can be

derived from the value of E(r�jz) that makes V ar( _Rjz) = 0, i.e.

1

 (c)
+ (1� b2)E( _R)[!U (�)� E( _R)] = 0, b2 = 1 +

1

 (c)E( _R)[!U (�)� E( _R)]
;

which satis�es b1 < b2 < 1 because

1� b2 =
1

E( _R)
(1� b1):

Given those bounds, we can rewrite

E(mU (c)jz) =
1� E(r�jz)
1� b1

;

V ar( _Rjz) = 1

 (c)

�
1� 1� E(r

�jz)
1� b2

�
;

which con�rms that

E(mU (c)jz) = 1; V ar( _Rjz) = 1

 (c)
[1� E( _R)] > 0

when E(r�jz) = b1, and

E(mU (c)jz) =
1

E( _R)
> 0; V ar( _Rjz) = 0;

when E(r�jz) = b2.
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E.3 The null implicit in the conditional moment restrictions (29)

Given that spanning requires tangency everywhere, it is easy to see from the discussion

in the previous section that the null hypothesis that the unconditional RF and the Markowitz

frontiers are equal, characterised in Proposition 7.1, is equivalent to r� and r� having constant

weights on (r1; r2). We can trivially impose this condition by choosing

w�1(z) = w�1; w�1(z) = w�1; w�2(z) = w�2;

where we have made use of the fact that we keep w�2 constant across designs.

E.4 Parameter values

We consider three di¤erent parameter con�gurations corresponding to i) the null hypothesis

of Proposition 6.2, ii) the null hypothesis of Proposition 7.1 and iii) a design that provides a

common alternative hypothesis for both i) and ii). In all three cases, though, we make sure that

the unconditional mean vector and covariance matrix of the simulated returns closely resemble

the sample values for the market return and the SMB and HML factors that are used in Tables

2 and 4. We also set the autocorrelation of the predictors z1 and z2 to 0.95 to mimic the

persistence of the US price earnings ratio and default spread.

As for the function E(r1jz), we use (E5) with a zero lower bound and a mean equal to 0.002,

which is the historical average of the �rst excess return in the empirical application (SMB). The

other parameters of this function are q = 0:5 and a = 0, so that E(r1jz) depends on the �rst

predictor only. In turn, the function E(r�jz) is also modelled as (E5) with a mean compatible

with an annualised Sharpe ratio of 0.5, while its lower bound is equal to the lower bound of the

�rst design. The other parameters of this function are q = 0:5 and a = �=2, so that E(r�jz)

depends on the second predictor only, and the same is true of the maximum conditional Sharpe

ratio. Finally, the parameters E( _R) and w�2 are equal to their historical counterparts of 1.01

and 4.5, respectively, while we choose V ar(u1) to match the historical variance of SMB.

Some features of the rest of functions change across con�gurations. In the �rst con�guration

(tangency between the unconditional SF and the Hansen-Jagannathan frontier), we associate the

element of the unconditional RF with �xed weights on (r1; r2) to !U (�) = 1:25 and (w!1 ; w
!
2 ) =

(0:290; 1:414). These values coincide with the weights on the empirical Markowitz frontier for

the same target return. In this con�guration, (w�1(z); w
�
2(z)) are uniquely determined given

(w�1(z); w
�
2). In this regard, we choose w

�
1(z) as a special case of (E5), with a range equal to 2,
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q = 5, a = 0, and a mean value of 3.232, which again coincides with its empirical �xed-weight

counterpart.

In the second con�guration (spanning of the unconditional RF by the Markowitz frontier),

w�1(z) and w
�
2(z) are constant and coincide with the means of their time-varying counterparts in

the �rst con�guration, which are 3.596 and 5.245, respectively. These values also coincide with

their empirical �xed-weight counterparts. Similarly, w�1(z) is constant and equal to 3.232, which

is also its mean value in the �rst con�guration.

In contrast, in the last design those three weights are non-constant functions of the predictors.

Speci�cally, w�1(z) is the same as in the �rst design, while w
�
1(z) are w

�
2(z) are chosen with the

same mean as in the other con�gurations, but with a range equal to 2, q = 5 and a = �=2 (they

depend on the second predictor, but not on the �rst one).

Finally, in the �rst design V ar( _Rjz) is an a¢ ne transformation of E(r�jz) whose lower bound

is 0. Those choices imply that the unconditional mean of this conditional variance is 0.0009.

We keep both values in the second and third designs, the main change being that we set a = 0

so that V ar( _Rjz) depends on the �rst predictor only.

E.5 Results

In this section we assess the �nite sample reliability of the asymptotic �2 approximation to

the SMD test statistics with sieve managed portfolios in our empirical applications, as well as

their power. In particular, we focus on tests of the following null hypotheses:

i) The unconditional SF shares an element with the Hansen-Jagannathan frontier and

ii) The unconditional RF and Markowitz frontiers are equal.

We simulate 5,000 samples of 732 observations each, as in Tables 2 and 4, for the three designs

discussed in the previous subsections. Namely: the null hypothesis i), the null hypothesis ii),

and a third case that provides an alternative hypothesis to both i) and ii). Table E1 displays

rejection rates of the overidentifying restrictions tests using the optimal weighting matrix implied

by the SMD procedure.

<TABLE E1>

As can be seen, the chi-square asymptotic distribution provides a decent approximation to

the �nite sample distribution despite the large number of moments and parameters involved,

but it is far from perfect. When we test if the unconditional SF shares an element with the

19



Hansen-Jagannathan frontier (�rst row), the asymptotic approximation is conservative, while

when we test if the unconditional RF and the Markowitz frontier are equal (second row), it is

too liberal. Nevertheless, both tests show power under the alternative.

In any case, given the strength of the evidence presented in Tables 2 and 4, these simulation

results do not cast any doubts on our empirical conclusions.
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Table E1: Rejection rates of SMD overidentifying restrictions tests

Null Alternative

10 5 1 10 5 1

Test of the conditional moment restrictions (28)

8.10 3.71 0.85 31.25 23.62 13.06

Test of the conditional moment restrictions (29)

16.96 9.88 2.74 100 100 100

Note: This table displays raw rejection rates (%) with sieve managed portfolios using the asymptotic

critical values at 10, 5 and 1%. The �rst block of columns reports the rejection rates under the relevant

null hypothesis, while the second block of columns reports them under the common alternative hypothesis.

22




