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1 Introduction

Mean-variance analysis continues to be widely used in economics and �nance, with ap-

plications that cover such key issues as portfolio choice, asset pricing tests and performance

evaluation. In fact, �nance students nowadays learn that there is not just one, but two types

of mean-variance frontiers: one for portfolios due to Markowitz (1952), and another one for

stochastic discount factors (SDFs) due to Hansen and Jagannathan (1991). They learn that the

�rst frontier characterises the risk-return trade-o¤s that investor face, and the second one the

mean-variance constraints that �nancial markets data imposes on asset pricing models.1

Students also learn that asset returns are predictable, if not in mean at least in variance,

and that investors can exploit this fact to their advantage by using conditional distributions in

designing their portfolio strategies. For instance, an investor can not only choose a portfolio

strategy with constant (value) weights, but also de�ne a trading strategy as a function of yield

spreads. As a result, more advanced students learn that there are di¤erent versions of the return

and SDF mean variance frontiers, depending on the information used in their construction.

Frontiers for such active strategies were introduced by Hansen and Richard (1987) in the case of

portfolios, and Gallant, Hansen and Tauchen (1990) for SDFs, and were subsequently revisited

by Ferson and Siegel (2001, 2003, 2009), Bekaert and Liu (2004) and Abhyankar, Basu and

Stremme (2007).2

The �rst contribution of this paper is to characterise the precise relationship between mean-

variance frontiers across both these dimensions, namely type (i.e. portfolio vs SDF) and infor-

mation. This is an important issue because portfolio and stochastic discount factor frontiers

are usually regarded as dual objects (in the sense that every element in one frontier is believed

to be perfectly correlated with one element in the other frontier) to the extent that sometimes

researchers use one type of frontier to answer questions that arise more naturally in the other

type. For example, De Santis (1995) and Bekaert and Urias (1996) assess the gains for a mean-

variance investor from internationally diversifying her portfolio by testing if the restrictions that

domestic market data imposes on asset pricing models are strengthened by the inclusion of data

on foreign assets. Similarly, Bekaert and Liu (2004) mention in their concluding remarks that

1 In line with most of the literature, in this paper we do not consider SDF frontiers that impose positivity of
the SDF. See Hansen and Jagannathan (1991) for details.

2See Bansal, Dahlquist, and Harvey (2004) and Brandt and Santa-Clara (2006) for adaptations of the uncondi-
tional mean-variance frontier for returns to account for intertemporal hedging in multiperiod portfolio problems.
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one interesting application of their SDF framework could be the computation of optimal portfo-

lios. On the other hand, Cochrane (2001, sec. 21.1) uses unconditional Sharpe ratios of traded

assets to infer the volatility of the SDF required to explain the equity premium puzzle with a

consumption-based asset pricing model. Likewise, Ferson and Siegel (2003) use mean-variance

e¢ cient returns to construct SDF bounds.

Nevertheless, the widely cited duality result in Hansen and Jagannathan (1991) applies to

their speci�c set-up: unconditional moments of �xed-weight portfolios based on a given vector

of asset payo¤s, and it does not usually hold more generally. In particular, their result does

not automatically apply to the unconditional return frontier (RF) introduced by Hansen and

Richard (1987), which for each level of expected return provides the highest lower bound on

the variance of any portfolio whose weights may depend on conditioning information but whose

price is always one, and the unconditional SDF frontier (SF) introduced by Gallant, Hansen and

Tauchen (1990), which yields the highest lower bound on the variance of SDFs that correctly

price any portfolio whose weights may also depend on conditioning information.

We show that these frontiers, which have substantial empirical interest because they rely

on unconditional moments, are not dual unless the position of certain frontier portfolios in

conditional mean-standard deviation space does not depend on the values of the variables in the

information set. Given that these strong conditions are unlikely to hold in practice, empirical

researchers willing to take into account conditioning information should be careful, and focus

on the type of frontier that is really relevant for the particular question they want to address.

Further, we characterise the SDF-like random variables that are always dual to the elements

of the unconditional RF, as well as the return-like random variables that are always dual to the

elements of the unconditional SF. Speci�cally, the dual to the unconditional RF is the extended

SF, which provides the highest lower bound on the variance of those univariate random variables

that price on average any portfolio whose weights may depend on conditioning information but

whose cost is constant. Since these are not necessarily valid SDFs because they may not price

correctly portfolios whose cost is a function of the information available at the time of trading,

the dual to the unconditional RF does not deliver su¢ ciently tight constraints on asset pricing

models. In turn, the dual of the unconditional SF is the extended RF, which for each level of

expected return yields the highest lower bound on the variance of any portfolio with weights

that may depend on conditioning information but whose price is only one on average. Therefore,
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the dual to the unconditional SF does not deliver interesting risk-return trade-o¤s because its

elements are either infeasible or leave money on the table.

Figure 1 summarises our theoretical analysis, which also includes the passive frontiers in

Hansen and Jagannathan (1991) and the conditional frontiers in Hansen and Richard (1987)

and Gallant, Hansen and Tauchen (1990).

<FIGURE 1>

Our second contribution is a computationally simple yet e¢ cient frontier estimation proce-

dure, which avoids likely misspeci�cations associated to parametric assumptions on the �rst two

moments of the joint distribution of asset returns given the agents�information set. Speci�cally,

we rely on sieve methods, and in particular on the sieve minimum distance (SMD) semipara-

metric procedures proposed by Ai and Chen (2003) to estimate the di¤erent frontiers in Figure

1 and make inferences about them. Chen and Ludvigson (2009), Nagel and Singleton (2011),

and Chen, Favilukis and Ludvigson (2013) are other recent examples of the use of sieve methods

in empirical �nance.

Importantly, we explicitly relate the mean-variance frontiers that such a procedure generates

to the popular empirical strategy of approximating the e¤ect of conditioning information by

constructing passive RFs and SFs from managed portfolios, i.e. portfolios whose scale is a

function of some variables in the econometrician�s information set, as suggested by Hansen and

Jagannathan (1991).3 In doing so, we show that the use of managed portfolios is not necessarily

an ad-hoc procedure because they can form the basis of an estimation method with proper

statistical foundations. In practice, we choose sieves that have three important implications: the

SMD objective function is numerically equivalent to a GMM criterion, the implied non-linear

managed portfolios span the linear ones that are common in empirical work, and the weighting

matrix is positive de�nite by construction. In this regard, we work with a continuously updated

criterion, which has several valuable invariance properties, and a potentially improved �nite

sample behaviour.

Our third contribution is the combination of our theoretical results and econometric meth-

ods to empirically explore two questions of substantive interest related to the ways in which

conditioning information sharpens return and SDF frontiers.

First, we formally test whether the SDF of the popular linear factor pricing model that

3These payo¤s are also known as �multiplicative�or �scaled�returns (see section 8.1 in Cochrane (2001)).
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assumes constant risk prices on the three Fama-French factors belongs to the unconditional SF.

Although the evidence against the null is relatively weak if we focus on the linear payo¤ space of

those pricing factors scaled by the price earnings ratio and the default spread, we clearly reject

when we use sieves. In simple economic terms, the rejection that we �nd implies that the risk

prices of the Fama-French model, which we can identify with the coe¢ cients of its candidate

SDF, should not be time-invariant. We obtain the same conclusion when we study their new

�ve-factor model in Fama and French (2015).

Second, we investigate whether investors would e¤ectively expand their mean-variance op-

portunity set by considering active portfolio strategies instead of restricting their choices to asset

combinations with constant weights. The null hypothesis that the unconditional RF coincides

with the standard Markowitz frontier is clearly rejected for both sieve and linear managed port-

folios. Therefore, there is added value in exploiting conditioning information for investors who

choose portfolios on the unconditional RF.

The rest of the paper is organised as follows. Section 2 studies unconditional frontiers with

conditioning information, obtains precise duality conditions and introduces their dual counter-

parts. Next, we explain how to construct the di¤erent frontiers by means of sieve managed

portfolios in section 3. Then, we introduce our inference procedures in section 4, and apply

them to the empirical questions previously described. Finally, we summarise our conclusions

in section 5. Appendix A deals with some important special cases, while proofs and auxiliary

results are relegated to a supplemental appendix.

2 Duality Relationships for Unconditional Mean-Variance Fron-
tiers

2.1 Information Structure and Active Portfolio Strategies

Consider an economy with a �nite number N of risky assets whose random payo¤s x =

(x1; : : : ; xN )
0 are de�ned on an underlying probability space. These payo¤s may correspond to

stocks, bonds, derivatives, mutual funds, hedge funds, etc. To incorporate conditional informa-

tion, we closely follow Hansen and Richard (1987), where further details can be found.

Speci�cally, we assume that there are three important dates in this economy: the decision,

trading, and payo¤ dates. Investors design ex ante portfolio strategies at the decision date which

may depend on the information that they will observe at the trading date. Finally, they receive
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payo¤s at the �nal date. Let G denote the investors�information at the trading date. We will

typically think of G as containing one or more signals that are informative about future asset

payo¤s. We denote the set of all random variables that are measurable with respect to G by I.

In this context, we denote the �rst two conditional moments of the primitive payo¤s and

their conditional costs by

E(xjG); E(xx0jG); C(xjG); (1)

respectively, all of which belong to I. To avoid a trivial uninformative set up, we assume that

not all these random variables are degenerate. We also assume that the diagonal elements of

E(xx0jG) are uniformly bounded with probability one (a.s.), so that a fortiori all the elements

of x belong to L2, which is the collection of all random variables de�ned on the underlying

probability space with bounded unconditional second moments. Regarding the covariance matrix

of x, V ar(xjG), we initially assume its smallest eigenvalue is uniformly bounded away from 0

a.s., which implies that none of the primitive assets is either conditionally riskless or redundant,

and moreover, that it is not possible to generate a conditionally riskless portfolio from x other

than the trivial one.

Although we deliberately allow asset prices C(xjG) to depend on the values of the signals,

there are two important examples of payo¤s whose costs are non-random: gross returns, which

are payo¤s with unit prices, and excess returns or arbitrage portfolios, which are payo¤s of zero

cost. For simplicity, though, we exclude the possibility that all primitive assets are arbitrage

portfolios by assuming that the vector C(xjG) has at least one entry di¤erent from 0 a.s. We

also assume that not all expected payo¤s are conditionally proportional to their prices with a

common factor of proportionality. In this way, we implicitly rule out those situations in which

all conditionally expected returns are the same.4

We denote the unconditional counterparts to (1) as

E(x) = E[E(xjG)]; E(xx0) = E[E(xx0jG)]; C(x) = E[C(xjG)];

which are now real numbers instead of random variables. Following Hansen and Richard (1987),

we will sometimes use the term pseudo-prices to refer to average costs.

4The special cases of a riskless asset, zero-cost portfolios, and equal expected returns can also be analysed in
our set up, but for pedagogical reasons we postpone their discussion to Appendix A. In the case of a riskless
asset, in particular, we show that the geometric interpretation of duality in terms of Sharpe ratios in Hansen and
Jagannathan (1991) only applies to their speci�c set-up (i.e. unconditional moments of passive strategies), so
that one must again be careful in extending their result to other contexts.
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As we said before, investors can condition their portfolios weights on the information they

know they will have at the time of trading, which is given by G. For instance, investors may

prefer di¤erent portfolios depending on whether yield spreads at the trading date are high or

low. Consequently, they can construct portfolio strategies with payo¤s p = x0w, where the

portfolio weights w 2 I. In what follows, we will refer to the conditional span of x as the payo¤

space P . In this context, w 2 I indicates an active portfolio strategy, while a vector of constant

weights w 2 RN indicates a passive portfolio.

Finally, it will be convenient for our purposes to express an arbitrary active portfolio p = x0w

as

p = Rw + r0w�1; r = x�1 �RC(x�1jG); (2)

where the subscript �1 means that we have deleted the �rst element of the corresponding vector,

R is the gross return on the �rst asset (which we can assume has a non-zero price without loss

of generality), and the vector r contains the remaining asset payo¤s transformed into excess

returns. Thus, we can establish a direct connection between the weight on R and the portfolio

cost because C(pjG) = w.

2.2 Representing Portfolios and Stochastic Discount Factors

Hansen and Richard (1987) introduce a conditional analogue to a standard Hilbert space

based on the mean square inner product, E(xyjG), and the associated mean square normp
E(x2jG), where x; y belong to the conditional analogue to L2. Such a topology allows them

to de�ne the conditional least squares projection of any y onto P as

E(yx0jG)E�1(xx0jG)x; (3)

which is the element of P that is closest to y in the conditional mean square norm.

In this context, we can formally understand C(�jG) and E(�jG) as conditionally continuous

linear functionals that map the elements of P onto I. The expected value functional is always

conditionally continuous on the conditional analogue to L2 by a conditional version of the Markov

inequality. Similarly, our full rank assumption on V ar(xjG) implies that E(xx0jG) has full

rank too, and consequently, that the cost functional is also conditionally continuous on P ,

which is tantamount to the law of one price. A conditional version of the Riesz representation

theorem then implies that there exist two unique elements of P that represent these conditional
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functionals over P .5 As we shall see, the corresponding representing portfolios will be the basis

of the SDF mean-variance frontiers discussed in the next section.

The conditional mean and cost representing portfolios, p� and p�, respectively, will be such

that:

E(pjG) = E(p�pjG); C(pjG) = E(p�pjG); 8p 2 P: (4)

It is then straightforward to show that

p� = x0E�1(xx0jG)E(xjG); p� = x0E�1(xx0jG)C(xjG): (5)

If P included the conditionally (and unconditionally) safe payo¤ x0 = 1, then p� would

coincide with it. But even though it does not, it follows from (3) that we can interpret p� as the

portfolio that �mimics�the safe asset with the minimum �tracking error�. We can also use (3)

to interpret p� as the conditional projection of any valid SDF onto P . As is well known, an SDF

is any scalar random variable m in the conditional analogue to L2 that prices all conceivable

payo¤s in terms of their expected cross product with it. More formally,

E(mpjG) = C(pjG); 8p 2 P: (6)

Equivalently, admissible SDFs are fully characterised by the condition

E(mxjG) = C(xjG):

In addition, since C(x0jG) = E(1 � mjG), the conditionally expected value of m de�nes the

shadow price of the unit payo¤.

Expression (5) may suggest that one would need the conditional moments of returns to

obtain the representing portfolios above, and thereby, the mean-variance frontiers. However,

Hansen and Richard (1987) show that representing portfolios and SDFs can be de�ned in terms

of unconditional moments too. Speci�cally, the law of iterated expectations implies that p� and

p� also represent unconditional means and average costs on the active payo¤ space P , so that:

E(p) = E(p�p); C(p) = E(p�p); 8p 2 P: (7)

Similarly, we could also de�ne SDFs as those m that give the right pseudo-price for any con-

ceivable p, i.e.

E(mp) = C(p); 8p 2 P:
5Chamberlain and Rothschild (1983) introduced mean and cost representing portfolios to study unconditional

mean-variance analysis in in�nite dimensional payo¤ spaces in which information plays no role. Hansen and
Richard (1987) extended their results to conditioning information.

7



Therefore, there is no loss of information in moving from pricing to pseudo-pricing, but only

as long as we focus on the whole of P , and not simply on a subset. We will exploit this result

in section 3 to compute the representing portfolios without a parametric model of conditional

moments.

From (p�; p�), we can construct a pair of constant cost portfolios that will play a crucial

role in the de�nition of return frontiers in the next section. The �rst one is the gross return

associated to the cost representing portfolio

R� = p�=C(p�jG) = p�=E(p�2jG); (8)

which has the minimum second moment among all possible unit cost portfolios. If we express

the vector x in terms of a gross return R and N � 1 excess returns r, as in (2), then we can

write (8) as

R� = R� r�; (9)

where

r� = r0E�1(rr0jG)E(rRjG)

is the arbitrage portfolio that represents the expected cross-product with R in the space of

zero-cost portfolios.

The second portfolio is the mean representing portfolio in the space of zero-cost portfolios,

r� = r0E�1(rr0jG)E(rjG):

which is the excess return that �mimics�the safe asset with the minimum �tracking error�. This

portfolio achieves the maximum conditional Sharpe ratio among all arbitrage portfolios, namelyp
E(r�jG)=[1� E(r�jG)].

Given that we can construct r� as the following portfolio of (p�; p�)

r� = p� � p�C(p�jG)=C(p�jG) = p� �R�E(p�jG); (10)

we can combine (8) and (10) to trivially recover (p�; p�) from (R�; r�) as

p� = R�=E(R�2jG);

p� = r� + p�E(R�jG):

Importantly, though, the linear transformation relating both portfolio pairs generally depends on

the available information, and therefore its practical implementation requires active strategies.
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As we will see in section 2.4, the duality between return and SDF frontiers crucially depends on

the active or passive nature of this relationship.

2.3 Unconditional Return and SDF frontiers

The �rst column of Figure 1 refers to those active portfolio strategies that are optimal with

respect to conditional �rst and second moments, which we characterise in detail in supplemental

appendix C. They are called Conditional Return and SDF Frontiers (RF and SF respectively),

and they are dual objects in the sense that every element in one frontier has perfect condi-

tional correlation with one element in the other frontier, with two exceptions whose geometric

interpretation we also provide in the same appendix.

In this section we focus instead on those active portfolio strategies that are optimal with

respect to unconditional moments, which correspond to columns 2 and 3 in Figure 1. At �rst

sight, it might seem odd to study unconditional moments when we think of active strategies

whose weights depend on conditioning information. However, in many practical situations the

observer of the agents�decisions only has access to an information set that is much coarser than

the agents�information set. The performance evaluation of a portfolio manager by means of the

�rst two unconditional moments of her returns is a typical example of the use of unconditional

return frontiers by an outside evaluator who may not have access to the proprietary strategies

followed by the manager.

Hansen and Richard (1987) de�ne the Unconditional RF as the highest lower bound on the

variance for each level of expected return that can be achieved by portfolios with weights that

may depend on conditioning information, but whose price is always one. Thus, the unconditional

RF will be given by the set of active portfolio strategies that solve the problem

min
p2P

E(p2) s:t: E(p) = � 2 R; C(pjG) = 1: (11)

Hansen and Richard (1987) show that the gross returns that solve (11) correspond to the fol-

lowing passive portfolio of (R�; r�):

pU (�) = R� + !U (�)r
�; (12)

where the constant !U (�) guarantees that the constraint E[pU (�)] = � is satis�ed and the unit

weight on R� guarantees that pU (�) has unit cost. As expected, the unconditional RF is a

hyperbola in unconditional mean-standard deviation space for returns.
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In turn, Gallant, Hansen and Tauchen (1990) de�ne the Unconditional SF as the highest

lower bound on the unconditional variance of the SDFs de�ned in (6), which correctly price all

the active portfolios in P . Thus, the unconditional SF will be given by the set of scalar random

variables that solve the optimisation problem

min
m2L2

E(m2) s:t: E(m) = c 2 R; E(mxjG) = C(xjG): (13)

Gallant, Hansen and Tauchen (1990) go on to show that the solution to (13) can be written as

a constant plus a passive portfolio of (p�; p�):

mU (c) = p� +$U (c)[1� p�]; (14)

where the constant $U (c) guarantees that the constraint E[mU (c)] = c is satis�ed while the unit

weight on p� guarantees the correct pricing of payo¤s. Not surprisingly, the unconditional SF

also takes the shape of a hyperbola in unconditional mean-standard deviation space for SDFs.

Given the close analogy between these unconditional frontiers and the conditional frontiers

in the �rst column of Figure 1, one is tempted to conclude that the unconditional RF and SF

are also dual objects, in the sense that every element in one frontier has perfect unconditional

correlation with another element in the other frontier. However, this is not true in general, as the

next simple example illustrates. Natural candidates for duality would be p�, which belongs to

the unconditional SF, and its return R�, which belongs to the unconditional RF. However, they

do not have perfect unconditional correlation unless E(R�2jG) is constant. The next section

characterises the conditions required to obtain pairs of points in those frontiers with perfect

correlation.

2.4 Duality Conditions for Unconditional Frontiers

The relationship between the unconditional RF and SF is easier to understand if we respec-

tively re-write (12) and (14) as

pU (�) = [E(R
�2jG)� !U (�)E(R�jG)]p� + !U (�)p� (15)

and

mU (c) = [E(p
�2jG)�$U (c)E(p

�jG)]R� +$U (c)(1� r�): (16)

On this basis, we can characterise the duality between the unconditional RF and SF:

Proposition 1 Let � and c denote some speci�c means for the unconditional RF and SF,
respectively, whose elements are characterised in (12) and (14). Then:
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1. An element of the unconditional RF has perfect unconditional correlation with some ele-
ment of the unconditional RF if and only if

E(R�2jG)� !U (�)E(R�jG)

is a nonzero constant, while an element of the unconditional SF has perfect unconditional
correlation with some element of the unconditional RF if and only if

E(p�2jG)�$U (c)E(p
�jG)

is a nonzero constant.

2. Two elements of the unconditional RF have perfect unconditional correlation with two
elements of the unconditional SF if and only if

E(R�2jG) = E(R�2) and E(R�jG) = E(R�);

or equivalently
E(p�2jG) = E(p�2) and E(p�jG) = E(p�);

in which case the entire frontiers will be dual.

The �rst part of Proposition 1 shows that duality at a speci�c point requires an a¢ ne relation-

ship with constant coe¢ cients between the �rst two conditional moments of p� or equivalently,

the �rst two conditional moments of R�. In turn, the second part of Proposition 1 states that

the unconditional RF and SF are fully dual if and only if the �rst two conditional moments of

p� and R� are constant, in which case the location of p� and R� in conditional mean-variance

space will be constant too. Strictly speaking, though, there will be two duality exceptions: the

element on the unconditional RF for which E(R�2)� !U (v)E(R
�) = 0, and the element on the

unconditional SF for which E(p�2)�$U (c)E(p
�) = 0. Nevertheless, in both cases we can estab-

lish a link between an element of one frontier and the asymptotes of the other. See supplemental

appendix C for a detailed explanation of this link in the context of conditional frontiers.

In contrast, the location of p� and r� in conditional mean-variance space is una¤ected by

the conditions in this proposition. In other words, the duality restrictions constrain the time-

variation of the minimum second moment portfolio in conditional mean-variance space but not

the time-variation of the maximum Sharpe ratio (and hence the slopes) of the conditional RF.

Still, given that the strong conditions in Proposition 1.2 are unlikely to hold in practice,

empirical researchers who wish to take into account conditioning information should be careful,

and focus on the type of frontier that is really relevant for the particular question they want to

address, either investors�risk-return trade-o¤s or constraints on asset pricing models.
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2.5 Extended Return and SDF frontiers

As we have seen in the previous section, the elements of the unconditional RF and SF are

not generally dual to each other, so it is interesting to characterise the SDF-like random variables

that are always dual to the elements of the unconditional RF, as well as the return-like random

variables that are always dual to the elements of the unconditional SF. Not very surprisingly,

the dual variables also solve mean-variance problems based on unconditional moments, but with

milder restrictions.

Let us start with the dual to the unconditional SF. Expression (16) implies that the weight of

its elements on R� is not generally constant, which motivates the de�nition of a mean-variance

problem with a weaker cost constraint.

Let us de�ne extended returns as portfolios with unitary average cost,6 so that

C(p) = E(g) = 1;

where

g = C(pjG) = C(xjG)0w:

Similarly, we can also de�ne extended arbitrage portfolios as those that satisfy C(p) = E(g) = 0.

By analogy with the unconditional RF discussed in the previous section, we de�ne the

Extended RF as the highest lower bound on the variance for each level of expected return that

can be achieved by portfolios in P whose pseudo price is one. More formally, the extended RF

is the set of portfolio strategies that solve the problem

min
p2P

E(p2) s:t: E(p) = � 2 R; C(p) = 1; (17)

which is an unconditional mean-variance problem similar to (11), but in the space of extended

returns. Then, we can show that:

Proposition 2 The solution to program (17) is given by

pE(�) = g(�)R� + !E(�)r
� =

�
1� !E(�)E(p�)

E(p�2)

�
p� + !E(�)p

�; (18)

g(�) =
E(p�2jG)
E(p�2)

+ !E(�)

�
E(p�jG)� E(p�2jG)

E(p�2)
E(p�)

�
; (19)

where the constant !E(�) guarantees that the constraint E[pE(�)] = � is satis�ed.

6Hansen and Richard (1987) refer to them as pseudo-returns.
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The main di¤erence between expressions (12) and (18) is that in the latter the cost g(�) is

not systematically one, although it is one on average.

The extended RF, which is also a hyperbola in mean-standard deviation space, will necessar-

ily be to the left of the unconditional RF because (17) has the same objective function as (11)

but with less demanding cost constraints. This can be clearly seen in the left panel of Figure 2,

which uses the data and methodology of the empirical application in section 4.

<FIGURE 2>

Nevertheless, the relative position of the extended RF does not really re�ect an improvement

in investment opportunities relative to the unconditional RF because extended RF portfolios are

either infeasible or leave money on the table.

The following result characterises the element-by-element duality between the extended RF

and unconditional SF:

Proposition 3 Let � and c denote some speci�c means for the extended RF and unconditional
SF, respectively, whose elements are characterised in (18) and (14). Then:

1. Any element of the unconditional SF such that E(p�2) � $U (c)E(p
�) 6= 0 has perfect

unconditional correlation with some element of the extended RF.

2. Any element of the extended RF such that 1� !E(�)E(p�2) 6= 0 has perfect unconditional
correlation with some element of the unconditional SF.

Intuitively, the duality between the unconditional SF and the extended RF derives from the

fact that the second formula in (18) expresses pE(�) as having �xed-weights on (p�; p�), exactly

like the elements of the unconditional SF in (14). Proposition 3 shows that save for the two

stated exceptions, every element on the unconditional SF is perfectly correlated with another

element on the extended RF and vice versa. Nevertheless, it is important to emphasise once

again that while the unconditional SF delivers the optimal constraints on asset pricing models,

the extended RF is useless from the vantage point of an investor.

Let us now turn to the dual frontier to the unconditional RF. Expression (15) implies that

the weight of the unconditional SF on p� is not generally constant, which motivates the de�nition

of a mean-variance problem with a weaker pricing constraint.

Let us focus on constant conditional cost portfolios by de�ning the restricted payo¤ space

Pc � P as

Pc = fp 2 P : C(pjG) = C(p)g;

13



which includes both gross and excess returns. Expression (2) allows us to clarify the constraint

that a constant cost imposes on active strategies. Speci�cally, while the active payo¤ space P

does not impose any constraint on the dependence of w and w�1 on the information in G, the

constant-cost payo¤ space Pc imposes the restriction that w belongs to R.

In this context, we de�ne extended SDFs as those random variables m 2 L2 that price

correctly on average any payo¤ that belongs to the constant-cost payo¤ space:

E(mp) = C(p); 8p 2 Pc:

Given that (6) implies that proper SDFs satisfy an analogous condition for the richer set of

payo¤s in P , extended SDFs will not price correctly portfolios whose cost is not constant. The

following lemma provides an equivalent characterisation for extended SDFs:

Lemma 1 Extended SDFs are fully characterised by the condition

E(mxjG) = hC(xjG); h 2 I
E(h) = 1:

Therefore, E(mrjG) = 0 but E(mRjG) = h, so that the only assets that extended SDFs

price correctly are zero cost portfolios. For all other assets, the ratios of extended SDFs�prices

to actual prices will be equal across portfolios because h is a scalar random variable associated

to m but not to x.

By analogy with the unconditional RF discussed in section 2.3, we can now de�ne the

Extended SF as the highest lower bound on the variance of those univariate random variables

that price correctly on average any portfolio of x whose weights may depend on conditioning

information, but whose cost is constant. Using Lemma 1, we can formally characterise the

extended SF as the set of scalar random variables m that solve the problem

min
m2L2

E(m2) s:t: E(m) = c 2 R; E(mxjG) = hC(xjG): (20)

Then, we can show:

Proposition 4 The solution to program (20) is given by

mE(c) = h(c)p� +$E(c)[1� p�] =
�
1�$E(c)E(R

�)

E(R�2)

�
R� +$E(c)[1� r�]; (21)

h(c) =
E(R�2jG)
E(R�2)

+$E(c)

�
E(R�jG)� E(R�2jG)

E(R�2)
E(R�)

�
; (22)

where the constant $E(c) guarantees that the constraint E[mE(c)] = c is satis�ed.
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The main di¤erence between expressions (14) and (21) is that in the latter the mispricing

factor h(c) is not systematically one, only on average.

The extended SF, which is also a hyperbola in mean-standard deviation space, will necessarily

be below the unconditional SF because (20) has the same objective function as (13) but with

less demanding pricing constraints. This can be clearly seen in the right panel of Figure 2.

The following result characterises the element-by-element duality between the unconditional

RF and extended SF:

Proposition 5 Let � and c denote some speci�c means for the unconditional RF and extended
SF, respectively, whose elements are characterised in (12) and (21). Then:

1. Any element of the extended SF such that 1�$E(c)E(R
�) 6= 0 has perfect unconditional

correlation with some element of the unconditional RF.

2. Any element of the unconditional RF such that E(R�2) � !U (v)E(R
�) 6= 0 has perfect

unconditional correlation with some element of the extended SF.

Intuitively, the duality between the unconditional SF and the extended RF derives from the

fact that the second expression in (21) shows that mE(c) has �xed-weights on (R�; r�), exactly

like the elements of the unconditional RF in (12). Once again, Proposition 5 shows that save

for the usual two exceptions, every element on the unconditional RF is perfectly correlated with

another element on the extended SF and vice versa. Nevertheless, while the unconditional RF

characterises the optimal unconditional risk-return trade-o¤s that an investor faces, the extended

SF represents a loss of asset pricing information relative to the unconditional SF because it only

provides suboptimal (but valid) constraints on asset pricing models.

We can also explicitly link the existence of a single dual point between the unconditional RF

and SF in Proposition 1.1 to tangency between unconditional and extended frontiers. Speci�-

cally, the unconditional RF and extended RF are tangent if and only if there is a unique �� such

that g(��) = 1, while the unconditional SF and extended SF are tangent if and only if there

is a unique �c such that h(�c) = 1. One tangency implies the other,7 and both tangencies are

dual points, unless the tangency point from which we start coincides with one of the duality

exceptions described in Propositions 3 and 5.

In turn, the full duality of the unconditional RF and SF in Proposition 1.2 can be linked to

the unconditional and extended frontiers being equal. Speci�cally, given that equality between
7Note that if G is given by a signal that can only take two values, then there will be at least one tangency. To

see why, let us focus on g(�), which can only take two values in this case. We can choose �� such that g(��) = 1
for one of the values of the signal. Given that E[g(�)] = 1 by construction, it follows that g(��) = 1 for the other
signal value. A similar argument applies to h(c).

15



those frontiers is equivalent to

p� 2 Pc and p� 2 Pc; (23)

the necessary and su¢ cient condition for duality between the unconditional RF and SF is that the

two representing portfolios that unconditionally span the unconditional SF must have constant

cost.

Finally, Proposition B1 in supplemental appendix B characterises the points of minimum

distance between the unconditional and extended RFs on the one hand, and the unconditional

and extended SFs on the other, which are not generally dual to each other. Figure 2 displays

the points of minimum distance for the depicted frontiers.

3 Mean-Variance Frontiers with Sieve Managed Portfolios

The unconditional mean-variance frontiers discussed in the previous section seem to require

the correct speci�cation of the �rst two conditional moments of asset returns because they are

constructed from the representing portfolios (p�; p�) and (R�; r�), whose information-dependent

weights are de�ned in (5), (8) and (10). As a result, it seems rather natural to parametrically

specify those conditional moments, as Bekaert and Liu (2004) and Ferson and Siegel (2003)

did (see supplemental appendix D for further details). However, parametric models are often

restrictive and their results sensitive to deviations from the chosen speci�cations.

Estimating those �rst and second moments by means of semi- or non-parametric procedures

should provide a more �exible and robust approach, but they e¤ectively introduce a huge number

of parameters, which can lead to numerical problems. For example, the semi-non-parametric

method in Gallant, Hansen, and Tauchen (1990) requires the estimation of the conditional

distribution of the vector of returns, a task which is particularly complicated with multiple assets.

In addition, even if one could satisfactorily deal with the numerical problems, the resulting

estimators may require very large samples to provide reliable inferences.

Given these di¢ culties, it is perhaps not surprising that many empirical studies rely on

constant weight strategies of linear managed portfolios, an approach which is often regarded as

an ad-hoc way of approximating columns 2 and 3 of Figure 1 (see chapter 8 in Cochrane (2001)).

As we shall show below, though, suitably selected managed portfolios can provide the basis for

an e¢ cient estimation method with proper statistical foundations.

In addition, given that (p�; p�) and (R�; r�) are not only the building blocks of the uncon-
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ditional SF and RF, respectively, but also of the conditional SF and RF in the �rst column of

Figure 1, such managed portfolios will also be useful for researchers interested in conditional

mean variance frontiers for SDFs and returns, as we explain in supplemental appendix C.

For the sake of clarity, though, we start with the last column of Figure 1, which is associated

to frontiers that do not use information at all, and postpone to section 3.2 the discussion of

those situations in which investors implicitly use the information available at the trading date

in constructing their portfolio weights, which corresponds to the fourth and �fth columns of the

same �gure.

3.1 Passive Mean-Variance Frontiers for x

Given a vector of asset payo¤s x, its unconditional linear span hxi, which is the space of

passive portfolios with payo¤s p = x0w, w 2 RN , will be a subset of the payo¤ space P . In this

context, Hansen and Jagannathan (1991) de�ne a frontier that we will label as the Passive SF

for x, which puts the highest variance bound on those univariate random variables that pseudo

price any portfolio p 2 hxi. More formally, such a passive SF is given by the set of scalar random

variables that solve a variant of (13) in which the pricing conditions hold on average instead of

conditionally. These random variables, though, are generally passive SDFs, and not necessarily

valid SDFs, since they may not price correctly portfolios whose weights depend on information.

Hansen and Jagannathan (1991) also de�ne a dual frontier to the passive SF discussed in the

previous paragraph, which we will label as the Passive RF for x, such that any element of the

passive SF has perfect unconditional correlation with some element of the passive RF, with the

usual two exceptions. Formally, such a passive RF will be made up of portfolio strategies that

solve a problem analogous to (17) but de�ned over hxi instead of P . However, the elements of

this passive RF will generally be extended returns instead of returns since the cost constraint

C(p) = 1 is stated as an average, while the prices of the asset payo¤s under consideration,

C(xjG), may depend on the information available at the time of trading.

This passive RF will di¤er from the usual Markowitz frontier for returns, unless x is e¤ectively

an N � 1 vector of constant cost payo¤s. In what follows, we assume that this is indeed the case

to simplify the exposition. For the same reason, but without loss of generality, we will express

the vector x in terms of a gross return R and an (N �1)�1 vector of excess returns r, as in (2).

The passive RF for (R; r0) will be a constrained version not only of the extended RF but also

of the unconditional RF because any extended return in hR; r0i will also be a return. Therefore,
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we will come across the extended RF, the unconditional RF and the Markowitz frontier as we

go from left to right on [
p
V ar(p); E(p)] space, as in the left panel of Figure 3, which is also

constructed with the data used in the empirical application. Thus, we can understand the

passive RF obtained from a constant cost x as providing a lower bound on the actual risk-return

trade-o¤s that investors face, which are described by the unconditional RF, not the extended

RF.

<FIGURE 3>

In turn, the passive SF for (R; r0) will be a constrained version of the extended SF because

hxi is also a subset of Pc in this special case. Therefore, as we move upwards on [
p
V ar(p); E(p)]

space we will come across this passive SF, the extended SF and �nally the unconditional SF, as

the right panel of Figure 3 illustrates.

3.2 From Passive to Unconditional Frontiers

3.2.1 From Passive to Unconditional SF

The payo¤ space hxi when x = (R; r0)0 may be too narrow relative to P , which is the

relevant space of strategies available to investors. For that reason, Hansen and Jagannathan

(1991) also relied on an alternative empirical approach based on the linear managed portfolios0@ 1

z

1A
 x; (24)

which scale the vector x by some variables z in I. Their approach corresponds to the penultimate

column of Figure 1. These �multiplicative�or �scaled�returns are no longer proper returns since

their true cost varies with the values of the signals. As far as the unconditional and extended

frontiers discussed in the previous sections are concerned, though, the use of x or (24) leads to

the same answer because they do not enlarge the payo¤ spaces Pc and P .

In contrast, the unconditional span of (24) nests hxi, but is nested by P . As a result, in

[
p
V ar(p); E(p)] space, a tighter passive RF constructed in this way will lie between the extended

RF and the Markowitz frontier, and could cross the unconditional RF. Hence, such a passive RF

is not a relevant object for an investor because it is not constructed from constant cost payo¤s,

neither can it be used to place a bound on the unconditional RF. Similarly, a sharpened passive

SF constructed from (24) will be between the unconditional SF and the passive SF for x in

[E(m);
p
V ar(m)] space, and might even cross the extended SF. Figure 3 displays these tighter

passive frontiers in our data, which can be identi�ed by the subscript 1.
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Often, though, linear managed portfolios only provide a rough approximation to P . Nev-

ertheless, if we were able to take into account all possible managed portfolios, then the corre-

sponding unconditional span would be equal to P . A sharper passive RF constructed with all

managed portfolios instead of the initial x would coincide with the extended RF in (17), while

its dual passive SF would coincide to the unconditional SF in (13). In other words, the �fth

column in Figure 1 would coincide with the third column. In practice, we could consider an

increasing sequence of managed portfolios such that the �fth column in Figure 1 would converge

to the third column. Obviously, the corresponding sequence of dual passive frontiers would cross

the unconditional RF/extended SF at some point.

Our empirical strategy inspired by Ai and Chen (2003) uses sieve methods as a proper non-

parametric procedure to achieve this goal. For a given original space, these methods rely on a

sequence of less complex approximating spaces (see Chen (2007) for a survey of sieve methods in

econometrics). Let bkT (z) denote a vector of known sieve basis functions (power series, splines,

Fourier series, etc.) with the property that its linear combinations can approximate any square

integrable real-value function of z as the smoothing parameter kT increases. In this context, we

can identify P with the (closure of the union over kT of the) unconditional spans of

bkT (z)
 x; (25)

so that these sieve managed portfolios identify (p�; p�) through the unconditional moments (7).8

Speci�cally, p� can be identi�ed as (bkT (z)
x)0'kT from the just identi�ed moment conditions

Ef(bkT (z)
 x)[(bkT (z)
 x)0'kT � 1]g = 0; (26)

which are equivalent to the conditional moments that identify p� in (4) as kT grows. A similar

argument applies to p�. Thus, it is indeed possible to reproduce the conditional and uncon-

ditional RF and SF to any desired degree of accuracy by means of suitably selected managed

portfolios without modelling the �rst two conditional moments of asset returns. In this regard,

the main numerical advantage of our proposed procedure is that since the approximating spaces

are characterised by a �nite number of parameters, sieve methods e¤ectively reduce the estima-

tion problem to a parametric one. Nevertheless, the quality of the approximation that can be

8 In the usual situation in which bkT (z) spans (1; z0), the PSF frontier constructed from (25) cannot be below
the one obtained from (24). This does not need be the case when we construct the unconditional SF from a model
of conditional moments. For example, the SDF bounds obtained from linear managed portfolios by Ferson and
Siegel (2003) are higher than their estimates of the unconditional SF and extended SF, which they attribute to
sampling error or misspeci�cation.
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realistically achieved in practice will depend on the sample size.

3.2.2 From Passive to Unconditional RF

Imagine now that we restrict the managed portfolios that we use to have constant cost,

which corresponds to the fourth column in Figure 1. As we mention in section 2.5, portfolios in

Pc must have a constant weight on R, while the weights on r may belong to I. This motivates

the approximation of Pc by means of the unconditional span of the vector [R; (1; z0)
 r0].9

Once again, we can exploit sieve methods to construct a payo¤ space based on R and the

arbitrage portfolios

bkT (z)
 r; (27)

so that we can identify Pc with the (closure of the union over kT of the) unconditional spans

R;bkT (z)0 
 r0

�
. Therefore, we could also express (R�; r�) in terms of unconditional moments.

In particular, we could identify r� from moment conditions analogous to (26) with the vector r

replacing x.

As expected, a tightened passive RF obtained in that way will converge to the unconditional

RF in (11) as kT grows, while its dual passive SF will converge to the extended SF in (20). In

other words, the fourth column in Figure 1 will coincide with the second column in the limit.

In summary, the use of unrestricted managed portfolios and �xed-weight frontiers yields a

relevant object when applied to SDF frontiers, but not when applied to portfolio frontiers, which

should be based on managed portfolios of constant cost instead. In e¤ect, this conclusion re�ects

the lack of duality between the unconditional frontiers discussed in section 2.

3.3 Relationship between Passive and Unconditional Frontiers

We conclude this section with two results on the relationship between passive and un-

conditional frontiers for a given vector of payo¤s, which will investigate in section 4.3. The

following proposition makes use of the representing portfolios to formalise the conditions for the

�xed-weight and active frontiers to share a single element.

Proposition 6 Given a vector of payo¤s x = (R; r0)0:

1. The unconditional RF shares an element with the Markowitz frontier if and only if there
is an ! 2 R such that r� � !r� has �xed-weights on the payo¤s r.

9These linear managed portfolios are used by Bansal, Dahlquist, and Harvey (2004); see Brandt and Santa-
Clara (2006) for a related approach.
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2. The unconditional SF shares an element with the Hansen-Jagannathan frontier based on
returns if and only if in addition Proposition 1.1 holds, in which case there will be a $ 2 R
such that p� �$p� has �xed-weights on the payo¤s x.

In other words, the unconditional frontiers for active portfolios will share an element with

their �xed-weight counterparts if and only if there are linear combinations of the portfolios

that unconditionally span the unconditional RF and SF with constant weights on the original

payo¤s. In addition, tangency between the unconditional SF and the Hansen-Jagannathan

bounds implies tangency between the unconditional RF and the Markowitz frontier, but the

converse is not generally true. In this regard, note that the duality condition in Proposition

1.1 is precisely the extra condition that combined with the �rst part of Proposition 6 implies

tangency in the unconditional SF, and hence the existence of an SDF with constant coe¢ cients

that prices active strategies. This is due to the fact that the unconditional SF has a random

weight on R� = R� r� (see (16)). Thus, the passivity of the weight on R automatically imposes

the duality condition 1.1

Figure 4 illustrates Proposition 6.2 with an example in which the unconditional SF shares

an element with the Hansen-Jagannathan frontier based on returns. As we have just explained,

this result also implies that the duality condition between unconditional frontiers must hold at

that particular point, which in turn means that the unconditional RF shares an element with

the Markowitz frontier. For ease of comparison, we keep the passive RF and SF in Figure 3.

<FIGURE 4>

In economic terms, tangency in the unconditional SF means that there is an SDF with

constant risk prices that can price any active strategy. In contrast, tangency in the unconditional

RF is less relevant because it only means that there is one (and only one) optimal portfolio with

constant weights on the original payo¤s.

We can extend the previous proposition to the case where �xed-weight and active frontiers

coincide.

Proposition 7 Given a vector of payo¤s x = (R; r0)0:

1. The unconditional RF and the Markowitz frontier are equal if and only if r� and r� have
�xed-weights on the payo¤s r.

2. The unconditional SF and the Hansen-Jagannathan frontier based on returns are equal if
and only if in addition Proposition 1.2 holds, in which case p� and p� will have �xed-weights
on the payo¤s x.
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Thus, the unconditional frontiers for active portfolios will coincide with their �xed-weight

counterparts if and only if the portfolios that span the unconditional RF and SF have constant

weights. In the �rst case, the conditional RF is generated by active strategies only through

a time-varying choice of the weight on r�. Again, if the unconditional SF coincides with the

Hansen-Jagannathan frontier based on returns, then the unconditional RF will also coincide with

the Markowitz frontier, the extra condition being simply the duality condition in Proposition

1.2.

Figure 5 illustrates Proposition 7.1 with an example in which the unconditional RF and the

Markowitz frontier are equal. Once again, we simplify the comparison by keeping the same

passive RF and SF as in Figure 3.

<FIGURE 5>

Finally, it is important to emphasise that the conditions in Propositions 6 and 7 do not

imply that conditioning information plays no role, or indeed that there is not predictability in

the �rst and second moments of returns. Even if the more restrictive conditions in Proposition

7.2 hold, the maximum conditional Sharpe ratio can change freely over time, as explained after

Proposition 1. Those conditions simply mean that the investor can attain an optimal risk-return

trade-o¤ by means of a simple passive strategy. In the next section, we will further illustrate

the di¤erent concepts with US stock data.

4 The empirical relevance of conditioning information

Despite hundreds of papers over three decades, the evidence on the predictability of the

levels of �nancial returns remains controversial (see Spiegel (2008) and the references therein).

In fact, there is not even agreement about the predictability channel among those who believe

in it (see Bansal, Kiku and Yaron (2012) and Beeler and Campbell (2012)). In contrast, there

is much stronger evidence on time variation in volatilities at daily frequencies, but at the same

time the extent to which those e¤ects are relevant at lower frequencies, such as monthly or

quarterly, is less clear.

In this section, we would like to answer two questions which are related but not identical to

the predictability of the �rst and second moments of asset returns.

Linear factor pricing models with constant weights on some traded factors are often used

for pricing a broad cross-section of US stock portfolios (see e.g. Cochrane (2001, sec. 20.2)).

22



Our �rst question is whether they can also correctly value portfolios whose weights depend on

the information set. In this regard, it is worth recalling that the SDF implied by those models

will belong by construction to the passive SF generated from the pricing factors. Therefore, for

those models to correctly price active strategies, it must be the case that this passive SF and

the unconditional SF are tangent at a single point, as shown in Proposition 6.2.

The second question that we would like to answer is whether the use of conditioning in-

formation adds value in portfolio choice. We do so by testing the null hypothesis that the

unconditional RF coincides with the standard Markowitz frontier, as stated in Proposition 7.1.

4.1 Econometric methodology

Propositions 6 and 7 provide conditional moment restrictions that we can exploit for con-

ducting inferences which explicitly take into account sampling uncertainty. Speci�cally, the

second part of Proposition 6 on tangency between the passive SF for x and the unconditional

SF is equivalent to the existence of an unconditional SF element (14) that can be expressed as

$+x0' for a scalar $ and some vector '. Therefore, we can test this passive tangency at some

unspeci�ed point by means of the conditional moments

E[x($ + x0')� e1jz] = 0; (28)

where we have written the information set in terms of the vector of predictors z and exploited

the fact that the true cost of x is e1 = (1;00)0 when x =(R; r0)0.

Similarly, the �rst part of Proposition 7 implies the existence of vectors �� and �� such that

E

24 r(r0�� �R)

r(r0�� � 1)

������ z
35 = 0; (29)

where r0�� and r0�� yield the representing portfolios r� and r� that span the unconditional RF

(see (12) and (9)), which have constant weights under the null.

We deal with these conditional moment conditions by means of the optimally weighted sieve

minimum distance (SMD) semiparametric procedures introduced by Ai and Chen (2003), which

are both easy to implement and intuitive. Let h(y;�) denote a vector of in�uence functions

such that we can express the conditional moment restrictions as

E[h(y;�)jz] = 0;
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where y represents the data and � the unknown parameters, which are �nite in both (28) and

(29). Importantly, the linearity of those moment conditions guarantees the identi�ability of �

in view of our assumptions on the non-redundant nature of the asset payo¤s in x.

Let bkT (z) denote the vector of sieve basis functions introduced in section 3, with the prop-

erty that a linear combination can approximate the conditional mean of h(y;�) as the smoothing

parameter kT increases. Following Ai and Chen (2003), we �rst project h(y;�) onto the linear

span of bkT (z) as follows

g(z;�) = E[h(y;�)bkT (z)0]��1bkT (z); � = E[bkT (z)bkT (z)0]:

Then, we estimate the unknown parameters by minimising the sample analogue to the criterion

function

J = E[g(z;�)0
�1(z)g(z;�)]; (30)

where the optimal weighting matrix


(z) = V ar[h(y;�)jz]

guarantees that the resulting estimator of � will attain the semiparametric e¢ ciency bound. In

this context, consistency is ensured if asymptotically the sieves are dense in the relevant space.

Importantly, we can express the SMD criterion (30) as

J=E[bkT (z)
 h(y;�)]0E[��1bkT (z)bkT (z)0��1 

�1(z)]E[bkT (z)
 h(y;�)]; (31)

which suggests that J may also be interpreted as a GMM criterion for managed portfolios for

any given kT . In particular, bkT (z) 
 h(y;�) corresponds to sieve managed portfolios with

payo¤s (25) in the context of the SF-related moments (28), while the relevant sieve managed

portfolios become (27) in the case of the unconditional RF-related moments (29).

As for the weighting matrix in (31), we can show that under some conditions on bkT (z) and


(z) that our choice of sieves will satisfy, we will have that:

E[��1bkT (z)bkT (z)0��1 

�1(z)] =
n
E[bkT (z)bkT (z)0 

(z)]

o�1
;

in which case we can interpret T times the sample counterpart to J as a GMM overidentifying

restrictions statistic. Nevertheless, by using SMD we mitigate the numerical problems associated

to the inversion of large, poorly conditioned matrices that plague standard GMM procedures.

Intuitively, the reason is that the size of the vector g(z;�) and the matrix 
(z) that appear in
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(30) depend on the number of assets in x, but not on the dimension of z or the sieve that we

use, which only a¤ect the size of �.

An additional numerical advantage of the Ai and Chen (2003) estimation procedure is that

it only involves a �nite number of parameters for any given sample size. At the same time, by

explicitly recognising that the number of parameters would increase slowly with the sample size,

sieves methods are more �exible and robust that classical parametric methods which assume

�xed, �nite-dimensional parameter spaces regardless of the sample size.

In practice, we �rst map each of our predictors onto the interval [0; 1] by means of their em-

pirical probability integral transform (PIT). Then we construct bkT (z) as the Kronecker product

of the linearly independent elements of the B-splines of order 1 with knot vector (0; 0:5; 1+) and

order 2 with knot vector (�0:5; 0; 0:5; 1; 1:5) for each predictor. Importantly, the implied sieve

managed portfolios span the standard linear managed portfolios obtained from the PITs of each

element of z. Higher order splines would eventually approximate any active strategy whose

weights are smooth functions of the predictors, but at the cost of introducing a much larger

number of parameters. We also use the same B-splines to generate the payo¤ spaces and the

cost and mean representing portfolios underlying the unconditional and extended frontiers in

Figure 2 and 3, as explained at the end of section 3.2.

Similarly, we estimate 
(z) using the Kronecker product of the same B-splines of order

1 for each predictor to guarantee that 
̂(z) will be positive semide�nite for all values of z by

construction. Nevertheless, in our empirical applications we will also report a GMM counterpart

to (31) that uses the inverse of V ar[bkT (z)
h(y;�)] as weighting matrix to check that our results

do not depend on this particular choice of 
(z). In what follows, we shall refer to this alternative

procedure as the standard GMM approach.

As usual, we have two possibilities to deal with the fact that we do not know the true

�. Either we use some initial consistent estimator of � and iterate to obtain k-step SMD

estimators, or we explicitly take into account in the criterion function the dependence of the

weighting matrix on the parameter values, along the lines of the single-step continuously updated

(CU) GMM estimator of Hansen, Heaton and Yaron (1996). Although this estimator is often

more di¢ cult to compute than two-step and iterated estimators, particularly in linear models,

an important advantage is that (30) becomes numerically invariant to normalisation, bijective

reparametrisations and parameter-dependent linear transformations of the conditional moment
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conditions. In contrast, these properties do not necessarily hold for two-step or iterated SMD.

Hansen, Heaton and Yaron (1996) showed the relevance of these invariance properties in

testing asset pricing models using GMM. Newey and Smith (2004) con�rmed the advantages of

CU- over two-step GMM by going beyond the usual �rst-order asymptotic equivalence results.

More recently, Peñaranda and Sentana (2015) conducted a detailed simulation experiment which

shows that GMM asymptotic theory provides a reliable guide for the CU version of the J test

when the moment conditions hold. For those reasons, all the empirical results reported below

have been computed with a CU version of SMD.

Finally, we follow Donald, Imbens, and Newey (2003) in calculating the p-value of the overi-

dentifying restrictions test statistic associated to (31) from a chi-square distribution with degrees

of freedom equal to the di¤erence between the number of moment conditions and the number

of parameters. These authors formally show that this statistic, standardised by subtracting

its mean and dividing by its standard deviation, converges to a normal distribution when the

number of observations and basis functions converge to in�nity at suitable rates. Nevertheless,

they have a preference for a chi-squared asymptotic approximation because, among other moti-

vations, it is correct for �xed kT .10 In any event, we explicitly study the �nite sample reliability

of their asymptotic approximation in the Monte Carlo experiments reported in supplemental

appendix E.5.

4.2 Data

We initially focus our analysis on the three Fama and French factors for US stocks, which

we have obtained from Ken French�s Data Library (see his web page, as well as Fama and

French (1993) for further details). We use monthly data from January 1952 to December 2012

(732 observations), so that our sample begins soon after the Treasury - Federal Reserve Accord

whereby the Fed stopped its wartime pegging of interest rates. As in previous sections, we will

express the payo¤ vector x in terms of a gross return R; which we identify with the US market

portfolio, MK, and a vector of excess returns r associated to the portfolios that capture size and

value e¤ects, so that:

(R; r0)0 = ( RMK rSMB rHML )
0; (32)

10Strictly speaking, their theoretical results are developed for i:i:d: data, while our in�uence functions h(y;�)
are martingale di¤erence sequences under the null hypotheses that we study. Still, under suitable additional
regularity conditions they should apply to our case too.
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where SMB means long/short in small/large capitalisation stocks, and HML long/short in

high/low book-to market ones.

We work with two prominent predictors: the US (cyclically adjusted) price earnings ratio,

and the default spread.11 The former is taken from Robert Shiller�s web page, and the latter is

constructed from FRED data (from yields on AAA and BAA-rated bonds). These predictors are

among the ones that Goyal and Welch (2008) and Campbell and Thompson (2008) considered

in their analysis of mean predictability. In what follows, the vector z will denote these two

predictors once they have been mapped onto the interval [0; 1] by means of their empirical PIT.

The �rst thing we do is to check that our sieve procedure is indeed able to predict the Fama-

French returns. Table 1 reports predictability tests in the �rst moment of MK, SMB and HML,

which we assess by means of the conditional moment restrictions

E(x� �jz) = 0; (33)

where � is a vector of real parameters.

<TABLE 1>

As can be seen in Panel A, we cannot reject the constancy of the �rst conditional moment

of RMK or rSMB with a¢ ne functions of z, but we clearly reject with B-splines. In contrast, we

cannot �nd predictability in the �rst moment of rHML. The standard CU-GMM tests in Panel

B yield similar conclusions.

Still, it is worth emphasising again that the results in Proposition 6 and 7 are compatible

with predictability in levels of x. For that reason, our empirical methodology puts the emphasis

directly on portfolio weight predictability instead of �rst or second moment predictability.

4.3 Empirical results

4.3.1 Validity of an SDF with constant risk prices

As we mentioned at the beginning of section 4, linear factor pricing models with constant

weights are often used for pricing a broad cross-section of US stock portfolios. The purpose of

our exercise is to test whether they can also correctly value portfolios whose weights depend on

the information set. Given that the SDF implied by those models belongs to the passive SF

generated from the pricing factors, it must be the case that this passive SF and the unconditional

SF are tangent at a single point for those models to correctly price active strategies.

11With two predictors, our choice of sieves implies that dim[bkT (z)] = 16.
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Table 2 shows the results of the tests of the null hypothesis that the unconditional SF shares

one element with the Hansen-Jagannathan frontier based on returns, which is formally stated in

Proposition 6.2. As explained at the beginning of section 4.1, this null gives rise to the conditional

moments (28), which can be regarded as conditional counterparts to the unconditional moments

in the tangency tests of Peñaranda and Sentana (2011).

<TABLE 2>

As can be seen, we reject that an SDF with constant weights on the Fama-French factors

is able to price actively managed portfolios of those factors. Therefore, we do not expect a

fortiori that such a passive SDF would be able to price a richer cross-section of active strategies

constructed from size, book-to-market, and momentum sorted portfolios. In simple economic

terms, the rejection that we �nd implies that the risk prices of the Fama-French model, which

we can identify with the coe¢ cients of its candidate SDF, cannot be time-invariant.

However, if we restrict the weights of the managed portfolios to be a¢ ne in z, then we do

not reject at the 1% level with SMD in Panel A (or at the 5% with standard GMM in Panel

B). We can con�rm these di¤erential results by formally testing the relevance of extending the

managed portfolios from (1; z0)0 to bkT (z). The distance metric test of this null hypothesis has

a p-value of 0.3% under the maintained hypothesis of passive tangency.

To further illustrate the lack of duality between the unconditional RF and SF, we also test

the hypothesis that the unconditional RF shares an element with the Markowitz frontier. Given

that Proposition 6.1 implies that passive tangency on the unconditional RF is equivalent to

the existence of a scalar ! and a vector � such that R � r� + !r� = R � r0�, we rely on the

conditional moments

E[r(! + r0��R)jz] = 0: (34)

The results in Table 2 show that the evidence against this null is weaker, especially for linear

managed portfolios; see Ferson and Siegel (2009) for related evidence.

4.3.2 The new Fama-French �ve-factor model

Fama and French (2015) have recently developed an improved version of their three factor

model that adds two factors: RMW, long/short in robust/weak pro�tability stocks, and CMA,

long/short in conservative/aggressive stocks, which they identify as low/high investment �rms.

Their rationale for those factors is that they capture the pro�tability and investment patterns
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in stock returns beyond the usual size and value e¤ects. Given that there is growing interest in

this model in the empirical literature, we subject it to the same testing procedure used in the

previous subsection.

The new factors are available through Ken French�s Data Library from July 1963 onwards.

Accordingly, our empirical results cover the period that goes from that month until December

2014 (618 observations).

The results in Table 3 reject the null hypothesis that there is an SDF with constant weights

on the �ve Fama-French factors which can correctly price active strategies on those factors. Once

again, this suggests that the risk prices of this model should probably be time-varying too. In

this regard, our result complements the conclusions of the Gibbons, Ross and Shanken (1989)

test reported by Fama and French (2015), which indicates that their �ve-factor model is unable

provide a valid SDF for the cross-section of stock returns that they consider.

<TABLE 3>

4.3.3 Relevance of the Markowitz frontier

Let us turn to our second empirical question, namely, whether the use of conditioning

information adds value in portfolio choice. We answer that question by testing the null hypothesis

that the unconditional RF coincides with the standard Markowitz frontier, which is constructed

with passive portfolios. This corresponds to the �rst part of Proposition 7, which we test by

means of the conditional moments (29), as discussed in section 4.1.

Table 4 shows that the null hypothesis is clearly rejected for both sieve and linear managed

portfolios (the standard GMM tests in Panel B are qualitatively similar). Therefore, there

is added value in exploiting conditioning information for investors that choose portfolios on

the unconditional RF. Our results con�rm those in Bansal, Dahlquist and Harvey (2004), who

�nd that managed portfolios can signi�cantly improve the mean-variance trade-o¤ achievable

with �xed-weight portfolios only. These �ndings are perhaps not entirely surprising in view

of the fact that passive investors and fund managers who actively engage in market timing

typically have di¤erent information sets and di¤erent abilities or resources to process their

common information.

<TABLE 4>

For completeness, we also test the null hypothesis that the unconditional SF is spanned by

the passive SF, stated in Proposition 7.2. This is equivalent to the existence of vectors '�;'�
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such that

E

24 xx0'� � e1
x(x0'� � 1)

������ z
35 = 0;

which resemble the unconditional spanning tests in Peñaranda and Sentana (2012). Once again,

we clearly reject the null, which is not surprising because passive spanning of the unconditional

SF requires passive spanning of the unconditional SF; see Proposition 7.2.

5 Conclusions

Portfolio and stochastic discount factor frontiers are usually regarded as dual objects to the

extent that sometimes researchers use one type of frontier to answer questions that arise more

naturally in the other type. Nevertheless, the widely cited duality result in Hansen and Jagan-

nathan (1991) does not usually hold when one explicitly exploits the potential predictability of

the �rst two moments of asset returns in designing portfolio strategies, as Hansen and Richard

(1987) did in the case of portfolios and Gallant, Hansen and Tauchen (1990) for SDFs.

In this regard, our �rst theoretical contributions is to derive the precise restrictions under

which the unconditional SF and RF that they proposed are dual, which will happen when the

position in conditional mean-standard deviation space of the cost representing portfolio and its

gross return is independent of the variables in the information set. In general, though, empirical

researchers taking into account conditioning information should focus on the type of frontier

that is really relevant for the particular question they want to address.

Another theoretical contribution is to explicitly characterise the random variables for which

the dual frontiers to the unconditional RF and SF provide the sharpest possible mean-variance

bounds. Speci�cally, while the unconditional RF delivers interesting one period risk-return

trade-o¤s, the extended SF does not deliver equally interesting constraints on asset pricing

models because it may not price correctly portfolios whose cost is a function of the conditioning

information. Therefore, the unconditionally e¢ cient bound advocated by Ferson and Siegel

(2003), which at best coincides with the extended SF frontier if the researcher uses the correct

conditional model, provides a suboptimal SDF bound.

Likewise, while the unconditional SF delivers interesting constraints on asset pricing models,

the extended RF does not deliver interesting risk-return trade-o¤s because its elements are

either infeasible or leave money on the table. This means that the Bekaert and Liu (2004) SDF

framework cannot be used to compute optimal portfolios without a substantial rethink.
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Our methodological contribution is a computationally simple yet e¢ cient procedure for the

estimation of all the di¤erent frontiers in Figure 1. Speci�cally, we rely on the sieve minimum

distance semiparametric procedures proposed by Ai and Chen (2003) to estimate the frontiers

and make inferences about them. Importantly, we explicitly relate the mean-variance frontiers

such a procedure generates to the alternative empirical strategy of approximating the e¤ect of

conditioning information by constructing passive RFs and SFs from managed portfolios.

Our empirical exercises combine our theoretical results and econometric methods to explore

two questions related to the ways in which conditioning information sharpens return and SDF

frontiers. First, we test whether the SDF of the popular Fama and French (1993) linear factor

pricing model belongs to the unconditional SF. Although we clearly reject the null, the evidence

is weaker if we focus on the linear payo¤ space of those pricing factors scaled by the price earnings

ratio and the default spread. In simple economic terms, the rejection that we �nd implies that

the risk prices of the Fama-French model cannot be time-invariant. Our conclusions are identical

when we study the new �ve-factor model in Fama and French (2015).

Second, we use the same data set to investigate whether investors would e¤ectively expand

their mean-variance opportunity set by considering active portfolio strategies. The null hypoth-

esis that the unconditional RF coincides with the standard Markowitz frontier is clearly rejected

for both sieve and linear managed portfolios. While our Monte Carlo simulation exercises in-

dicate some size distortions, they by no means overturn the empirical conclusion that there is

added value in exploiting conditioning information.

Finally, although mean-variance analysis is still a common tool in portfolio choice, asset

pricing tests and performance evaluation, one relevant extension of our work would be the

introduction of higher order moments in our analysis (as Chabi-Yo (2008) and Almeida and

Garcia (2016)). From a methodological perspective, other relevant extensions would be (i) an

automatic data-driven choice of the order of the sieve in the context of mean-variance frontiers

with conditioning information (see Donald, Imbens, and Newey (2009) for such results with i:i:d:

data); (ii) an exploration of resampling methods that do not require a parametric model for the

conditional distribution of asset returns; and (iii) an extension of our estimation and testing

framework to situations in which the in�uence functions contain non-parametric components

under the null along the lines of Chen and Pouzo (2015). We are currently exploring several of

these interesting extensions.
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A Appendix: Special Cases

There are three special cases in which mean-variance frontiers adopt a simple form. One

such case occurs when there is a safe asset. The second case arises when all expected payo¤s are

conditionally proportional to their prices, with a common scalar factor of proportionality. The

�nal one occurs when all the primitive assets are arbitrage portfolios.

A.1 The Riskless Asset Case

Imagine that investors have access to a set of assets y that includes not only the original

risky asset payo¤s in x, but also the safe payo¤ x0 = 1, so that y0 = (x0;x0). In this context, the

conditional span of y, which we denote by Q, will be an enlarged payo¤ space such that Q � P .

On this basis, we can de�ne the conditionally safe return and the extended return associated to

the riskless asset as

R0 =
1

C(x0jG)
2 I; S0 =

1

C(x0)
2 R (A1)

respectively. The safe asset is unconditionally riskless when C(x0jG) = C(x0), so that R0 = S0.

The conditional mean and cost active representing portfolios in the payo¤ space Q will be

q� = 1; q� = p� +

�
C(x0jG)� E(p�jG)

E(1� p�jG)

�
(1� p�); (A2)

respectively. Note that q� is trivially the conditional projection of x0 onto Q, and hence the

corresponding residual will be 0. On the other hand, q� is the conditional projection of any valid

SDF onto Q, which obviously coincides with mC [C(x0jG)] (see (C4)).

In the rest of this section we describe in detail the di¤erent mean-variance frontiers that one

can construct, with a special emphasis on their shape, the relationship between frontiers with

and without a safe asset, and a geometrical interpretation of duality by means of Sharpe ratios.

The representation of the conditional RF in (C2) is still valid after the introduction of a safe

payo¤ if we simply replace p� and p� in (5) with q� and q� in (A2), respectively. As expected,

the elements of the conditional RF lie along two straight lines in [
p
V ar(pjG); E(pjG)] space for

each possible signal value in G. Moreover, those two lines intersect on the vertical axis at R0.

In addition, we can choose the conditional mean � such that the weight of the conditional

RF on the conditionally safe payo¤ x0 will be identically 0 for every possible signal realisation,

which implies that it will be equal to the conditional RF without a safe asset pC(�) at that

point. This shared element is usually referred to as the tangency portfolio.
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Similarly, the elements of the conditional SF solve the same problem as in (C3) with the

additional pricing restriction E(mx0jG) = C(x0jG). Hence, the only conditional mean that

we can choose is c = C(x0jG) and the conditional SF will be given by the singleton q� =

mC [C(x0jG)], which belongs to the conditional SF without a safe payo¤.

In this context, the duality between the conditional RF and SF is trivial since the latter is

fully traded and its corresponding return will be

S� = q�=E(q�2jG): (A3)

Alternatively, we can illustrate the duality between the conditional RF and SF by adapting

the geometrical argument on mean-standard deviation spaces that relates the passive RF and

SF in Hansen and Jagannathan (1991); see e.g. Figure 5.4 in Cochrane (2001). Speci�cally, the

optimal conditional Sharpe ratio on the conditional RF will be equal to the slope of the ray that

joins the origin with the single point on the conditional SF, so that

jE(S�jG)�R0j
V ar1=2(S�jG)

=
V ar1=2(q�jG)
E(q�jG) :

Let us turn to unconditional frontiers. Again, the representation of the unconditional RF in

(12) is still valid after the introduction of a safe payo¤ if we simply replace p� and p� with q�

and q� in (A2), respectively.

In this context, we �nd two facts that contradict the textbook analysis of mean-variance

frontiers with a safe asset. First, if R0 is random then it does not belong to the unconditional

RF, as Hansen and Richard (1987) showed. As a result, there is not a unique optimal risk-

return trade-o¤ on the unconditional RF unless R0 is also unconditionally riskless, in which

case the unconditional RF will indeed consist of two straight lines in [
p
V ar(p); E(p)] space

that intersect on the vertical axis at R0 = S0. Second, we can show that there is no tangency

portfolio irrespective of whether R0 = S0, because the risky component of the elements of the

augmented unconditional RF will not be conditionally proportional to the returns that conform

the original unconditional RF. As Peñaranda (2014) proves, this is due to the fact the conditional

RF tangency portfolio does not belong to the unconditional RF in general. Therefore, the Sharpe

ratios that Bekaert and Liu (2004) and Abhyankar, Basu and Stremme (2007) consider must be

interpreted with some care, as they relate to passive strategies that combine an unconditionally

riskless asset (traded or �ctitious) with a portfolio on the unconditional RF of risky assets alone.
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Therefore, those Sharpe ratios underestimate the maximum unconditional risk-return trade-o¤

that can be achieved through active portfolio strategies.

The elements of the unconditional SF solve the same problem as in (13), but with the

additional pricing restriction E(mx0jG) = C(x0jG). Once again, the only c for which the mean

and pricing constraints are compatible is C(x0). As a result, the unconditional SF will also be

the singleton q�. However, this portfolio does not generally coincide with any mU (c) (see (14))

because its weight on 1� p� will be random even in the case of an unconditionally riskless asset.

Regarding extended frontiers, the elements of the extended RF solve the same problem as

in (17), except that p is allowed to belong to the enlarged payo¤ space Q. The extended RF

without a safe asset does not generally share any point with the extended RF with a safe asset,

which consists of two straight lines in [
p
V ar(p); E(p)] space that cross on the vertical axis at

S0 regardless of whether the riskless asset is unconditionally safe or not.

As expected, the single element of the unconditional SF q� de�ned in (A2) has a dual element

on the extended RF, which is given by

S�e = q�=E(q�2):

In addition, there is a clear connection between slopes of the return and SDF frontiers because

both elements are unconditionally proportional, which means that the constant pseudo-Sharpe

ratio (based on the unconditional moments of S�e in excess of the �safe�extended return S0) of

the elements of the extended RF will be equal to the slope of a ray from the origin to the single

element of the unconditional SF, so that

jE(S�e )� S0j
V ar1=2(S�e )

=
V ar1=2(q�)

E(q�)
:

However, the left hand side of the foregoing expression will not be a proper Sharpe ratio even if

R0 = S0 because S�e is not a proper return.

To construct the extended SF, we must �rst de�ne the subspace of constant-cost portfolios

Qc � Pc, and obtain the extended representing portfolios q�e and q�e in that subspace. The

elements of the extended SF solve the same problem as in (20), but with the additional �pricing�

constraint E(mx0jG) = hC(x0jG). Nevertheless, this pricing constraint is not generally enough

to pin down a particular c, and hence the extended SF will contain in�nite points. However,

when there is an unconditionally riskless asset, extended SDFs must price a unit payo¤ correctly

on average, in which case the extended SF will be given by the single point q�e such that E(q
�
e) =
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C(x0). In either case, the extended SF with and without a safe asset will not generally share

any points.

As for the duality between the extended SF and the unconditional RF, it is easy to see that

the extended SF will always be fully traded, and moreover, that its return will be S� (see (A3)),

which belongs to the unconditional RF. Given that

q�e = S�=E(S�2);

it is not surprising that
jE(S�)� S0j
V ar1=2(S�)

=
V ar1=2(q�e)

E(q�e)
;

which means that the pseudo-Sharpe ratio of S� is equal to the slope of a ray from the origin to

q�e in [E(m);
p
V ar(m)] space. This pseudo-Sharpe ratio was already de�ned by Jagannathan

(1996), who related it to the Sharpe ratio of the conditional RF. Nevertheless, his analysis

requires that the safe asset is unconditionally riskless, in which case jE(S�)� S0j =V ar1=2(S�)

will be a proper Sharpe ratio. More recently, Ferson and Siegel (2009) develop a portfolio

e¢ ciency test whose interpretation in terms of the unconditional RF also requires implicitly

that the safe asset is unconditionally riskless, as pointed out by Peñaranda (2014).

Still, the di¤erence between the pseudo-Sharpe ratios of S� and S�e implies that one must

be careful in extending to unconditional frontiers of actively managed portfolios the geometrical

relationship obtained by Hansen and Jagannathan (1991) in terms of pseudo-Sharpe ratios of

passive portfolios. In particular, such a relationship does not hold between the elements of the

unconditional RF and SF, which simply re�ects the fact that these two frontiers are not dual.

If there is an unconditionally riskless asset, then the pseudo-Sharpe ratio of S� is bounded

above by the pseudo-Sharpe ratio of S�e , which means that a bound on the volatility of SDFs

obtained from S� might be too low, and a pseudo-Sharpe ratio obtained from q� might be

too high. As a result, the intertemporal marginal rate of substitution in consumption of a

speci�c CCAPM may look volatile enough from the perspective of S� even though it would be

insu¢ ciently volatile to match q� (cf. Cochrane (2001, sect 21.1).

Finally, we can also show that the elements of the passive RF for y will lie in [
p
V ar(p); E(p)]

space along two straight lines that cross on the vertical axis at a point with mean S0 de�ned in

(A1), regardless of whether the riskless asset is unconditionally safe or not. Moreover, we can

show that the passive SF for y is a singleton because c = C(x0) is the only choice compatible

with the associated pricing constraints.
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A.2 Prices Proportional to Expected Payo¤s

This situation is typically linked to the equilibrium of an economy with a risk-neutral agent,

but it also arises when N = 1, an example used by Ferson and Siegel (2003) and Bekaert and Liu

(2004) to di¤erentiate their papers. Intuitively, the approach used by Ferson and Siegel (2003)

to obtain SDF bounds cannot exploit the existence of conditioning information when N = 1

because the elements of the URF in (11) are constrained to have constant (unit) cost.

Either way, p� = kp�, with k 2 I, so the geometry of the return and SDF frontiers will be the

mirror image of the safe asset case. In particular, while the main implication of the existence

of a safe asset was that 1 � q� = 0, with the additional feature that 1 � q�e = 0 if the safe

asset asset was unconditionally riskless, the main implication now is that r� de�ned in (10) will

be 0, with the additional feature that r�e de�ned in (B2) will also be 0 if expected payo¤s are

unconditionally proportional to their prices, i.e. if k 2 R.

In this context, the conditional RF will be given by the single element R�, which was de�ned

in (8). On the other hand, the risky part of the elements of the conditional SF can be obtained by

conditionally scaling R�. As a result, for each signal value the conditional SF will be represented

by two straight lines in [E(mjG);
p
V ar(mjG)] space that touch at the horizontal axis when

c = k�1. The duality between the straight lines that characterise mC(c) and the point pC(�)

relies on the fact that the return corresponding to the traded part of any mC(c) is always R�.

A similar type of duality applies for the pairs unconditional RF/extended SF and extended

RF/unconditional SF. Speci�cally, the unconditional RF will be given by the same single point

R� for the reasons explained when we discussed the conditional RF in the presence of a riskless

asset. Further, the extended SF will now be given by two straight lines in [E(m);
p
V ar(m)]

space that touch the horizontal axis at c = E(k�1) because the scaling of R� is non-random.

In contrast, there are no relevant changes in the unconditional SF and the extended RF with

respect to the general case. However, if k 2 R, then the unconditional SF will be given by two

straight lines in [E(m);
p
V ar(m)] space that touch the horizontal axis at c = k�1, and the

extended RF will be the single point R�e de�ned in (B1) with E(R
�
e) = E(R�) = k.

The situation is slightly di¤erent when we consider passive frontiers for x, which again do

not su¤er any relevant changes unless k 2 R or N = 1. It is only in these circumstances that we

�nd the mirror image situation to the safe asset case, in that the passive RF will collapse to a

single point, while the passive SF will be given by two straight lines in [E(m);
p
V ar(m)] space.
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A.3 Zero-cost Portfolios

Let us �nally study the situation in which all primitive assets are arbitrage portfolios, so

that C(xjG) = 0. This case is quite common in empirical work, as asset payo¤s are routinely

transformed into excess returns in the presence of a (conditionally) riskless asset. From the point

of view of mean-variance frontiers, the main implication of dealing with arbitrage portfolios is

that the active cost representing portfolios de�ned in (5) is zero. Therefore, there is one-fund

spanning in every frontier and consequently, all of them can be represented by straight lines that

start from the origin in the appropriate mean-standard deviation space.

More speci�cally, since the cost of any portfolio of x is 0 in this case, the portfolio frontiers

problems can be de�ned as usual (see problems (C1), (11) and (17)) after dropping the cost

constraints. In other words, each problem consists now in minimising the second moment of

portfolios given a constraint on their �rst moment. As a result, the unconditional and extended

RFs coincide in this context since their only di¤erence is the cost constraint. The conditional

RF is constructed by a conditional scaling of p� and the unconditional RF by an unconditional

scaling, while the passive RF for x would scale the passive counterpart to p�.

Interestingly, if the N arbitrage portfolios under analysis correspond to the excess returns of

N risky assets over an unconditionally riskless asset, the slope of the unconditional/extended RF

discussed in the previous paragraph will coincide with the slope of the unconditional RF discussed

in the safe asset section, which combines the original N risky returns and the unconditionally

safe asset. Therefore, the maximum unconditional Sharpe ratios attainable in both situations

will also be the same, and will exceed the unconditional Sharpe ratios in Bekaert and Liu (2003)

and Abhyankar, Basu and Stremme (2007) mentioned in the same section.

On the other hand, the pricing constraints of the SDF frontiers (see problems (C3), (13) and

(20)) imply that any valid SDF must be orthogonal to x. Moreover, since P = Pc in this context,

the unconditional and extended SFs will also coincide. The conditional SF is constructed by a

conditional scaling of 1 � p�, and the unconditional SF by an unconditional scaling, while the

passive SF for x would scale 1 minus the passive counterpart to p�. This means that we need

a normalisation of candidate SDFs in testing their validity with excess returns; see Cochrane

(2001, pages 256-258), Balduzzi and Robotti (2008) or Peñaranda and Sentana (2015). Finally,

we can also add managed portfolios of zero cost to this set-up, as Bekaert and Hodrick (1992)

did to estimate the slope of the passive SF.
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Table 1: Tests of First Moment Predictability of the Fama-French Factors

Sieve Linear

Panel A. SMD

MK 0.5 5.8

SMB 0.8 7.0

HML 20.3 87.7

Joint 0.1 7.9

Panel B. Standard GMM

MK 0.8 7.9

SMB 0.2 4.9

HML 57.7 86.7

Joint 0.0 6.0

Note: Overidentifying restrictions tests of the conditional moments (33). Panel A and B display the

CU-SMD and the CU-GMM test, respectively. The �rst column assesses orthogonality with respect to

B-splines constructed from the predictors, while the last column orthogonality with respect to linear

terms. For each test, the p-value (%) is shown.
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Table 2: Tests of Passive Tangency on the Unconditional RF and SF

Sieve Linear

Panel A. SMD

RF 2.5 18.8

SF 0.0 1.7

Panel B. Standard GMM

RF 10.8 15.0

SF 0.2 5.6

Note: Overidentifying restrictions tests of the conditional moments (34) and (28). Panel A and B

display the CU-SMD and the CU-GMM test, respectively. The �rst column studies managed portfolios

constructed from B-splines, while the last column studies linear portfolios. There are two lines, the upper

one studies constant cost managed portfolios (associated to the unconditional RF), while the lower one

studies unrestricted managed portfolios (associated to the unconditional SF). For each test, the p-value

(%) is shown.
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Table 3: Tests of Passive Tangency on the Unconditional RF and SF

with the �ve Fama-French factors
Sieve Linear

Panel A. SMD

RF 0.0 0.0

SF 0.0 0.0

Panel B. Standard GMM

RF 0.7 0.2

SF 0.5 0.3

Note: Overidentifying restrictions tests of the conditional moments (34) and (28) when the vector

of excess returns includes the two additional factors. Panel A and B display the CU-SMD and the

CU-GMM test, respectively. The �rst column studies managed portfolios constructed from B-splines,

while the last column studies linear portfolios. There are two lines, the upper one studies constant

cost managed portfolios (associated to the unconditional RF), while the lower one studies unrestricted

managed portfolios (associated to the unconditional SF). For each test, the p-value (%) is shown.
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Table 4: Tests of Passive Spanning of the Unconditional RF and SF

Sieve Linear

Panel A. SMD

RF 0.0 0.6

SF 0.0 0.0

Panel B. Standard GMM

RF 0.3 4.2

SF 0.0 0.0

Note: Overidentifying restrictions tests of the conditional moments (29) and (??). Panel A and B

display the CU-SMD and the CU-GMM test, respectively. The �rst column studies managed portfolios

constructed from B-splines, while the last column studies linear portfolios. There are two lines, the upper

one studies constant cost managed portfolios (associated to the unconditional RF), while the lower one

studies unrestricted managed portfolios (associated to the unconditional SF). For each test, the p-value

(%) is shown.
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Figure 1: Mean-Variance Frontiers across Type and Information

Note: Columns are arranged by a decreasing use of conditioning information, while for each column

the last two rows couple the appropriate dual frontiers. The Conditional Return Frontier (CRF) and

Conditional SDF Frontier (CSF) in the 1st column, which are constructed from active portfolio strategies,

are dual. The Unconditional Return Frontier (URF) in the 2nd column and the Unconditional SDF

Frontier (USF) in the 3rd column are subsets of the CRF and CSF, but they are not dual. Their duals

are the Extended SDF Frontier (ESF) and the Extended Return Frontier (ERF), respectively. There are

several dual pairs of Passive Return Frontiers (PRFs) and Passive SDF Frontiers (PSFs) constructed as

�xed-weight combinations of di¤erent managed portfolios. The 6th column is obtained without managed

portfolios. With all the relevant managed portfolios, the PRF/PSF converge to the ERF/USF (5th

column), but if only constant cost managed portfolios are used they converge to the URF/ESF (4th

column)
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Figure 2: Unconditional and Extended Frontiers for Returns and SDFs

Note: The left mean-variance diagram displays the Unconditional and Extended Return Frontiers

(URF and ERF, respectively). The right one displays the Unconditional and Extended SDF Frontiers

(USF and ESF, respectively). The square and triangle represent the minimum distance points between

extended and unconditional frontiers. Means and variances are annualised.
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Figure 3: Unconditional, Extended and Passive Frontiers for Returns and SDFs

Note: The left mean-variance diagram displays the Unconditional and Extended Return Frontiers

(URF and ERF, respectively). The right one displays the Unconditional and Extended SDF Frontiers

(USF and ESF, respectively). PRF0 and PSF0 denote the passive frontiers for x, while PRF1 and PSF1

denote the passive frontiers for (1; z0)0 
 x. Means and variances are annualised.
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Figure 4: Passive Tangency on the Unconditional SF

Note: The left mean-variance diagram displays the Unconditional and Extended Return Frontiers

(URF and ERF, respectively). The right one displays the Unconditional and Extended SDF Frontiers

(USF and ESF, respectively). The passive frontiers, PRF and PSF, are also displayed. Proposition

6.2 states the conditions that guarantee that the USF shares an element with the Hansen-Jagannathan

frontier based on returns (PSF). Means and variances are annualised.
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Figure 5: Passive Spanning of the Unconditional RF

Note: The left mean-variance diagram displays the Unconditional and Extended Return Frontiers

(URF and ERF, respectively). The right one displays the Unconditional and Extended SDF Frontiers

(USF and ESF, respectively). The passive frontiers, PRF and PSF, are also displayed. Proposition 7.1

states the conditions that guarantee that the URF and the Markowitz frontier (PRF) are equal. Means

and variances are annualised.
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