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Abstract

This paper analyzes the effects on ex ante risk-shifting incentives and ex post
Þscal costs of three policies that are frequently used in dealing with banking
crises, namely, forbearance from prudential regulations, extension of blanket
deposit guarantees, and provision of unrestricted liquidity support. In the
context of a simple model of information-based bank runs, where banks are
funded with both insured and uninsured deposits, the paper shows that the
expectation of implementation of any of these policies leads to a reduction in
the interest rate of uninsured deposits and in the bank�s incentives to take risk,
but increases the expected Þscal costs of the crises.
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1 Introduction

Recent cross-country studies by Honohan and Klingebiel (2003) and Claessens, Klinge-

biel and Laeven (2004) examine to what extent the Þscal costs incurred in a banking

crisis can be attributed to speciÞc measures adopted by the governments during the

early stages of the crisis, and conclude that �blanket deposit guarantees, open-ended

liquidity support, repeated recapitalizations, debtor bailouts and regulatory forbear-

ance add signiÞcantly and sizably to (Þscal) costs.�1

The purpose of this paper is to provide a theoretical framework that can help to

understand the different effects of these policies on ex ante risk-shifting incentives and

ex post Þscal costs. SpeciÞcally, we set up a model of information-based bank runs in

which there is a proÞt-maximizing bank that is funded with insured and uninsured

deposits that require an expected return that is normalized to zero. There is a moral

hazard problem in that after raising these funds, the bank privately chooses the risk

of its loan portfolio. Subsequently, the uninsured depositors observe a signal that

contains information on the future return of this portfolio, and withdraw their funds

if the signal is bad. In such case, the bank is liquidated unless the government provides

the required emergency liquidity or extends the insurance to all depositors. Assuming

that the adoption of any of these measures is correctly anticipated by the depositors

and the bank, we characterize the equilibrium interest rate of the uninsured deposits

and the equilibrium choice of risk by the bank.

Our model of information-based bank runs builds on Diamond and Dybvig (1983),

Jacklin and Bhattacharya (1988) and Alonso (1996), but while they focus on the char-

acterization of the optimal risk-sharing arrangements between two types of consumers

(early and late), our focus is on the analysis of the strategic interaction between the

uninsured depositors and the bank. To simplify the presentation, we do not have a

short-term safe technology, and to provide a richer model of risk-shifting, we intro-

duce a one-dimensional set of long-term risky technologies that differ in their success
1Honohan and Klingebiel (2003, p. 1540).
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probability and their success return. Finally, we also assume that deposit insurance

premia are equal to zero.

The equilibrium of this model is given by the solution of two equations that corre-

spond to the Þrst-order condition that characterizes the bank�s choice of risk and the

uninsured depositors� participation constraint. Two important results are obtained.

First, a minimum proportion of insured deposits may be required to guarantee the

existence of an equilibrium. Second, this minimum proportion is decreasing in the

quality of the uninsured depositors� information, so the deposit insurance subsidy

may be particularly important to realize the beneÞts of intermediated Þnance in less

developed economies.2

To understand these results it is important to realize that in our model the higher

the proportion of insured deposits, the lower the bank�s incentives to take risk. The

intuition for this can be explained as follows. Consider a setup in which a risk-neutral

bank raises a unit of deposits at an interest rate c, and invests these funds in an asset

that yields a gross return R(p) with probability p, and zero otherwise. Moreover,

suppose that p is privately chosen by the bank at the time of investment, and that

R(p) is decreasing in p, so riskier investments yield a higher success return. Under

limited liability the bank chooses p in order to maximize p[R(p)− (1+ c)]. Assuming
that R(p) is also concave, the bank�s choice of p is characterized by the Þrst-order

condition R(p)+pR0(p) = 1+c. Since the left-hand-side of this condition is decreasing

in p, we conclude that the higher the value of c the lower the value of p chosen by the

bank. In other words, higher deposit rates lead the bank to invest in a portfolio with

a lower success probability and a higher success return.

Applying this result to a situation in which the bank is funded with both insured

and uninsured deposits, and assuming that the cost of insured deposits (including any

deposit insurance premia) is lower than the cost of uninsured deposits,3 it trivially
2Cull, Senbet and Sorge (2000) Þnd that explicit deposit insurance favorably impacts the level of

Þnancial activity, but only in countries with strong institutional development.
3Obviously, with actuarially fair deposit insurance premia c would be independent of the propor-

tion of insured deposits. But actuarially fair premia are difficult to implement in a context where
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follows that the higher the proportion of insured deposits the lower the average interest

rate c and hence the higher the success probability p chosen by the bank.4 Moreover,

to the extent that the adoption of crises policies that bail out uninsured depositors

(such as unrestricted liquidity support or blanket deposit guarantees) are anticipated,

these depositors will require a lower interest rate and so the bank will have an incentive

to choose safer investments.

It should be noticed that the positive relationship between the bank�s funding

costs and its portfolio risk is not really new, since it is a simple implication of the

analysis in the classical paper on credit rationing of Stiglitz and Weiss (1981). In

particular, they show how �higher interest rates induce Þrms to undertake projects

with lower probabilities of success but higher payoffs when successful.�5 Applying the

same argument to banks instead of Þrms gives the key result.

Our analysis of the policies for banking crises starts with a benchmark in which

such accommodative policy measures are not implemented. In this benchmark, there

is a supervisor that observes a signal on the future return of the bank�s portfolio. A

bad supervisory signal is interpreted as the Þnding that the bank is violating some key

prudential regulations. In the benchmark model the bank is closed when either the

signal observed by the uninsured depositors is bad, so they run on the bank, or the

signal observed by the supervisor is bad, in which case the bank�s license to operate

is withdrawn.

Against this benchmark, we proceed to analyze three policies that the supervisor

may implement at the outset of a crisis. Under forbearance, we consider a situation

in which the uninsured depositors observe a good signal, so they do not run on the

bank, and the supervisor observes a bad signal but nevertheless allows the bank to

continue operating. Unlike forbearance, the other two policies are responses to a

crisis situation in which the uninsured depositors run on the bank and the supervisor

the risk chosen by the bank is not observable.
4In line with this argument, Demirgüç-Kunt and Huizinga (2004) show that banks� interest

expenses are lower in countries with explicit deposit insurance systems.
5Stiglitz and Weiss (1981, p. 393).
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reacts by either extending deposit insurance to all depositors or providing unrestricted

liquidity to the bank so it can cover the withdrawals. We show that the qualitative

effect of the three policies is the same: if they are correctly anticipated, in equilibrium

the uninsured depositors will require a lower interest rate, and the bank will choose

a higher success probability. We also show that the Þscal cost associated to any of

these policies is higher than the Þscal cost in the benchmark model, except when the

proportion of insured deposits is very high, because in this case the early closure of

the bank implies a large compensation to the insured deposits that would be saved

if the bank were allowed to stay open and eventually succeeded. Finally, we analyze

a restricted liquidity support policy in which there is a central bank that acts as a

traditional lender of last resort, supporting the bank when there is run but only if

the supervisory signal is good. This policy is associated with smaller incentive effects

and smaller (even negative) Þscal costs.

It is important to stress the limitations of our results. We are not providing a

normative analysis because we do not derive the optimal policy in terms of deposit

insurance and crisis support. This would require to specify a social welfare function in

which the beneÞts of prudent bank behavior would be traded off against the social cost

of the public funds required to cover the losses associated with bank failures.6 Also,

our positive analysis is somewhat incomplete because the decision of the supervisor is

not endogenized. A possible way to do this would be to follow the political economy

approach of Repullo (2000, 2003) and Kahn and Santos (2001), where government

agencies have objective functions that are related to their surpluses or deÞcits. But

this is not done in the paper. Our objective is more modest, namely to provide a

simple framework that yields some new insights that can guide future work in this

Þeld. In addition, it is important to note that our analysis is based on a model of a

single bank, and so it cannot address contagion and systemic issues.7 Incorporating
6Obviously, the optimal level of protection would be increasing with the efficiency of the tax

system, reaching full coverage if lump-sum taxes were feasible.
7See Goodhart and Illing (2002, Part III) for various models of bank runs and contagion.
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these issues into our framework seems a priority for future research.

The paper is organized as follows. Section 2 presents the model of information-

based runs. Section 3 analyzes the effects of the policies for dealing with banking

crises, and Section 4 offers some concluding remarks. Proofs of the results are con-

tained in the Appendix.

2 A Model of Information-Based Bank Runs

Consider an economy with three dates (t = 0, 1, 2) and three classes of agents: a

large number of risk-neutral depositors, a risk-neutral bank, and a government agency

called the supervisor. The bank raises one unit of deposits at t = 0, and invests these

funds in a risky asset that yields a random gross return R at t = 2. The probability

distribution of R is described by

R =

(
R0,

R1,

with probability 1− p,
with probability p,

(1)

where p ∈ [0, 1] is a parameter chosen by the bank at t = 0. We assume that R0 <
1 < R1, so 1 − p measures the riskiness of the bank�s portfolio. The risky asset is
illiquid in that there is no secondary market for it to be traded at t = 1. However,

the asset can be fully liquidated at t = 1, which yields a liquidation value L ∈ (0, 1).
Depositors are interested in consuming at t = 2, and have the option of withdraw-

ing their funds at t = 1 and invest them in a safe asset with zero net return.8 A

given fraction D ∈ (0, 1) of the bank�s deposits are insured by the supervisor, while
the rest, 1 −D, are uninsured. Uninsured deposits are assumed to be junior to the
insured deposits. To simplify the presentation, deposit insurance premia will be set

equal to zero.

Both insured and uninsured depositors require an expected net return equal to

the return of the safe asset. Consequently, the interest rate of the insured deposits
8The withdrawal option could be justiÞed by introducing preference shocks à la Diamond-Dybvig

(1983), so the early consumers would use it. In this case, the bank should invest a fraction of their
portfolio in the safe asset. For simplicity, we will not distinguish between early and late consumers.
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will be zero, while the interest rate of the uninsured deposits, denoted by r, will be

such that their expected net return is equal to zero.

At t = 1 uninsured depositors observe a signal s ∈ {s0, s1} on the return of the
bank�s risky asset. We assume that the uninsured depositors run on the bank if and

only if they observe the (bad) signal s0.9 In such case, the bank is liquidated at t = 1,

and since they are junior to the insured deposits they get max{L−D, 0}.
We introduce the following assumptions.

Assumption 1 R0 = 0 and R1 = R(p), where R(p) is decreasing and concave, with

R(1) ≥ 1 and R(1) +R0(1) ≤ 0.

Assumption 2 Pr(s0 | R0) = Pr(s1 | R1) = q ∈ [12 , 1].

Assumption 1 implies that the expected Þnal return of the risky asset, E(R) =

pR(p), reaches a maximum at bp ∈ (0, 1] which is characterized by the Þrst-order

condition

R(bp) + bpR0(bp) = 0. (2)

To see this, notice that the Þrst derivative of pR(p) with respect to p equals R(0) > 0

for p = 0 and R(1)+R0(1) ≤ 0 for p = 1, and the second derivative satisÞes 2R0(p)+
pR00(p) < 0. Thus, increases in p below (above) bp increase (decrease) the expected
Þnal return of the risky asset. Moreover, we have bpR(bp) ≥ R(1) ≥ 1. Assumption

1 is borrowed from Allen and Gale (2000, Chapter 8), and allows to analyze in a

continuous manner the risk-shifting effects of different institutional settings.

Assumption 2 introduces a parameter q that describes the quality of the uninsured

depositors� information.10 This information is only about whether the return R of the

bank�s risky asset will be low (R0) or high (R1), and not about the particular value

R(p) taken by the high return. By Bayes� law, it is immediate to show that

Pr(R1 | s0) = (1− q)p
q + (1− 2q)p, (3)

9See Alonso (1996) for a formal analysis of the decision of the uninsured depositors.
10More generally, we could have Pr(s0 | R0) 6= Pr(s1 | R1), but this would not change the results.
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and

Pr(R1 | s1) = qp

1− q − (1− 2q)p. (4)

Hence when q = 1
2
we have Pr(R1 | s0) = Pr(R1 | s1) = p, so the signal is uninfor-

mative, while when q = 1 we have Pr(R1 | s0) = 0 and Pr(R1 | s1) = 1, so the signal
completely reveals whether the return R will be R0 or R1. Since Pr(R1 | s0) < p <
Pr(R1 | s1) for p < 1 and q > 1

2
, s0 and s1 will be called the bad and the good signal,

respectively.

By limited liability, the bank gets a zero payoff if it is liquidated at t = 1 or fails

at t = 2, and gets R(p) − D − (1 − D)(1 + r) if it succeeds at t = 2. This event

happens when the uninsured depositors observe the good signal s1 (so they do not

run at t = 1) and the return of the risky asset is R1 = R(p). By Assumption 2 we

have Pr(s1, R1) = Pr(s1 | R1) Pr(R1) = qp, so the bank�s payoff function is

V (p; r) = qp[R(p)−D − (1−D)(1 + r)], (5)

The uninsured depositors get max{L−D, 0} when they observe the bad signal s0
and run on the bank at t = 1, they get (1 − D)(1 + r) when the bank succeeds at
t = 2 (that is, when they observe the good signal s1 and the return of the risky asset

is R1), and they get zero when the bank fails at t = 2 (that is, when they observe

the good signal s1 and the return of the risky asset is R0). By Assumption 2 we have

Pr(s0) = q + (1− 2q)p and Pr(s1, R1) = Pr(s1 | R1) Pr(R1) = qp, so the payoff of the
uninsured depositors is given by

U(r; p) = [q + (1− 2q)p] max{L−D, 0}+ qp(1−D)(1 + r). (6)

An equilibrium is a pair (r∗, p∗), where r∗ is the interest rate of the uninsured

deposits and p∗ is the success probability chosen by the bank, such that p∗ maxi-

mizes the bank�s payoff function V (p; r∗) and r∗ satisÞes the uninsured depositors�

participation constraint

U(r∗; p∗) = 1−D. (7)
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In this deÞnition it is important to realize that the interest rate r∗ is set before

the bank�s choice of risk, and is such that, taking into account the bank�s equilibrium

success probability p∗, the expected net return of the uninsured deposits is equal to

zero.

The Þrst-order condition that characterizes the equilibrium success probability p∗

is

R(p∗) + p∗R0(p∗) = D + (1−D)(1 + r∗). (8)

Since R(p) + pR0(p) is decreasing by Assumption 1, it follows from (2) and (8) that

p∗ is strictly below the Þrst-best bp, so the bank will be choosing too much risk. This
is just the standard risk-shifting effect that follows from debt Þnancing under limited

liability.

An equilibrium exists if equations (7) and (8) have a solution. It is easy to check

that the interest rate r∗ that satisÞes the participation constraint (7) is decreasing in

the success probability p∗, because the higher the success probability the lower the

interest rate required by the uninsured depositors. Also, the success probability p∗

that solves the Þrst-order condition (8) is decreasing in the interest rate r∗, because

the higher the interest rate the lower the success probability chosen by the bank.

As shown in Figure 1, the fact that these two derivatives are negative imply that in

general we may Þnd multiple equilibria: high (low) rates induce the bank to choose

high (low) risk, rationalizing the depositors� expectations.

In cases where there are multiple equilibria, we focus on the equilibrium which is

closest to the Þrst-best bp, that is, the one with the highest value of p∗ (and the lowest
value of r∗). For this equilibrium we can prove the following result.

Proposition 1 The success probability p∗ is increasing and the interest rate r∗ is

decreasing in the proportion D of insured deposits (whenever D ≥ L) and in the

quality q of the uninsured depositors� information.

The intuition for this result is the following. When the proportion D of insured

deposits is greater than the liquidation value L, having more insured deposits reduces

8
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Figure 1: Characterization of equilibrium

the overall cost of funding. This reduces the bank�s incentives to take risk, which

translates into a lower interest rate of uninsured deposits. On the other hand, when

the proportion D of insured deposits is below L, there is an opposite effect, because

since insured deposits are senior, having more insured deposits reduces the payoff of

the uninsured depositors when they run on the bank, so they may require a higher

compensation. This may increase the bank�s overall cost of funding and, consequently,

its incentives to take risk. On the other hand, a better quality of the uninsured

depositors� information increases their expected payoff, and leads to a reduction in

the interest rate that they require, which in turn reduces the bank�s incentives to take

risk.

The supervisor has to pay to the insured depositors max{D−L, 0} when the bank
is liquidated at t = 1 and D when the bank fails at t = 2. By Assumption 2 the Þrst

event happens with probability Pr(s0) = q+ (1− 2q)p and the second event happens
with probability Pr(s1, R0) = Pr(s1 | R0) Pr(R0) = (1−q)(1−p),11 so the equilibrium
11We are implicitly assuming that D < 1, because when all deposits are insured (D = 1) the bank

is never liquidated at t = 1, in which case C∗ = Pr(R0) = 1− p∗.
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expected cost for the supervisor is given by

C∗ = [q + (1− 2q)p∗]max{D − L, 0}+ (1− q)(1− p∗)D. (9)

Since the supervisor is a government agency that does not get any income (recall that

we are assuming that deposit insurance premia are zero), this cost has to be funded

by general tax revenues, so it may be called the Þscal cost of bank failure.

The effect of an increase the proportion D of insured deposits on the Þscal cost C∗

is ambiguous because, although it directly increases the two terms in the right-hand-

side of (9), by Proposition 1 it may also increase the equilibrium success probability

p∗ chosen by the bank, an effect that operates in the opposite direction.12 In contrast,

an increase in the quality q of the uninsured depositors� information always reduces

the Þscal cost C∗, because in this case both the direct and the indirect effects go in

the same direction.13

Given that some of the comparative statics results are ambiguous, in what follows

we work out a simple example. The focus is on the qualitative effects, so we will

not calibrate the model to get plausible numerical results, but instead choose simple

functional forms and round parameter values.

SpeciÞcally, suppose that R(p) = 3 − p2, and let L = 0.50.14 Figure 2 shows the
equilibrium success probability p∗ and the corresponding Þscal cost C∗ as a function

of the proportion D of uninsured deposits and for two different values, q = 0.60 and

q = 0.65, of the quality of the uninsured depositors� information.

A number of results are worth noting. First, a minimum proportion of insured

deposits is required for the existence of an equilibrium, and this critical share is

decreasing in the quality q of the uninsured depositors� information. Second, the
12However, since C∗ = 0 for D = 0 and C∗ > 0 for D > 0, if there is an equilibrium for all D, the

Þscal cost C∗ must be increasing for some range of values of D.
13The direct effect is negative since ∂C∗/∂q = (1−p∗)[max{D−L, 0}−D]−p∗max{D−L, 0} < 0,

and the indirect effect is also negative since ∂C∗/∂p∗ = (1− 2q)max{D−L, 0}− (1− q)D < 0 and
∂p∗/∂q > 0 by Proposition 1.
14Clearly, R(p) = 3− p2 is decreasing and concave, with R(1) = 2 ≥ 1 and R(1) +R0(1) = 0 ≤ 0,

so Assumption 1 is satisÞed.
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Figure 2: Equilibrium success probabilities and Þscal costs

success probability p∗ is everywhere increasing in the proportionD of insured deposits

(even for D < L). Third, when the proportion D of insured deposits converges to

1 (full deposit insurance), the success probability p∗ converges to a limit that is

independent of the quality q of the uninsured depositors� information.15 Fourth, the

Þscal cost C∗ is everywhere increasing in the proportion D of insured deposits.16

Finally, the success probability p∗ is increasing and the Þscal cost C∗ is decreasing in

the quality q of the uninsured depositors� information. Hence having better informed

uninsured depositors also ameliorates the bank�s risk-shifting incentives, so policies

designed to increase information disclosure (like those in Pillar 3 of the new regulation

of bank capital proposed by the Basel Committee on Banking Supervision (2004)),

would be beneÞcial.

The main implication of these results is that, contrary to the conventional view, the

provision of deposit insurance serves to ameliorate the bank�s risk-shifting incentives,
15To explain this result, notice that when D tends to 1 the Þrst-order condition (8) converges to

R(p∗)+p∗R0(p∗) = 1, an equation that does not depend on q and whose solution is p∗ =
p
2/3 = 0.82.

16However, as noted in footnote 11, the Þscal cost C∗ is not continuous at D = 1. In fact, for
L = 0.50 one can show that C∗ jumps down in the limit if and only if q < p∗.

11



and hence to reduce the probability of a banking crisis. The ßip side is that deposit

insurance has a Þscal cost that is increasing in the proportion of insured deposits. To

the extent that the social cost of public funds, which derives from tax distortions, is

positive, it would be possible to derive an optimal level of insurance, but we will not

pursue this here.

A second interesting implication is that for economies with poor information (low

q), where the moral hazard problem is particularly severe, having a minimum pro-

portion of insured deposits may be essential to realize the beneÞts of intermediated

Þnance.

Summing up, we have set up a model of a bank that chooses the riskiness of its

portfolio and is funded with exogenously given proportions of insured and uninsured

deposits. The uninsured depositors observe a signal on the quality of the bank�s port-

folio, and run on the bank when the signal is bad, which leads to its early liquidation.

The interest rate of the uninsured deposits is determined by a participation constraint

that equals their expected return to a given constant. We have characterized the equi-

librium of the model and shown how it depends on the proportion of insured deposits

and the quality of the uninsured depositors� information. Although the model is de-

signed to study the effects of different policies for banking crises, some interesting

results on the beneÞcial effects on risk-shifting incentives of deposit insurance and

the quality of the uninsured depositors� information have been obtained.

3 Policies for Banking Crises

This section uses our model of information-based runs to analyze the effects of three

policies that the supervisor may implement at the outset of a crisis. Two of them,

namely extending the coverage of deposit insurance to all depositors and providing

unrestricted liquidity support to the bank, are responses to a crisis situation in which

the uninsured depositors observe the bad signal and run on the bank. The other is

different in that there is no bank run, but the supervisor has conÞdential information
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showing that the bank is not satisfying some key prudential regulations, and may

decide to act on this information or to forbear.

We assume that the supervisor observes at t = 1 a signal s0 ∈ {s00, s01} on the return
of the bank�s risky asset, which is interpreted as the outcome of banking supervision.

We make the following assumption.

Assumption 3 Pr(s00 | R0) = Pr(s01 | R1) = q0 ∈ [12 , 1] and Pr(R | s, s0) = Pr(R | s0).

Assumption 3 introduces a new parameter q0 that describes the quality of the

supervisory information. In addition, it states that adding signal s to signal s0 does

not change the conditional distribution of the return of the bank�s risky asset, so the

supervisory signal incorporates the uninsured depositor�s information.17 This implies

the following result.

Lemma 1 The quality q0 of the supervisory information is greater than or equal to

the quality q of the uninsured depositors� information. Moreover we have

δ = Pr(s0 | s00) = Pr(s1 | s01) = 1−
q0 − q
2q0 − 1 . (10)

Hence, if the two signals were perfectly correlated, we would have δ = 1 and

q0 = q. Otherwise, δ < 1 and q0 > q, which is what will be assumed henceforth.18

As before, by Bayes� law we have

Pr(R1 | s00) =
(1− q0)p

q0 + (1− 2q0)p, (11)

and

Pr(R1 | s01) =
q0p

1− q0 − (1− 2q0)p, (12)

which implies Pr(R1 | s00) < p < Pr(R1 | s01) for p < 1 and q0 > 1
2
, so s00 and s

0
1 will be

called the bad and the good signal, respectively.
17This is without loss of generality, since the uninsured depositors� signal, s0 or s1, is perfectly

correlated with their behavior, run or not run.
18Assumption 3 also implies Pr(R, s | s0) = Pr(R | s, s0) Pr(s | s0) = Pr(R | s0) Pr(s | s0), so

conditional on the supervisory signal s0, the asset return R and uninsured depositors� signal s are
independent.
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In what follows we examine the effects on risk-shifting incentives and Þscal costs

of bank failure of each of the three policies for banking crises mentioned above. Im-

portantly, we do not derive the use of any of these policies from the maximization

of an objective function for the supervisor, but simply look at their incentive and

budgetary implications.

The benchmark model for the three policies is one in which the supervisor does

nothing to prevent the failure of the bank following a run. Moreover, the bad super-

visory signal s00 is interpreted as the Þnding that the bank is not properly accounting

for the deterioration of its assets, which leads to the violation of some key prudential

regulations. Although these regulations are not spelled out in detail, it is convenient

to think about minimum capital requirements. The benchmark model also assumes

that the bank shareholders do not have the ability or the incentives to recapitalize

the bank, and that the supervisor does not forbear, which leads to the withdrawal of

the license and the closure of the bank.

Therefore, in the benchmark model the bank is liquidated at t = 1 when either

the uninsured depositors observe the bad signal s0 or the supervisor observes the bad

signal s00, an event that by Assumptions 3 and Lemma 1 happens with probability

Pr(s0 or s00) = 1− Pr(s1, s01)
= 1− Pr(s1 | s01) Pr(s01) = 1− δ[1− q0 − (1− 2q0)p]. (13)

The bank fails at t = 2 when the uninsured depositors observe the good signal s1, the

supervisor also observes the good signal s01, and the return of the risky asset is R0,

an event that by Assumption 3 and Lemma 1 happens with probability

Pr(s1, s
0
1, R0) = Pr(R0 | s1, s01) Pr(s1, s01)

= Pr(R0 | s01) Pr(s1 | s01) Pr(s01)
= Pr(s1 | s01) Pr(s01, R0)
= Pr(s1 | s01) Pr(s01 | R0) Pr(R0) = δ(1− q0)(1− p). (14)

And the bank succeeds at t = 2 when the uninsured depositors observe the good
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signal s1, the supervisor also observes the good signal s01, and the return of the risky

asset is R1, an event that by Assumption 3 and Lemma 1 happens with probability

Pr(s1, s
0
1, R1) = Pr(R1 | s1, s01) Pr(s1, s01)

= Pr(R1 | s01) Pr(s1 | s01) Pr(s01)
= Pr(s1 | s01) Pr(s01, R1)
= Pr(s1 | s01) Pr(s01 | R1) Pr(R1) = δq0p. (15)

By limited liability, the bank gets a zero payoff if it is liquidated at t = 1 or fails

at t = 2, and gets R(p) − D − (1 − D)(1 + r) if it succeeds at t = 2, so its payoff

function is given by

V 0(p; r) = δq0p[R(p)−D − (1−D)(1 + r)]. (16)

The uninsured depositors get max{L−D, 0} when the bank is liquidated at t = 1,
they get (1−D)(1+ r) when the bank succeeds at t = 2, and they get zero when the
bank fails at t = 2, so their payoff function is given by

U0(r; p) = [1− δ(1− q0 − (1− 2q0)p)]max{L−D, 0}+ δq0p(1−D)(1 + r). (17)

A equilibrium for the benchmark model is a pair (r0, p0) such that p0 maximizes the

bank�s payoff function V 0(p; r0) and r0 satisÞes the uninsured depositors� participation

constraint U0(r0; p0) = 1−D.
As in the previous section, there may be multiple equilibria, in which case we

focus on the equilibrium with the highest success probability p0, for which one can

prove the same result as in Proposition 1: p0 is increasing in the proportion D of

insured deposits whenever D ≥ L, the effect being ambiguous otherwise.
The supervisor pays to the insured depositors max{D − L, 0} when the bank is

liquidated at t = 1 and D when the bank fails at t = 2, so the Þscal cost in the

benchmark equilibrium is

C0 = [1− δ(1− q0 − (1− 2q0)p0)]max{D − L, 0}+ δ(1− q0)(1− p0)D. (18)
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We are now ready to analyze the effects of three policies that the supervisor

may implement at the outset of a crisis. Since some of the effects are ambiguous,

we rely on numerical solutions using the functional form R(p) = 3 − p2 and the
parameter values L = 0.50, q = 0.65, and q0 = 0.75, which by Lemma 1 imply

δ = Pr(s0 | s00) = Pr(s1 | s01) = 0.80.

3.1 Forbearance

Consider a situation in which at t = 1 the uninsured depositors observe the good

signal s1, so they do not run on the bank, but the supervisor observes the bad signal

s00. This is interpreted as the violation of some key prudential regulations, so the

supervisor may decide either to close the bank (the benchmark case) or to forbear.

In the forbearance case, the supervisory information is completely irrelevant.

Hence we are in the same situation as in the model of Section 2. The bank is only

liquidated at t = 1 when the uninsured depositors observe the bad signal s0, it fails

at t = 2 when they observe the good signal s1 and the return of the risky asset is R0,

and it succeeds at t = 2 when they observe the good signal s1 and the return of the

risky asset is R1. Therefore, as in (5) and (6), the payoff functions of the bank and

the uninsured depositors are given by

V F (p; r) = qp[R(p)−D − (1−D)(1 + r)], (19)

and

UF (r; p) = [q + (1− 2q)p]max{L−D, 0}+ qp(1−D)(1 + r). (20)

It is important to stress that in these expressions we are assuming that both the bank

and the uninsured depositors correctly anticipate the supervisory forbearance.

An equilibrium with forbearance is a pair (rF , pF ) such that pF maximizes the

bank�s payoff function V F (p; rF ) and rF satisÞes the uninsured depositors� participa-

tion constraint UF (rF , pF ) = 1−D.
To compare the equilibrium (rF , pF ) with the benchmark equilibrium (r0, p0) we

have to examine what happens to the two conditions that characterize these equilibria,
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namely the bank�s Þrst-order condition and the uninsured depositors� participation

constraint. Since the only difference between V 0(p; r) and V F (p; r) in (16) and (19)

is that the constant that multiplies the term p[R(p) − D − (1 − D)(1 + r)] is δq0
instead of q, it follows that the two Þrst-order conditions are identical. Therefore, in

order to compare the two equilibria we only have to Þnd out what happens to the

relationship between r and p in the participation constraints U0(r; p) = 1 − D and

UF (r; p) = 1−D, which is done in the following result.

Proposition 2 pF > p0 and rF < r0, whenever D ≥ L.

Hence, when the proportion of insured deposits is sufficiently large, regulatory

forbearance reduces the interest rate required by uninsured depositors and increases

the probability of success chosen by the bank. The intuition for this result is that

when D ≥ L the uninsured depositors only get a positive payoff if the bank succeeds
at t = 2, but since Pr(s1, R1) > Pr(s1, s01, R1) the probability of getting (1−D)(1+r)
is higher under forbearance, which in equilibrium implies a lower deposit rate and

a higher probability of success. In terms of Figure 1, the explanation is that the

participation constraint curve shifts to the left, so the chosen equilibrium moves up

along the Þrst-order condition curve. On the other hand, when D < L there is

an opposite effect, because since Pr(s0) < Pr(s0 or s00) the probability of getting

max{L−D, 0} is lower under forbearance.
The Þscal cost in the forbearance case is computed as follows. The supervisor

pays the insured depositors max{D−L, 0} when the bank is liquidated at t = 1 and
D when the bank fails at t = 2. Since Pr(s0) = q+(1−2q)pF and Pr(s1, R0) = Pr(s1 |
R0) Pr(R0) = (1− q)(1− pF ), the Þscal cost with forbearance is

CF = [q + (1− 2q)pF ]max{D − L, 0}+ (1− q)(1− pF )D. (21)

The comparison between the Þscal cost CF for the forbearance model and the Þscal

cost C0 for the benchmark model is not straightforward. The numerical solution for

our parametric speciÞcation is depicted in Figure 3, which shows the equilibrium
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Figure 3: Equilibrium success probabilities and Þscal costs in the forbearance and bench-
mark cases

success probabilities, pF and p0, and the corresponding Þscal costs, CF and C0, as a

function of the proportion D of insured deposits.

Figure 3 shows that the expectation of supervisory forbearance reduces the mini-

mum value of the proportion D of insured deposits that is required for the existence

of an equilibrium. Moreover, the success probabilities pF and p0 are everywhere in-

creasing in the proportion D of insured deposits, with pF > p0 except in the limit

when D = 1 (full deposit insurance) where pF = p0. The Þscal costs CF and C0 are

also everywhere increasing in D, with CF > C0 except for high values of D where

CF < C0. The reason for this result is that when the proportionD of insured deposits

is large, the early closure of the bank by the supervisor in the benchmark model (when

s0 = s00) implies a large compensation to the insured depositors that would be saved

if the bank were allowed to stay open and eventually succeeded.19

19This effect would not obtain for high values of the quality q0 of the supervisory information,
because in this case early closure would always be cheaper for the supervisor.
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3.2 Deposit guarantees

Consider now a situation in which, after the uninsured depositors observe the bad

signal s0 at t = 1, the supervisor may decide either to extend the insurance coverage

to all depositors or let the bank fail (the benchmark case).

If the supervisor extends the insurance regardless of the signals of the uninsured

depositors and the supervisor there will be no liquidation at t = 1. Hence the bank

gets R(p)−D− (1−D)(1 + r) with probability Pr(R1) = p, so its payoff function is
given by

V G(p; r) = p[R(p)−D − (1−D)(1 + r)]. (22)

Assuming that the supervisor only insures the principal (and not the interest

initially offered), the uninsured depositors get (1−D)(1+ r) when the bank succeeds
at t = 2, they get 1 −D when they observe the bad signal s0 and the bank fails at

t = 2 (because of the extension of the insurance coverage), and they get zero when

they observe the good signal s1 and the bank fails at t = 2 (because in this case they

are not insured). Since Pr(R1) = p and Pr(s0, R0) = Pr(s0 | R0) Pr(R0) = q(1 − p),
their payoff function is given by

UG(r; p) = q(1− p)(1−D) + p(1−D)(1 + r). (23)

As in the forbearance case, it important to stress that in (22) and (23) we are assuming

that both the bank and the uninsured depositors correctly anticipate the behavior of

the supervisor.

An equilibrium with extended deposit guarantees is a pair (rG, pG) such that pG

maximizes the bank�s payoff function V G(p; rG) and rG satisÞes the uninsured depos-

itors� participation constraint UG(rG, pG) = 1−D.
To compare the equilibrium (rG, pG) with the benchmark equilibrium (r0, p0) we

have to examine what happens to the two conditions that characterize these equilibria,

namely the bank�s Þrst-order condition and the uninsured depositors� participation

constraint. Since the only difference between V 0(p; r) and V G(p; r) in (16) and (22)
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is that the constant that multiplies the term p[R(p) − D − (1 − D)(1 + r)] is δq0
instead of 1, it follows that the two Þrst-order conditions are identical. Therefore, in

order to compare the two equilibria we only have to Þnd out what happens to the

relationship between r and p in the participation constraints U0(r; p) = 1 − D and

UG(r; p) = 1−D, which is done in the following result.

Proposition 3 pG > p0 and rG < r0, whenever D ≥ L.

The intuition for this result is that when D ≥ L the uninsured depositors get a
higher payoff when they observe the bad signal s0 and the bank fails at t = 2, because

they are covered by the extension of the insurance, and they also get a higher payoff

when they observe the good signal s1, the supervisor observes the bad signal s00, and

the bank succeeds at t = 2, because in the benchmark case the bank would have

been closed by the supervisor. In equilibrium both effects imply a lower deposit rate

and a higher probability of success. In terms of Figure 1, the explanation is that

the participation constraint curve shifts to the left, so the chosen equilibrium moves

up along the Þrst-order condition curve. On the other hand, when D < L there is

an opposite effect, because when the uninsured depositors observe the good signal

s1, the supervisor observes the bad signal s00, and the bank fails at t = 2, they get

max{L −D, 0} in the benchmark case and zero in the extended deposit guarantees
case.

The corresponding Þscal cost is computed as follows. The supervisor paysD to the

insured depositors when the bank fails at t = 2, and it pays 1−D to the uninsured

depositors when they observe the bad signal s0 and the bank fails at t = 2. Since

Pr(R0) = 1− pG and Pr(s0, R0) = Pr(s0 | R0) Pr(R0) = q(1− pG), the Þscal cost is

CG = (1− pG)D + q(1− pG)(1−D). (24)

The comparison between the Þscal cost CG for the extended deposit guarantees

model and the Þscal cost C0 for the benchmark model is in principle ambiguous.

The numerical solution for our parametric speciÞcation is depicted in Figure 4, which
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Figure 4: Equilibrium success probabilities and Þscal costs in the extended depostit guar-
antees and the benchmark cases

shows the equilibrium success probabilities, pG and p0, and the corresponding Þscal

costs, CG and C0, as a function of the proportion D of insured deposits.

Figure 4 shows that the expectation of the extension of deposit guarantees to

all depositors reduces (to zero) the minimum value of the proportion D of insured

deposits that is required for the existence of an equilibrium. The success probability

pG is slightly increasing in the proportion D of insured deposits, with pG > p0 except

in the limit when D = 1 (full deposit insurance) where pG = p0. The Þscal cost CG

is also increasing in D, with CG > C0 except for high values of D where CG < C0.

The reason for this result is that when the proportion D of insured deposits is large,

the early closure of the bank by either the uninsured depositors (when s = s0) or the

supervisor (when s0 = s00) in the benchmark model implies a large compensation to

the insured depositors, which would be saved if the bank were allowed to stay open

and eventually succeeded.
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3.3 Liquidity support

Consider next a situation in which, after the uninsured depositors observe the bad

signal s0 at t = 1, the supervisor, acting as a lender of last resort, may decide either

to provide emergency liquidity to cover the withdrawal of uninsured deposits or let

the bank fail (the benchmark case). To simplify the presentation, we assume that the

lender of last resort charges the bank the same interest rate r initially required by

the uninsured depositors.

If the supervisor provides the emergency liquidity regardless of the signals of the

uniformed depositors and the supervisor there will be no liquidation at t = 1. Hence

the bank will get R(p)−D− (1−D)(1+ r) with probability Pr(R1) = p, so its payoff
function is the same as in the case of extended deposit guarantees, that is

V L(p; r) = p[R(p)−D − (1−D)(1 + r)]. (25)

Assuming that the uninsured depositors can only claim at t = 1 the principal

(and not the interest initially offered), the uninsured depositors get 1−D when they

observe the bad signal s0 and withdraw their funds at t = 1, they get (1−D)(1 + r)
when they observe the good signal s1 and the bank succeeds at t = 2, and they

get zero when they observe the good signal s1 and the bank fails at t = 2. Since

Pr(s0) = q+(1−2q)p and Pr(s1, R1) = Pr(s1 | R1) Pr(R1) = qp, their payoff function
is given by

UL(r; p) = [q + (1− 2q)p](1−D) + qp(1−D)(1 + r). (26)

An equilibrium with unrestricted liquidity support is a pair (rL, pL) such that pL

maximizes the bank�s payoff function V L(p; rL) and rL satisÞes the uninsured depos-

itors� participation constraint UL(rL, pL) = 1−D.
To compare the equilibrium (rL, pL) with the benchmark equilibrium (r0, p0) we

note that by our previous arguments the bank�s Þrst-order conditions are identical,

so we only have to Þnd out what happens to the relationship between r and p in the

participation constraints U0(r; p) = 1−D and UL(r; p) = 1−D, which is done in the
following result.
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Proposition 4 pL > p0 and rL < r0, whenever D ≥ L.

The intuition for this result is that when D ≥ L the uninsured depositors get

a higher payoff when they observe the bad signal s0 and the bank fails at t = 2,

because they are able to withdraw their funds at t = 1, and they also get a higher

payoff when they observe the good signal s1, the supervisor observes the bad signal

s00, and the bank succeeds at t = 2, because in the benchmark case the bank would

have been closed by the supervisor. In equilibrium both effects imply a lower deposit

rate and a higher probability of success. In terms of Figure 1, the explanation is that

the participation constraint curve shifts to the left, so the chosen equilibrium moves

up along the Þrst-order condition curve. On the other hand, when D < L there is

an opposite effect, because when the uninsured depositors observe the good signal

s1, the supervisor observes the bad signal s00, and the bank fails at t = 2, they get

max{L−D, 0} in the benchmark case and zero in the unrestricted liquidity support
case.

The corresponding Þscal cost is computed as follows. The supervisor pays the

insured depositors D when the bank fails at t = 2, it loses its loan 1 −D when the

uninsured depositors observe the bad signal s0 and the bank fails at t = 2, and it

gains (1−D)rL when the uninsured depositors observe the bad signal s0 and the bank
succeeds at t = 2. Since Pr(R0) = 1−pL, Pr(s0, R0) = Pr(s0 | R0) Pr(R0) = q(1−pL),
and Pr(s0, R1) = Pr(s0 | R1) Pr(R1) = (1− q)pL, the Þscal cost is

CL = (1− pL)D + q(1− pL)(1−D)− (1− q)pL(1−D)rL. (27)

The comparison between the Þscal cost CL for the unrestricted liquidity support

model and the Þscal cost C0 for the benchmark model is in principle ambiguous. The

numerical solution for our parametric speciÞcation gives a result that is very similar

to that of the model with extended deposit guarantees depicted in Figure 4, except

for the fact that pL and CL are slightly below pG and CG.20

20The effect on p is easy to explain: From (26) and (23) it follows that UL = UG−p(1−q)(1−D)r <
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The previous analysis assumes that the supervisor directly provides the liquidity

support. An alternative setup is one in which there is a central bank, different from

the deposit insurer, that supervises the bank and is willing to support it when the

uninsured depositors observe the bad signal s0 but only if the supervisory signal is s01.

The interpretation is that the central bank requires �good banking securities� (using

Bagehot�s (1873) terminology) for its last resort lending. In addition, we assume that

the central bank does not forbear, so it closes the bank when it observes the bad

signal s00.

In this setup the bank is liquidated at t = 1 when the central bank observes the

bad signal s00, an event that happens with probability Pr(s
0
0) = q

0 + (1 − 2q0)p. The
bank fails at t = 2 when the central bank observes the good signal s01 and the return

of the risky asset is R0, an event that happens with probability Pr(s01, R0) = Pr(s
0
1 |

R0) Pr(R0) = (1− q0)(1− p). And the bank succeeds at t = 2 when the central bank
observes the good signal s01 and the return of the risky asset is R1, an event that

happens with probability Pr(s01, R1) = Pr(s01 | R1) Pr(R1) = q0p. Hence the payoff

function of the bank is given by

V CB(p; r) = q0p[R(p)−D − (1−D)(1 + r)]. (28)

The uninsured depositors get max{L−D, 0} when the central bank observes the
bad signal s00 (because the bank is liquidated at t = 1), they get 1 − D when they

observe the bad signal s0 and the central bank observes the good signal s01 (because

they are able to withdraw their funds), they get (1 − D)(1 + r) when they observe
the good signal s1, the supervisor also observes the good signal s01, and the return

of the risky asset is R1, and they get zero when they observe the good signal s1, the

supervisor also observes the good signal s01, and the return of the risky asset is R0.

Since Pr(s00) = q
0+(1−2q0)p, Pr(s0, s01) = Pr(s0 | s01) Pr(s01) = (1−δ)[1−q0−(1−2q0)p]

UG, so in terms of Figure 1 the participation constraint in the liquidity support case is shifted out
relative to the participation constraint in the deposit guarantees case, which gives pL < pG. On the
other hand, the result CL < CG is explained by the interest payment in the liquidity support case,
which compensates the decrease in p.
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and by (15) we have Pr(s1, s01, R1) = δq
0p, their payoff function is given by

UCB(r; p) = [q0 + (1− 2q0)p]max{L−D, 0}
+(1− δ)[1− q0 − (1− 2q0)p](1−D) + δq0p(1−D)(1 + r). (29)

An equilibrium with restricted (central bank) liquidity support is a pair (rCB, pCB)

such that pCB maximizes the bank�s payoff function V CB(p; rCB) and rCB satisÞes

the uninsured depositors� participation constraint UCB(rCB, pCB) = 1−D.
To compare the equilibrium (rCB, pCB) with the benchmark equilibrium (r0, p0)

we note, once again, that by our previous arguments the bank�s Þrst-order conditions

are identical, so we only have to Þnd out what happens to the relationship between r

and p in the participation constraints U0(r; p) = 1−D and UCB(r; p) = 1−D, which
is done in the following result.

Proposition 5 pCB > p0 and rCB < r0.

The intuition for this result is that the uninsured depositors get a higher payoff

when they observe the bad signal s0 and the supervisor observes good signal s01,

because they are able to withdraw their funds at t = 1, getting 1 − D instead of

max{L − D, 0} as in the benchmark case. In terms of Figure 1, the participation
constraint curve always shifts to the left, so the chosen equilibrium moves up along

the Þrst-order condition curve.

The Þscal cost for the consolidated entity comprising the central bank and the

deposit insurer is computed as follows. The deposit insurer pays the insured depositors

max{D − L, 0} when the bank is liquidated at t = 1 and D when the bank fails at

t = 2. The central bank loses its loan 1 −D when the uninsured depositors observe

the bad signal s0, the central bank observes the good signal s01, and the bank fails at

t = 2, and it gains (1−D)rCB when the uninsured depositors observe the bad signal
s0, the central bank observes the good signal s01, and the bank succeeds at t = 2.

Since Pr(s00) = q
0+(1− 2q0)pCB, Pr(s01, R0) = Pr(s01 | R0) Pr(R0) = (1− q0)(1− pCB),
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and by Assumption 3 and Lemma 1 we have

Pr(s0, s
0
1, R0) = Pr(R0 | s0, s01) Pr(s0, s01)

= Pr(R0 | s01) Pr(s0 | s01) Pr(s01)
= Pr(s0 | s01) Pr(s01, R0)
= Pr(s0 | s01) Pr(s01 | R0) Pr(R0) = (1− δ)(1− q0)(1− pCB),

and similarly Pr(s0, s01, R1) = (1− δ)q0pCB, the Þscal cost is

CCB = [q0 + (1− 2q0)pCB]max{D − L, 0}+ (1− q0)(1− pCB)D
+(1− δ)(1− q0)(1− pCB)(1−D)− (1− δ)q0pCB(1−D)rCB. (30)

The comparison between the Þscal cost CCB for the restricted liquidity support

model and the Þscal cost C0 for the benchmark model is in principle ambiguous.

The numerical solution for our parametric speciÞcation is depicted in Figure 5, which

shows the equilibrium success probabilities, pCB and p0, and the corresponding Þscal

costs, CCB and C0, as a function of the proportion D of insured deposits.

Figure 5 shows that the expectation of the provision of liquidity support by the

central bank reduces (to zero) the minimum value of the proportion D of insured

deposits that is required for the existence of an equilibrium. The success probability

pCB is increasing in the proportionD of insured deposits, with pCB > p0 except in the

limit when D = 1 (full deposit insurance) where pCB = p0. The Þscal costs CCB is

also increasing in D. Interestingly, we have CCB < C0, with CCB becoming negative

(i.e., a positive expected revenue) for low values of D. The reason for this result is

that in this case the cost to the deposit insurer is small, while the central bank is

lending only when it observes the good signal s01, which implies that interest payment

when the bank succeeds more than offsets the losses when the bank fails.

We have assumed until now that the supervisor or the central bank only charge the

normal market interest rate for their last resort lending, in contrast with the classical

doctrine on the lender of last resort put forward by Bagehot (1873) that required that
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Figure 5: Equilibrium success probabilities and Þscal costs in the restricted liquidity sup-
port and benchmark cases

�these loans should only be made at a very high interest rate.� However, the effect

of penalty rates on the bank�s choice of risk is straightforward: they increase the

expected interest payments when the bank succeeds at t = 2 and, consequently, the

bank reacts to this higher cost by choosing a higher risk and higher return portfolio.

Thus, in line with the results in Repullo (2004), penalty rates increase the bank�s

incentives to take risk.

To close this section, we brießy comment on one feature of banking in the real

world that has been absent from our model, namely bank capital. Introducing the

possibility of raising equity capital at t = 0 would not change our results, because if

the cost of capital is greater than or equal to the return required by depositors it is

never optimal for the bank owners to provide any capital. Moreover, the effect of a

minimum capital requirement k would be the same as in Repullo (2004): the bank�s

success payoff would become R(p)−(1−k)D−(1−k)(1−D)(1+r), so the Þrst-order
condition that characterizes the bank�s choice of risk would be

R(p∗) + p∗R0(p∗) = (1− k)[D + (1−D)(1 + r∗)].
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Since the left-hand-side of this expression is decreasing in p∗, it follows that capital

requirements reduce the bank�s incentives to take risk.

4 Concluding Remarks

Most of the literature on the design of the Þnancial safety net has repeatedly argued

that any form of insurance creates moral hazard and hence leads to greater risk-

taking. However, as noted by Demirgüç-Kunt and Kane (2002, p. 176), �this insight

has been persistently emphasized by academics, but mostly dismissed or denigrated

by policymakers.� This paper shows that the intuition of policymakers may not have

been wrong after all. Our result follows from two arguments: (i) insured depositors

require a lower interest rate for their funds, and (ii) as in the model of Stiglitz and

Weiss (1981) a lower cost of funding reduces the banks� incentives to take risks.

The stark contrast between our result and the extant literature deserves further

discussion. It is true that in general any form of insurance has the potential to create

a moral hazard problem. However, the point is that in the context of banking the

absence of deposit insurance does not eliminate the moral hazard that comes from

the fact that the choice of investment is done (or may be changed) after the funds

are raised, and this choice is in general not veriÞable so deposit rates cannot be

made contingent on it. The traditional story is based on the idea that even though

deposit rates cannot be made explicitly contingent on risk, monitoring by uninsured

depositors can make them contingent ex post, so by reducing the incentives to monitor

banks deposit insurance is an important source of moral hazard.

A simple way to formalize this argument would be as follows. Suppose that instead

of observing a signal s on the return of the bank�s risky asset, the uninsured depositors

observe the bank�s choice of p. Furthermore, suppose that they can make the deposit

rate r contingent on the choice of p (for example, by threatening to withdraw their

funds). In this case, the bank would maximize its payoff function

p[R(p)−D − (1−D)(1 + r(p))]
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subject to the uninsured depositors� participation constraint

p(1−D)(1 + r(p)) = 1−D.

Substituting this constraint into the bank�s objective function yields

p[R(p)−D]− (1−D),

so the Þrst-order condition that characterizes the success probability ep chosen by the
bank is

R(ep) + epR0(ep) = D. (31)

Since we have assumed that R(p)+ pR0(p) is decreasing, it follows from (31) that ep is
decreasing in the proportion D of insured deposits. Moreover, comparing (31) with

(2), it also follows that the success probability ep chosen by the bank converges to the
Þrst-best bp when the proportion of insured deposits D tends to zero. Thus, in this

setting having no deposit insurance would be optimal.

Two objections can be made to this argument. The standard one is that small

depositors do not have the ability or the incentives to monitor banks.21 The non-

standard one that we are putting forward in this paper is that one should distinguish

between the monitoring of actions and the monitoring of the consequences of those

actions.22 As noted above, the former eliminates the moral hazard problem in the

absence of deposit insurance. The latter, however, does not eliminate this problem.

In our model, this monitoring yields signal s which changes the bank�s payoff function

from

p[R(p)−D − (1−D)(1 + r)]

to

qp[R(p)−D − (1−D)(1 + r)],
21As forcefully argued by Corrigan (1991, pp. 49-50), �I think it is sheer fantasy to assume that

individual investors and depositors �and perhaps even large and relatively sophisticated investors and
depositors� can make truly informed credit judgements about highly complex Þnancial instruments
and institutions.�
22See Prat (2003) for a detailed discussion of the related distinction between signals on actions

and signals on the consequences of actions.
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where q = Pr(s1 | R1) is the quality of the uninsured depositors� information. Clearly,
multiplying the payoff function by a constant does not have any effect on the Þrst-

order condition that characterizes the bank�s choice of risk. Moreover, the higher

the proportion of insured deposits D the lower the bank�s average cost of funds, and

hence the lower the banks� incentives to take risks.

Since arguably the second is the most plausible type of monitoring,23 we conclude

that there should be no presumption that deposit insurance worsens the bank�s risk-

shifting incentives.24 Similarly, accommodative resolution policies for banking crises

need not induce banks to take greater risks. On the contrary, to the extent that they

reduce the interest rate required by uninsured depositors, they could in fact ameliorate

the bank�s risk-shifting incentives, but at the expense of higher Þscal costs. At any

rate, this is an important policy area where further research, both theoretical and

empirical, is much needed.
23Also, this is the one that has been studied in the literature. For example, Martinez-Peria

and Schmukler (2001) show that depositors in Argentina, Chile, and Mexico punish banks when
their fundamentals deteriorate (not when they pursue riskier strategies), both by withdrawing their
deposits and by requiring higher interest rates.
24Interestingly, Gropp and Vesala (2004) Þnd evidence that the introduction of explicit deposit

insurance in the European Union may have signiÞcantly reduced banks� risk-taking.
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Appendix

Proof of Proposition 1 Differentiating (7) and (8) gives·
a11 a12
a21 a22

¸ ·
dr∗

dp∗

¸
=

·
a13 a14
a23 0

¸ ·
dD
dq

¸
,

where

a11 = −qp∗(1−D) < 0,
a12 = (2q − 1)max{L−D, 0}− q(1−D)(1 + r∗)

< (2q − 1)(1−D)− q(1−D) = (q − 1)(1−D) < 0,
a13 = 1− [q + (1− 2q)p∗]− qp∗(1 + r∗)

= [q + (1− 2q)p∗]
µ
max{L−D, 0}

1−D − 1
¶
< 0, if D < L,

a13 = 1− qp∗(1 + r∗) = 0, if D ≥ L,
a14 = (1− 2p∗)max{L−D, 0}+ p∗(1−D)(1 + r∗) > 0, if p ≤ 1

2
,

a14 = (1− 2p∗)max{L−D, 0}+ p∗(1−D)(1 + r∗)
> (1− 2p∗)(1−D) + p∗(1−D) = (1− p∗)(1−D) > 0, if p > 1

2
,

a21 = −(1−D) < 0,
a22 = 2R0(p∗) + p∗R00(p∗) < 0,

a23 = −r∗ < 0.

Since the equilibrium with the highest value of p∗ (and the lowest value of r∗) is

characterized by the condition a11a22 − a12a21 > 0, we conclude that
∂r∗

∂D
=

a13a22 − a12a23
a11a22 − a12a21 ≶ 0 and

∂p∗

∂D
=
a11a23 − a13a21
a11a22 − a12a21 ≶ 0, if D < L,

∂r∗

∂D
=

−a12a23
a11a22 − a12a21 < 0 and

∂p∗

∂D
=

a11a23
a11a22 − a12a21 > 0, if D ≥ L,

∂r∗

∂q
=

a14a22
a11a22 − a12a21 < 0 and

∂p∗

∂q
=

−a14a21
a11a22 − a12a21 > 0.
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Proof of Lemma 1 By the deÞnition of conditional probabilities and Assumption

3 we have

Pr(s | R, s0) = Pr(R | s, s0) Pr(s | s0)
Pr(R | s0) = Pr(s | s0),

which implies

Pr(s | R) = Pr(s | R, s00) Pr(s00 | R) + Pr(s | R, s01) Pr(s01 | R)
= Pr(s | s00) Pr(s00 | R) + Pr(s | s01) Pr(s01 | R).

Substituting s = s0,s1 and R = R0, R1 in this result, and using the deÞnitions of q

and q0, we get the following system linear equations:

q = Pr(s0 | s00)q0 +Pr(s0 | s01)(1− q0),
1− q = Pr(s1 | s00)q0 +Pr(s1 | s01)(1− q0),

q = Pr(s1 | s00)(1− q0) + Pr(s1 | s01)q0,
1− q = Pr(s0 | s00)(1− q0) + Pr(s0 | s01)q0,

whose solution gives

δ = Pr(s0 | s00) = Pr(s1 | s01) = 1−
q0 − q
2q0 − 1 .

Moreover, since δ is a probability we have δ ≤ 1, which implies q0 ≥ q.

Proof of Proposition 2 Using the fact that by Assumptions 2 and 3 and Lemma

1 we have

Pr(s0 or s00) = Pr(s0) + Pr(s
0
0)− Pr(s0, s00)

= Pr(s0) + Pr(s
0
0)− Pr(s0 | s00) Pr(s00)

= q + (1− 2q)p+ (1− δ)[q0 + (1− 2q0)p],

so (17) can also be written as

U0(r; p) = [q+(1−2q)p+(1− δ)(q0+(1−2q0)p)]max{L−D, 0}+ δq0p(1−D)(1+ r).
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But then using the deÞnition (20) of UF (r; p) we have

U0(r; p) = UF (r; p) + (1− δ)[q0 + (1− 2q0)p)]max{L−D, 0}
−(q − δq0)p(1−D)(1 + r).

Since q − δq0 = (1− δ)(1− q0) > 0 by the proof of Lemma 1, if max{L −D, 0} = 0
we have U0(r; p) < UF (r; p), so the participation constraint in the forbearance case

is shifted to the left, which implies pF > p0 and rF < r0. On the other hand, if

max{L−D, 0} > 0 the second term in the previous expression is positive while the

third is negative, so we have U0(r; p) ≷ UF (r; p), and the result is ambiguous.

Proof of Proposition 3 Using the expression of U0(r; p) in the proof of Proposition

2 and the deÞnition (23) of UG(r; p) we have

U0(r; p) = UG(r; p) + [(1− q)p+ (1− δ)(q0 + (1− 2q0)p)]max{L−D, 0}
−q(1− p)[(1−D)−max{L−D, 0}]− (1− δq0)p(1−D)(1 + r).

Hence, if max{L − D, 0} = 0 we have U0(r; p) < UG(r; p), so the participation

constraint in the unlimited deposit guarantees case is shifted to the left, which implies

pG > p0 and rG < r0. On the other hand, if max{L −D, 0} > 0 the second term in

the previous expression is positive while the third and the fourth are negative, so we

have U0(r; p) ≷ UG(r; p), and the result is ambiguous.

Proof of Proposition 4 Using the expression of U0(r; p) in the proof of Proposition

2 and the deÞnition (26) of UL(r; p) we have

U0(r; p) = UL(r; p) + (1− δ)[q0 + (1− 2q0)p]max{L−D, 0}
−[q + (1− 2q)p][(1−D)−max{L−D, 0}]− (q − δq0)p(1−D)(1 + r).

Since q− δq0 = (1− δ)(1− q0) > 0 by the proof of Lemma 1, if max{L−D, 0} = 0 we
have U0(r; p) < UL(r; p), so the participation constraint in the unrestricted liquidity

support case is shifted to the left, which implies pL > p0 and rL < r0. On the other
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hand, if max{L − D, 0} > 0 the second term in the previous expression is positive

while the third and the fourth are negative, so we have U0(r; p) ≷ UL(r; p), and the
result is ambiguous.

Proof of Proposition 5 Using the deÞnitions (17) and (26) of U0(r; p) and UL(r; p)

we have

U0(r; p) = UCB(r; p)−(1−δ)[1−q0−(1−2q0)p][(1−D)−max{L−D, 0}] < UCB(r; p).

Hence, the participation constraint in the central bank liquidity support case is shifted

to the left, which implies pCB > p0 and rCB < r0.
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