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Abstract

This paper studies the strategic interaction between a bank whose deposits are
randomly withdrawn, and a lender of last resort (LLR) that bases its decision
on supervisory information on the quality of the bank’s assets. The bank is
subject to a capital requirement and chooses the liquidity buffer that it wants
to hold and the risk of its loan portfolio. The equilibrium choice of risk is shown
to be decreasing in the capital requirement, and increasing in the interest rate
charged by the LLR. Moreover, when the LLR does not charge penalty rates,
the bank chooses the same level of risk and a smaller liquidity buffer than in
the absence of a LLR. Thus, in contrast with the general view, the existence of
a LLR does not increase the incentives to take risk, while penalty rates do.
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1 Introduction

From their inception, central banks have assumed as one of their key responsibilities

the provision of liquidity to banks unable to find it elsewhere. The classical doctrine

on the lender of last resort (LLR) was put forward by Bagehot (1873, pp. 96-97):

“Nothing, therefore, can be more certain than that the Bank of England... must in

time of panic do what all other similar banks must do.... And for this purpose there

are two rules: First. That these loans should only be made at a very high rate of

interest.... Secondly. That at this rate these advances should be made on all good

banking securities, and as largely as the public ask for them.” The contemporary

literature on the LLR has disagreed on whether the aim of “staying the panic” may

be achieved by open market operations (see, for example, Goodfriend and King,

1988, or Kaufman, 1991), or it requires lending to individual banks (see, for example,

Flannery, 1996, or Goodhart, 1999).1 However, both sides seem to agree on the

proposition that such lending creates a moral hazard problem. As argued by Solow

(1982, p. 242): “The existence of a credible LLR must reduce the private cost of risk

taking. It can hardly be doubted that, in consequence, more risk will be taken.”

The purpose of this paper is show that this proposition is not generally true.

Specifically, we model the strategic interaction between a bank and a LLR. The bank

is funded with insured deposits and equity capital, is subject to a minimum capital

requirement, and can invest in two assets: a safe and perfectly liquid asset, and a

risky and illiquid asset, whose risk is privately chosen by the bank. Deposits are

randomly withdrawn. If the withdrawal is larger than the funds invested in the safe

asset (the liquidity buffer), the bank will be forced into liquidation unless it can

secure emergency lending from the LLR. In this setting, we show that when the LLR

does not charge penalty rates, the bank chooses the same level of risk and a smaller

liquidity buffer than in the absence of a LLR. Moreover, the equilibrium choice of risk

is increasing in the penalty rate.
1All these references (and more) are usefully collected in Goodhart and Illing (2002).
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To explain the basic intuition for these results, consider a setup in which a risk-

neutral bank raises a unit of insured deposits at an interest rate that is normalized

to zero, and invests all these funds in an illiquid asset that yields a gross return

R1 = R(p) with probability p, and R0 = 0 otherwise. Moreover, suppose that p is

chosen by the bank at the time of investment, and that the success return R(p) is

decreasing in p, so safer investments yield a lower success return.

Without deposit withdrawals, and hence without the need for a LLR, with prob-

ability p the bank gets the return R(p) of its investment in the risky asset minus

the amount due to the depositors, that is R(p) − 1, and with probability 1 − p the
bank fails. Under limited liability, the bank then maximizes p[R(p)− 1], which gives
p∗ = argmax p[R(p)− 1].
Suppose now that a certain fraction of the deposits are withdrawn, and that there

is a LLR that only provides the required funding if its supervisory information on the

quality of the bank’s asset is good. Specifically, let s1 denote the good supervisory

signal, and let q = Pr(s1 | R1) denote the quality of the supervisory information. If
the LLR only charges the zero deposit rate, the bank will get R(p) − 1 with proba-
bility Pr(s1, R1) = Pr(s1 | R1) Pr(R1) = qp. Since the constant q factors out of the
maximization problem, we get the same p∗ = argmax p[R(p)− 1]. Hence we conclude
that the introduction of deposit withdrawals and a LLR does not affect the bank’s

incentives to take risk.

As for the result on penalty rates, the intuition is that they increase the expected

interest payments in the high return state and, consequently, push the bank towards

choosing higher risk and higher return strategies (i.e. a lower p). This positive

relationship between the bank’s (expected) funding costs and its portfolio risk is not

new, since it is a simple implication of the analysis in the classical paper on credit

rationing of Stiglitz and Weiss (1981). In particular, they show (p. 393) how “higher

interest rates induce firms to undertake projects with lower probabilities of success

but higher payoffs when successful.” Applying the same argument to banks instead

of firms gives the key result.
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To endogenize the decision of the LLR we adopt a political economy perspective

according to which government agencies have objectives that need not correspond

with the maximization of social welfare. In particular, following Repullo (2000) and

Kahn and Santos (2001), we assume that the LLR cares about (i) the revenues and

costs associated with its lending activity, and (ii) whether the bank fails. This may

be justified by relating the payoff of the officials in charge of LLR decisions with

the surpluses or deficits of the agency, as well as with the possible reputation costs

associated with a bank failure.

Specifying an objective function for the LLR would not be needed if the supervi-

sory information were verifiable, because then the intervention rule could be specified

ex-ante, possibly in order to implement a socially optimal decision. However, the

information coming from bank examinations is likely to contain many subjective ele-

ments that are difficult to describe ex-ante, so it seems reasonable to assume that it

is nonverifiable. In this case, the decision will have to be delegated to the LLR, which

will simply compare its conditional expected payoff of supporting and not supporting

the bank.

To facilitate the presentation, the analysis starts with a basic model in which the

bank is fully funded with deposits and can only invest in the risky asset. Then the

model is extended to the case where the bank can invest in a safe and perfectly liquid

asset and can raise equity capital. In the general model we also assume that the

bank is subject to a minimum capital requirement, and that (in line with Basel bank

capital regulation) investment in the safe asset does not carry a capital charge.

We characterize the Nash equilibrium of the game between the bank and the

LLR, where the former chooses the level of risk (and in the general model its capital

and liquidity buffer) and the latter its contingent lending policy. The LLR’s equilib-

rium strategy is straightforward: it will support the bank if and only if the liquidity

shortfall is smaller than or equal to a critical value that is decreasing in the ex-post

(i.e. conditional on the supervisory signal) probability of bank failure. The bank’s

equilibrium strategy is, however, more difficult to characterize. The reason is that its
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objective function is likely to be convex in the capital decision, which leads to a corner

solution where the bank’s capital is equal to the minimum required by regulation. In

this case the equilibrium level of risk only depends on the capital requirement, with

higher capital increasing the bank’s shareholders losses in case of default and reducing

their incentives for risk-taking. We complete the analysis by deriving numerically, for

a simple parameterization of the model, the bank’s equilibrium liquidity. We show

that in equilibrium the bank chooses the same level of risk of its illiquid portfolio and

a lower liquidity buffer than in the absence of a LLR.

Four extensions are then discussed. First, we derive the result that penalty rates

increase the equilibrium choice of risk. Next, we examine the second of Bagehot’s

rules, namely that last resort lending be collateralized, and show that this protection

translates into a lower liquidity buffer, and therefore a higher probability that the

bank will require emergency liquidity assistance, but without any effect on risk-taking.

Third, we consider the effects of introducing a higher discount rate for the LLR, which

yields a forbearance result: in equilibrium, the bank is more likely to receive support

from the LLR, and hence it will hold a lower liquidity buffer. Finally, we look at

the case where the LLR shares a fraction of the deposit insurance payouts (which

includes, in the limit, the case where the LLR is the deposit insurer), and show that

in this case the LLR’s decision becomes more sensitive to the supervisory information.

It is important to stress that the key result on the zero effect on risk-taking of

having a LLR crucially depends on the specification of the order of moves, in particular

the fact that the bank cannot modify the level of risk after the receiving the support

of the LLR (or cannot borrow from the LLR to undertake new investments). But in

such situation, the LLR is likely to carefully monitor the bank, preventing it from

engaging in any significant risk-shifting, so this seems a reasonable assumption.

Although the literature on the LLR is huge (see Freixas el al., 2000, for a recent

survey), somewhat surprisingly there has been little formal modeling of the issues

discussed in this paper. Most of the relevant papers invoke general results on the

link between any form of insurance and moral hazard. Moreover, liquidity support is
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not always distinguished from capital support, which clearly has bad incentive effects

whenever it translates into rescuing the shareholders of a distressed bank. This paper

restricts attention to liquidity support based on supervisory information on the quality

of the bank’s assets, and shows that under fairly general conditions this support does

not encourage risk-taking.

The paper is organized as follows. Section 2 presents the basic model of the game

between the bank and the LLR. Section 3 introduces equity capital and a minimum

capital requirement, and allows the bank to invest in a safe asset, characterizing the

equilibrium with and without a LLR, and discussing its comparative statics proper-

ties. Section 4 analyzes the effects of Bagehot’s rules of charging penalty rates and

requiring collateral, as well as changing the objective function of the LLR to allow for

higher discounting of future payouts and sharing deposit insurance payouts. Section

5 offers some concluding remarks.

2 The Basic Model

Consider an economy with three dates (t = 0, 1, 2) and two risk-neutral agents: a

bank and a lender of last resort (LLR). At date 0 the bank raises one unit of deposits

at an interest rate that is normalized to zero, and invests these funds in an asset that

yields a random return R at date 2. The probability distribution of R is described by

R =

⎧⎨⎩ R0,

R1,

with probability 1− p,
with probability p,

(1)

where p ∈ [0, 1] is a parameter chosen by the bank at date 0. We assume that R0 <
1 < R1, so 1 − p measures the riskiness of the bank’s portfolio. The risky asset is
illiquid in that there is no secondary market for it to be traded at date 1. However, the

asset can be fully liquidated at this date, which yields a liquidation value L ∈ (0, 1).2
Deposits are fully insured and can be withdrawn at either date 1 or date 2. To simplify

the presentation, deposit insurance premia are set equal to zero.
2The liquidation value L could be correlated with the final return R, but this would not change

the results.
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At date 1 a fraction v ∈ [0, 1] of the deposits are withdrawn. Since the bank’s
asset is illiquid, if v > 0 the bank faces a liquidity problem which can only be solved

by borrowing from the LLR. If such funding is not provided, the bank is liquidated

at date 1. Otherwise, the bank stays open until the final date 2. The liquidity shock

v is observable, and we initially suppose that the LLR only charges the deposit rate,

which has been normalized to zero.

In order to decide whether to provide this emergency funding, the LLR supervises

the bank, which yields a signal s ∈ {s0, s1} on the return of the bank’s risky asset.
Signal s is assumed to be nonverifiable, so the LLR’s decision rule cannot be designed

ex ante, but will be chosen ex post by the LLR in order to maximize an objective

function that will be specified below.

We introduce the following assumptions.

Assumption 1 R0 = 0 and R1 = R(p), where R(p) is decreasing and concave, with

R(1) ≥ 1 and R(1) +R0(1) < 0.

Assumption 2 Pr(s0 | R0) = Pr(s1 | R1) = q ∈ [12 , 1].

Assumption 1 together with (1) imply that the expected final return of the risky

asset, E(R) = pR(p), reaches a maximum at bp ∈ (0, 1) which is characterized by the
first-order condition

R(bp) + bpR0(bp) = 0. (2)

To see this, notice that the first derivative of pR(p) with respect to p equals R(0) > 0

for p = 0 and R(1)+R0(1) < 0 for p = 1, and the second derivative satisfies 2R0(p)+

pR00(p) < 0. Thus, increases in p below (above) bp increase (decrease) the expected
final return of the risky asset. Moreover, we have bpR(bp) > R(1) ≥ 1. Assumption
1 is borrowed from Allen and Gale (2000, Chapter 8), and allows to analyze in a

continuous manner the risk-shifting effects of different institutional settings.3

3This assumption has also been used by Cordella and Yeyati (2003) and Repullo (2005).
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Assumption 2 introduces a parameter q that describes the quality of the super-

visory information.4 This information is only about whether the final return of the

risky asset will be low (R0) or high (R1), and not about the particular value R(p)

taken by the high return. By Bayes’ law, it is immediate to show that

Pr(R1 | s0) = p(1− q)
p(1− q) + (1− p)q , (3)

and

Pr(R1 | s1) = pq

pq + (1− p)(1− q) . (4)

Hence when q = 1
2
we have Pr(R1 | s0) = Pr(R1 | s1) = p, so the supervisory signal

is uninformative, while when q = 1 we have Pr(R1 | s0) = 0 and Pr(R1 | s1) = 1,

so the signal completely reveals whether the final return will be low or high. Since

Pr(R1 | s0) < p < Pr(R1 | s1) for p < 1 and q > 1
2
, s0 and s1 will be called the bad

and the good signal, respectively.

From the point of view of the initial date 0, the deposit withdrawal v is a contin-

uous random variable with support [0, 1] and cumulative distribution function F (v).5

Since deposits are fully insured, it is natural to assume that the withdrawal v is inde-

pendent of the final return R. Also, v is assumed to be independent of the supervisory

signal s.

The bank and the LLR play a sequential game in which the bank chooses at date

0 the riskiness of its portfolio p, and if v > 0, the LLR decides at date 1 whether to

support the bank based on two pieces of information: the size of the liquidity shock

v, and the supervisory signal s. Importantly, the LLR does not observe the bank’s

choice of p, so we have a game of complete but imperfect information.

In this game, the LLR is assumed to care about the expected value of its final

wealth net of a share α of the social cost c incurred in the event of a bank failure. Such

cost comprises the administrative costs of closing the bank and paying back depositors
4More generally, we could have Pr(s0 | R0) 6= Pr(s1 | R1), but this would not change the results.
5The distribution function F (v) could have a mass point at v = 0, in which case F (0) > 0 would

be the probability that the bank does not suffer a liquidity shock at date 1.
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and the negative externalities associated with the failure (contagion to other banks,

breakup of lending relationships, distortions in the monetary transmission mechanism,

etc.). As noted above, the LLR’s objective function may be justified by relating the

payoff of the officials in charge of its decisions with the income generated or lost

thought its lending activity and the social cost associated with a bank failure. To

simplify the presentation, we assume that α = 1, so the LLR fully internalizes the

social cost of bank failure.6

Consider a situation in which v > 0, and let s be the signal observed by the

LLR. The payoff of the LLR if it supports the bank is computed as follows. With

probability Pr(R1 | s) the bank will be solvent at date 2 and the LLR will recover its
loan v, while with probability Pr(R0 | s) the bank will fail and the LLR will lose v
and incur the cost c, so the LLR’s expected payoff is −(v+c) Pr(R0 | s). On the other
hand, if the LLR does not provide the liquidity support, the bank will be liquidated

at date 1, and the LLR’s payoff will be −c. Hence the LLR will support the bank if

−(v + c) Pr(R0 | s) ≥ −c.

Using the fact that Pr(R1 | s) = 1− Pr(R0 | s) this condition simplifies to

v ≤ cPr(R1 | s)
Pr(R0 | s) .

Substituting (3) and (4) into this expression, it follows that when the LLR observes

the bad signal s0 it will support the bank if

v ≤ v0 ≡ cp(1− q)
(1− p)q , (5)

and when the LLR observes the good signal s1 it will support the bank if

v ≤ v1 ≡ cpq

(1− p)(1− q) . (6)

6Clearly, this assumption does not affect the characterization of the equilibrium of the game,
since it is equivalent to a change in the cost c. Interestingly, Repullo (2000) assumes α < 1, while
Kahn and Santos (2001) assume α > 1.
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The critical values v0 and v1 defined in (5) and (6) satisfy

v1 =

Ã
q

1− q
!2
v0,

which implies v1 > v0 whenever q > 1
2
. Hence if the signal is informative, the LLR

is more likely to provide support to the bank when it observes the good signal s1

than when it observes the bad signal s0. Moreover, the critical value v0 is decreasing

in the quality q of the supervisory information, with limq→1 v0 = 0, and the critical

value v1 is increasing in q, with limq→1 v1 = ∞.7 Thus, when the signal is perfectly
informative, the bank will never be supported if the signal is bad, and will always be

supported if it is good.

The critical values v0 and v1 are increasing in the social cost of bank failure c

because when this cost is high the LLR has a stronger incentive to lend to the bank

in order to save c when the high return R1 obtains. They are also increasing in

p = Pr(R1), because when this probability is high the LLR is more likely to recover

its loan v and save the cost c.

By limited liability, the bank gets a zero payoff if it is liquidated at date 1 or

fails at date 2, and gets R(p) − 1 if it succeeds at date 2. This event happens when
the high return R1 obtains and either the LLR observes the bad signal s0 and the

liquidity shock satisfies v ≤ v0, or it observes the good signal s1 and the liquidity

shock satisfies v ≤ v1. By Assumption 2 and the independence of v we have

Pr(R1, s0, and v ≤ v0) = Pr(R1) Pr(s0 | R1) Pr(v ≤ v0) = p(1− q)F (v0),
Pr(R1, s1, and v ≤ v1) = Pr(R1) Pr(s1 | R1) Pr(v ≤ v1) = pqF (v1).

Hence, the bank’s objective function is

UB = p[(1− q)F (v0) + qF (v1)][R(p)− 1]. (7)

A Nash equilibrium of the game between the bank and the LLR is a choice of risk

p∗ by the bank, and a choice of maximum liquidity support by the LLR contingent
7The fact that v1 may be greater than 1 is not a problem, because since the support of v is [0, 1],

we have Pr(v ≤ v1) = F (v1) = 1, so in this case the bank would be supported with probability one.
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on the bad and the good signal, v∗0 and v
∗
1, such that p

∗ maximizes

p[(1− q)F (v∗0) + qF (v∗1)][R(p)− 1],

and

v∗0 =
cp∗(1− q)
(1− p∗)q and v∗1 =

cp∗q
(1− p∗)(1− q) .

In this definition it is important to realize that since the LLR does not observe the

bank’s choice of risk, the critical values v∗0 and v
∗
1 only depend on the equilibrium p

∗.

This in turn implies that the term [(1− q)F (v∗0) + qF (v∗1)] factors out in the bank’s
objective function, so its problem reduces to maximize p[R(p)− 1].8
The first-order condition that characterizes the equilibrium choice of risk p∗ is

R(p∗) + p∗R0(p∗) = 1. (8)

Since, by Assumption 1, R(p)+pR0(p) is decreasing in p, conditions (2) and (8) imply

that p∗ is strictly below the first-best bp, so the bank will be choosing too much risk.
This is just the standard risk-shifting effect that follows from debt financing under

limited liability.

It should be noted that the bank’s choice of p changes the probability distribution

of the signals, increasing Pr(s1) = pq+(1−p)(1−q) and decreasing Pr(s0) = 1−Pr(s1)
(as long as q > 1

2
). However, by Assumption 2, p does not affect the distribution of

the signals conditional on the realization of the high return R1, which implies that

the bank’s probability of getting R(p)− 1 is linear in p = Pr(R1).
To sum up, we have set up a model of a bank and a LLR in which the former

chooses the riskiness of its portfolio and the latter chooses whether to lend to the bank

to cover random deposit withdrawals, a decision that depends on a signal on the ex-

post quality of the portfolio. We have shown that the bank’s equilibrium choice of risk

is independent of the distribution of the liquidity shocks and the other parameters

that determine the LLR’s decision like the quality of the supervisory information or

the social cost of bank failure.
8In a sequential game of complete information, the characterization of equilibrium would be more

complicated, since the critical values v∗0 and v
∗
1 would depend on the bank’s choice of p.
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3 The General Model

We now introduce in our basic model two features of banking in the real world that are

relevant to the problem under discussion. First, on the asset side of the bank’s balance

sheet, we suppose that, apart from the risky asset, the bank can invest in a safe and

perfectly liquid asset that can be used as a buffer against liquidity shocks. Second,

on the liability side, we suppose that the bank can be funded with both deposits and

equity capital, and that the bank is subject to a minimum capital requirement. The

LLR observes both the bank’s equity capital and its investment in the liquid asset.

We characterize the equilibrium of the new game between the bank and the LLR,

compare it with that of a model without a LLR, and examine its comparative statics

properties.

Specifically, suppose that at date 0 the bank raises k equity capital and 1 − k
deposits, and invests λ in the safe asset and 1 − λ in the risky asset, so the size of

its balance sheet is normalized to 1.9 Bank capital has to satisfy the constraint k ≥
κ(1−λ), where κ ∈ (0, 1). Thus, the capital requirement depends on the (observable)
bank’s investment in the risky asset, but not on the (unobservable) bank’s choice of

risk.

We assume that the return of the safe asset is equal to the deposit rate, which

has been normalized to zero, and that bank capital is provided by a special class

of agents, called bankers, who require an expected rate of return δ ≥ 0 on their

investment. A strictly positive value of δ captures either the scarcity of bankers’

wealth or, perhaps more realistically, the existence of a premium for the agency and

asymmetric information problems faced by the bank shareholders.10

9This assumption is made without loss of generality. The same results would obtain if, for
example, the bank raised 1 unit of deposits and k units of capital, and invested λ in the safe asset
and 1 + k − λ in the risky asset.
10See Holmström and Tirole (1997) and Diamond and Rajan (2000) for explicit models of why δ

might be positive. The same assumption is made by Bolton and Freixas (2000), Hellmann, Murdock
and Stiglitz (2000), and Repullo and Suarez (2004), among others.
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3.1 Characterization of equilibrium

At date 1 a fraction v ∈ [0, 1] of the deposits are withdrawn. Since the bank has
1−k deposits, then v(1−k) deposits are withdrawn at this date. There are two cases
to consider. First, if v(1 − k) ≤ λ the bank can repay the depositors by selling the

required amount of the safe asset, so it keeps λ−v(1−k) invested in the safe asset. In
this case the bank’s payoff in the high return state equals the return of its investment

in the safe asset, λ − v(1 − k), plus the return of its investment in the risky asset,
(1−λ)R(p), minus the amount paid to the remaining depositors, (1− v)(1− k), that
is

λ− v(1− k) + (1− λ)R(p)− (1− v)(1− k) = (1− λ)[R(p)− 1] + k.

Second, if v(1− k) > λ the bank needs to borrow v(1− k)−λ from the LLR in order

to avoid liquidation. If such funding obtained, the bank’s payoff in the high return

state equals the return of its investment in the risky asset, (1 − λ)R(p), minus the

amount paid to the remaining depositors, (1− v)(1− k), minus the amount paid to
the LLR, v(1− k)− λ, that is

(1− λ)R(p)− (1− v)(1− k)− [v(1− k)− λ] = (1− λ)[R(p)− 1] + k.

In both cases, if the low return state obtains the bank’s net worth is λ − (1 − k),
which will be negative as long as the bank’s investment in the liquid asset, λ, does

not exceed its deposits, 1−k, which will generally obtain in equilibrium.11 Hence, by
limited liability, the bank’s payoff in the low return state will be zero. Obviously, its

payoff will also be zero when v(1− k) > λ and the LLR does not support the bank.

The decision of the LLR in the case in which the bank requires emergency lending,

v(1 − k) > λ, is characterized as follows. If the LLR observes signal s and decides

to support the bank, with probability Pr(R1 | s) the bank will be solvent at date 2
and the LLR will recover its loan v(1− k)− λ, while with probability Pr(R0 | s) the
bank will fail and the LLR will lose v(1− k)−λ and incur the cost c. If, on the other
11In particular, we show below that under plausible conditions the capital requirement will be

binding, so k = κ(1− λ), which implies λ− (1− k) = −(1− κ)(1− λ) < 0.
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hand, the LLR does not provide the liquidity support, the bank will be liquidated at

date 1, and the LLR’s payoff will be −c. Hence the LLR will support the bank if

−[v(1− k)− λ+ c] Pr(R0 | s) ≥ −c.

As before, substituting (3) and (4) into this expression, it follows that when the LLR

observes the bad signal s0 it will support the bank if the liquidity shortfall, v(1−k)−λ,
is smaller than or equal to the critical value v0 given by (5), that is if

v ≤ v0 + λ

1− k , (9)

and when it observes the good signal s1 it will support the bank if the liquidity

shortfall, v(1− k)− λ, is smaller than or equal to the critical value v1 given by (6),

that is if

v ≤ v1 + λ

1− k , (10)

Thus, the probability that the bank will reach the final date 2 is increasing in its

investment in the safe asset λ and its equity capital k. This is explained by the role

of the safe asset as a buffer against liquidity shocks, and by the fact that the higher

the bank capital the lower its deposits and hence the size of the liquidity shocks.

The bank’s objective function is to maximize the expected value of the sharehold-

ers’ payoff net of the opportunity cost of their initial infusion of capital. The latter is

simply (1+δ)k. To compute the former, notice that bank shareholders get a zero pay-

off if the bank is liquidated at date 1 or fails at date 2, and get (1− λ)(R(p)− 1) + k
if it succeeds at date 2. This event happens when the high return R1 obtains and

either the LLR observes the bad signal s0 and the liquidity shock v satisfies (9), or

it observes the good signal s1 and the liquidity shock v satisfies (10). As before, we

have

Pr

Ã
R1, s0, and v ≤ v0 + λ

1− k
!
= p(1− q)F

Ã
v0 + λ

1− k
!
,

Pr

Ã
R1, s1, and v ≤ v1 + λ

1− k
!
= pqF

Ã
v1 + λ

1− k
!
.
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Hence, the bank’s objective function in the general model is

UB = p

"
(1− q)F

Ã
v0 + λ

1− k
!
+ qF

Ã
v1 + λ

1− k
!#
[(1−λ)(R(p)− 1)+ k]− (1+ δ)k. (11)

Obviously, UB coincides with the objective function (7) in the previous section when

λ = 0 and k = 0.

A Nash equilibrium of the game between the bank and the LLR is a choice of

liquidity λ∗, capital k∗, and risk p∗ by the bank, and a choice of maximum liquidity

support by the LLR contingent on the bad and the good signal, v∗0 and v
∗
1, such that

(λ∗, k∗, p∗) maximizes

p

"
(1− q)F

Ã
v∗0 + λ

1− k
!
+ qF

Ã
v∗1 + λ

1− k
!#
[(1− λ)(R(p)− 1) + k]− (1 + δ)k, (12)

subject to the capital requirement k ≥ κ(1− λ), and

v∗0 =
cp∗(1− q)
(1− p∗)q and v∗1 =

cp∗q
(1− p∗)(1− q) . (13)

As in the basic model, it is important to note that since the LLR does not ob-

serve the bank’s choice of risk, the critical values v∗0 and v
∗
1 only depend on the

equilibrium p∗. This in turn implies that the bank’s problem reduces to maximize

p [(1− λ)(R(p)− 1) + k] . Thus, the bank’s choice of risk is characterized by the first-
order condition

(1− λ∗)[R(p∗)− 1] + k∗ + p∗(1− λ∗)R0(p∗) = 0,

which simplifies to

R(p∗) + p∗R0(p∗) = 1− k∗

1− λ∗
(14)

Comparing this expression with (2) and (8), and taking into account that, by As-

sumption 1, R(p) + pR0(p) is decreasing in p, it follows that the bank’s equilibrium

choice of risk p∗ will be closer to the first-best bp than in the model without the capital
requirement. This is just the standard capital-at-risk effect : higher capital implies

higher losses for the banks’ shareholders in case of default, and hence lower incentives

for risk-taking.12

12See Hellmann, Murdock and Stiglitz (2000) and Repullo (2004) for a recent discussion of this
effect.
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If the bank’s equilibrium choice of capital k∗ is at the corner κ(1− λ∗), then the

first-order condition (14) further simplifies to

R(p∗) + p∗R0(p∗) = 1− κ. (15)

In this case, the equilibrium p∗ only depends on the capital requirement κ. Moreover,

Assumption 1 implies that R(p) + pR0(p) is decreasing in p, which gives dp∗/dκ > 0.

Hence, the higher the capital requirement the lower the risk chosen by the bank.13

In general, it is difficult to prove that this corner solution will obtain, since the

properties of the bank’s objective function (12) depend on the shape of the distribution

function of the liquidity shock F (v).14 For this reason, in what follows we work with

a specific parameterization of F (v), namely F (v) = vη, where η ∈ (0, 1).15 In this
case it can be checked that the bank’s objective function (12) is convex in k, so we

can only have either k∗ = κ(1− λ∗) or k∗ = 1. But for large k we have

F

Ã
v∗0 + λ

1− k
!
= F

Ã
v∗1 + λ

1− k
!
= 1,

so the derivative of (12) with respect to k is p− (1 + δ) < 0. Hence k = 1 cannot be

a solution, which gives k∗ = κ(1− λ∗).

This result implies that the equilibrium of the game between the bank and the

LLR is easy to characterize. The risk p∗ chosen by the bank is the unique solution

of the first-order condition (15). This in turn determines the critical values v∗0 and v
∗
1

that characterize the behavior of the LLR. Substituting p = p∗ and F (v) = vη into

the bank’s objective function (12), we then find the value of λ∗ by maximizing

p∗
"
(1− q)

Ã
v∗0 + λ

1− k
!η

+ q

Ã
v∗1 + λ

1− k
!η#

[(1− λ)(R(p∗)− 1) + k]− (1 + δ)k, (16)

subject to k = κ(1− λ). Finally, we get k∗ = κ(1− λ∗).
13Notice that for κ = 1, that is a 100% capital requirement, (2) and (15) imply p∗ = bp.
14However, finding that k is at the minimum required by regulation is standard in both static and

dynamic models of banking; see, for example, Repullo and Suarez (2004) and Repullo (2004).
15Notice that this is a simple special case of a beta distribution for which the density function

F 0(v) = ηvη−1 is decreasing in v, so small liquidity shocks are more likely than large shocks.
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Going analytically beyond this point is however complicated, because although

the bank’s objective function (16) is concave in λ, this is in general no longer the case

once we substitute the constraint k = κ(1−λ) into (16), since this function is convex

in k. For this reason, our results on equilibrium liquidity and capital will be derived

from numerical solutions.

3.2 Equilibrium without a LLR

We now compare the equilibrium behavior of the bank when there is a LLR with its

behavior when there is no LLR. The objective function of the bank in a such model

is a special case of (11) when we set v0 = v1 = 0 (i.e. no last resort lending), which

gives

UB = pF

Ã
λ

1− k
!
[(1− λ)(R(p)− 1) + k]− (1 + δ)k.

Thus, bank gets (1 − λ)(R(p) − 1) + k in the high return state, which obtains with
probability p, but only if it has sufficient liquidity to cover the deposit withdrawals at

date 1, that is if v(1− k) ≤ λ, an event that happens with probability F (λ/(1− k)).
From here we can follow our previous steps to conclude that when the bank’s

capital k is at the corner κ(1−λ∗) its choice of risk is characterized by the first-order

condition (15), so we get exactly the same p∗ as in the model with the LLR. In other

words, contrary to what has been taken for granted in the banking literature, our

model predicts that the existence of a LLR does not have any effect on the bank’s

incentives to take risk.

Computation of the effects of having a LLR on the liquidity decision of the bank

requires to specify the functional forms of the high return of the risky asset, R(p),

and the cumulative distribution function of the liquidity shock, F (v), as well as the

parameter values of the capital requirement κ, the cost of capital δ, the informative-

ness of the supervisory signal q, and the social cost of bank failure c. Since our focus

is on qualitative results, we will not calibrate the model to obtain plausible numerical

results, but instead choose simple functional forms and parameter values. Specifi-
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cally, the functional forms R(p) = 3 − 2p2 and F (v) = vη, with η = 0.25, will be

maintained in all our simulations,16 and our baseline parameter values are L = 0.50,

κ = δ = c = 0.10, and q = 0.60.

The corresponding equilibria with and without a LLR are shown in Table 1. As

noted above, the level of risk p∗ chosen by the bank is the same in both models,

and may be obtained by substituting R(p) = 3 − 2p2 into (15), which gives p∗ =q
(2 + κ)/6 = 0.59. Not surprisingly, the results in Table 1 show that the liquidity

buffer λ∗ is much larger in the absence of a LLR.17 Given that k∗ = κ(1−λ∗), this in

turn implies a lower level of capital.

When the deposit withdrawal v(1− k∗) is below the bank’s liquidity λ∗, an event

that happens with probability 0.58 in the model with the LLR, and with probability

0.71 in the model without it, the bank will be able to repay the depositors by selling

the required amount of the safe asset. Moreover, in the first model, when v(1−k∗) >
λ∗ the LLR will provide liquidity up to v∗0 = 0.10 when it observes the bad signal s0,

and up to v∗1 = 0.22 when it observes the good signal s1.

The probability that the bank gets a positive payoff in the model with a LLR is

p∗
"
(1− q)F

Ã
v∗0 + λ∗

1− k∗
!
+ qF

Ã
v∗1 + λ∗

1− k∗
!#
= 0.44,

while the corresponding probability in the model without a LLR is

p∗F

Ã
λ∗

1− k∗
!
= 0.42.

Since in the first model the bank is investing a higher proportion of its portfolio in the

risky asset, its equilibrium expected payoff is significantly higher with a LLR (0.45

against 0.37).

16Observe thatR(p) = 3−2p2 is decreasing and concave, withR(1) = 1 andR(1)+R0(1) = −3 < 0,
so Assumption 1 is satisfied. Also, the median liquidity shock is F−1(0.5) = 0.0625.
17Gonzalez-Eiras (2003) provides some interesting empirical evidence on this result. He shows

that the contingent credit line agreement signed by the Central Bank of Argentina with a group of
international banks in December 1996 enhanced its ability to act as LLR, and led to a significant
decrease in the liquidity holdings of domestic Argentinian banks.

17



Table 1

Equilibrium with and without a LLR

With LLR Without LLR

λ∗ 0.11 0.23

k∗ 0.09 0.08

p∗ 0.59 0.59

v∗0 0.10 −

v∗1 0.22 −

3.3 Comparative statics

We next analyze the effect on the equilibrium of the game between the bank and

the LLR of changes in the capital requirement κ, the cost of capital δ, the informa-

tiveness of the supervisory signal q, and the social cost of bank failure c. The results

summarized in Table 2 are derived by computing the equilibrium corresponding to

deviations in κ, δ, q, and c from the baseline case.

As noted above, an increase in the capital requirement κ leads to an increase in

p∗, which by (13) increases the maximum support provided by the LLR contingent

on the bad and the good signal, v∗0 and v
∗
1. The effect on λ∗ is also positive. Two

reasons explain this result. First, the higher capital requirement makes investment

in the risky asset, which does not carry a capital charge, relatively less attractive for

the bank than investing in the safe asset. Second, the higher p∗ reduces the success

payoff of the risky asset, R(p∗), and also makes it relatively less attractive for the

bank than the safe asset. On the other hand, the higher liquidity support offered by

the LLR reduces the bank’s incentives to invest in the safe asset, but the numerical

results show that this effect is dominated by the other two.
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Table 2

Equilibrium effects of changes in the capital requirement κ, the cost of capital δ,

the informativeness of the signal q, and the social cost of bank failure c

x
dp∗

dx

dλ∗

dx

dk∗

dx

dv∗0
dx

dv∗1
dx

κ + + + + +

δ 0 + − 0 0

q 0 − + − +

c 0 − + + +

With regard to the other comparative statics results, note first that, as shown an-

alytically, the value of p∗ chosen by the bank only depends on the capital requirement

κ, so the effect of the other three parameters is zero.

Since the cost of capital δ does not affect p∗, it does not have any effect either

on the maximum liquidity support provided by the LLR contingent on the bad and

the good signal, v∗0 and v
∗
1. The cost of capital δ has a positive effect on equilibrium

liquidity λ∗, because when capital is more expensive, investing in the safe asset, which

does not carry a capital charge, is relatively more attractive than investing in the risky

asset. Since k∗ = κ(1 − λ∗), this also explains why an increase in δ has a negative

effect on k∗.

As noted in Section 2, the critical value v∗0 is decreasing in the quality q of the

supervisory information, while the critical value v∗1 is increasing in q, so with better

information the bank is less (more) likely to be supported by the LLR when the

signal is bad (good). The sign of the derivative of λ∗ with respect to q is negative,

which means that the positive effect of having less support when the signal is bad

is dominated by the negative effect of having more support when the signal is good.
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Since k∗ = κ(1− λ∗), this in turn explains why an increase in q has a positive effect

on k∗. However, when q is sufficiently large we may get to the corner λ∗ = 0 and

k∗ = κ, where these derivatives become zero.

As also noted in Section 2, the critical values v∗0 and v
∗
1 are increasing in the social

cost of bank failure c, because when this cost is high the LLR has a stronger incentive

to lend to the bank in order to save c when the higher return state obtains. This

explains why the bank wants to hold a lower liquidity buffer λ∗, so k∗ = κ(1 − λ∗)

will be higher. However, as in the case of parameter q, when c is sufficiently large we

may get to the corner λ∗ = 0 and k∗ = κ, where these derivatives become zero.

If we consider that the social cost of failure increases more than proportionately

with the size of the bank’s balance sheet (which we have normalized to 1), c will be

higher for large banks, which implies a “too big to fail” result: large banks are more

likely to be supported by the LLR, and consequently they will hold smaller liquidity

buffers.

4 Extensions

4.1 Penalty rates

The classical doctrine on the LLR put forward by Bagehot (1873) required “that

these loans should only be made at a very high rate of interest.” We now examine

how the results in Section 3 are modified when the LLR charges a penalty rate r > 0.

Importantly, we assume that r is exogenously given ex ante, and not chosen by the

LLR ex post.

To characterize the equilibrium of the new game between the bank and the LLR,

suppose that v(1 − k) deposits are withdrawn at date 1. If v(1 − k) ≤ λ, the bank

can repay the depositors by selling the required amount of the safe asset, so there is

no change with respect to our previous analysis. If, on the other hand, v(1− k) > λ,

the bank needs to borrow v(1− k)− λ from the LLR. If such funding obtained, the

bank’s payoff in the high return state equals the return of its investment in the risky
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asset, (1−λ)R(p), minus the amount paid to the remaining depositors, (1−v)(1−k),
minus the amount paid to the LLR, (1 + r)[v(1− k)− λ], that is

(1−λ)R(p)−(1−v)(1−k)−(1+r)[v(1−k)−λ] = (1−λ)[R(p)−1]+k−r[v(1−k)−λ].

The last term in this expression accounts for the interest payments to the LLR.

The decision of the LLR in the case when v(1 − k) > λ is now characterized

as follows. If the LLR observes signal s and decides to support the bank, with

probability Pr(R1 | s) the bank will be solvent at date 2 and the LLR will recover its
loan v(1− k)−λ and net r[v(1− k)−λ] in interest payments, while with probability

Pr(R0 | s) the bank will fail and the LLR will lose v(1− k)− λ and incur the cost c,

so the LLR’s expected payoff is

r[v(1− k)− λ] Pr(R1 | s)− [v(1− k)− λ+ c] Pr(R0 | s).

On the other hand, if the LLR does not provide the liquidity support, the bank will

be liquidated at date 1, and the LLR’s payoff will be −c. Hence the LLR will support
the bank if

r[v(1− k)− λ] Pr(R1 | s)− [v(1− k)− λ+ c] Pr(R0 | s) ≥ −c.

Substituting (3) and (4) into this expression, it follows that when the LLR observes

the bad signal s0 it will support the bank if the liquidity shortfall, v(1 − k) − λ, is

smaller than or equal to the critical value

v0 ≡ cPr(R1 | s0)
Pr(R0 | s0)− rPr(R1 | s0) =

cp(1− q)
(1− p)q − rp(1− q) ,

and when the LLR observes the good signal s1 it will support the bank if the liquidity

shortfall, v(1− k)− λ, is smaller than or equal to the critical value

v1 ≡ cPr(R1 | s1)
Pr(R0 | s1)− rPr(R1 | s1) =

cpq

(1− p)(1− q)− rpq .

As before, it is easy to check that v1 > v0 whenever q > 1
2
. Also, notice that both

v0 and v1 are increasing in r, so with penalty rates the LLR will be softer with the

bank, providing emergency funding for a larger range of liquidity shocks.
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To compute the bank’s new objective function we have to subtract from UB in

(11) the expected interest payments to the LLR. If the LLR observes the bad signal

s0, the bank borrows from the LLR when 0 < v(1− k)− λ ≤ v0, that is when
λ

1− k < v ≤
v0 + λ

1− k ,

so the conditional expected cost of this borrowing is

r

"Z v0+λ
1−k

λ
1−k

[v(1− k)− λ] dF (v)

#
Pr(s0 | R1).

Similarly, if the LLR observes the good signal s1, the conditional expected cost of the

bank’s borrowing is

r

"Z v1+λ
1−k

λ
1−k

[v(1− k)− λ] dF (v)

#
Pr(s1 | R1).

Hence the bank’s new objective function is

UB = p

"
(1− q)F

Ã
v0 + λ

1− k
!
+ qF

Ã
v1 + λ

1− k
!#
[(1− λ)(R(p)− 1) + k]− (1 + δ)k

−rp
"
(1− q)

Z v0+λ

1−k

λ
1−k

[v(1− k)− λ] dF (v) + q
Z v1+λ

1−k

λ
1−k

[v(1− k)− λ] dF (v)

#
.

Assuming that F (v) = vη, the integrals in this expression can be easily solved,

and we can compute for the baseline parameters the equilibrium effects of charging a

penalty rate r.18 The results are presented in Table 3.

Table 3

Equilibrium effects of changes in the penalty rate r

x
dp∗

dx

dλ∗

dx

dk∗

dx

dv∗0
dx

dv∗1
dx

r − − + + +

18It should be noted that this computation is complicated because now p∗ depends on r, and cannot
be directly solved from the first-order condition (15). The equilibrium is obtained by numerical
iteration of the best response functions of the two players.
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Thus, an increase in the penalty rate r leads to a reduction in p∗, so the bank’s

portfolio becomes riskier. The reason for this result is that penalty rates increase

the expected interest payments in the high return state and, consequently, the bank

tries to compensate this effect by choosing a higher risk and higher return portfolio

(recall that by Assumption 1 a decrease in p increases R(p)). The reduction in p∗

would ceteris paribus lead to an decrease in both v∗0 and v
∗
1, but this is more than

compensated by the positive effect of the interest payments on the LLR’s willingness

to lend. The increase in v∗0 and v
∗
1 in turn explains why the bank chooses a lower

liquidity buffer λ∗, so k∗ = κ(1− λ∗) will be higher.

4.2 Collateralized lending

The classical doctrine on the LLR put forward by Bagehot (1873) not only required

charging “a very high rate of interest,” but also “that at this rate these advances

should be made on all good banking securities.” We now examine how the results in

Section 3 are modified when last resort lending is collateralized, so the LLR becomes

a senior claimant when it provides the liquidity support and the bank subsequently

fails.19 Obviously, for this to make any difference the failure return should be positive,

so in this subsection we assume that R0 = l ∈ (0, L).20
To analyze the effect of this change, consider a situation in which v(1 − k) > λ,

and let s be the signal observed by the LLR. There are two cases to consider. First,

if the liquidity shortfall, v(1− k)− λ, is smaller than or equal to the collateral l, the

LLR is fully covered, so its expected payoff if it supports the bank, −cPr(R0 | s),
is greater than the payoff if it does not, −c, so the bank will always be supported.
19The referee criticized this interpretation, noting that “if we follow Bagehot’s second rule and only

provide liquidity backed by “good banking securities,” it is not clear why the central bank will end
up underwriting risky investments.” In his/her view, in the present model, “a fairer interpretation
of Bagehot might imply no lending by the central bank at all.” However, as noted by Goodhart
(1999, p. 343), “Bagehot’s proposal related simply to the collateral that the applicant could offer,
and the effect of this rule in practice was to distinguish, in part, between those loans on which the
central bank might expect with some considerable probability to make a loss and those on which
little, or no, loss should eventuate.”
20The assumption that the failure return l at date 2 is smaller than the liquidation value L at

date 1 is not required for our analysis, but makes a lot of sense in the context of the model.
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Second, if the liquidity shortfall, v(1 − k) − λ, is greater than the collateral l, the

expected payoff of the LLR if it supports the bank is

− [v(1− k)− λ− l + c] Pr(R0 | s),

since with probability Pr(R0 | s) the bank will fail at date 2 and the LLR will lose
v(1− k)−λ− l and incur the cost c. On the other hand, if the LLR does not provide
the liquidity support, the bank will be liquidated at date 1, and the LLR’s payoff will

be −c. Hence the LLR will support the bank if

− [v(1− k)− λ− l + c] Pr(R0 | s) ≥ −c.

Substituting (3) and (4) into this expression, it follows that when the LLR observes

the bad signal s0 it will support the bank if the liquidity shortfall, v(1 − k) − λ, is

smaller than or equal to the critical value v0 + l, where v0 is given by (5), and when

the LLR observes the good signal s1 it will support the bank if the liquidity shortfall,

v(1− k)− λ, is smaller than or equal to the critical value v1+ l, where v1 is given by

(6).

Hence the bank’s objective function becomes

UB = p

"
(1− q)F

Ã
v0 + l + λ

1− k
!
+ qF

Ã
v1 + l + λ

1− k
!#
[(1− λ)(R(p)− 1) + k]−(1+δ)k.

Using the same arguments as in Section 3, it follows that the bank’s choice of risk p∗

will also be characterized by the first-order condition (15), so it only depends on the

capital requirement κ.

As for the effect of collateralization on the bank’s liquidity and capital decisions,

note that the case in which the LLR’s loan is not collateralized (and it is junior to the

claim of the deposit insurer) is equivalent to the case l = 0 analyzed in Section 3, so the

signs of derivatives with respect to l in Table 4 indicate the effect of collateralization

on λ∗ and k∗.
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Table 4

Equilibrium effects of collateralization

x
dp∗

dx

dλ∗

dx

dk∗

dx

d(v∗0 + l)
dx

d(v∗1 + l)
dx

l 0 − + 1 1

Thus, collateralization of last resort lending does not have any effect on the bank’s

incentives to take risk, but increases the maximum support that the LLR is willing

to provide contingent on the bad and the good signal, v∗0 + l and v
∗
1 + l. This explains

why the bank wants to hold a lower liquidity buffer λ∗, so k∗ = κ(1 − λ∗) will be

higher. In other words, the protection for the LLR advocated by Bagehot translates

into a lower liquidity buffer, and hence a higher probability that the bank will require

emergency liquidity assistance, but without any effect on risk-taking.

4.3 Discounting of future payoffs

The LLR is a public institution that is run by officials that may have fixed terms of

office. If these terms are short or the officials are close to finishing theirs, they may

have an incentive to avoid current costs possibly at the expense of some larger future

costs that would be assumed by their successors. Formally, we can incorporate this

possibility into our model by introducing a discount factor β < 1 for the LLR.21

To analyze the effect of such discounting, consider a situation in which v(1−k) > λ,

and let s be the signal observed by the LLR. The expected discounted payoff of the

LLR if it supports the bank is now

−β [v(1− k)− λ+ c] Pr(R0 | s),
21This assumption is justified by Kaufman (1991) in the following terms: “The discount rate used

by policy makers, who are under considerable political pressure to optimize economic performance
in the short-term and whose terms of office are relatively short and not guaranteed to last until the
next crisis, is likely to be overestimated.”
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since with probability Pr(R0 | s) the bank will fail at date 2 and the LLR will lose
v(1−k)−λ and incur the cost c. On the other hand, if the LLR does not provide the

liquidity support, the bank will be liquidated at date 1, and the LLR’s payoff will be

−c. Hence the LLR will support the bank if

−β [v(1− k)− λ+ c] Pr(R0 | s) ≥ −c.

Substituting (3) and (4) into this expression, it follows that when the LLR observes

the bad signal s0 it will support the bank if the liquidity shortfall, v(1 − k) − λ, is

smaller than or equal to the critical value

v0 ≡ c[1− β Pr(R0 | s0)]
β Pr(R0 | s0) =

c[p(1− q) + (1− β)(1− p)q]
β(1− p)q ,

and when the LLR observes the good signal s1 it will support the bank if the liquidity

shortfall, v(1− k)− λ, is smaller than or equal to the critical value

v1 ≡ c[1− β Pr(R0 | s1)]
β Pr(R0 | s1) =

c[pq + (1− β)(1− p)(1− q)]
β(1− p)(1− q) .

As before, it is easy to check that v1 > v0 whenever q > 1
2
. Also, notice that both v0

and v1 are decreasing in the discount factor β. This means that a LLR with β < 1

will be softer with the bank, providing funding for a larger range of liquidity shocks.

We can now compute for the baseline parameters the equilibrium effects of in-

troducing a discount factor β < 1 for the LLR. As in the model in Section 3, the

bank’s choice of risk p∗ is again characterized by the first-order condition (15), so the

discount factor β does not have any effect on the bank’s incentives to take risk. The

full comparative static results are presented in Table 5.

Table 5

Equilibrium effects of changes in the LLR’s discount factor β

x
dp∗

dx

dλ∗

dx

dk∗

dx

dv∗0
dx

dv∗1
dx

β 0 + − − −
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As expected, an increase in the discount factor β (that is, a decrease in the cor-

responding discount rate) makes the LLR more willing to incur the current costs of

not supporting the bank in order to save some larger future costs, so the derivative of

v∗0 and v
∗
1 with respect to β is negative. The reduction in v∗0 and v

∗
1 in turn explains

why the bank chooses a higher liquidity buffer λ∗, so k∗ = κ(1− λ∗) will be lower.

Thus we conclude that a high LLR discount rate leads to forbearance, but in line

with our previous results this only translates into a lower liquidity buffer, without

any effect on risk-taking.

4.4 Internalizing deposit insurance payouts

We have assumed so far the LLR is institutionally separated from the deposit insurer,

so the former does not take into account deposit insurance payouts in deciding whether

to support the bank. We now consider a situation in which the LLR either internalizes

or assumes a fraction γ ∈ [0, 1] of these payouts. When γ = 0 the LLR is completely

independent from the deposit insurer (e.g. a central bank with no deposit insurance

role), whereas when γ = 1 the LLR also acts as deposit insurer.22

To analyze the effect of such possible connection between the LLR and the deposit

insurer, consider a situation in which v(1− k) > λ, and let s be the signal observed

by the LLR. The expected payoff of the LLR if it supports the bank is now

−[v(1− k)− λ+ c+ γ(1− v)(1− k)] Pr(R0 | s),

since with probability Pr(R0 | s) the bank will fail at date 2 and the LLR will lose
v(1−k)−λ, incur the cost c, and assume a fraction γ of the deposit insurance payouts
which are given by (1 − v)(1 − k). On the other hand, if the LLR does not provide
the liquidity support, the bank will be liquidated at date 1, and the LLR will incur

the cost c and assume a fraction γ of the deposit insurance payouts which are given

by (1− k)− λ− (1− λ)L, where (1− λ)L is the liquidation value of the bank’s risky
22Intermediate cases are also relevant. For example, until 1998 the Bank of Spain matched the

contribution of the Spanish banks to the deposit insurance fund, so γ was 1
2 .
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asset.23 Hence the LLR will support the bank if

−[v(1− k)− λ+ c+ γ(1− v)(1− k)] Pr(R0 | s) ≥ −[c+ γ[(1− k)− λ− (1− λ)L]].

Substituting (3) and (4) into this expression, it follows that when the LLR observes

the bad signal s0 it will support the bank if the liquidity shortfall, v(1 − k) − λ, is

smaller than or equal to the critical value

v0 ≡ [c+ γ(1− k − λ)] Pr(R1 | s0)− γ(1− λ)L

(1− γ) Pr(R0 | s0)

=
[c+ γ(1− k − λ)] p(1− q)− γ(1− λ)L[p(1− q) + (1− p)q]

(1− γ)(1− p)q ,

and when the LLR observes the good signal s1 it will support the bank if the liquidity

shortfall, v(1− k)− λ, is smaller than or equal to the critical value

v1 ≡ [c+ γ(1− k − λ)] Pr(R1 | s1)− γ(1− λ)L

(1− γ) Pr(R0 | s1)

=
[c+ γ(1− k − λ)] pq − γ(1− λ)L[pq + (1− p)(1− q)]

(1− γ)(1− p)(1− q) .

As before, one can check that v1 > v0 whenever q > 1
2
.

We can now compute for the baseline parameters the equilibrium effects of inter-

nalizing a fraction γ of the deposit insurance payouts. As before, the bank’s choice

of risk p∗ is again characterized by the first-order condition (15), so the share γ does

not have any effect on the bank’s incentives to take risk. The full comparative static

results are presented in Table 6.

23We are implicitly assuming that the amount of deposits is greater than or equal to the liquidation
value of the bank at date 1, that is 1− k ≥ λ+ (1− λ)L. Notice that if k is at the corner κ(1− λ),
this condition reduces to (1 − λ)(1 − κ − L) ≥ 0. In our numerical analysis we take κ = 0.10 and
L = 0.50, so it holds.
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Table 6

Equilibrium effects of changes in the LLR’s share of deposit insurance payouts γ

x
dp∗

dx

dλ∗

dx

dk∗

dx

dv∗0
dx

dv∗1
dx

γ 0 −/+ +/− − +

An increase in the share γ makes the LLR tougher when it observes the bad

signal s0 (since the critical value v∗0 is decreasing in γ), and makes it softer when

it observes the good signal s1 (since the critical value v∗1 is increasing in γ). The

sign of the derivative of λ∗ with respect to γ is negative for small values of γ, for

which the positive effect of having less support when the signal is bad is dominated

by the negative effect of having more support when the signal is good. However,

for sufficiently high values of γ the critical value v∗1 reaches the value of 1, which

means that the bank will always be supported when the signal is good, and so the

only remaining effect will be the positive one associated with further reductions in

v∗0. Since k
∗ = κ(1− λ∗), this explains the two possible signs of the effect of γ on k∗.

5 Concluding Remarks

Goodhart (1999, pp. 339-340) has argued that “there are few issues so subject to

myth, sometimes unhelpful myths that tend to obscure rather than illuminate real

issues, as is the subject of whether a central bank... should act as a lender of last

resort.” The third myth in his list is that “moral hazard is everywhere and at all

times a major consideration.”24 This paper provides a rationale for the claim that

this is indeed a myth. Specifically, it shows that the existence of a lender of last
24The other myths are that it is generally possible to distinguish between illiquidity and insolvency,

that national central bank LLR capabilities are unrestricted whereas international bodies cannot
function as LLR, and that it is possible to dispense with a LLR altogether.
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resort does not have any effect on the risk of the banks’ illiquid portfolios, but simply

reduces their incentives to hold liquid assets.

Although our model is special in a number of respects, we believe that the results

are fairly robust. In particular, neither full deposit insurance nor the assumption that

deposit withdrawals are purely random are essential. To see this, suppose that in the

context of our basic model (without liquidity λ and capital k) there is an exogenous

fraction u ∈ (0, L] of junior uninsured deposits that require an expected return equal
to zero,25 and let d denote the corresponding interest rate. We assume that uninsured

depositors observe the same signal s ∈ {s0, s1} as the LLR,26 and run on the bank at
date 1 if and only if they observe the bad signal s0.

In this situation, the LLR will support the bank if the withdrawal u is smaller

than the critical value v0 given by (5), so the bank’s objective function (7) becomes

UB = p[(1− q)1(u ≤ v0) + q][R(p)− 1− ud],

where 1(u ≤ v0) is an indicator function that takes the value 1 if u ≤ v0, and 0

otherwise. From here it follows that the first-order condition that characterizes the

equilibrium choice of risk p∗ is

R(p∗) + p∗R0(p∗) = 1 + ud∗, (17)

where d∗ is the equilibrium deposit rate. Assuming that uninsured depositors can

only claim at date 1 the principal (and not the interest), they receive 1(u ≤ v∗0)u

at date 1 with probability Pr(s0) = q + (1 − 2q)p∗, and u(1 + d∗) at date 2 with
probability Pr(R1, s1) = qp∗. Hence their participation constraint is

[q + (1− 2q)p∗]1(u ≤ v∗0) + qp∗(1 + d∗) = 1. (18)

Solving equations (17) and (18) gives the equilibrium values of p∗ and d∗.27

25The assumption that u ≤ L is made for simplicity, in order to ensure that the junior uninsured
depositors get zero when the bank is liquidated at date 1 .
26This assumption is also made for simplicity. See Repullo (2005) for a model where the depositors’

signal is different (but coarser) than that of the LLR.
27Since the relationship between p∗ and d∗ in both the first-order condition (17) and the partici-

pation constraint (18) is decreasing, we may have multiple equilibria, in which case we focus on the
one which is closest to the first-best bp, that is the one with the highest p∗.
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On the other hand, in the absence of a LLR the bank’s objective function becomes

UB = pq[R(p)− 1− ud], so the first-order condition (17) does not change, while the
participation constraint (18) simplifies to qp∗(1 + d∗) = 1. Hence we conclude that

when u > v∗0 the existence of a LLR does not have any effect on the bank’s incentives

to take risk. Moreover, when u ≤ v∗0 the existence of a LLR reduces the deposit

rate that satisfies the participation constraint (18), which in turn, by the Stiglitz

and Weiss (1981) argument noted in Section 1, increases the equilibrium value of p∗.

Hence having a LLR may actually reduce the bank’s incentives to take risk.

The stark contrast between our results and the extant literature deserves further

discussion. It is true that in general any form of insurance (e.g. against liquidity

shocks) has the potential to create a moral hazard problem. In the context of our

model this clearly shows in the effect on the holding of liquid assets. But to have an

effect on risk-taking something else is needed. One such case would be the follow-

ing. Suppose that instead of observing a signal s on the return of the bank’s risky

asset, the uninsured depositors observe the bank’s choice of p. Furthermore, suppose

that, in the absence of a LLR, they can make the deposit rate d contingent on the

choice of p (for example, by threatening to withdraw their funds). In this case, the

bank would maximize UB = p[R(p)− 1− ud(p)] subject to the uninsured depositors’
participation constraint p[1 + d(p)] = 1. Substituting the constraint into the bank’s

objective function, and maximizing the resulting expression with respect to p gives

the first-order condition

R(ep) + epR0(ep) = 1− u. (19)

Since R(p) + pR0(p) is decreasing, the bank’s choice of risk ep is increasing in the
proportion u of uninsured deposits, and converges to the first-best bp when u tends to
1. So we conclude that the existence of uninsured depositors that observe the bank’s

choice of risk and use this information to renegotiate the terms of their contract

ameliorates the bank’s risk-shifting incentives. Moreover, the introduction of a LLR

that facilitates the withdrawal of the funds at date 1 may upset this disciplining
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mechanism, bringing us back to the p∗ < ep characterized above.
Two objections can be made to this argument. The standard one is that small

depositors do not have the ability or the incentives to monitor banks.28 The nonstan-

dard one that we are putting forward here is that one should distinguish between the

monitoring of actions and the monitoring of the consequences of those actions.29 In

the absence of a LLR, the former ameliorates the moral hazard problem, but the latter

does not, because it simply changes the bank’s objective function from p[R(p)−1−ud]
to pq[R(p)−1−ud]. Clearly, multiplying the function by a constant does not have any
effect on the first-order condition that characterizes the bank’s choice of risk. And

the same result obtains when there is a LLR. Since arguably the second is the most

plausible type of monitoring,30 we conclude that there should be no presumption that

the existence of a LLR worsens the bank’s risk-shifting incentives —except, as shown

in Section 4.1, when it charges penaly rates.

Finally, it is worth noting that our model also provides a rationale for a standard

feature of LLR policy, namely the principle of “constructive ambiguity.” This is taken

to mean that LLRs do not typically spell out beforehand the procedural and practical

details of their policy. One possible rationalization of this principle is based on the

idea of the LLR committing to a mixed strategy; see Freixas (1999). Our model

supports a different story, suggested by Goodfriend and Lacker (1999), according to

which the policy is not random from the perspective of the LLR, but it is perceived

as such by outsiders that cannot observe the supervisory information on the basis of

which decisions are made. Thus, the randomness lies in the supervisory information,

not in the policy rule.

28As forcefully argued by Corrigan (1991, pp. 49-50), “I think it is sheer fantasy to assume that
individual investors and depositors —and perhaps even large and relatively sophisticated investors and
depositors— can make truly informed credit judgements about highly complex financial instruments
and institutions.”
29See Prat (2003) for a detailed discussion of the related distinction between signals on actions

and signals on the consequences of actions.
30This is, for example, the assumption made in the recent work of Rochet and Vives (2004) on

the LLR.

32



References

[1] Allen, F., and D. Gale (2000): Comparing Financial Systems, Cambridge, MA:

MIT Press.

[2] Bagehot, W. (1873): Lombard Street. A Description of the Money Market. Ref-

erences from the 1962 edition, Homewood, Ill.: Richard D. Irwin.

[3] Bolton, P., and X. Freixas (2000): “Equity, Bonds, and Bank Debt: Capital

Structure and Financial Market Equilibrium under Asymmetric Information,”

Journal of Political Economy, 108, 324-351.

[4] Cordella, T., and Yeyati, E. L. (2003): “Bank Bailouts: Moral Hazard vs. Value

Effect,” Journal of Financial Intermediation, 12, 300-330.

[5] Corrigan, E. G. (1991): “The Risk of a Financial Crisis,” in M. Feldstein (ed.),

The Risk of Economic Crisis, Chicago: University of Chicago Press, 44-53.

[6] Diamond, D. W., and R. G. Rajan (2000): “A Theory of Bank Capital, ” Journal

of Finance, 55, 2431-2465.

[7] Flannery, M. (1996): “Financial Crises, Payment SystemProblems, and Discount

Window Lending,” Journal of Money, Credit, and Banking, 28, 804-824.

[8] Freixas, X. (1999): “Optimal Bail-Out, Conditionality and Constructive Ambi-

guity,” CEPR Discussion Paper No. 2238.

[9] Freixas, X., C. Giannini, G. Hoggarth, and F. Soussa (2000): “Lender of Last

Resort: What Have We Learned Since Bagehot?,” Journal of Financial Services

Research, 18, 63-84.

[10] Gonzalez-Eiras, M. (2003): “Bank’s Liquidity Demand in the Presence of a

Lender of Last Resort,” Universidad de San Andrés, Working Paper No. 61.

33



[11] Goodfriend, M., and R. G. King (1988): “Financial Deregulation, Monetary

Policy, and Central Banking,” Federal Reserve Bank of Richmond, Economic

Review, 74, 3-22.

[12] Goodfriend, M., and J. M. Lacker (1999): “Limited Commitment and Central

Bank Lending,” Federal Reserve Bank of Richmond, Economic Quarterly, 85,

1-27.

[13] Goodhart, C. (1999): “Myths about the Lender of Last Resort,” International

Finance, 2, 339-360.

[14] Goodhart, C., and G. Illing (2002): Financial Crises, Contagion, and the Lender

of Last Resort, Oxford: Oxford University Press.

[15] Hellmann, T. F., K. C. Murdock, and J. E. Stiglitz (2000): “Liberalization,

Moral Hazard in Banking, and Prudential Regulation: Are Capital Requirements

Enough?” American Economic Review, 90, 147-165.

[16] Holmström, B., and J. Tirole (1997): “Financial Intermediation, Loanable Funds,

and the Real Sector,” Quarterly Journal of Economics, 112, 663-691.

[17] Kahn, C. M., and J. A. C. Santos (2001): “Allocating Bank Regulatory Powers:

Lender of Last Resort, Deposit Insurance and Supervision,” BIS Working Paper

No. 102.

[18] Kaufman, G. G. (1991): “Lender of Last Resort: A Contemporary Perspective,”

Journal of Financial Services Research, 5, 95-110.

[19] Prat, A. (2003): “The Wrong Kind of Transparency,” CEPR Discussion Paper

No. 3859.

[20] Repullo, R. (2000): “Who Should Act as Lender of Last Resort? An Incomplete

Contracts Model,” Journal of Money, Credit, and Banking, 32, 580-605.

34



[21] Repullo, R. (2004): “Capital Requirements, Market Power, and Risk-Taking in

Banking,” Journal of Financial Intermediation, 13, 156-182.

[22] Repullo, R. (2005): “Policies for Banking Crises: A Theoretical Framework”, in

P. Honohan and L. Laeven (eds.), Systemic Financial Crises: Containment and

Resolution, Cambridge: Cambridge University Press, forthcoming.

[23] Repullo, R., and J. Suarez (2004): “Loan Pricing under Basel Capital Require-

ments,” Journal of Financial Intermediation, 13, 496-521.

[24] Rochet, J.-C., and X. Vives (2004): “Coordination Failures and the Lender of

Last Resort: Was Bagehot Right After All?” Journal of the European Economic

Association, 2, 1116-1147.

[25] Solow, R. M. (1982): “On the Lender of Last Resort,” in C. P. Kindleberger and

J.-P. Laffargue (eds.), Financial Crisis: Theory, History, and Policy, Cambridge:

Cambridge University Press, 237-248.

[26] Stiglitz, J. E. , and A.Weiss (1981): “Credit Rationing in Markets with Imperfect

Information,” American Economic Review, 71, 393-410.

35


