Policy discussions on the recent financial crisis feature widespread calls to address the pro-cyclical effects of regulation. The main concern is that the new risk-sensitive bank capital regulation (Basel II) may amplify business cycle fluctuations. This paper compares the leading alternative procedures that have been proposed to mitigate this problem. We estimate a model of the probabilities of default (PDs) of Spanish firms during the period 1987–2008, and use the estimated PDs to compute the corresponding series of Basel II capital requirements per unit of loans. These requirements move significantly along the business cycle, ranging from 7.6% (in 2006) to 11.9% (in 1993). The comparison of the different procedures is based on the criterion of minimizing the root mean square deviations of each adjusted series with respect to the Hodrick–Prescott trend of the original series. The results show that the best procedures are either to smooth the input of the Basel II formula by using through-the-cycle PDs or to smooth the output with a multiplier based on GDP growth. Our discussion concludes that the latter is better in terms of simplicity, transparency, and consistency with banks’ risk pricing and risk management systems. For the portfolio of Spanish commercial and industrial loans and a 45% loss given default (LGD), the multiplier would amount to a 6.5% surcharge for each standard deviation in GDP growth. The surcharge would be significantly higher with cyclically varying LGDs.

— Rafael Repullo, Jesús Saurina and Carlos Trucharte
Mitigating the pro-cyclicality of Basel II

Rafael Repullo, Jesús Saurina and Carlos Trucharte
CEMFI and CEPR; Banco de España; Banco de España

1. INTRODUCTION

The 1988 Basel Accord consolidated capital requirements as the cornerstone of bank regulation. It required banks to hold a minimum overall capital equal to 8% of their risk-weighted assets. As all consumer and business loans were included in the full weight category, 8% became the universal capital charge for household and corporate lending, while for mortgages the capital requirement was 4%.

Following widespread criticism about the risk-insensitiveness of these requirements (Jackson, 1999), the Basel Committee on Banking Supervision (BCBS) approved in 2004 a reform, known as Basel II, whose primary goal was ‘to arrive at significantly more risk-sensitive capital requirements’ (BCBS, 2006, para. 5). Basel II introduced a menu of approaches for determining capital...
requirements. The standardized approach uses external ratings to refine the risk weights of the 1988 Accord (henceforth, Basel I), but leaves the capital charges for loans to unrated companies essentially unchanged. The internal ratings-based (IRB) approach allows banks to compute the capital charges for each exposure from their own estimate of the probability of default (PD) and, in the advanced IRB approach, the loss given default (LGD) and the exposure at default (EAD); see Box 1.

Box 1. Key features of the Basel II framework

In June 2004 the Basel Committee on Banking Supervision released the revised capital adequacy framework, commonly referred to as Basel II, with the aim of a better alignment of capital requirements to banking risks. In other words, the idea was to improve on the relatively risk-insensitive framework of Basel I, by requiring higher capital charges to riskier borrowers.

Basel II adopts a three-pillar structure: Pillar 1 requires banks to maintain a minimum amount of capital for credit, market and operational risks. It sets out the quantitative and qualitative requirements and algebraic formulae to calculate capital for the different types of asset classes identified. Pillar 2, devoted to the supervisory review process, is intended to ensure that banks possess adequate capital for the full range of risks they run. In doing this, banks should develop their own risk management techniques to contribute to the overall assessment of their capital levels under the monitoring of the supervisory authorities. Pillar 3 aims to bolster market discipline to complement the other two pillars by setting out disclosure requirements applicable to banks in areas such as required capital, risk exposures, and risk assessment procedures.

Focusing on Pillar 1, and in particular on credit risk, Basel II provides a menu of approaches to calculate the minimum capital requirement according to the sophistication of a bank’s activities and its internal risk management capabilities. The three approaches are:

- the standardized approach;
- the foundation internal ratings-based approach;
- the advanced internal ratings-based approach.

The standardized approach is based on external credit assessments, when they are available, and if they are not, exposures require the same capital charge as in Basel I (8%). The main principle behind the internal ratings-based (IRB) approaches is that banks assign exposures to different asset

1 In June 2006 the Basel Committee released a final comprehensive version that included the 2004 Capital Accord, the elements of the 1988 Capital Accord that were not revised during the Basel II process, and the 1996 Amendment incorporating market risks.
classes and, within them, banks assign different internal rating grades according to their credit quality (creditworthiness). In particular, banks estimate, for each borrower or homogenous groups of them, a series of credit risk drivers that determine the corresponding capital charges. These drivers are:

- the one-year ahead probability of default (PD);
- the loss given default (LGD);
- the exposure at default (EAD);3
- the maturity (M) of the exposure.

In the advanced approach banks are required to compute all four drivers, whereas in the foundation approach they are only required to estimate the PD and rely on supervisory estimates for the others. These parameters are then plugged into a formula that gives the capital requirement corresponding to each exposure.

The Basel II formula is derived from the requirement that capital must cover losses in a particular credit risk model with a confidence level of 99.9% (see Gordy, 2003, for details). For example, in the case of corporate exposures the capital requirement k per unit of exposure is:

$$k = \text{LGD} \times \left[N\left(\frac{N^{-1}(PD) + \sqrt{\rho}N^{-1}(0.999)}{\sqrt{1 - \rho}}\right) - PD\right] \times \frac{1 + (M - 2.5)b}{1 - 1.5b} \times 1.06 \quad (B1)$$

where $N(\cdot)$ is the standard normal cumulative distribution function,

$$\rho = 0.12 \left(\frac{1 - e^{-50PD}}{1 - e^{-50}}\right) + 0.24 \left(\frac{1 - 1 - e^{-50PD}}{1 - 0.5}\right) \quad (B2)$$

and

$$b = [0.11852 - 0.05478 \times \ln(PD)]^2 \quad (B3)$$

Thus the capital requirement is the LGD multiplied by three terms. The first one, within square brackets, is the 99.9% percentile of the distribution of the losses of a large portfolio of loans with a probability of default PD minus the expected losses (that are supposed to be covered with loan loss provisions). The second term is a maturity adjustment that is increasing in the maturity M of the loan, and equal to 1 for $M = 1$ year. The term ρ in the formula is a parameter intended to capture the extent of correlation in defaults in the loan portfolio. It is decreasing in PD, so riskier loans are supposed to be less correlated –

2 Broadly speaking asset classes are divided into two main categories: corporate and retail exposures. Retail exposures are in turn divided into residential mortgages exposures, qualifying revolving exposures, and other retail exposures. Securitizations are treated separately.

3 For on-balance sheet items this parameter will be the amount of the exposure. For off-balance sheet items, credit conversion factors are used to obtain credit equivalent amounts.
in terms of the credit risk model they have higher idiosyncratic risk. The third term is a scaling factor that increases the capital requirement by 6%. This factor was computed using quantitative impact studies data to broadly maintain the aggregate level of the capital requirements.

Figure B1 plots the relationship between the capital requirement k and the PD, for $\text{LGD} = 45\%$ and $M = 1$. The function is increasing (for the relevant range) and concave in PD, so increases in the probability of default translate into less than proportional increases in the capital requirement.

As a result of this risk-sensitivity, a widespread concern about Basel II is that it might amplify business cycle fluctuations, forcing banks to restrict their lending when the economy goes into recession. Even in the old Basel I regime of essentially flat capital requirements, bank capital regulation had the potential to be pro-cyclical because bank profits may turn negative during recessions, impairing banks’ lending capacity (Borio et al., 2001; Gambacorta and Mistrulli, 2004). Under the IRB approach of Basel II, capital requirements are an increasing function of the PD, LGD and EAD parameters estimated for each borrower, and these inputs are likely to rise in downturns. For example, using the formula in Box 1 one finds that an increase in the PD from 1% to 3% (something in line with the US experience) increases the capital requirement for corporate exposures from 6.21% to 9.32%. Clearly, a jump of 50% in required capital would not be easy to accommodate in the middle of a recession.

4 In fact, there is a debate in the literature on whether the implementation of the Basel I capital requirements in the United States might have brought about a credit crunch in the early 1990s; see Bernanke and Lown (1991), Berger and Udell (1994), Hancock and Wilcox (1994), Hancock, Laing and Wilcox (1995), and Peek and Rosengren (1995a, b).

5 See the discussion in Appendix B in Repullo and Suarez (2009).

6 Assuming a constant LGD of 45% and a maturity, M, of 1 year.
So concerns about Basel II are stronger than those regarding Basel I because the worsening of borrowers’ creditworthiness in recessions will significantly increase the requirement of capital for banks and might lead to a severe contraction in the supply of credit.7 At the same time, there is the complementary concern that the lower capital requirements in expansions may contribute to the emergence of credit and asset price bubbles.8

The recent financial crisis, with its boom and bust lending cycle, has brought to the forefront the need to address the potential pro-cyclical effects of risk-sensitive bank capital regulation. The idea is to devise procedures that correct the bias towards exacerbating the inherent cyclicality of lending, and consequently distorting investment decisions, either by restricting access for some agents to bank finance or, in the opposite direction, by fuelling credit booms.

Multiple committees, institutions, central banks and supervisory authorities all over the world are working on mechanisms to abate this pro-cyclicality. To name a few, the G-20 at the summit held in Washington (G-20, 2008) requested Finance Ministers to formulate specific recommendations, among others, on mitigating pro-cyclicality in regulatory policy. The Basel Committee (BCBS, 2008) in its comprehensive strategy to address the lessons of the banking crisis also highlights the need to dampen the pro-cyclicality in the financial system. The European Union (EU, press release July 2009) created a working group to address pro-cyclicality issues by analysing potential policy responses to reduce their impact. Furthermore, the G-20 at the Pittsburgh summit (G-20, 2009) called on Finance Ministers and Central Bank Governors to reach agreement on an international framework of reform in four critical areas, the first one being ‘building high-quality capital and mitigating pro-cyclicality’. The Financial Stability Board (FSB) issued in April 2009 a series of reports covering different areas of interests in response to the current crisis, recommending that the Basel Committee should monitor the impact of the Basel II framework and make appropriate adjustments to dampen the excessive cyclicality of the minimum capital requirements; see FSB (2009). The EU Economic and Financial Committee working group on pro-cyclicality (2009) finds that there is a host of potential elements that can contribute to reducing the pro-cyclical effects on the financial system, including counter-cyclical capital requirements.

Both Treasury Secretary Geithner (2009) and Chairman Bernanke (2009) advocate that capital regulation should be revisited to ensure that it does not induce excessive pro-cyclicality. In the same vein, Adair Turner (2009) proposes the need for regulatory approaches to capital regulation to avoid unnecessary pro-cyclicality in capital adequacy requirements.

7 These concerns would be exacerbated by mark-to-market accounting, which increases the cyclical movements in banks’ capital, and consequently has the potential to amplify the pro-cyclical effects of bank capital regulation.

8 See Panetta and Angelini (2009) for an extensive discussion of the literature on pro-cyclicality in the financial sector.
One can conclude that there is widespread agreement that something must be done. The devil is, of course, in the details. How should the pro-cyclicality problem be tackled without throwing out the risk-sensitiveness of the new capital regulation regime? This is what this paper is about.

We present, analyse, and discuss the leading alternative procedures that have been proposed to mitigate the pro-cyclicality of the Basel II capital requirements. As a first step, we show that capital requirements under Basel II move significantly along the business cycle. The analysis is based on the results of the estimation of a logistic model of the one-year-ahead PDs of Spanish firms during the period 1987–2008. The database includes all commercial and industrial loans granted in Spain during this period, and comes from the Credit Register of the Bank of Spain. The dependent variable is a binary variable that takes value one when a firm defaults in the course of a year on its outstanding loans at the end of the previous year, and zero otherwise. The explanatory variables comprise characteristics of the firm (industry, location, age, credit line utilization, and previous delinquencies and loan defaults), characteristics of its loans (size, collateral and maturity), characteristics of the banks from which the firm borrows (distribution of exposures among lenders and changes in the main provider of finance), and macroeconomic controls (the rate of growth of the GDP, the rate of growth of bank credit, and the return of the stock market).

The empirical model provides an estimate of the point-in-time (PIT) PDs of the loans in the entire portfolio of commercial and industrial loans of the Spanish banks over the sample period, so using the Basel II formula we can compute the corresponding aggregate capital requirements per unit of loans. We find that Basel II capital requirements increase more than 50% from peak to trough, which is a very significant change compared with the flat requirements of Basel I.

We next consider the effect of different procedures to mitigate the cyclicality of these requirements over the business cycle. According to Gordy and Howells (2006) there are two basic alternatives: one can smooth the input of the Basel II formula, by using some sort of through-the-cycle (TTC) adjustment of the PDs, or smooth the output by using some adjustment of the Basel II capital requirements computed from the PIT PDs.9 We analyse both approaches. Following the work of Saurina and Trucharte (2007) on mortgage portfolios, we first construct TTC estimates of the PDs by setting the value of the macroeconomic controls at their average level over the sample period, and then compute the corresponding Basel II capital requirements. Second, we analyse different adjustments to the PIT capital requirements based on aggregate information (the rate of growth of the GDP, the rate of growth of bank credit, and the return of the stock market) and individual bank information (the rate of growth of banks’ portfolios of commercial and industrial loans). The comparison of the different procedures is based on the criterion of

9 See also the discussion in Committee of European Banking Supervisors (2009).
minimizing the root mean square deviations of each smoothed series with respect to the trend of the original series. This trend is computed by applying the Hodrick–Prescott (HP) filter, which is the procedure customarily used by macro-economists to separate cycle from trend. Thus, our approach aims at smoothing just the cyclical component of the Basel II capital requirements.

The results show that the best procedures in terms of approaching the HP trend are either to smooth the input of the Basel II formula using TTC PDs, or to smooth the output with a simple multiplier of the PIT capital requirements that depends on the deviation of the rate of growth of the GDP with respect to its long-run average. Our discussion of the pros and cons of these two procedures concludes that the latter is better in terms of simplicity, transparency, low cost of implementation, and consistency with banks’ risk pricing and risk management systems.

The remainder of the paper is structured as follows. Section 2 provides a broader perspective of the rationale for the approach developed in the paper. Section 3 presents the empirical model of PDs using data from the Credit Register of the Bank of Spain on commercial and industrial loans for the period 1987–2008. In Section 4 we use the estimated PDs to compute the corresponding Basel II capital requirements and its trend using the HP filter, and then compare different smoothing procedures using root mean square deviations from the HP trend. Section 5 contains our discussion of these results. Section 6 extends the analysis to adjustments using individual bank data and to the case where the loss given default moves along the business cycle, and also considers the cyclical adjustment of expected losses. Section 7 concludes. The Appendix contains the tables with the estimation results and the analysis of performance of the empirical model.

2. DEALING WITH THE PRO-CYCLICALITY OF BASEL II

In approaching the issue of how to deal with the pro-cyclical effects of Basel II it is important to stress that this regulation is not derived from a framework in which the costs and benefits of bank capital regulation are traded off. Instead, Basel II is derived from an ad hoc requirement that capital must cover credit losses with a confidence level of 99.9%, where the underlying probability distribution of loan losses is computed using a particular credit risk model. Thus there is no presumption that the resulting requirement is ‘optimal’ from a social welfare perspective.

Of course, designing optimal capital requirements is not an easy task, because one would require a proper economic model of the above-mentioned trade-off. A simple starting point could be the conceptual framework put forward by Kashyap and Stein (2004). In this framework, bank capital regulation is justified by the externalities associated with bank failures (losses to the deposit insurer, break-up of lending relationships, disruption to other players in the financial system, etc.). Bank capital regulation may serve to correct this externality, but if it is expensive for
banks to raise and/or hold capital this will have a cost in terms of a reduction in the funding of positive Net Present Value (NPV) projects. Optimal regulation would trade off the reduction in the social costs of bank failures against the underinvestment of bank-dependent borrowers.

Using this framework, Kashyap and Stein (2004) argue that if the shadow value of bank capital is low in expansions and high in recessions, optimal capital charges for each type of risk should depend on the state of the business cycle. Without such adjustments, capital requirements would be too low in expansions, when bank capital is relatively plentiful and has a low shadow value, and too high in recessions, when the shadow value of bank capital goes up, leading to the amplification of business cycle fluctuations. They conclude that optimality would require a family of capital charge curves, with each curve corresponding to a different shadow value of bank capital. In this way, the cross-sectional dimension of Basel II (that is, that riskier exposures carry a higher capital charge) would be maintained, but without undesirable side-effects in the time series dimension.

One important issue that is not addressed in Kashyap and Stein (2004) is whether in the presence of risk-sensitive capital regulation banks have an incentive to build sufficient capital buffers (capital in excess of regulatory requirements) that could neutralize the effect of the cyclical variation in capital requirements. This was the view of many regulators before the onset of the current crisis. For example, Greenspan (2002) noted that ‘the supervisory leg of Basel II is being structured to supplement market pressures in urging banks to build capital considerably over minimum levels in expansions as a buffer that can be drawn down in adversity and still maintain adequate capital.’

To address this issue, Repullo and Suarez (2009) construct a model that shows that banks have an incentive to hold capital buffers, but that the buffers maintained in expansions are typically insufficient to prevent a contraction in the supply of credit to bank-dependent borrowers at the arrival of a recession. They also show that Basel II leads to a substantial increase in the pro-cyclicality induced by bank capital regulation, with credit rationing at the beginning of a recession jumping from 1.4% to 10.7% on average in the baseline scenario. Finally they show that some simple cyclical adjustments in the 99.9% confidence level used to derive the Basel II capital requirements may significantly reduce its pro-cyclical effects.

In contrast with the normative approach of Kashyap and Stein (2004), the approach of Repullo and Suarez (2009) is positive. They take as given the Basel II regulation, and compute the associated costs in terms of credit rationing in different states of the credit cycle. This paper follows the latter approach. In particular, we do not attempt to provide a social welfare rationale for the various ad hoc adjustments that we compare, although we think that they could be related to the arguments in Kashyap and Stein (2004). Our focus is on how counter-cyclical regulation should be implemented in practice.
It could be argued that these adjustments should be left to the discretion of supervisors, in the context of the so-called ‘supervisory review process’ (Pillar 2) of Basel II. However, we believe that having a rule for counter-cyclical adjustments is better from the perspective of ensuring a level-playing field at the international level, and also for correcting possible biases in the objective function of supervisors, who would normally put extra weight on the avoidance of bank failures at the expense of the funding of positive NPV projects.

The rules that we consider imply changing the Basel II capital requirement \(k_{jt} \) for bank \(j \) at date \(t \) to a cyclically adjusted capital requirement \(\hat{k}_{jt} \). The objective would be to remove the cyclical component of \(k_{jt} \) using a simple procedure that would be applied to all the banks (as opposed to using a different procedure for each bank). The natural benchmark for doing this adjustment is the trend of the \(k_{jt} \) series, which we compute by applying the HP filter. The comparison of the different procedures is conducted in Section 4 for a single fictional bank that aggregates all commercial and industrial loans in Spain, although in Section 6 we test the robustness of our results using individual bank data.

Summing up, this is not a paper about how optimal bank capital regulation should deal with business cycle fluctuations. It is a paper that considers fixing in an ad hoc manner an ad hoc regulation. Nothing can be done on the latter: risk-based regulation à la Basel II is already in place. And we think that the former is very important from a policy perspective, because Basel II has the potential to induce severe contractions in the supply of credit in downturns. Not surprisingly, discussions on pro-cyclicality are at the centre of the ongoing regulatory review process.

3. EMPIRICAL MODEL OF FIRMS’ PROBABILITIES OF DEFAULT

3.1. Empirical model

To compute how Basel II capital requirements would evolve over the business cycle we estimate a model of default for the firms that borrowed from Spanish banks over the period 1987–2008. The model provides estimates of the PDs for each firm and year, which are used to compute the corresponding Basel II capital charges.

This procedure, although in line with other recent approaches,\(^\text{10}\) is obviously subject to the Lucas critique. Had Basel II been in place, banks’ decisions over lending, and consequently the pool of borrowers, might have been different. However, the dominant role of universal banks in the Spanish financial system, the limited role of securitization, as well as the tight model of supervision implemented by the Bank of Spain, suggest that composition effects may not be very significant.

\(^{10}\) See, for example, Committee of European Banking Supervisors (2009), Kashyap and Stein (2004), and Saurina and Trucharte (2007).
Based on direct information on firms’ economic and financial conditions, banks grant loans with very different characteristics. Some of these differential features are, directly or indirectly, contained in the information included in the Credit Register of the Bank of Spain and constitute the basis for our empirical analysis.

The Credit Register also provides information on the default status of each loan. This allows us to construct the dependent variable for the regression (logit) model, y_{it+1}, which is a dichotomous (zero-one) variable that takes value 1 if borrower i defaults in year $t+1$, and 0 otherwise. A borrower is considered to have defaulted if it is 90 days overdue failing to meet its financial obligations on a certain loan or if, with a high probability, it is considered to be unable to meet its obligations. If a borrower has several loans, failure to meet payments on any of them means that the borrower is in default. The default event is conditional, requiring that a firm defaulting in a certain year shall not have defaulted during the previous year.

The next step is to specify the explanatory variables, all dated in year t, that include variables that describe the characteristics of the borrower and its risk profile, as well as macroeconomic controls and regional (Spanish province in which the firm is registered) and industry (NACE code) dummies.

$COLLATERAL_{it}$ represents the average (weighted by the size of the exposures) of the proportion of guarantees in a firm’s borrowing. The empirical evidence (Berger and Udell, 1990, Jiménez et al., 2006) shows that banks ask for collateral to those firms perceived as riskier. $MATUREITY_{it}$ represents the proportion of long-term exposures (more than one year) over total exposures. The longer the maturity of a loan, the more thorough will be the screening process of the quality of the borrower. Riskier borrowers will probably be granted only short-term loans. AGE_{it} tries to approximate the age of each firm, with the idea of capturing that firms of recent creation are more prone to disappear than older ones. Thus, higher rates of default are expected during the first years of activity. As the relationship is not likely to be linear, we have constructed a set of dummy variables each accounting for the number of years (one, two, three, and four or more) a borrower has been reporting to the Credit Register. $FIRM_SIZE_{it}$ stands for the total amount of bank borrowing, and proxies for the size of each firm. The variable has been deflated by the consumer price index, and enters the model in logarithmic terms.

We also include in the model the variable $NUMBER_BANKS_{it}$, representing the number of banks that have granted a loan to firm i in year t. We hypothesize that the more banks a firm is related to, the more constrained it may be in terms of liquidity and thus the higher its PD. We expect a non-linear relationship between this variable and the default event, so it enters the equation in logarithmic terms. We have also included a variable that accounts for the number of times a firm

11 This definition is similar to that established in Basel II; see BCBS (2006, para. 452).

12 Clearly, some of the explanatory variables (such as collateral) may be endogenous, but this is not a problem for our empirical model since we are interested in predicting default, not in estimating causal effects.
changes its main lender, $\text{MAIN_LENDER_CHANGE}_{it}$. It indicates the frequency with which a firm changes the bank that provides the largest amount of funding. High values of this variable imply high rates of rotation and hence possible constraints or even difficulties in securing finance, which suggest low creditworthiness. UTILIZATION_{it} is the ratio between the amount of credit drawn by a borrower and the total available amount (credit line). For various reasons, firms extensively use credit line facilities where they can withdraw funds at any time. Collateral required, if any, remains pledged to the credit line. The rationale for this variable is that the more a borrower withdraws, the more liquidity constrained it may be. The empirical evidence in Jiménez et al. (2009a) shows that firms that eventually default draw down more intensely their credit lines.13

$\text{HISTORIC_DELINQUENCY}_{it}$ represents the borrowers’ record of overdue loans that have been paid before the 90-day threshold (that is, before having defaulted) measured as the number of years in which the firm has been delinquent divided by the number of years it has been reporting to the Credit Register. The problems behind overdue loans are sometimes ‘technical’, spanning only a few days as a result of mismatches in cash flows, but in other cases they are good predictors of future defaults. $\text{HISTORIC_DEFAULT}_{it}$ is another risk profile variable that captures whether a certain borrower defaulted in the past.14 As in the case of the delinquency variable, this variable is defined as the number of years in which the firm has been in default divided by the number of years it has been reporting to the Credit Register.15

The macroeconomic controls are the rate of growth of the gross domestic product, GDP_GROWTH_{t}, the rate of growth of the commercial and industrial loans in the Credit Register, CREDIT_GROWTH_{t}, and the return of the Spanish stock market index, $\text{STOCK_MARKET_RETURN}_{t}$. These variables proxy macroeconomic activity factors that affect credit risk, an essential ingredient for our analysis of the cyclical implications of Basel II.

3.2. Data

The database used in the estimation of the model of PDs is the Credit Register of the Bank of Spain (CIR). This Register records monthly information on all credit operations granted by all credit institutions operating in Spain for a value of over €6,000. The data distinguishes between loans to firms and to households. CIR includes information on the characteristics of each loan, including the following: instrument (trade credit, financial credit, leasing, etc.), currency denomination,

13 In fact, utilization ratios are significantly different for defaulted and non-defaulted firms well in advance of the date of default (even 4 or 5 years before).

14 The dates have to be $t-1$ or earlier to be consistent with the definition of default: failing to meet its financial obligations in year $t+1$ given that it was not in default in year t.

15 Jiménez et al. (2009a) show that these two variables are good proxies for firms’ financial condition. When they replace them by balance sheet and profit and loss data there is no significant change in the fit of the empirical model.
maturity, existence of guarantees or collateral, type of guarantor, coverage of the guarantee, amount drawn and undrawn of a credit commitment, and whether the loan is current in payment or past due, distinguishing in turn between delinquency and default status. CIR also includes information on the characteristics of borrowers: province of residence and, for firms, the industry in which they carry out their main economic activity.

Our analysis focuses on loans to firms. The sample period goes from 1984 to 2008, although for estimation purposes and to use explanatory variables such as age or historic delinquency and default it spans from 1987 to 2008. It should be noted that this time span includes the recession of the early 1990s and the subsequent upturn during the late 1990s and the first years of the current decade. The database contains a vast amount of information (about 10 million observations). To facilitate the analysis we have randomly selected a 10% sample, which leaves us with about 1 million observations. The main statistics of the sample (and in particular those referred to the default condition of borrowers) perfectly match those of the entire population.

3.3. Results

Table A1 in the Appendix presents the results of the estimation of the model. The results show that firms that post collateral when granted a loan have higher PDs. Lenders try to mitigate risks by requiring collateral to those firms that they consider riskier. Longer maturities are associated with lower default rates, and this is also the case for the age of the borrower. Big firms are safer than smaller ones. Firms that are two or three years old have, on average, lower credit quality, and as they grow older their default rate decreases. The more lenders a firm has and the higher rotation of its main lender the higher its PD. The higher the utilization of credit lines the higher the PD, so liquidity constraints also seem to play a role in firms’ default. Regarding risk-profile variables, past overdue and past default events are a signal of future defaults. Finally, the macroeconomic controls show that firms’ defaults increase during downturns, proxied by low GDP growth, credit growth, and stock market returns.

Tests of stability have been carried out by estimating the model without some of the variables, which does not change the signs and statistical significance of the remaining variables, and by omitting some years of the sample period, which leads to very small changes in the estimated coefficients. The model classifies correctly approximately 70% of the defaulted and non-defaulted firms in the sample (see Table A2 in the Appendix). Finally, we tested the predictive power of the model

16 Alternative performance measures confirm the predictive power of the model. In particular, the area under the ROC curve is over 76% which results in an Accuracy Ratio (AR) of 52%. These results are in line with those in the related literature; for example, Chava and Jarrow (2004) obtain an AR of 53%.
by using a second 10% sample of the population. The parameters estimated with the original sample were used to predict defaults in the validation sample. The results show that 68% of defaulted and 71% of non-defaulted firms were correctly classified.

4. CYCLICAL ADJUSTMENT OF BASEL II CAPITAL REQUIREMENTS

4.1. Point-in-time (PIT) capital requirements

The results reported in Section 3.3 allow us to compute the PIT capital requirements k_{it} for each borrower and each year using the Basel II formula for corporate exposures (BCBS, 2006, para. 272) included in Box 1, the estimated probability of default PD_{it} and assuming an LGD of 45% (as in the foundation IRB approach of Basel II),\(^{17}\) and a 1-year maturity. We then compute the aggregate PIT capital requirements per unit of loans for each year, that is

$$k_t = \frac{\sum_i k_{it}}{\sum_i l_{it}},$$ \hspace{1cm} (1)$$

where l_{it} denotes the value of the loans to firm i at the end of year t.

Figure 1 shows how aggregate PIT capital requirements per unit of loans would have evolved in Spain during the sample period had Basel II been in place, together with the Spanish GDP growth rate. Both series are highly negatively correlated (the correlation is -0.80), which suggests that GDP growth rates may be useful to mitigate the pro-cyclicality of Basel II. It is important to note that this result is not due to the fact that GDP growth is one of the explanatory variables in our empirical model. We also run cross-section regressions for each year of the sample (thus excluding the macroeconomic controls) and computed the PDs and the corresponding Basel II capital requirements, obtaining a cyclical profile very similar to that in Figure 1 (the correlation between both series was 0.94).

There is a very significant cyclical variation of the Basel II capital requirements when they are calculated with PIT PDs. In 1993, at the worst point in the business cycle, they would have been 11.9%, falling to around 8% at the peak of the cycle (8.07% in 2005, 7.63% in 2006, and 8.06% in 1986, three years of strong economic expansion). The variability of 57% in Basel II capital requirements from peak to trough contrasts with the flat 8% requirements of Basel I.\(^{18}\)

It should be noted that the average capital requirement over the sample period is 9.37%, higher than the 8% of Basel I,\(^{19}\) but this has little significance because

\(^{17}\) Section 5.2 analyses the case where LGDs vary over the business cycle.

\(^{18}\) It can be argued that this result is only for a specific portfolio (of loans to firms). However, Saurina and Trucharte (2007) show that PIT capital requirements also fluctuate significantly for mortgage portfolios in Spain. Loans to firms and mortgages represent close to 90% of total loan portfolios of Spanish banks.

\(^{19}\) The actual capital requirement would have been 8% since loans to firms had a 100% risk-weight under Basel I.
we are only looking at the portfolio of commercial and industrial loans that typically bears higher capital charges than other important parts of banks’ portfolios such as mortgages. In fact, Basel II was calibrated so that banks would hold total capital equivalent to at least 8% of their risk-weighted assets.

4.2. The Hodrick–Prescott benchmark

To identify a trend in the PIT capital requirements series we apply a HP filter with a smoothing parameter \(\lambda = 100 \) (annual data).\(^{20}\) Figure 2 shows the HP trend in dashed lines. As expected, the trend filters out the cyclical movements in the capital requirement series, being below the series in bad times and above the series in good times, but maintains the risk-sensitivity of the capital requirements along the business cycle (i.e. they increase in downturns and decline in upturns). The purpose of computing this trend is to provide a benchmark for the comparison of different alternatives proposed in the literature to mitigate the cyclicality of the Basel II requirements.

\(^{20}\) The choice of the smoothing parameter \(\lambda \) depends on the purpose of the exercise. Using the standard value for annual data (\(\lambda = 6.25 \)) produces a trend that follows more closely the series and consequently leaves smaller cyclical variations of capital requirements. However, a number of people criticized this feature and suggested to us using a flat benchmark (see Section 6.3). For this reason, we chose to work with \(\lambda = 100 \). Nevertheless, the qualitative results are not very sensitive to the choice of \(\lambda \).
4.3. Adjusting the input of the Basel II formula: TTC capital requirements

The first procedure that we analyse is to smooth the PD input of the Basel II formula by using TTC PDs. To estimate these PDs we follow the idea in Saurina and Trucharte (2007) of replacing the current values of the macroeconomic controls by their average values over the sample period. We then compute the capital requirements for each borrower and each year using the Basel II formula for corporate exposures, the estimated TTC PDs, an LGD of 45%, and a maturity of 1 year. Figure 3 shows the TTC capital requirements per unit of loans for each year of the sample.

In comparison with the PIT capital requirements, the cyclical variability of the TTC capital requirements series declines significantly. The maximum is reached in 1991, two years before the recession, at the level of 10.8%, while the minimum is 8.8% in 2005. The change in capital requirements from peak to trough goes down to 25%, which is less than half of the 57% figure obtained for the PIT series. Alternatively, the standard deviation of the TTC series is 0.62, while for the PIT series was 1.27. Figure 3 also shows that TTC PDs would have produced capital levels above those corresponding to PIT PDs during the boom of 2003–2007, with a very significant increase in 2005 and 2006.

4.4. Adjusting the output of the Basel II formula

The second procedure to adjust the Basel II capital requirements that we analyse is to apply to the PIT series a business cycle multiplier of the form:
\[\hat{k}_t = \mu_t k_t \]
\[\mu_t = \mu(g_t, \alpha) = 2N\left(\frac{\alpha (g_t - \bar{g})}{\sigma_g}\right) \]

where \(g_t \) is the growth rate of some indicator variable of the business cycle, \(\bar{g} \) its long-run average, \(\sigma_g \) its long-run standard deviation, \(N(\cdot) \) is the standard normal cumulative distribution function, and \(\alpha \) is a positive parameter. The multiplier \(\mu_t \) in (3) has several key features: it is continuous and increasing in the proxy for the business cycle \(g_t \), so capital requirements would be increased in good times and reduced in bad times, it is equal to 1 when \(g_t = \bar{g} \), so there would be no adjustment at the average of the business cycle indicator, and it is bounded, so capital requirements do not increase without bound or become negative. The normalization of the business cycle indicator allows us to express changes of capital requirements (surcharges) in terms of standard deviation movements with respect to the average value of the indicator. Any functional form with these features could be an alternative, but (3) is a particularly simple one.

Two issues related to the proposed adjustment have to be addressed. First, what is the variable that should be chosen as indicator of the business cycle? Second, how does one choose parameter \(\alpha \)? With respect to the first issue, we consider the three macroeconomic controls used in the empirical model, namely the rate of
growth of the GDP, the rate of growth of bank credit, and the return of the stock market. With respect to the second, we propose as criterion for the choice of \(z \) (for each proxy for the business cycle) to minimize the root mean square deviations (RMSD) of the adjusted series with respect to the HP trend. In other words, we choose the value of \(z \) that is best in terms of smoothing the cyclical component of the PIT capital requirements series.

The results obtained are as follows. When the variable selected as indicator of the business cycle is the rate of growth of the GDP we get \(z(\text{GDP}) = 0.081 \); when the variable is the rate of growth of bank credit we get \(z(\text{credit}) = 0.075 \); and when the variable is the return of the stock market we get \(z(\text{stock market}) = 0.038 \).

Figures 4, 5 and 6 show the adjustment of the PIT capital requirements for the three indicators of the business cycle and the optimally chosen values of parameter \(z \), together with the HP trend. It can be readily seen that the stock market indicator does very poorly in terms of approaching the HP benchmark, while the other two are much better.

An alternative procedure to adjust the output of the Basel II formula is to follow the proposal of Gordy and Howells (2006) to use an autoregressive filter of the form

\[
\hat{k}_t = \hat{k}_{t-1} + \phi(k_t - \hat{k}_{t-1})
\]

where \(k_t \) is the original PIT capital series and \(\hat{k}_t \) is the adjusted series, and \(\phi \) is a positive parameter. As in the case of parameter \(z \), we propose as criterion for the choice of \(\phi \) to minimize the RMSD of the adjusted series with respect to the HP trend, which gives \(\phi = 0.306 \).

Figure 4. PIT capital requirements, GDP adjustment, and HP trend

Notes: This figure shows the aggregate PIT Basel II capital requirements per unit of loans for the portfolio of commercial and industrial loans of Spanish banks, the adjustment using a multiplier based on GDP growth, and the HP trend of the PIT series.

Source: Authors’ calculations.
Figure 5. PIT capital requirements, credit adjustment, and HP trend

Notes: This figure shows the aggregate PIT Basel II capital requirements per unit of loans for the portfolio of commercial and industrial loans of Spanish banks, the adjustment using a multiplier based on credit growth, and the HP trend of the PIT series.

Source: Authors’ calculations.

Figure 6. PIT capital requirements, stock market adjustment, and HP trend

Notes: This figure shows the aggregate PIT Basel II capital requirements per unit of loans for the portfolio of commercial and industrial loans of Spanish banks, the adjustment using a multiplier based on the return of the Spanish stock market, and the HP trend of the PIT series.

Source: Authors’ calculations.

Figure 7 shows the autoregressive adjustment of the PIT capital requirements for the optimally chosen value of ϕ, together with the HP trend. As expected, this adjustment follows the original series with a lag. The results in Repullo and Suarez...
(2009) suggest that this is a significant shortcoming, especially in downturns, when capital requirements should be brought down in order to reduce the likelihood of a credit crunch. Another disadvantage of the autoregressive adjustment, noted by Gordy and Howells (2006, p. 415), is that ‘it assumes that the bank’s lending strategy is stationary. A weak bank would have the incentive to ramp up portfolio risk rapidly, because required capital would catch up only slowly’.

4.5. Comparing the different smoothing procedures

In line with the proposed HP benchmark, we compare the different smoothing procedures by computing the RMSD of the adjusted series with respect to the HP trend. Table 1 shows the results, together with the estimated values of parameters α and ϕ. It also shows a performance indicator given by the percentage reduction in the RMSD of the original series with respect to the HP trend that is achieved by each procedure (so the indicator would be 100% if the adjusted series coincided with the HP trend). Two procedures are clearly dominated according to this criterion, namely adjusting the output of the Basel II formula with a credit growth multiplier and with a stock market returns multiplier. The other three procedures are very similar in terms of RMSD. We have argued that there are good reasons to discard the autoregressive adjustment, so the final choice is between smoothing the input of the Basel II formula with TTC PDs and smoothing the output with a GDP growth multiplier. The discussion of the pros and cons of these two procedures is contained in the next section.
It is interesting to note in Figure 5 the early tightening in the last years of the sample of the series adjusted with the credit growth multiplier. For this reason, we also tried a multiplier that used as inputs both GDP growth and credit growth. The results were only marginally better than those obtained with the GDP growth multiplier, with a RMSD of 0.0052 and a performance indicator of 39.6%. The disappointing result, together with the additional complexity involved, led us to discard this procedure.

Given the functional form (3) of the multiplier μ_{t}, the value $\alpha(\text{GDP}) = 0.081$ implies that capital requirements should be increased in expansions and reduced in recessions by approximately 6.5% (since $\mu_{t} = 2N(0.081) = 1.065$) for each standard deviation in GDP growth. The relatively low value of $\alpha(\text{GDP})$ also implies that the multiplier is almost linear for reasonable values of GDP growth. In particular, we have $\mu_{t} = 1.13$ for two standard deviations and $\mu_{t} = 1.19$ for three standard deviations in GDP growth. This is a convenient property that allows us to easily translate changes in the business cycle indicator into capital surcharges.

It is important to note that during the second half of 1989 and the whole of 1990 there were binding credit growth limits in Spain. Those limits were an extraordinary measure to complement conventional monetary policy tools during a period in which inflation was hard to control. In order to avoid any potential bias in our results against the credit growth multiplier, we have rerun the whole exercise from 1991 onwards. RMSDs show almost no change. GDP growth is still better than credit growth, although now the TTC PDs adjustment is slightly better than the GDP growth adjustment.

It should be noted that the methodology presented in this paper may be used to assess other proposals to mitigate the pro-cyclicality of Basel II. For instance, it could be argued that one should focus on proxies for the business cycle that are more closely related to banks’ business activity, such as loan losses or profitability. However, in both cases the results are disappointing. The RMSD corresponding to

<table>
<thead>
<tr>
<th>Type of adjustment</th>
<th>α or ϕ</th>
<th>RMSD</th>
<th>Performance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTC PDs</td>
<td>–</td>
<td>0.0055</td>
<td>35.6</td>
</tr>
<tr>
<td>GDP growth</td>
<td>0.0810</td>
<td>0.0054</td>
<td>37.6</td>
</tr>
<tr>
<td>Credit growth</td>
<td>0.0745</td>
<td>0.0066</td>
<td>23.5</td>
</tr>
<tr>
<td>Stock market return</td>
<td>0.0382</td>
<td>0.0081</td>
<td>5.3</td>
</tr>
<tr>
<td>Autoregressive</td>
<td>0.3062</td>
<td>0.0054</td>
<td>36.9</td>
</tr>
</tbody>
</table>

Note: This table compares the performance in terms of RMSDs from the HP trend of the following adjustment procedures: TTC PDs, multipliers based on GDP growth, credit growth, and stock market returns, and autoregressive adjustment. It also shows the relative performance of each procedure, measured by the reduction in the RMSDs of the original series with respect to the HP trend, and the value of parameter α for the multipliers based on GDP growth, credit growth and stock market return, and of parameter ϕ for the autoregressive adjustment.

Source: Authors’ calculations.
a multiplier based on the ratio of loan loss provisions to total loans is 0.0077, while the RMSD corresponding to the multipliers based on ROA (return on assets) and ROE (return on equity) are 0.0075 and 0.0070, respectively, which are much higher than the figures in Table 1 for the GDP growth multiplier.

Recently, macro-variables such as the ratio of credit to GDP have been proposed as a possible indicator to deal with the pro-cyclicality of capital requirements (see, for example, Borio and Drehmann, 2009, and Committee of the Global Financial System, 2010). The idea behind the use of this ratio is that increases in the value of the credit to GDP ratio are associated with higher leverage levels in the economy and could also imply lowering lending standards and thus higher credit risk. As the risk increases during rapid credit growth episodes (relative to the expansion of the economic activity), so should capital requirements. Jiménez and Saurina (2006) provide robust empirical evidence for the Spanish banking system of a close relationship between credit expansion and risk taking by banks. However, we are not convinced that the ratio of credit to GDP is the best variable to carry out the adjustment of the pro-cyclicality of capital requirements. First, this ratio is a variable that normally shows an increasing trend along time. In particular, in bad times the reduction in GDP will continue pressing the ratio upwards providing the wrong signal in terms of the required adjustment. Second, the performance of a multiplier based on the credit to GDP ratio is even worse than the multiplier based on the stock market return, with a RMSD of 0.0085.

Finally, some people have argued that the adjustment could be done using forward-looking credit market variables such as credit default swaps (CDS) indices or corporate bond spreads (see, for example, Gordy and Howells, 2006). However, it is not possible to find such variables for the Spanish market during the whole period under analysis. Even in the last few years, there is only a small number of Spanish non-financial companies for which CDS are traded, and there is not much information about the liquidity of those contracts (to figure out how reliable prices could be). A similar remark applies to corporate bond spreads.

5. DISCUSSION

5.1. What is the best procedure?

Our previous results show that the best procedures for mitigating the pro-cyclicality of the Basel II capital requirements are either to adjust the input of the Basel II formula using TTC PDs or to adjust the output with a multiplier based on GDP growth.

21 We are using specific loan loss provisions, that is, provisions that cover individually identified losses.

22 At any rate, we would be rather sceptical about making regulation contingent on a variable that may be easily manipulated by the regulated. See Beatty et al. (1995), Ahmed et al. (1999), and Pérez et al. (2008), among many others.
The use of TTC PDs has been criticized by Gordy and Howells (2006, pp. 414–15) on the grounds that ‘changes in a bank’s capital requirements over time would be only weakly correlated with changes in its economic capital, and there would be no means to infer economic capital from regulatory capital’. They also point out that ‘through-the-cycle ratings are less sensitive to market conditions than point-in-time ones, [so] they are less useful for active portfolio management and as inputs to ratings-based pricing models’. Finally, they add (p. 406) that ‘despite the ubiquity of the term “through-the-cycle” in descriptions of rating methods, there seems to be no consensus on precisely what is meant’.

As noted in Financial Services Authority (2009, p. 89) adjusting PDs so that they reflect ‘an average experience across the cycle’ involves a very significant challenge, since it requires ‘the ability to differentiate changes in default experience that are due entirely to the economic cycle from those that are due to a changing level of non-cyclical risk in the portfolio’. As a result, they observe that ‘in general firms have not developed TTC ratings systems whose technical challenges are typically greater than those of PIT approaches’. The UK Financial Services Authority has been working with the industry to develop a so-called ‘quasi-TTC’ rating approach, based on adjusting the PIT PDs by a cyclical scaling factor. However, calibrating such a factor seems a difficult task. From this perspective, doing the scaling with the output of the Basel II formula, along the lines that we have proposed above, seems much easier.

The difficulty in making precise the notion of TTC ratings implies that this adjustment procedure would be implemented very differently across banks in a single jurisdiction, and especially across banks in different jurisdictions, so level playing field issues are likely to emerge. These issues would be particularly difficult to resolve because of the lack of transparency of the procedure. From this perspective, it also seems better to do the adjustment with a single (and fully transparent) macro multiplier.

Finally, it has been argued that using one-year-ahead PDs is not appropriate for loans with longer maturities, and that for this reason a TTC procedure would be more appropriate. The reply to this objection is three-fold. First, the share of long-term loans in non-mortgage portfolios is relatively small.23 Second, even for longer-term loans, a correct assessment of their risk should be done conditional on the state of the economy, not in an unconditional manner. Doing the latter, which is in the spirit of TTC ratings, contradicts the Basel II requirement of using ‘all relevant and material information in assigning ratings’ (BCBS, 2006, para. 426). Third, one should remember that the Basel II formula incorporates a maturity adjustment factor that is supposed to take care of possible downgrades during the life of the loan.

The distinction between conditional and unconditional assessments of risk deserves further discussion. To make it more precise, consider an economy with

23 For example, the proportion of loans in our sample with an initial maturity over one year is only 28%.
two aggregate states, expansion (denoted by h) and recession (denoted by l). Let p_h and p_l denote the representative PDs in the two states, with $p_h < p_l$, and let q_{ij} denote the transition probability from state i to state j. From the transition probabilities one can derive the unconditional probabilities, q_h and q_l, of being in each state, which gives the unconditional probability of default $\tilde{p} = q_h p_h + q_l p_l$. Now suppose that the economy is in an expansion state, and that we want to price a one-year loan. Clearly we should use the PIT p_h rather than the TTC \tilde{p}. Similarly, for a two-year loan we should use p_h for the first year, and (if the loan does not default during the first year) $q_h q_h p_h + q_h q_l p_l$ for the second year. If q_{hh} is sufficiently high, that is, if expansions have a long duration, then this PD will be close to p_h, so using the (conditional on the state) one-year-ahead PD would be approximately correct for pricing purposes. And so on for longer maturity loans. The conclusion is that cyclically adjusting the PDs produces a distortion in the correct measurement of risk that makes them inadequate for risk pricing and risk management purposes.

This is especially relevant in the light of the requirements on the use of internal ratings specified by the BCBS (2006, para. 444): ‘Internal ratings and default and loss estimates must play an essential role in the credit approval, risk management, internal capital allocations, and corporate governance functions of banks using the IRB approach.’

The preceding arguments suggest that adjusting the input of the IRB formula by using TTC PDs has many shortcomings. The alternative procedure, to adjust the output with a multiplier based on GDP growth, is much better in terms of simplicity, transparency, low cost of implementation, consistency with banks’ risk pricing and risk management systems, and even consistency with the idea of a single aggregate risk factor that underlies the capital requirements of Basel II (see Gordy, 2003).

5.2. Alternative forms of the multiplier

The proposed multiplier could be adjusted in several ways. For example, the range of μ_t in (2) goes from 0 (when $g_t \to -\infty$) to 2 (when $g_t \to \infty$), but one could easily introduce alternative lower and an upper bounds so that $1 - \Delta \leq \mu_t \leq 1 + \Delta$. Alternatively, the multiplier could be redefined so that $\tilde{g} = g_{\min}$ where g_{\min} is the lowest value of GDP growth in the sample. In this way, it would be possible to generate a positive buffer of regulatory capital, so minimum capital requirements would be cyclically adjusted but would never be below the level specified by the Basel II formulas with PIT PDs.

5.3. Application to international banks

The procedure of adjusting the Basel II capital requirements with a multiplier based on GDP growth would be applied in each national jurisdiction, possibly with different multipliers for different portfolios, and only for banks that are under the
IRB approach of Basel II, on the grounds that the standardized approach is only minimally risk-sensitive. The procedure is very simple, since it only requires a readily available macroeconomic variable such as the rate of growth of the GDP, and very transparent, since it would be possible to ask the banks to report the unadjusted capital requirements (and the corresponding risk-weighted assets). It would of course imply having different capital requirements for different jurisdictions, but this is an inevitable feature of any procedure designed to correct the effect of the business cycle on risk-sensitive capital requirements. It should also be noted that with the increasing correlation in international business cycles these differences should not be very significant.

The procedure would involve some complexity in its application to international banks, especially those that have significant cross-border lending activities. To limit the possibility of regulatory arbitrage, which could lead to a concentration of lending from the jurisdiction with the lowest multiplier, some general criterion should be established. A possible approach would be to base the calculation of capital requirements on the geographic location of the credit exposures. The final requirement would be computed by adding all the adjustments in the jurisdictions in which the bank has a significant exposure. As commented above, the methodology is very simple and transparent and the required data are easily accessible in all countries.

5.4. GDP revisions

One relevant issue about the cyclical adjustment of capital requirements using a multiplier based on GDP growth is the fact that in many countries GDP statistics are usually revised, sometimes by significant amounts. The revisions are obviously more important for the quarter-on-quarter data, rather than the year-on-year data, so we would favour using the latter. We would also favour using the latest data corresponding to the second to last quarter, without making any subsequent adjustments in the multiplier. For example, in the United States the Bureau of Economic Analysis (BEA) releases three quarterly GDP reports: the advance report that comes out within one month after the end of the quarter, the second report (formerly called the preliminary report) that comes out within two months after the end of the quarter, and the third report (formerly called the final report) that comes out within three months after the end of the quarter. Thus for the United States we could use the final data for second to last quarter (for example, the end-of-2009 multiplier could have been set with the third quarter data released on 22 December), so the problem of revisions would not arise. Even when this is not the case, leaving unchanged the multiplier after revisions in GDP data should not generate significant deviations with respect to its final ‘correct’ value. For example, for $g(GDP) = 0.081$ a revision amounting to 0.25 standard deviations of GDP growth would have a maximum impact on the multiplier of 1.6% (since $2N(0.081/4) \approx 1.016$).
5.5. How would banks react to the adjustment?

The potential pro-cyclical effects of bank capital regulation depend not only on the design of the minimum capital requirements but also on the endogenous response of banks to the regulation, in terms of the characteristics of their portfolio and the incentives to hold capital above the minimum required by regulation. Repullo and Suarez (2009) analyse the effect on capital buffers of modifying the cyclical profile of the 99.9% confidence level of Basel II, and hence the corresponding capital requirements, so that they are lower in recessions and higher in expansions. The results show that this policy changes the cyclical behaviour of the capital buffers in a direction that partly offsets its intended effect (reducing them in expansions and increasing them in recessions), but the net effect is a significant reduction in the pro-cyclicality of the regulation.

5.6. Contingent capital: is it an alternative?

Contingent capital has recently emerged in policy discussions as an instrument that could be useful to deal with the pro-cyclicality problem. Contingent capital is a debt instrument with the potential of converting into common equity during periods of financial strain. This property effectively helps banks to weather recession periods without having to resort to issuing equity in unfavourable conditions. At the same time, it could be a cost-effective way for banks to reduce their capital holdings, and hence its costs, in normal times. From a regulatory perspective there are two problems with using contingent capital as part of the regulatory framework. First, a number of important design issues should be resolved, especially in connection with the trigger points for conversion. Second, there is the view that the new capital regulation should focus on core capital, playing down the role of hybrid securities such as subordinated debt. The proposal of strengthening the current definition of capital could be blurred if a new hybrid instrument is brought into the picture. However, contingent capital could be useful as an instrument outside of the regulatory framework for banks to manage their capital over the business cycle. Design issues would be addressed by private contracting, and regulators would be able to focus on core capital. Obviously, the availability of such an instrument would alter banks’ incentives to hold capital buffers, but this would not probably change the amplification effects of risk-sensitive capital regulation à la Basel II. This is an interesting topic that should be pursued in future work.

24 See, for example, Kashyap et al. (2008) and Flannery (2009).

25 As noted recently by Sundaresan and Wang (2010), the proposal for banks to issue contingent capital that is forced to convert into common equity when stock prices fall below a certain specified low threshold does not in general lead to a unique equilibrium, which opens the door to price manipulation.

26 See, for example, Basel Committee on Banking Supervision (2009).
6. EXTENSIONS

6.1. Adjustments using individual bank data

The results obtained in Section 4 are based on an adjustment calibrated for the entire banking system, but they would be applied to individual banks. Therefore it is important to check the performance of the different procedures with individual bank data. In addition, this extension allows us to assess the performance of adjustments based on disaggregated data such as the credit growth of each bank.

In particular, we have chosen five Spanish banks that have opted for the IRB approach of Basel II, and that are currently calculating their minimum capital requirements using the IRB formulas. We compute the PIT capital requirements per unit of exposure for each of these five banks and for each year of the sample using the estimated PDs, an LGD of 45%, and a 1 year maturity.

The results show that there is significant heterogeneity across our sample of five banks, despite the fact that they all operate at the national level (i.e., there are no regional banks). The average value over the sample period of their Basel II capital requirements ranges from 4.5% to 8.2%, and the range of variation from peak to trough is between two and three times higher than the 57% figure obtained for the aggregate data. The significant heterogeneity among these banks makes the comparison of the different adjustment procedures much more interesting.

The analysis is carried out with the PIT capital requirements series data of the five selected banks plus a sixth fictitious bank that comprises all the other banks in the system. To provide a benchmark for the comparison of the different procedures, we compute for each of these six banks the HP trend of each capital requirements series.

Following the steps in Section 4, we first consider adjusting the PD input of the Basel II formula by using TTC PDs estimated by replacing in the regression model the current values of the macroeconomic controls by their average values over the sample period. In this way we get the TTC capital requirements for each of the six banks. Second, we apply to the PIT series of each bank the business cycle multiplier (3), where the value of parameter \(\alpha\) (for each proxy for the business cycle) is chosen to minimize the sum for the six banks of the RMSD of the adjusted series with respect to the HP trends.\(^{27}\) As proxies for the business cycle, we use the rate of growth of the GDP, the rate of growth of the credit of each bank, and the return of the stock market. Finally, we also compute for each bank the autoregressive adjustment (4), where the value of parameter \(\phi\) is chosen to minimize the sum for the six banks of the RMSDs of the adjusted series with respect to the HP trends.

In line with this approach, we compare the different procedures in terms of the sum for the six banks of the RMSDs of the adjusted series with respect to their HP

\(^{27}\) Although parameter \(\alpha\) could be estimated for each bank, we restrict attention to multipliers that have the same \(\alpha\) for all banks within a jurisdiction.
trends. Table 2 shows the results, together with the estimated values of parameters α and ϕ. It also shows a performance indicator given by the percentage reduction in the sum of RMSDs of the original series with respect to their HP trends, and the value of parameter α for the multipliers based on GDP growth, individual credit growth and stock market return, and of parameter ϕ for the autoregressive adjustment. The best procedure is now to adjust the input of the Basel II formula with TTC PDs, with the procedure based on a GDP growth multiplier coming second, and the autoregressive procedure coming third. The other two procedures are clearly dominated, including the one based on individual credit growth. In fact, comparing Tables 1 and 2 we conclude that the relative performance of the credit growth multiplier worsens when moving from aggregate to disaggregated data. Thus, our results raise doubts about the proposal of Goodhart and Persaud (2008) to adjust Basel II capital requirements ‘by a ratio linked to the growth of the value of bank assets, bank by bank’. The values of parameters α and ϕ in Table 2 are broadly in line with those in Table 1, although interestingly α(GDP) jumps from 0.081 to 0.124. This implies an increase in the corresponding multiplier from 6.5% to 9.8% (since $2\sqrt{\frac{1}{2}}(0.124) = 1.098$) for each standard deviation in GDP growth.

The superiority of the TTC PDs procedure may be explained by the fact that it approaches more closely the characteristics of the portfolio of each bank, instead of using a common adjustment for all banks. However, despite its better statistical performance, we believe that the arguments in Section 5 are sufficiently strong to favour using the multiplier based on GDP growth.

To the extent that GDP data could be available at the (domestic) regional level, it would be possible to compute regional multipliers, with a treatment of national banks similar to that proposed for international banks in Section 4. However, we would not favour this approach because the high correlation in regional business cycles does not justify the additional complexity that would be introduced in the regulation of bank capital.

Table 2. Root mean square deviations from the HP trend for different adjustment procedures using individual bank data

<table>
<thead>
<tr>
<th>Type of adjustment</th>
<th>α or ϕ</th>
<th>RMSD</th>
<th>Performance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTC PDs</td>
<td></td>
<td>0.0048</td>
<td>52.0</td>
</tr>
<tr>
<td>GDP growth</td>
<td>0.1237</td>
<td>0.0066</td>
<td>33.8</td>
</tr>
<tr>
<td>Individual credit growth</td>
<td>0.0796</td>
<td>0.0091</td>
<td>9.2</td>
</tr>
<tr>
<td>Stock market return</td>
<td>0.0239</td>
<td>0.0098</td>
<td>1.8</td>
</tr>
<tr>
<td>Autoregressive</td>
<td>0.3654</td>
<td>0.0070</td>
<td>29.6</td>
</tr>
</tbody>
</table>

*Notes: This table compares the performance of the adjustment procedures in terms of the sum for six banks (five banks that have opted for the IRB approach of Basel II plus a sixth fictitious bank which is the aggregate of all the other banks in the system) of the RMSDs from the HP trend of each bank’s series. It also shows the relative performance of each procedure, measured by the reduction in the sum of RMSDs of the original series with respect to their HP trends, and the value of parameter α for the multipliers based on GDP growth, individual credit growth and stock market return, and of parameter ϕ for the autoregressive adjustment.

Source: Authors’ calculations.
6.2. Cyclically varying LGDs

We have assumed so far a constant LGD fixed at the 45% level specified in the foundation IRB approach of Basel II. However, banks in the advanced IRB approach must input their estimated LGDs, which clearly vary over the business cycle (they are typically higher in recessions when asset prices are depressed than in expansions).28 This means that for those banks there is further cyclicality of the PIT capital requirements.

A problem to assess the impact of cyclically varying LGDs on the procedures to smooth the Basel II capital requirements is that we do not have data on the LGDs of the loans in our sample. For this reason, in what follows we simply postulate a linear relationship between \(\text{LGD}_t \) and \(\text{PD}_t \) with the same slope as in Altman et al. (2005) and with an intercept such that when the PD is at its average level over the sample period then the LGD equals the reference value of 45%,29 that is:

\[
\text{LGD}_t = 0.45 + 2.61 (\text{PD}_t - \overline{\text{PD}})
\]

where \(\text{PD}_t \) is the weighted average PD in year \(t \) (with weights equal to the borrowers’ exposures), and \(\overline{\text{PD}} \) is the average of \(\text{PD}_t \) over the sample period. Figure 8 represents the values of weighted average PDs and cyclically varying LGDs. The fluctuation in LGDs ranges between 40% and 55%.

Figure 9 shows PIT capital requirements when LGDs vary over time in this manner and PIT capital requirements calculated using a fixed 45% LGD. The cyclicality of capital requirements increases significantly. From peak to trough, they range from almost 7% to more than 14%, which is twice the variation that we had before.

With this data we proceed to perform the same analysis as in Section 4, comparing the different procedures by computing the RMSD of the adjusted series with respect to the HP trend. The results in Table 3 show that the best procedures are either to smooth the input of the Basel II formula with TTC PDs (and a constant 45% LGD) or to smooth the output with a GDP growth multiplier. The performance of the autoregressive adjustment worsens relative to the case with a fixed 45% LGD, while as before the other two procedures are clearly dominated.

Thus, the introduction of cyclically varying LGDs does not affect the relative performance of the different procedures to adjust the Basel II capital requirements. However, the value of the multipliers is higher. In particular, the jump in the value of \(\alpha(\text{GDP}) \) from 0.081 to 0.133 implies an increase in the corresponding multiplier.

28 For example, Altman et al. (2005) show that there is a positive relationship between PDs and LGDs. In particular, they regress average bond recovery rates \(1 - \text{LGD} \) on average bond default rates \(\text{PD} \), obtaining a slope coefficient of \(-2.61\).

29 There is not much justification in the literature for this assumption. Araten et al. (2004) estimate LGDs in the interval between 39.8% and 50.5%, while Gupton (2000) estimates LGDs between 30.5% and 47.9%. Frye (2000) finds similar results for senior secured corporate loans. Data collected during the calibration processes leading to Basel II (Quantitative Impact Studies or QIS exercises) do not settle the question because those exercises were carried out under benign economic conditions. Thus it is not unreasonable to take the 45% benchmark set by the Basel Committee for the IRB foundation approach.
from 6.5% to 10.6% (since $2N(0.133) = 1.106$) for each standard deviation in GDP growth.

Obviously, these results should be taken with care, since they are based on the ad hoc linear relationship between LGDs and PDs postulated in (5). On the other hand, there is an additional factor that increases the sensitivity of PIT capital requirements to the business cycle, namely that exposures at default (EADs) also move in parallel with PDs (see, for example, the evidence in Jiménez et al., 2009b). It is not easy to simulate the impact of EADs on capital requirements, so we will not pursue this here. But the fact that EADs vary over the business cycle makes the proposed cyclical adjustment of capital requirements even more compelling.

6.3. A flat benchmark

It could be argued that our results might depend on the filtering procedure used. Although the HP filter is the standard procedure used by macroeconomists to separate cycle from trend, to check the robustness of our results we tried an alternative benchmark, namely a constant requirement at the average level of the estimated PIT capital requirements over the sample period, which is 9.37%. We then
perform the same analysis as in Section 4 with a flat benchmark replacing the HP trend.\footnote{One way to rationalize this filter is to think of it as Basel I-type benchmark.}

For this benchmark the best adjustment is obtained with the autoregressive procedure, because starting at the 9.37% level and setting the autoregressive parameter ϕ equal to zero we get a zero RMSD. However, risk-sensitivity is completely eliminated by making the capital requirement equal to the flat benchmark. This is effectively throwing out the baby with the bath water, and adds to the previous

![Figure 9. PIT capital requirements with and without variable LGDs](https://academic.oup.com/economicpolicy/article-abstract/25/64/659/2918354)

Figure 9. PIT capital requirements with and without variable LGDs

Notes: This figure shows the aggregate PIT Basel II capital requirements per unit of loans for the portfolio of commercial and industrial loans of Spanish banks using a 45% LGD and a cyclically varying LGD.

Source: Authors’ calculations.

Table 3. Root mean square deviations from the HP trend for different adjustment procedures using cyclically varying LGDs

<table>
<thead>
<tr>
<th>Type of adjustment</th>
<th>α or ϕ</th>
<th>RMSD</th>
<th>Performance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTC PDs</td>
<td></td>
<td>0.0086</td>
<td>42.7</td>
</tr>
<tr>
<td>GDP growth</td>
<td>0.1330</td>
<td>0.0084</td>
<td>43.8</td>
</tr>
<tr>
<td>Credit growth</td>
<td>0.1329</td>
<td>0.0108</td>
<td>27.8</td>
</tr>
<tr>
<td>Stock market return</td>
<td>0.0489</td>
<td>0.0146</td>
<td>2.6</td>
</tr>
<tr>
<td>Autoregressive</td>
<td>0.2984</td>
<td>0.0095</td>
<td>37.0</td>
</tr>
</tbody>
</table>

Notes: This table compares the performance in terms of RMSDs from the HP trend of the adjustment procedures when LGDs are a linear function of weighted average PDs according to equation (5) in the text. It also shows the relative performance of each procedure, measured by the reduction in the RMSDs of the original series with respect to the HP trend, and the value of parameter α for the multipliers based on GDP growth, credit growth and stock market return, and of parameter ϕ for the autoregressive adjustment.

Source: Authors’ calculations.
drawbacks noted in Section 4.4. As for the other procedures, smoothing the input of the Basel II formula with TTC PDs dominates the adjustment based on GDP growth \(\text{RMSD} = 0.0066\) and \(0.0074\), respectively), which in turn is better than the adjustments based on credit growth and stock market returns \(\text{RMSD} = 0.0085\) and \(0.012\), respectively. The main conclusion from this exercise is that the performance of the different procedures does not seem to depend on the selected benchmark, but on their ability to smooth cyclical patterns in the original PIT capital requirements series.

6.4. Adjustment of expected losses

Regulatory capital under Basel II is set aside to cover unexpected losses, while expected losses must be covered with loan loss provisions. Assuming an LGD of 45%, our empirical model allows us to compute the expected losses for each borrower and each year of the sample. From here we may obtain an estimation of the expected losses per unit of loans for each year of the sample. Figure 10 shows expected losses and capital requirements per unit of loans over the sample period. Both series exhibit a very similar pattern, driven by the cyclical behaviour of PDs. It is also worth noting that the average level of expected losses (2%) is significantly lower than the average level of capital requirements (9%). This means that in order to mitigate the pro-cyclical effects of regulation, acting on the capital requirements front is much more important than acting on the expected losses front.

![Figure 10. PIT expected and unexpected losses](image)

Figure 10. PIT expected and unexpected losses

Notes: This figure shows the aggregate PIT Basel II capital requirements per unit of loans for the portfolio of commercial and industrial loans of Spanish banks using a 45% LGD, and the corresponding expected losses per unit of loans computed by multiplying the LGD by the average (weighted by the size of the exposures) PD.

Source: Authors’ calculations.
As a response to the current financial crisis, there is a growing consensus among academics and policy-makers about the need to build buffers in good times that can be drawn down when conditions deteriorate.31 One way to build up these buffers would be to implement an explicit cyclical adjustment of loan loss provisions similar to the adjustment of capital requirements discussed above. For example, a multiplier of expected losses based on GDP growth could be designed to smooth the provisioning requirements over the business cycle. Thus, during expansion phases, when expected losses are below their cyclically adjusted value, the buffer would be built up, while in recessions, when the opposite obtains, the buffer would be drawn down. This Economic Cycle Reserve (Turner Review, 2009), could be implemented by either adjusting the P&L figures (as in the case of the Spanish dynamic provisioning system32) or by restricting distributable profits. The choice between these two alternatives would require an agreement between prudential and accounting regulators.

7. CONCLUSION

This paper provides clear evidence that Basel II capital requirements based on PIT PDs move significantly along the business cycle. According to our results, from peak to trough capital requirements for loans to firms may vary by more than 50\%, a figure that could reach 100\% with cyclically varying LGDs. This variation in capital requirements could lead to a significant amplification of business cycle fluctuations. Therefore, a very important question that is in the front line of current discussions among policy-makers is: How should the pro-cyclical effects of risk-sensitive bank capital regulation à la Basel II be mitigated? To the best of our knowledge this is the first paper that presents a framework to address this issue.

We propose a benchmark for comparing different procedures and apply it to the adjustment of the estimated Basel II capital requirements for commercial and industrial loans in Spain over the period 1987–2008. The comparison is based on the minimization of the RMSD of each adjusted series with respect to the trend of the original series computed by applying the HP filter.

The results show that adjusting the output of the Basel II formula with a credit growth multiplier (based on aggregate or individual bank data) or with a stock market return multiplier is suboptimal, as it is also the case when the multiplier is based on profits (e.g., ROA, ROE) or specific loan loss provisions. The autoregressive adjustment performs better, but we argue that its lagged response is an impor-

31 See, for example, Brunnermeier et al. (2009) and the G20 Leaders’ Declaration on Strengthening the Financial System of 2 April 2009.

32 Jiménez and Saurina (2006) explain the rationale for anti-cyclical or dynamic provisions. Such provisions were introduced in Spain in 2000, and were adjusted in 2005 when the International Financial Reporting Standards (IFRS) came into effect.
tant shortcoming, especially in downturns. Consequently, the final choice is between smoothing the input of the Basel II formula by using TTC PDs or smoothing the output with a multiplier based on GDP growth. Our discussion of the pros and cons of these two procedures concludes that the latter is better in terms of simplicity, transparency, low cost of implementation, and consistency with banks’ risk pricing and risk management systems.

We also show that for the portfolio of commercial and industrial loans in Spain and for banks using the foundation IRB approach (with an LGD set at 45%), the multiplier would amount to a 6.5% surcharge for each standard deviation in GDP growth. The surcharge would be significantly higher for banks using cyclically varying LGDs. Applying these results to the current crisis, where GDP growth in many countries is three or more standard deviations below its long-run average, would imply a reduction in capital requirements of the order of at least 20%. The analytical framework presented in the paper could also be applied to expected losses, so it can be used to calibrate economic cycle reserves or dynamic provisions.

To conclude, it is important to stress that the proposed adjustment maintains the risk-sensitivity of the Basel II capital requirements in the cross-section, so banks with riskier portfolios would bear a higher capital charge, but a cyclically-varying scaling factor would be introduced to increase capital requirements in good times and to reduce them in bad times. Such changes should contribute to reduce the incidence and magnitude of both credit bubbles and credit crunches.

Discussion

Morten O. Ravn
University College London and the CEPR

This is a timely, relevant, insightful, and potentially very important contribution to the debate on how to ameliorate the pro-cyclicality of bank capital requirements built into Basel II. The issue addressed by the authors is that the first pillar of Basel II introduces risk-sensitive capital requirements which essentially imply that banks that engage in more risky lending activities are required to hold more capital. This seems like a sensible requirement in a cross-sectional sense but can induce ‘too much’ (more on this later) pro-cyclicality in a time-series implying more restrictive regulation when credit may be more needed, therefore potentially contributing to business cycle volatility. Thus, the authors examine whether there are simple, transparent and sensible adjustments that can be made to the capital requirements of Basel II that will help address this problem.

Repullo, Saurina and Trucharte’s (hereafter RST) paper makes real headwind on this issue and one can only hope that higher powers (regulators) take this paper serious. RST do the following:
1. As a first stage, RST estimate a logit model for the one-year-ahead default probability of Spanish bank loan portfolios using data for the sample period 1987–2008. The logit model assumes that the one-year-ahead default probability is a function of the characteristics of the lender, the borrower, macroeconomic conditions allowing for regional and industry specific fixed effects. This estimation is carried out using a most impressive dataset which is a 10% sample drawn (1 million observations) from the universe of Spanish bank loans made to firms (of a value of €6,000 or more).

2. In the second step, the estimated default probabilities are fed into a Basel II formula assuming a loan maturity of 1 year and a loss given default rate of 45%. This produces time-series estimates of point-in-time capital requirements that would be induced by Basel II had banks carried out the same procedure to estimate default probabilities. These estimates are then averaged over lenders and creditors to produce an aggregate time-series for the capital requirements.

3. In the third step RST produces a cyclically adjusted measure of this capital requirement estimate by fitting a HP trend. This trend is the benchmark to which they compare various methods for cyclical adjustments.

4. Finally, RST compute simple adjustments to the estimated capital requirement time-series and evaluate their fit with the HP trend. These adjustments include a through-the-cycle adjustment which essentially amounts to replacing the current values of the macroeconomic aggregates in step 2 with their average values. The second method is a business cycle multiplier approach which amounts to adjusting the estimated capital requirements with a factor that depends upon (the growth rate of) a business cycle indicator’s current value relative to trend. When above trend, this procedure adjusts upwards the capital requirement thereby mitigating procyclicality. This clearly leaves open issues regarding the appropriate macroeconomic factor and the elasticity of the adjustment. The latter of these issues is addressed by estimating the elasticity which allows for the minimal root-mean-square-error (RMSE) relative to the HP trend of step 4. The first issue is instead addressed by comparing the outcomes produced by using either GDP growth rates, credit growth rates, or stock market returns. Finally, the authors look at an adjustment which smoothes the capital requirement over time using a first order autoregressive filter with a persistence measure estimated as the one that minimizes the RMSE relative to the HP trend.

RST conclude from their analysis that the autoregressive adjustment and the business cycle multiplier approach using GDP growth perform the best. They point out that the former of these methods is backward looking so their preferred adjustment method is the latter of these two methods. Their estimates imply that a one standard deviation increase in GDP growth should amount to a 6.5% surcharge on the Basel II capital requirement.

The analysis therefore produces a clear and applicable result that could be adopted by banking regulators. This is extremely useful and I would very much like to applaud the authors for writing this paper.
My discussion is going to concentrate upon three issues. These will concern details of the analysis outlined above, the question of ‘too much’ pro-cyclicality, and the impact of adjustments to Basel II. To be fair, I think that the authors do not necessarily disagree with any of the points that I will make and I stress that I think that this is a really excellent paper.

The benchmark

In step 3 of the procedure RST estimate an HP trend for the aggregate estimate of the capital requirement for the Spanish data. This HP trend is the benchmark to which they compare the various adjustment methods. One could ask at this point why they do not simply implement the HP filter as the adjustment method rather than asking how close other methods get to the HP trend. After all, the HP filter is easily applicable. I will make two points of this issue, one of which I will expand further upon below.

First, and this is the point that I shall return to, there is a fundamental question as the sense in which Basel II is ‘too pro-cyclical’. Leaving this aside, if we accept that this is the case, the question is whether the HP trend is an appropriate benchmark. I admit that I am a fan of using HP filters for measuring deviations from trend (and therefore also for using them as measures of trend). When applied to macroeconomic time-series, the HP filter produces measures of the deviations from trend that look reasonable and with second moments that are useful for thinking about business cycles.

The easiest way of understanding what this procedure does is think in the frequency domain. Fluctuations in a time-series can be thought of as being the product of fluctuations with many different periodicities ranging from permanent to completely random. The HP filter estimates a trend by removing high frequency movements from the time-series in question. It leaves in the trend all permanent components and share of all other components with frequency weights that depend negatively on the periodicity. Thus, the product will be a trend that moves over time with the degree of smoothness depending on a parameter known as the smoothing parameter. When this parameter goes to zero, the trend is the data, while a very high value of the smoothing parameter produces a linear trend. I shall restrain myself from going into the technical details but simply point to the fact that this is a purely statistical procedure for making a trend-cycle decomposition. By contrast, as I return to below, theory makes predictions on how to correct the Basel II requirements and these are likely to be orthogonal in nature to the reasons why one might want to implement HP filters. Nonetheless, as I have mentioned, the HP filter has been shown to work rather well in practice but this is simply from the point of view of producing ‘reasonable’ results.

However, there is one point that is important. When the HP filter is translated into the time-domain, it implies a two-sided filter. What I mean by this is that the
HP-filter estimate of the trend component of some time-series y at date t, say y_{t}^{HP}, depends on past and future values of y. This is not necessarily a bad thing but it has one consequence that is important, which is that the properties of the HP trend near the end-points (the beginning and the end of the sample) are different than further away from the end-points. Suppose that $y_{T,T}^{HP}$ is the HP estimate of the trend component at data T when we have data for the sample period $t = 1,\ldots,T$. Now suppose that we add one more observation, re-estimate the HP trend and ask about the value of $y_{T,T+1}^{HP}$ (the HP trend estimate for y_{T} when we have data for the sample $1,\ldots,T+1$)? This value is very likely to be quite different from $y_{T,T}^{HP}$ because of this end-point problem. In other words, the HP filter is – because of its two-sided nature – not a very good method to produce stable ‘real-time’ estimates of trend components.

From this perspective, I think the authors make a wise choice in not proposing to use the HP trend as the proposed adjustment method as it would create the problem of how to communicate the fact that trend estimates (of the same data point) potentially change significantly over time as data is added.

Why ‘too much’ pro-cyclicality

The authors are very upfront about the fact that the paper is not about optimal banking regulation but instead about how to deal with business cycle fluctuations. Nonetheless, let me make a few remarks (which I am sure that the authors would not disagree with).

When dealing with the question of banking regulation one needs, of course, to have in mind some theory of why regulation is needed. There is a host of reasons for why this is the case and the recent financial crisis has added to many economists’ priors about the relevance of this issue. Reasons span from moral hazard issues (the belief that ex ante threats of no-bail-out are empty, moral hazard due to costly state verification etc.) to issues of contagion due to cross-bank spill-overs. In general, each of these issues will call for different aspects of banking regulation and each would therefore need to be considered when asking about optimal design of banking regulation.

Let me – without going into details – outline one theory as proposed by Kashyap and Stein (2004). These authors study a model of financial intermediation in which banks engage in lending to firms. Firms use the loans to produce output and are subject to an aggregate productivity shock. Each bank may default with some probability that depends on its loan portfolio and its capital holdings. However, it is assumed that the default of one bank has a spill-over on the probability of default of other banks that any individual bank ignores. Without regulation, banks would therefore hold too little capital as they do not internalize the externality. A regulator can address this problem by imposing capital requirements which relate capital requirements to the risk of the loan portfolio. In particular, Kashyap and Stein (2004) show that the social optimum can be implemented by imposing capital
requirements that depend on three aspects: (1) the contagion factor, (2) the shadow value of capital, and (3) the marginal impact of loans on the default probability.

It follows from this that – in a cross-sectional sense – banks that make more risky loans (loans that have a greater impact on the default probability) should hold more capital. This is the essence of the first pillar of Basel II. However, the optimal regulatory policy also calls for time-series dependence of the capital requirements. In particular, the shadow value of capital is likely to be higher in recessions than in booms, therefore implying that lack of cyclical adjustment of the capital requirements imply ‘too much’ pro-cyclicality.

Two remarks are warranted. First, nothing guarantees that the HP trend would provide anything close to the cyclical adjustment called for by theory so we would very easily end up in a second best environment. Secondly, and probably more importantly, variations in the shadow value of capital are not the only source of cyclical adjustment. It is also perceivable that the factor relating to contagion is cyclical and my prior would be that there is more scope for contagion in recessions than in booms. This would call for stricter standards in recessions than in booms in the time-series dimension. Whether this would potentially undo the impact of changes in the shadow value of capital is not clear so it might still be the case that Basel II has too much pro-cyclicality built into it. But the point is that the case for cyclical adjustments to the Basel II capital requirements is an empirical question that needs structural models to be answered.

Let me add a final twist to this. I think it would have been instructive if the authors would have reported some statistics on Spanish banks’ actual capital holdings. The reason why this is interesting is that there is some evidence that banks actually have held more capital than prescribed by Basel I and II. As mentioned above, the nature of the regulatory policies would depend upon the type of environment that we envisage banks living in. The fact that banks may hold excessive capital would seem consistent with settings with moral hazard due to costly state verification in which banks use capital holdings to signal to investors that they are ‘sound’. This may seem futile given the events of the financial crisis but one should perhaps not forget the role played by banks basically insuring themselves by effectively attempting to sell off the risk associated with their loans portfolios.

None of these comments are meant to detriment the value of the current paper. The authors are very clear in stating their objective as not being related to questions of optimal banking regulation. The issues I have highlighted, however, do imply that one needs to be somewhat careful when arguing about the appropriate cyclical adjustment of the Basel II capital requirements.

Summary

I would like to repeat what I started with: This is a really excellent and highly relevant paper that adds important insights to the debate on the first pillar of Basel II.
The authors’ careful analysis comes to a result that should be of interest to policymakers and academics alike. There is little doubt that we will see a lot of interest in financial sector regulation over the coming years and this paper makes real progress.

I would also like to add one more positive note. The estimates of the one-year-ahead default probabilities of Spanish banks are of independent value. The data are truly remarkable and I think that this part of the paper could be further developed by the authors. Of course, to the extent that banks react to regulation – as we would expect, it would be of much interest to take one more step and make this part of the paper fully structural so that we make sure that regulatory interventions do not impact on the parameter estimates, but this is surely something better left for future research.

I very much look forward to seeing future work from the authors on this very important topic.

Panel discussion

Hans-Werner Sinn acknowledged the paper’s focus was on the fine tuning of the Basel II system but he believed the issue of pro-cyclicality arose out of the mark to market accounting principle which is embedded in the IFRS approach. He contended that a much more radical solution beyond reforming the Basel II is needed.

He recounted the Prussian experience in the nineteenth century where the mark to market principle was introduced in 1861 and contributed to the stock market collapse (founders’ crisis) in 1873. Prussia quickly returned to the tried and tested lowest value principle in 1874.

Ray Rees believed greater consideration should be given to the use of alternative policy instruments which are proposed in the literature instead of capital requirement ratios to mitigate the problem of systemic externalities which arise out of increased bank defaults. Georges de Ménil noted that macroeconomic moral hazard was another important motivation for regulation. In the face of a major shock, he suggested it may be necessary to distinguish between the optimal ex ante and ex post regulatory approach.

Peter Dolton wondered about the significance of the estimated results given the use of predicted regressors in their modelling approach. He also raised concerns on the modelling of the probability of loan default and suggested the use of a hazard model where the probability of a loan default now is conditional on not having defaulted up to this point and also on the macroeconomic conditions at the time of issuing the loan. Although the time coverage of the data is short, he emphasized that it was important to correctly estimate the structural endogenous breaks in the data. Alberto Pozzolo noted that the aggregate variables used in their model contain a cyclical component which they should adjust for.
Fabrizio Perri pointed out that every crisis is different and in this context wondered if a fixed rule approach based on past experience is more appropriate than an approach which allows the regulator some room for discretion. Silvana Tenreyro believed the arguments for and against pro-cyclicality are well known and thought the development of a quantitative model, although very difficult to construct, could provide new and important insights. She suggested the authors could use real time GDP data and a one-sided filter to compute the multiplier and compare results with the paper’s findings.

Richard Portes suggested the authors should relate the papers to the leverage cycle literature. He wondered had the regulators already decided on how to reform Basel II, which he felt was the view of the authors.

Rafael Repullo reiterated that the paper was about fine tuning the Basel II system not about designing the optimal capital regulation. On the forecasting of defaults, he accepted that the approach taken to calculate the probability of default did not correspond to the approach taken by banks; however, he maintained that their primary aim was to forecast the actual behaviour of defaults as accurately as possible. He commented that the inclusion of GDP and credit growth in their model could be useful in capturing the impact of business cycle.

APPENDIX: EMPIRICAL RESULTS

Table A1. Estimation results

<table>
<thead>
<tr>
<th>Dependent variable (0/1): Borrowers’ default in (t + 1)</th>
<th>Coefficient*</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borrower variables ((t))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLLATERAL</td>
<td>0.169</td>
<td>0.017</td>
</tr>
<tr>
<td>MATURITY</td>
<td>-0.251</td>
<td>0.016</td>
</tr>
<tr>
<td>AGE dummy 2</td>
<td>0.068</td>
<td>0.023</td>
</tr>
<tr>
<td>AGE dummy 3</td>
<td>0.756</td>
<td>0.024</td>
</tr>
<tr>
<td>AGE dummy 4</td>
<td>-0.100</td>
<td>0.023</td>
</tr>
<tr>
<td>FIRM_SIZE</td>
<td>-0.254</td>
<td>0.005</td>
</tr>
<tr>
<td>NUMBER_BANKS</td>
<td>0.488</td>
<td>0.013</td>
</tr>
<tr>
<td>MAIN_LENDER_CHANGE</td>
<td>0.660</td>
<td>0.029</td>
</tr>
<tr>
<td>UTILIZATION</td>
<td>2.655</td>
<td>0.034</td>
</tr>
<tr>
<td>HISTORIC DELINQUENCY</td>
<td>2.133</td>
<td>0.024</td>
</tr>
<tr>
<td>HISTORIC_DEFAULT</td>
<td>2.858</td>
<td>0.058</td>
</tr>
<tr>
<td>Macro variables ((t))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP_GROWTH</td>
<td>-0.148</td>
<td>0.005</td>
</tr>
<tr>
<td>CREDIT_GROWTH</td>
<td>-1.596</td>
<td>0.087</td>
</tr>
<tr>
<td>STOCK_MARKET_RETURN</td>
<td>-0.248</td>
<td>0.023</td>
</tr>
<tr>
<td>Control Variables ((t))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional dummies</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Industry dummies</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-4.829</td>
<td>0.046</td>
</tr>
<tr>
<td>Number of observations</td>
<td>996,885</td>
<td></td>
</tr>
<tr>
<td>Sample period (annual)</td>
<td>1987–2008</td>
<td></td>
</tr>
</tbody>
</table>
Table A1. (Continued)

<table>
<thead>
<tr>
<th>Dependent variable (0/1): Borrowers’ default in (t + 1)</th>
<th>Coefficient*</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudo (R^2)</td>
<td>10.28%</td>
<td></td>
</tr>
<tr>
<td>Log pseudolikelihood</td>
<td>–145,548.960</td>
<td></td>
</tr>
<tr>
<td>LR chi(^2)(47)</td>
<td>33,349.380</td>
<td></td>
</tr>
<tr>
<td>Prob > chi(^2)</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

Notes: This table reports the estimation of the logistic model of firms’ default. The dependent variable takes value 1 if borrower \(i \) defaults in year \(t + 1 \), and zero otherwise. \(COLLATERAL_i \) represents average (weighted by the size of exposures) of the proportion of guarantees in a firm’s borrowing. \(MATURITY_i \) represents the proportion of long-term exposures (more than one year) over total exposures. \(AGE_i \) accounts for the number of years a borrower has been reporting to the Credit Register. \(FIRM_SIZE_i \) is the log of a firm’s borrowing deflated by the consumer price index. \(NUMBER_BANKS_i \) is the number of banks with which a firm has lending relationships. \(MAIN_LENDER_CHANGE_i \) indicates the frequency with which firms change the bank which provides them with the largest amount of funding. \(UTILIZATION_i \) is the ratio between the amount of credit drawn by a borrower and the total available amount (credit line). \(HISTORIC_DELINQUENCY_i \) is the number of years in which a firm has been delinquent divided by the number of years it has been reporting to the Credit Register. \(HISTORIC_DEFAULT_i \) is the number of years in which a firm has been in default divided by the number of years it has been reporting to the Credit Register. \(GDP_GROWTH_t \) is the rate of growth of the gross domestic product, \(CREDIT_GROWTH_t \) is the rate of growth of the commercial and industrial loans in the Credit Register, and \(STOCK_MARKET_RETURN_t \) is the rate of change of the Spanish stock market index.

*All coefficients are statistically significant at the 99% level.

Source: Authors’ calculations.

Table A2. Model performance

<table>
<thead>
<tr>
<th>Classification table</th>
<th>Classification table</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-sample model</td>
<td>Out-of-sample model</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classification Power</th>
<th>Observed defaults (%)</th>
<th>Predicted defaults (%)</th>
<th>Predicted non-defaults (%)</th>
<th>Observed non-defaults (%)</th>
<th>Predicted defaults (%)</th>
<th>Predicted non-defaults (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed defaults</td>
<td>68.01</td>
<td>30.27</td>
<td></td>
<td>68.05</td>
<td>29.54</td>
<td></td>
</tr>
<tr>
<td>Observed non-defaults</td>
<td>31.99</td>
<td>69.73</td>
<td></td>
<td>31.95</td>
<td>70.46</td>
<td></td>
</tr>
<tr>
<td>Area under ROC curve</td>
<td>0.76</td>
<td></td>
<td></td>
<td>0.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy ratio</td>
<td>52%</td>
<td></td>
<td></td>
<td>52%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: This table reports the performance of the estimated logit model for an in-sample (a random 10% of the population) and an out-of-sample set of observations (another random 10% of the population) in terms of observed and predicted defaults, areas under the Receiver Operating Characteristic (ROC) curve, and Accuracy Ratios (AR). The AR measure determines the performance enhancement over the random model. For references on these performance statistics see, for example, Sobehart et al. (2000), Sobehart and Keenan (2001), and Engelmann et al. (2003).

Source: Authors’ calculations.

REFERENCES

