Monetary Policy, Macroprudential Policy, and Financial Stability

David Martinez-Miera1,2 and Rafael Repullo2,3

1Department of Business Administration, Universidad Carlos III de Madrid, 28903 Madrid, Spain; email: david.martinez@uc3m.es

2Center for Economic Policy Research, Washington, DC 20009, USA

3Centro de Estudios Monetarios y Financieros (CEMFI), 28014 Madrid, Spain; email: repullo@cemfi.es

Keywords

bank monitoring, intermediation margin, monetary policy, macroprudential policy, capital requirements, financial stability

Abstract

This review reexamines from a theoretical perspective the role of monetary and macroprudential policies in addressing the build-up of risks in the financial system. We construct a stylized general equilibrium model in which the key friction comes from a moral hazard problem in firms’ financing that banks’ equity capital serves to ameliorate. Tight monetary policy is introduced by open market sales of government debt, and tight macroprudential policy by an increase in capital requirements. We show that both policies are useful, but macroprudential policy is more effective in fostering financial stability and leads to higher social welfare.
1. INTRODUCTION

The Global Financial Crisis has highlighted the relevance of financial intermediaries’ risk-taking behavior. Various factors have been advanced as possible causes of the build-up of risks in the financial sector leading to the crisis, and multiple policies have been put forward by academics and policy makers to reduce the likelihood and impact of future crises. This review adds to this debate by reexamining from a theoretical perspective the role of monetary policy and macroprudential policy in addressing the build-up of risks in the financial system. To do this, we construct a stylized general equilibrium model in which the key friction comes from the existence of a moral hazard problem in firms’ financing by banks.

Our main building block is the setup of Martinez-Miera & Repullo (2017), in which competitive financial institutions that are funded with uninsured debt can monitor entrepreneurial firms at a cost. Monitoring is costly and unobservable, so there is a moral hazard problem. This setup provides a characterization of the financial industry in which direct market finance and bank finance endogenously arise for different types of firms.

We make three main changes in our previous setup: We introduce the possibility of costly equity financing for banks; we reduce the possible types of entrepreneurs to two, safe and risky; and we analyze the effects on the equilibrium of the model of monetary and macroprudential policies. Allowing for equity financing in a model with unobservable monitoring is relevant, since (inside) equity capital will ameliorate the moral hazard problem, so banks will be able to reduce the cost of debt finance and offer lower rates to their borrowers.

The model features a one-period economy with four types of agents: entrepreneurs, investors, bankers, and consumers. There is a large set of potential entrepreneurs that can be either safe or risky. They require external funding for their investment projects, which is provided by investors and banks. Banks are monitoring institutions set up by bankers to fund risky entrepreneurs. Investors are characterized by their aggregate initial wealth that is used to fund safe entrepreneurs and provide banks’ debt. Bankers are characterized by their aggregate initial wealth that is used to provide banks’ equity capital (and possibly also fund safe entrepreneurs). Finally, consumers are characterized by a downward-sloping demand for the output of safe and risky entrepreneurs. We assume that investors and bankers are risk neutral, and that all agents are price takers.

The equilibrium is characterized by a rate at which safe entrepreneurs borrow from investors (the safe rate), which defines the return that investors get from their wealth, a rate at which risky entrepreneurs borrow from banks, and a return that bankers get from their wealth. It is also characterized by the capital per unit of loans that banks choose to have (the inverse of their leverage ratio), the rate at which they borrow from investors (the cost of their debt), and the monitoring intensity of the projects that they fund. Finally, the rates at which safe and risky entrepreneurs borrow from investors and banks, respectively, determine their investment via the consumers’ inverse demand functions.

There are two possible types of equilibrium. In the first, bank capital is scarce in the sense that bankers get a higher return from their wealth than investors. In the second, bank capital is abundant, and bankers get the same return from their wealth as investors. In a capital-scarce equilibrium all bankers’ wealth is invested in bank capital, while in a capital-abundant equilibrium, part of it is also used to fund safe entrepreneurs. We focus our analysis on the capital-scarce equilibrium.

1 This is in line with the results of Holmström & Tirole (1997), but focusing on firms’ observable risk characteristics instead of on their initial wealth.
2 Martinez-Miera & Repullo (2018) analyze a related model focusing on the effects of bank capital regulation in the presence of unregulated financial intermediaries (shadow banks). In such a model, a tightening of capital requirements can result in a shift of intermediation from regulated to shadow banks, with unintended consequences in terms of financial stability and welfare.
We show that, in equilibrium, banks will choose a positive amount of capital and a positive level of monitoring. Moreover, their monitoring intensity will be increasing in their intermediation margin. Since the probability of default of the loans to risky entrepreneurs is linked to their monitoring by banks, it follows that whatever happens to banks’ intermediation margin is key to determining the effects on financial stability.

After characterizing the equilibrium of the model, we show that an (exogenous) increase in investors’ wealth results in higher investment of safe and risky entrepreneurs, lower returns of debt and equity, lower intermediation margins, and higher leverage and risk-taking by banks. We also show that an (exogenous) increase in bankers’ wealth results in higher investment of safe and risky entrepreneurs, lower returns of debt and equity, higher intermediation margins, and lower leverage and risk-taking by banks. Thus, we conclude that not only the aggregate amount of funding but also the relative amounts of investors’ and bankers’ wealth are key determinants of financial stability, as they generate opposite effects on banks’ risk-taking incentives.

We next analyze the effect of monetary and macroprudential policies. The latter is modeled by introducing a macroprudential regulator that can set minimum capital requirements for banks, so that they must have a minimum amount of equity capital per unit of loans. The former is modeled by introducing a central bank that can raise the safe interest rate via open market sales of government debt that reduce the funds that investors allocate to funding safe entrepreneurs and banks.

We show that tighter monetary policy increases the return of debt and equity, reduces investment for both safe and risky entrepreneurs, increases the intermediation margin, and reduces risk-taking by banks. We also show that higher capital requirements (if binding) increase the return of equity, decrease the return of debt, shift investment from risky to safe entrepreneurs, increase the intermediation margin, and reduce risk-taking by banks. Although the effect of both policies on risk-taking goes in the same direction, higher capital requirements have a positive effect that is not present with tighter monetary policy, namely, they shift investment toward safe firms, reducing the safe rate and consequently the cost of bank debt, which leads to a further increase in the intermediation margin. For this reason, we conclude that macroprudential policy appears to be more effective than monetary policy at reducing risk-taking by banks.3

Moreover, we consider how these two policies interact, showing that, in contrast with our previous result, in the presence of binding capital requirements, a tightening of monetary policy increases risk-taking by banks. The reason for this somewhat surprising result is as follows. With binding capital requirements, the investment of risky entrepreneurs, and thus the rate at which they borrow from banks, is determined by the capital requirement. Under these conditions, the higher cost of bank debt due to the tightening of monetary policy is not translated into higher loan rates, so the intermediation margin goes down, increasing banks’ risk-taking.

It is important to note that, although both monetary and macroprudential policies can be effective at ameliorating banks’ risk-taking incentives, this may be costly in terms of social welfare, as they also affect equilibrium investment. Thus, to complete the discussion, we undertake a welfare analysis, which requires us to derive the objective function of the social planner. Social welfare comprises the return of investors’ wealth; the return of bankers’ wealth; the consumers’ surplus from entrepreneurial output; and (in the case of active monetary policy) the profits or losses of the central bank from open market operations, which are assumed to be transferred to or from investors in a lump sum manner.

3It should be noted that this result should be qualified whenever, as pointed out by Hanson et al. (2011), a tightening of capital requirements may shift some intermediation away from regulated banks and into the shadow banking system, reducing the effectiveness of the regulation (see Martinez-Miera & Repullo 2018).
Armed with this social welfare function, we first show that the laissez-faire equilibrium of the model is constrained inefficient; that is, a social planner subject to the same moral hazard problem as the banks could improve upon the equilibrium allocation. The reason is that competition among banks leads to intermediation margins and monitoring intensities that are too low. By marginally shifting investment from risky to safe firms, the social planner widens intermediation margins and increases bank monitoring, which leads to higher social welfare.

The constrained inefficiency of the laissez-faire equilibrium implies that there is a role for policy intervention. Thus, we analyze the optimal stand-alone monetary policy, the optimal stand-alone macroprudential policy, and the optimal combination of the two policies. Our numerical results show that the optimal combination of both policies is closer in terms of both financial stability and social welfare to the optimal stand-alone macroprudential policy than to the optimal stand-alone monetary policy. The increase in welfare delivered by the combination of both policies (relative to the optimal stand-alone macroprudential policy) is achieved by a further increase of capital requirements that is accompanied by a tightening of monetary policy.

This review is related to a large literature that analyzes the so-called risk-taking channel of monetary policy, that is, the connection between monetary policy rates and financial stability. In particular, a set of recent empirical papers has shown that low interest rates, especially for an extended period of time, are significant factors in the build-up of risks in the banking system. For example, Maddaloni & Peydró (2011) find that low short-term interest rates soften standards for household and corporate loans, Altunbas et al. (2014) document that too low for too long short-term interest rates lead to increases in risk-taking by banks, Jiménez et al. (2014) show that lower short-term rates induce lowly capitalized banks to grant more loan applications to ex ante riskier firms, and Dell’Ariccia et al. (2017) show that short-term interest rates are negatively associated with ex ante risk-taking by banks via changes in leverage. Our review provides a theoretical framework that can account for these empirical results.

This review is also related to the literature on the connection between financial frictions and macroeconomic fluctuations, starting with the work of Bernanke & Gertler (1989), Bernanke et al. (1996), and Kiyotaki & Moore (1997). This literature has mainly focused on agency problems between firms and their financiers, in which firms’ net worth plays a key role. In this setup, lower rates increase borrowers’ net worth, leading to credit expansions. More recently, this approach has been extended to incorporate similar agency problems between banks and their financiers, in which the focus is on banks’ net worth (see, for example, Gertler & Kiyotaki 2010, He & Krishnamurthy 2013, Brunnermeier & Sannikov 2014; for a survey, see Brunnermeier et al. 2013). While these papers shed light on the mechanisms by which shocks can be amplified in the presence of a financial sector, their focus is not on banks’ risk-taking decisions and the way in which they might depend on monetary and macroprudential policies, which are the focus of our work.

Finally, our review is closely related to the theoretical literature that has analyzed the effects of competition and regulation on banks’ risk-taking incentives (see Holmström & Tirole 1997, Allen & Gale 2000, Hellmann et al. 2000, Repullo 2004). Unlike these models, which are essentially partial equilibrium, following Martínez-Miera & Repullo (2017), our approach is to embed the key incentive mechanism into a stylized general equilibrium model. The paper closest to our review is that of Dell’Ariccia et al. (2014; see also Dell’Ariccia & Marquez 2013). In their model, there is an infinitely elastic supply of investors’ wealth at a given safe rate, determined by monetary policy, and an infinitely elastic supply of bankers’ wealth at a given spread over the safe rate. In contrast, we posit fixed aggregate supplies of investors’ and bankers’ wealth. Among other things, our setup allows for monetary and macroprudential policies to affect the differential cost of bank equity capital, which is exogenously fixed in their model.
With regard to the policy implications of our review, it is useful to recall the main contrasting views described in the survey paper by Smets (2014; see also Adrian & Liang 2018). The first view, which he calls the modified Jackson Hole consensus, argues that “the monetary authority should keep its relatively narrow mandate of price stability and stabilizing resource utilization around a sustainable level, whereas macroprudential authorities should pursue financial stability, with each having their own instruments” (Smets 2014, p. 269). In Bernanke’s (2011) words, “monetary policy is too blunt a tool to be routinely used to address possible financial imbalances; instead, monetary policy should remain focused on macroeconomic objectives, while more-targeted microprudential and macroprudential tools should be used to address developing risks to financial stability.”

The second view is the leaning-against-the-wind policy, according to which “financial stability concerns should be part of the secondary objectives in the monetary policy strategy” (Smets 2014, p. 272). This view is best described by Stein (2013): “Supervisory and regulatory tools remain imperfect in their ability to promptly address many sorts of financial stability concerns. If the underlying economic environment creates a strong incentive for financial institutions to, say, take on more credit risk in a reach for yield, it is unlikely that regulatory tools can completely contain this behavior.” He concludes that “monetary policy... has one important advantage relative to supervision and regulation—namely that it gets in all of the cracks.”

Our results provide support for the view that macroprudential policy should be the primary tool for addressing risks to financial stability. It is true that tight monetary policy gets in all of the cracks, raising all interest rates and reducing investment across all types of firms, but it also implies raising banks’ cost of borrowing, which increases their risk-taking incentives. Thus, from the perspective of our model, getting in all of the cracks can in fact be counterproductive.

The structure of the review is as follows. Section 2 presents the model, characterizes the laissez-faire equilibrium, and shows some useful comparative statics results. Section 3 analyzes the effects on the equilibrium of the model of two possible instruments to control banks’ risk-taking, namely monetary and macroprudential policies. Section 4 derives the objective function of the social planner and presents the welfare analysis of the two policies. Section 5 contains our concluding remarks.

2. MODEL

Consider an economy with two dates \(t = 0,1 \) and three types of risk-neutral agents: entrepreneurs, investors, and bankers.

There is a continuum of two observable types of potential entrepreneurs, safe (type 0) and risky (type 1). Entrepreneurs are penniless and have investment projects that require external finance. The projects of safe entrepreneurs can be funded by investors and bankers, while those of risky entrepreneurs are only funded by monitoring institutions set up by bankers to fund risky projects, called banks.\(^4\)

Safe entrepreneurs have projects that require a unit investment at \(t = 0 \) and yield a deterministic return \(A_0 \) at \(t = 1 \). Risky entrepreneurs have projects that require a unit investment at \(t = 0 \) and yield a stochastic return \(\tilde{A}_1 \) at \(t = 1 \) given by

\[
\tilde{A}_1 = \begin{cases}
A_1, & \text{with probability } 1 - p + m, \\
0, & \text{with probability } p - m,
\end{cases}
\]

where \(p \) is a parameter in \((0,1)\), and \(m \in [0,p] \) is the monitoring intensity of the lending bank.

\(^4\)In general, investors could also fund risky entrepreneurs, but since they are not able to monitor them, they cannot successfully compete with banks.
The return A_0 of the projects of the safe entrepreneurs is a positive and decreasing function of the aggregate investment x_0 of the safe entrepreneurs. Similarly, the success return A_1 of the projects of the risky entrepreneurs is a positive and decreasing function of the aggregate investment x_1 of the risky entrepreneurs. Moreover, to simplify the presentation, we assume that the same function describes the return of the projects of both types of entrepreneurs, so $A_0 = A(x_0)$ and $A_1 = A(x_1)$, with $A'(x) < 0$.

We also assume that the outcome of the projects of the risky entrepreneurs is driven by a single aggregate risk factor z that is uniformly distributed in $[0, 1]$. A project monitored with intensity m will fail if and only if $z < p - m$. This assumption implies that the return of projects monitored with the same intensity will be perfectly correlated.

There is a continuum of investors characterized by their aggregate initial wealth $W > 0$. Investors are only interested in consumption at $t = 1$, so they supply their wealth inelastically to fund safe entrepreneurs and banks.

There is a continuum of bankers characterized by their aggregate initial wealth $K > 0$. Bankers are only interested in consumption at $t = 1$, so they supply their wealth inelastically to fund safe entrepreneurs and/or set up banks to fund risky entrepreneurs. Bankers choose the capital structure of the banks that they set up, described by the capital per unit of loans k, and the interest rate B at which they borrow from investors. They also choose the monitoring intensity m of each of the risky projects that they fund, which entails a nonpecuniary monitoring cost $c(m) = \gamma m^2$.

where $\gamma > 0$. A key informational friction is that bank monitoring is not observed by investors, so there is a moral hazard problem.

We assume free entry of entrepreneurs, which implies that they will only be able to borrow at an interest rate that leaves them no surplus. Thus, if the rate at which safe entrepreneurs borrow from investors is R_0, then a measure x_0 of these entrepreneurs will enter the market such that $A(x_0) = R_0$. Also, if the rate at which risky entrepreneurs borrow from banks is R_1, then a measure x_1 of these entrepreneurs will enter the market such that $A(x_1) = R_1$. Thus, $A(x_0)$ and $A(x_1)$ are, respectively, the inverse loan demand functions of safe and risky entrepreneurs.

The initial wealth W' of investors is used to either directly fund safe entrepreneurs at the rate R_0 or indirectly (via banks) fund risky entrepreneurs, where by arbitrage they will get an expected return equal to R_0.

The initial wealth K of bankers is used to either directly fund safe entrepreneurs at the rate R_0 or set up banks, where they get an expected return R_k. If $R_k > R_0$, then they will invest all their wealth in banks, while if $R_k = R_0$, then they will also fund safe entrepreneurs (which in equilibrium ensures that R_k never falls below R_0).

Finally, we assume that funding markets are perfectly competitive in the sense that investors take the safe rate R_0 as given, and banks take as given the loan rate R_1, as well as the rates R_0 and R_k that determine their cost of debt and equity, respectively.

2.1. Equilibrium

Consider a representative bank lending to risky entrepreneurs. The bank chooses three variables: the capital per unit of loans k provided by bankers, the interest rate B offered to investors (to raise the remaining $1 - k$ funds per unit of loans), and the monitoring intensity m of its loans, taking as given the loan rate R_1 and the returns R_0 and R_k required by investors and bankers, respectively.
As shown in the Appendix (Section 6), perfect competition in the market for risky loans leads to an equilibrium in which the representative bank lends at the minimum feasible rate R^*_1. Thus, an equilibrium is defined by

$$R^*_1 = \min_{(k,m)} R_1$$

subject to the bank's incentive compatibility constraint

$$m^* = \arg \max_m \left\{ (1 - p + m)[R^*_1 - (1 - k^*)B^*] - c(m) \right\},$$

the bankers' participation constraint

$$(1 - p + m^*)[R^*_1 - (1 - k^*)B^*] - c(m^*) \geq R^*_k,$$

and the investors' participation constraint

$$(1 - p + m^*)B^* \geq R^*_0.$$
return in a capital-abundant equilibrium, we only need a single market clearing condition, given by Equation 9.

In what follows, we focus on a capital-scarce equilibrium with \(m^* < p \), so the projects of the risky entrepreneurs have a positive probability of failure. To characterize the solution to the bank's problem (Equation 3) subject to the constraints in Equations 4–6, suppose that the equilibrium monitoring intensity \(m^* \) satisfies \(m^* > 0 \). Then, by the convexity of the monitoring cost function \(c(m) \), the bank's incentive compatibility constraint (Equation 4) reduces to the first-order condition

\[R_i^* - (1 - k^*)B^* = c'(m^*). \]

To show that, in this case, the investors' participation constraint (Equation 6) is binding, note that, if it were not, then we could slightly reduce the borrowing rate \(B^* \) and the loan rate \(R_i^* \) so that Equation 10 would hold for the same \(m^* \), in which case the bankers' participation constraint (Equation 5) would still be satisfied, which contradicts the definition of equilibrium.

Solving for \(B^* \) in the investors' participation constraint (Equation 6) (written as an equality), substituting it into the first-order condition in Equation 10, and rearranging gives

\[R_i^* = \frac{(1 - k^*)R_0}{1 - p + m^*} + c'(m^*). \]

Solving for \(R_i^* - (1 - k^*)B^* \) in the bankers' participation constraint (Equation 5) (written as an equality), substituting it into the first-order condition in Equation 10, and solving for \(k^* \) gives

\[k^* = \frac{(1 - p + m^*)c'(m^*) - c(m^*)}{R_k}. \]

By the properties of the monitoring cost function (Equation 2), the right-hand side of Equation 12 is increasing in \(m^* \) [since the derivative is \((1 - p + m^*)c'(m^*)/R_k > 0 \)] and equals zero when \(m^* = 0 \), which implies \(m^* > 0 \) if and only if \(k^* > 0 \). In other words, in an interior monitoring equilibrium, the bank will always want to have a positive amount of capital.

These results imply that the equilibrium loan rate \(R_i^* \) satisfies

\[R_i^* = \min_{m,k} \left[\frac{(1 - k)R_0}{1 - p + m} + c'(m) \right] \]

subject to Equation 12. The first-order condition of this problem is

\[
\frac{d R_i^*}{dm} = - \frac{(1 - k^*)R_0}{(1 - p + m^*)^2} + c'(m^*) \frac{R_0}{1 - p + m} \frac{d k^*}{dm} \\
= - \frac{(1 - k^*)R_0}{(1 - p + m^*)^2} + \frac{R_k - R_0}{R_k} c'(m^*) = 0.
\]

5A sufficiently large value of parameter \(\gamma \) in the monitoring cost function (Equation 2) ensures that \(m^* < p \).
Moreover, one can show that, under the assumption in Equation 2, the second-order condition is satisfied. Thus, there will be an equilibrium with \(m^* > 0 \) if and only if

\[
\frac{dR^*_1}{dm} \bigg|_{m=k=0} = -\frac{R_0}{(1-p)^2} + \frac{R_k - R_0}{R_k} \epsilon'(0) < 0.
\]

From this, it follows that, in a capital-scarce equilibrium, we must have \(m^* > 0 \). To see this, note that, by the incentive compatibility constraint in Equation 4 and the assumption in Equation 2, \(m^* = 0 \) implies

\[
R^*_1 - (1 - k^*)B^* \leq 0,
\]

so the bankers’ participation constraint (Equation 5) can only be satisfied for \(k^* = 0 \). However, if the bankers are not investing their wealth \(K > 0 \) in bank capital, then we must have \(R_k = R_0 \), which by Equation 15 implies \(m^* > 0 \), which is a contradiction.\(^6\)

Summing up, we characterize a capital-scarce equilibrium of the model by the following equations: the bankers’ and the investors’ participations constraints (Equations 5 and 6), which are satisfied with equality; the relationship between capital and monitoring (Equation 12); the first-order condition that determines the minimum feasible loan rate for the risky entrepreneurs (Equation 14); and the market clearing conditions (Equations 7 and 8). Thus, we have six equations to determine six equilibrium variables: \(R^*_0, R^*_1, R^*_k, k^*, B^*, m^* \). In this equilibrium, banks choose a positive level of capital per unit of loans \(k^* > 0 \) and a positive level of monitoring \(m^* > 0 \). Finally, using the first-order condition in Equation 10 and the monitoring cost function in Equation 2, it follows that equilibrium monitoring satisfies

\[
m^* = \frac{1}{\gamma} [R^*_1 - (1 - k^*)B^*].
\]

Thus, monitoring \(m^* \) will be proportional to the intermediation margin \(R^*_1 - (1 - k^*)B^* \).

2.2. Comparative Statics

In this section, we illustrate the properties of the equilibrium for a particular parameterization of the model that yields a capital-scarce equilibrium. In particular, apart from the quadratic monitoring cost function in Equation 2, we assume that the inverse loan demand functions \(A(x_0) \) and \(A(x_1) \) satisfy

\[
A(x) = x^{-1/\sigma},
\]

where \(\sigma > 1 \).\(^7\) For our representation of the model, we take \(\gamma = 5 \) in the monitoring cost function (Equation 2) and \(\sigma = 2 \) in the inverse loan demand function (Equation 18) and assume that the probability of failure of the projects of risky entrepreneurs in the absence of monitoring is \(p = 0.2 \).\(^8\)

\(^6\)Note that, if \(R_k = R_0 \) (a capital-abundant equilibrium), then Equation 15 implies \(dR^*_1/dm < 0 \), so we must have either \(m^* = p \) (a corner solution in which risky projects become safe) or \(k^* = 1 \) (a corner solution in which banks are fully funded with equity). Which case obtains depends on whether the right-hand side of Equation 12 evaluated at \(m^* = p \) is smaller or greater than 1.

\(^7\)This assumption is derived in Section 4 from the demand of a representative consumer with a utility function over the goods produced by the two types of entrepreneurs. It can also be derived from the demand of a set of final good producers that use entrepreneurs’ output as an intermediate input (see Martinez-Miera & Repullo 2017).

\(^8\)These values are chosen for the purpose of illustrating the qualitative properties of the equilibrium of the model. They are not calibrated to yield realistic values of the endogenous variables.
Figure 1 shows the effect of changes in investors’ wealth W (for a given value of bankers’ wealth K) on the equilibrium of the model. Figure 1a shows the effect on the aggregate investment of safe and risky entrepreneurs, x_0^* and x_1^*, respectively. An increase in W leads to an increase in the aggregate investment of both types of entrepreneurs. Given that $A(x_0) = R_0$ and $A(x_1) = R_1$, this implies that the rates R_0^* and R_1^* at which they borrow go down. The effect on the safe rate R_0^* is shown in Figure 1b, together with the effect on the return R_k^* of the wealth of bankers, which also goes down. Figure 1c shows that the increase in investors’ wealth W reduces the representative bank’s capital per unit of loans k^*, so leverage goes up. Finally, Figure 1d shows that the increase in W also reduces the monitoring intensity m^*, so the bank’s probability of failure goes up.

Figure 2 shows the effect of changes in bankers’ wealth K (for a given value of investors’ wealth W) on the equilibrium of the model. Figure 2a shows the effect on the aggregate investment of safe and risky entrepreneurs, x_0^* and x_1^*, respectively. An increase in K leads to an increase in the aggregate investment of both types of entrepreneurs. Given that $A(x_0) = R_0$ and $A(x_1) = R_1$, this implies that the rates R_0^* and R_1^* at which they borrow go down. The effect on the safe rate R_0^* is shown in Figure 2b, together with the effect on the return R_k^* of the wealth of bankers, which also goes down. In contrast with the results in Figure 1, Figure 2c shows that the increase in bankers’ wealth K increases the representative bank’s capital per unit of loans k^*, so leverage goes down. Finally, Figure 2d shows that the increase in K also increases the monitoring intensity m^*, so the banks’ probability of failure goes down.

These results illustrate that, when both investors’ wealth W and bankers’ wealth K vary, what is key to determining the effect on financial stability is the direction and the relative magnitude of these changes. Moreover, although increases in both W and K (resulting, for example, from a global savings glut) lead to a fall in interest rates, bank leverage and risk-taking go up (as the
3. POLICY ANALYSIS

This section analyzes the effects on the equilibrium of the model of two possible instruments to control banks’ risk-taking, namely a tightening of monetary policy and the introduction (and tightening) of capital requirements for banks.

3.1. Monetary Policy

Monetary policy is modeled by introducing a new agent, the central bank, that can engineer a change in the safe interest rate R_0. This can be done in our model setup by assuming that

- there is a government with an amount of outstanding safe debt, and
- the central bank can increase or decrease the amount of government debt held by investors. This means that the initial wealth of investors W is divided between a part invested in funding safe entrepreneurs and banks and another part invested in government debt.\(^9\) From the perspective of individual investors, the division is immaterial, since they get the same return, but it matters from an aggregate perspective because government debt in the hands of investors reduces the funds allocated to private investments and thus changes the equilibrium of the model.

\(^9\)Alternatively, we could simply assume that the central bank sells its own liabilities (reserves remunerated at market rates) to investors.

Figure 2

Effects of an increase in bankers’ wealth on (a) aggregate investments of safe (x_0) and risky (x_1) entrepreneurs, (b) returns on wealth of bankers (R^k) and investors (R^0), (c) bank capital per unit of loans (k^*), and (d) bank monitoring (m^*).

Evidence in Adrian & Shin 2008 shows) only if the increase in (nonmonitoring) investors’ wealth W is more significant than the increase in (monitoring) bankers’ wealth K.
The equilibrium effects of a tightening of monetary policy that reduces the wealth that investors allocate to funding safe entrepreneurs and banks can be seen in Figure 1 by simply reinterpreting the variable in the horizontal axis as investors’ privately invested wealth. Such tightening reduces aggregate investment of both types of entrepreneurs, increases the rates at which they borrow (in particular, the safe rate R_k^0 that the central bank targets), increases the return of the wealth of bankers, which also goes up due to the scarcity of the risky entrepreneurs and thus, as implied by Equation 17, bank monitoring incentives, since it increases the intermediation margin $R_k^* - (1 - \bar{k})B^*$ and thus, as implied by Equation 17, bank monitoring incentives, since it increases the loan rate R_k^* and reduces the safe rate R_k^0 and consequently the banks’ borrowing rate B^*, which further increases the intermediation margin $R_k^* - (1 - \bar{k})B^*$ and bank monitoring m^*.

It should be noted that capital requirements increase financial stability through two channels. At the micro level, the increase in \bar{k} has a direct effect on banks’ monitoring incentives, since it increases the intermediation margin $R_k^* - (1 - \bar{k})B^*$ and thus, as implied by Equation 17, bank monitoring m^*. At the macro level, the increase in \bar{k} has an indirect effect on banks’ monitoring incentives, since it increases the loan rate R_k^* and reduces the safe rate R_k^0 and consequently the banks’ borrowing rate B^*, which further increases the intermediation margin $R_k^* - (1 - \bar{k})B^*$ and bank monitoring m^*.

10 An expansionary monetary policy would lead to the opposite results, in line with the effects of a savings glut analyzed by Martinez-Miera & Repullo (2017).

11 The welfare analysis in Section 4 introduces a return that the central bank gets from these resources.

12 The macro effect would be smaller if there were an effective lower bound for the safe rate R_k^0, in which case some resources would be diverted to other uses.
3.3. Monetary Policy with Binding Capital Requirements

In this section, we consider a situation in which capital requirements are already binding. In such a situation, a tightening of monetary policy (a reduction in investors’ wealth allocated to funding safe entrepreneurs and banks) has some surprising effects, shown in Figure 4. Figure 4a shows that, with binding capital requirements, a tightening of monetary policy reduces the aggregate investment x_0^* of safe entrepreneurs but leaves unchanged the aggregate investment x_1^* of risky entrepreneurs (since, as noted above, $x_1^* = K/K$). Thus, safe entrepreneurs borrow at higher rates (as shown in Figure 4b), but there is no effect on the borrowing rate of risky entrepreneurs. Since the capital requirement is binding, the tightening of monetary policy has no effect on bank leverage (Figure 4c). The increase in the safe rate R_0^* implies an increase in banks’ borrowing rate B^*, which is not translated into higher lending rates R_1^*, so the intermediation margin $R_1^* - (1 - \tilde{\pi})B^*$ goes down. This implies that the return R_1^* of the wealth of bankers goes down (Figure 4b), and bank monitoring m^* also goes down (Figure 4d). Thus, we conclude that, in contrast with our previous result, when capital requirements are binding, a tightening of monetary policy increases banks’ risk-taking.

3.4. Discussion

Above, we show that both a tightening of monetary policy (when capital requirements are not binding) and an increase in capital requirements (when they are) increase banks’ monitoring intensity and thus reduce their risk-taking. However, there are differences in the channels whereby these factors operate. Tightening monetary policy reduces aggregate investment of both safe and risky entrepreneurs, increasing the rates at which they borrow. In contrast, increasing capital
Figure 4

Effects of tightening monetary policy (shift to the left in investors’ wealth) in the presence of binding capital requirements on (a) aggregate investments of safe (x_0) and risky (x_1) entrepreneurs, (b) returns on wealth of bankers (R_k) and investors (R_0), (c) bank capital per unit of loans (k), and (d) bank monitoring (m).

requirements shifts investment from risky to safe entrepreneurs. As a result, safe entrepreneurs borrow at lower rates, while risky entrepreneurs borrow at higher rates.

These different effects follow from the fact that, when tightening monetary policy, the central bank reduces the resources that investors allocate to funding safe entrepreneurs and banks, effectively shrinking the supply of savings to the private sector (a savings dearth). In contrast, a tightening of capital requirements leads to a redistribution of funds between safe and risky entrepreneurs, without any change in the aggregate supply of savings to the private sector.

The effect on financial stability of these two policies can be explained by reference to the relationship in Equation 17 between the equilibrium monitoring intensity m^* and the intermediation margin $R_1^* - (1 - k^*)B^*$. An increase in monitoring m^* requires that the difference between the loan rate R_1^* and the payment promised to debt-holders $(1 - k^*)B^*$ goes up. Both policies increase R_1^*, and both policies increase k^*, voluntarily in the case of the tightening of monetary policy and mandatorily in the case of the tightening of capital requirements, widening the intermediation margin. However, a tightening of monetary policy increases the equilibrium safe rate R_0^*, while an increase in capital requirements reduces it, which translates into opposite effects on the banks’ borrowing rate B^*. Consequently, macroprudential policy appears to be a more effective instrument for containing banks’ risk-taking incentives.

The analysis of the two policies combined, as opposed to in isolation, leads to some interesting results. Specifically, when banks’ capital requirements are already binding, tightening monetary policy does not have any effect on the loan rate R_1^*, while the payment promised to debt-holders $(1 - k^*)B^*$ goes up due to the increase in the equilibrium safe rate R_0^*. Thus, in contrast with the case where capital requirements are not binding, a tightening of monetary policy with binding
capital requirements increases banks’ risk-taking, a result that highlights the relevance of the joint analysis of both policies.

These results provide support for the modified Jackson Hole consensus described in Section 1. It is true that monetary policy “gets in all of the cracks,” which in the context of our model (and as long as capital requirements are not binding) implies reducing investment of both safe and risky firms. However, banks’ risk-taking incentives are driven by the spread between the return of their lending and the cost of their borrowing, a cost that goes up with tighter monetary policy. Thus, from this perspective, getting in all of the cracks can in fact be counterproductive.

However, this statement should be qualified whenever, as noted by Hanson et al. (2011), a tightening of capital requirements may shift some intermediation away from regulated banks and into the shadow banking system, reducing the effectiveness of macroprudential tools. In such cases, the analysis of Martinez-Miera & Repullo (2018) shows that tightening monetary policy may be useful to prevent the expansion and reduce the risk of shadow banks, since their funding costs are directly related to the level of the safe rate targeted by the central bank.

4. WELFARE

This section analyzes whether the laissez-faire equilibrium of the model is constrained efficient, that is, whether a social planner subject to the same moral hazard problem as the banks could improve upon the equilibrium allocation. We show that the equilibrium allocation is constrained inefficient: The social planner would shift investments toward safe entrepreneurs, which would widen the intermediation margin and increase monitoring, thereby ameliorating the moral hazard problem. This result implies that there is a role for policy intervention. Specifically, we consider the optimal stand-alone monetary policy, the optimal stand-alone level of the capital requirement, and the optimal combination of the two policies.

4.1. Social Welfare Function

To proceed with the welfare analysis we first have to derive the objective function of the social planner, which comprises (a) the return of investors’ wealth; (b) the return of bankers’ wealth; (c) the consumers’ surplus from entrepreneurial output; and (d) the profits or losses of the central bank from open market operations, in the case of active monetary policy, which are assumed to be transferred to or from investors in a lump sum manner. All of these amounts are measured in terms of a composite good available at $t = 1$.

The return of investors’ wealth is simply the product of their initial wealth W by the safe rate R_0. Similarly, the return of bankers’ wealth is the product of their initial wealth K by the return R_k, which, according to the participation constraint in Equation 5, is defined as net of monitoring costs.

To compute the consumers’ surplus from entrepreneurial output, we introduce a representative consumer with a utility function over the goods produced by the two types of entrepreneurs and the composite good. We assume that one unit of investment produces a unit of output if successful. Thus, the output y_0 of the safe entrepreneurs equals their aggregate investment x_0, while

13In a similar vein, Tarullo (2019, p. 61) writes: “The current regulatory framework does not deal effectively with threats to financial stability outside the perimeter of regulated banking organizations, notably from forms of shadow banking.”
the output of the risky entrepreneurs y_1 equals their aggregate investment x_1 with probability $1 - p + m$ and zero otherwise.\footnote{Recall that we assume that the outcomes of the projects of risky entrepreneurs are driven by a single aggregate risk factor, which implies that the return of risky projects monitored with the same intensity will be perfectly correlated.}

Following Martinez-Miera & Repullo (2017), we introduce the following utility function for the representative consumer:

$$ U = q + \frac{\sigma}{\sigma - 1} (y_0)^{\frac{\sigma-1}{\sigma}} + \frac{\sigma}{\sigma - 1} (y_1)^{\frac{\sigma-1}{\sigma}}, \tag{19} $$

where q is the consumption of the composite good, y_0 and y_1 are the outputs of safe and risky entrepreneurs, and $\sigma > 1$. The budget constraint of the representative consumer is

$$ q + A_0 y_0 + A_1 y_1 = I, \tag{20} $$

where A_0 is the price of the output of the safe entrepreneurs (the deterministic return of their investment), A_1 is the price of the output of the risky entrepreneurs (the success return of their investment), and I is the consumer’s (exogenous) income.

Maximizing the utility function (Equation 19) subject to the budget constraint (Equation 20) gives the first-order condition

$$ A_i = (y_i)^{-1/\sigma} \tag{21} $$

for $i = 0, 1$. Substituting this result into the consumer’s utility function and using the fact that $y_0 = x_0$ with probability 1 and $y_1 = x_1$ with probability $1 - p + m$ gives the following measure of consumers’ surplus:

$$ S = \frac{1}{\sigma - 1} (x_0)^{\frac{\sigma+1}{\sigma}} + (1 - p + m) \frac{1}{\sigma - 1} (x_1)^{\frac{\sigma+1}{\sigma}}. \tag{22} $$

Importantly, the first-order condition (Equation 21) provides a rationale for the inverse loan demand function (Equation 18) used in our previous numerical analysis.

To compute the profits or losses of the central bank from open market operations, suppose that, to tighten monetary policy, the central bank sells government debt for an amount equal to a proportion μ of the initial wealth W of investors. As noted in Section 3.1, the central bank channels these resources to uses different from funding entrepreneurs. In particular, assume that it invests μW at a fixed rate R_{CB}. At the same time, the central bank loses the return of the government debt sold to investors, which yields the safe rate R_0. Thus, the profits or losses of the central bank from this operation are $\mu W (R_{CB} - R_0)$.\footnote{The same result obtains if the central bank sells its own liabilities (reserves remunerated at the safe rate R_0) to investors for an amount μW and invests them at the rate R_{CB}.} This amount is transferred (if positive) or taxed (if negative) in a lump sum manner to investors at $t = 1$.

Adding up the four elements of social welfare gives

$$ SW = WR_0 + KR_k + \frac{1}{\sigma - 1} (x_0)^{\frac{\sigma+1}{\sigma}} + (1 - p + m) \frac{1}{\sigma - 1} (x_1)^{\frac{\sigma+1}{\sigma}} + \mu W (R_{CB} - R_0). \tag{23} $$

By the market clearing condition (Equation 7), rewritten to take into account that only a fraction $1 - \mu$ of investors’ wealth is available for funding safe entrepreneurs and banks, we have

$$ (1 - \mu)W R_0 = [x_0 + (1 - k)x_1] R_0. \tag{24} $$
By the market clearing condition (Equation 8), together with the participation constraints in Equations 5 and 6 (which in equilibrium are satisfied with equality), we have

\[KR_t = x_1[(1 - p + m)R_1 - (1 - k)R_0 - c(m)]. \]

Putting together Equations 24 and 25 yields

\[WR_0 + KR_0 = x_0R_0 + (1 - p + m)x_1R_1 - x_1c(m) + \mu WR_0. \]

Substituting this result into Equation 23 and using the fact that \(R_0 = A(x_0) = (x_0)^{-1/\sigma} \) and \(R_1 = A(x_1) = (x_1)^{-1/\sigma} \), we get the following expression of social welfare:

\[SW = \frac{\sigma}{\sigma - 1}(x_0)^{1 - \frac{1}{\sigma}} + (1 - p + m)\frac{\sigma}{\sigma - 1}(x_1)^{1 - \frac{1}{\sigma}} - x_1c(m) + \mu WR_0. \]

The first term in Equation 27 is the welfare associated with the output of safe entrepreneurs, the second term is the welfare associated with the output of risky entrepreneurs, the third term subtracts the costs of monitoring risky entrepreneurs, and the last term is the return of the investments of the central bank.

4.2. Constrained Inefficiency of Equilibrium

To show that the laissez-faire equilibrium allocation is constrained inefficient, and therefore that there is a role for policy intervention, we set \(\mu = 0 \), so that the central bank does not operate, and consider the maximization of the social welfare function (Equation 27) subject to the first-order condition (Equation 10) that characterizes the banks’ choice of monitoring, the investors’ participation constraint (Equation 6) and the market clearing conditions (Equations 7 and 8).

Multiplying the first-order condition in Equation 10 by \((1 - p + m)x_1\) and using the investors’ participation constraint in Equation 6 (written as an equality) and the market clearing condition in Equation 8 gives

\[(1 - p - m)x_1R_1 = (x_1 - K)R_0 + (1 - p - m)x_1c(m). \]

Substituting \(R_0 = A(x_0) = (x_0)^{-1/\sigma}, R_1 = A(x_1) = (x_1)^{-1/\sigma} \), and \(x_1 - K = W - x_0 \) (implied by the market clearing conditions in Equations 7 and 8) into this expression and rearranging gives

\[(1 - p + m)(x_1)^{-\frac{1}{\sigma}} = (W - x_0)(x_0)^{-1/\sigma} + (1 - p + m)x_1c(m). \]

Using this result, the social welfare function in Equation 27 simplifies to

\[SW = \frac{\sigma}{\sigma - 1}W(x_0)^{-1/\sigma} + \left[\frac{\sigma}{\sigma - 1}(1 - p + m)c(m) - c(m) \right] x_1. \]

Consider a marginal reduction in the investment \(x_1 \) of risky entrepreneurs (and the corresponding marginal increase in the investment \(x_0 \) of safe entrepreneurs). In the laissez-faire allocation, the equilibrium loan rate \(R_1^* \) is obtained by solving Equation 13 subject to Equation 12, so by the first-order condition in Equation 14, we have \(dR_1^*/dm = 0 \). Thus, a marginal reduction in \(x_1 \) that increases the loan rate \(R_1 = A(x_1) \) leads to a very large increase in monitoring. However, by the properties of the monitoring cost function in Equation 2, we have

\[\frac{\partial SW}{\partial m} = \left[-\frac{\sigma}{\sigma - 1}(1 - p + m)c'(m) + \frac{1}{\sigma - 1}c(m) \right] x_1 > 0. \]
Thus, the small reduction in \(x_1 \) is more than compensated by the large increase in \(m \), so that both the first and the second terms in the social welfare function (Equation 30) go up. In other words, the laissez-faire equilibrium allocation is constrained inefficient.

The intuition for this result is as follows. Competition among banks leads to intermediation margins and monitoring intensities that are too low. By moving investment from risky to safe entrepreneurs, the social planner widens intermediation margins and increases bank monitoring, which leads to higher social welfare.

4.3. Welfare Analysis of Monetary and Macroprudential Policies

In this section, we introduce the two policies analyzed in Section 3 and consider the maximization of the social welfare function (Equation 27) using these policies. Let us denote by \(SW(\mu, 0) \) the social welfare associated with a monetary policy that mops up a fraction \(\mu \) of the initial wealth \(W \) of investors and a macroprudential policy that sets a minimum capital requirement \(\bar{F} \) for banks. We proceed by first analyzing the welfare effects of a stand-alone monetary policy, maximizing \(SW(\mu, 0) \), then analyze the welfare effects of a stand-alone macroprudential policy, maximizing \(SW(0, \bar{F}) \), and finally consider the joint maximization of \(SW(\mu, \bar{F}) \).

The welfare analysis of monetary policy requires us to specify the rate \(R_{CB} \) at which the central bank invests the real resources obtained by selling government debt. To avoid biasing the result in a positive or a negative direction (by setting an arbitrarily high or low \(R_{CB} \)), we assume that \(R_{CB} \) equals the laissez-faire equilibrium safe rate \(R^*_0 \). Under this assumption, the effect of a tightening of monetary policy (\(\mu > 0 \)) on social welfare is shown in Figure 5a. The function \(SW(\mu, 0) \) is concave, increasing for small values of \(\mu \) and decreasing thereafter. Thus, a small tightening of monetary policy, which according to the results in Section 3 increases bank monitoring, is welfare improving, but beyond a certain point, it reduces welfare. Figure 5b shows the distributional effects of such a policy. Investors are better off (before the lump sum taxes that they have to pay to cover the losses of the central bank) because the equilibrium safe rate goes up. Bankers are (mildly) better off. Consumers are worse off, since the investment of both safe and risky entrepreneurs goes down. Finally, the central bank incurs losses, since the safe rate rises above the rate \(R_{CB} \) that the central bank obtains from its investment of \(\mu W \).

16 As noted in Section 2.1, the function whose minimum determines the equilibrium loan rate is convex in \(m \), so for \(R_1 > R^*_1 \), there are two solutions for \(m \). However, by Equation 31, we have \(\partial SW/\partial m > 0 \), so the highest solution is the one that maximizes social welfare.
The effect of a tightening of capital requirements on social welfare is shown in Figure 6a. The function $SW(0, k)$ is flat for values of the minimum capital requirement k below the initial equilibrium k^* (not shown in the figure), and then it is concave, increasing for values of k close to k^* and decreasing thereafter. Thus, a small tightening of macroprudential policy, which according to the results in Section 3 increases bank monitoring, is welfare improving. However, due to the scarcity of bank capital, a very high capital requirement is not optimal, as it leads to an excessive reduction in the investment of risky entrepreneurs. Figure 6b shows the distributional effects of such a policy. Bankers are better off, since the equilibrium return of bank capital goes up, but investors are worse off, since the equilibrium safe rate goes down. Finally, consumers are (mildly) better off as a result of the shift from risky to safe investments (and the reduction of the risk of the former).

Figure 7 compares the effects of monetary and macroprudential policies in two dimensions: financial stability, proxied by equilibrium bank monitoring, and social welfare. The red line shows the combinations of monitoring and welfare corresponding to increasing values of $\mu > 0$, while the blue line shows the combinations of monitoring and welfare corresponding to increasing values of $k > k^*$ (the initial equilibrium capital per unit of loans). The results show that macroprudential policy not only is much more effective on the financial stability front, since it can lead to a higher level of monitoring, but also dominates monetary policy on the social welfare front. The intuition for this result follows from the analysis of the constrained inefficiency of the laissez-faire
equilibrium. The second-best policy is to shift investment from risky to safe firms, something that is achieved by tightening capital requirements.17 In contrast, tightening monetary policy reduces the investment of risky and also safe firms, decreasing consumers’ surplus and eventually welfare.

Finally, the green line in \textbf{Figure 7} shows the social welfare associated with the optimal combination of monetary and macroprudential policies for a given level of monitoring m, that is, a solution to

$$\max_{(\mu, \overline{k})} SW(\mu, \overline{k}) \text{ subject to } m(\mu, \overline{k}) = m,$$

where $m(\mu, \overline{k})$ denotes the equilibrium monitoring associated with a monetary policy that mops up a fraction μ of the initial wealth W of investors and a macroprudential policy that sets a minimum capital requirement \overline{k} for banks. By construction, the green line is above the blue line, corresponding to using only macroprudential policy, and it is also above the red line, corresponding to using only monetary policy. The additional increase in welfare delivered by the combination of both policies (relative to the optimal stand-alone macroprudential policy) is achieved by a further increase of capital requirements that is accompanied by a tightening of monetary policy.

As can be seen in \textbf{Figure 7}, we find that the optimal combination of monetary and macroprudential policies is closer in terms of both financial stability and social welfare to the optimal stand-alone macroprudential policy than to the optimal stand-alone monetary policy. This is consistent with our discussion above of the comparison of both policies, as the constrained efficient allocation entails a shift of investment from risky to safe entrepreneurs, something that is directly achieved by tightening capital requirements. In fact, by adjusting investments in the two types of firms, macroprudential policy can implement the constrained efficient allocation for the case where the central bank does not operate (setting $\mu = 0$ in the social welfare function in Equation 27). This allocation is characterized by a lower safe rate relative to the laissez-faire allocation due to the higher investment of safe entrepreneurs. Thus, our assumption that the rate R_{CB} at which the central bank invests the real resources obtained by selling government debt equals the (higher) initial equilibrium safe rate implies that a tightening of monetary policy, which transfers resources to a safe asset with a higher return, is optimal. Moreover, this allows for a further increase in capital requirements, so the optimal combination of both policies entails tightening them relative to the optimal stand-alone macroprudential policy.

5. CONCLUDING REMARKS

This review proposes a stylized general equilibrium model to analyze the effects of monetary and macroprudential policies on financial stability. The model builds on the setup of Martinez-Miera & Repullo (2017), in which competitive banks can reduce the probability of default of their loans by monitoring their borrowers at a cost. We assume that monitoring is not observed by debt-holders, so there is a moral hazard problem, and we note that, in this setup, banks may be willing to use equity finance to ameliorate the moral hazard problem and reduce the cost of their debt.

The model features two types of entrepreneurial firms. Safe firms borrow directly from investors, while risky firms borrow from banks to take advantage of monitoring and reduce their borrowing costs. Banks, in turn, are funded with (uninsured) debt provided by investors and (inside) equity provided by bankers. We take the initial wealth of investors and bankers as given and characterize the equilibrium of the model. Financial stability is proxied by the monitoring intensity of risky entrepreneurs by banks, which is, in turn, driven by their intermediation margin.

17As noted above, we implicitly assume that the tightening of capital requirements does not shift some intermediation into an unregulated shadow banking system, which would reduce the effectiveness of such policy.
We use this model to analyze the effect on financial stability of tightening monetary policy, modeled by raising the safe interest rate via open market sales of government debt by a central bank, and macroprudential policy, modeled by raising capital requirements for banks. We show that both policies are effective in improving banks’ monitoring incentives through an increase in the intermediation margin. However, there are significant differences. Tighter capital requirements shift investment toward safe firms, decreasing safe rates, whereas tighter monetary policy reduces investment for both safe and risky firms, increasing safe rates, so the effect on the margin is smaller. Consequently, macroprudential policy appears to be a more effective instrument for reducing risk-taking by banks. Moreover, we also show that in the presence of binding capital requirements, a tightening of monetary policy increases risk-taking by banks. This result highlights the importance of analyzing the interaction of both policies.

We complete our discussion by providing a welfare analysis of the model, showing that the laissez-faire equilibrium allocation is constrained inefficient because competition among banks leads to intermediation margins and monitoring intensities that are too low. Thus, there is a role for policy intervention. In particular, we show that tightening monetary and macroprudential policies, on their own, increase welfare. Moreover, we also show that their optimal combination is closer in terms of both financial stability and social welfare to the optimal stand-alone macroprudential policy than to the optimal stand-alone monetary policy. In this sense, the results of the review provide support for the view that macroprudential policy should be the primary tool for addressing risks to financial stability.

We would like to conclude with a few remarks. First, we assume that the outcome of the projects of risky entrepreneurs is driven by a single aggregate risk factor, so in equilibrium, their returns are perfectly correlated. This assumption greatly simplifies the analysis and provides a stark description of the effects of an extreme realization of a systematic risk factor. However, at the cost of greater complexity, it would be possible to analyze a setup in which there is imperfect default correlation, using, for example, the single risk factor model of Vasicek (2002), as do Martinez-Miera & Repullo (2010).

Second, our model of monetary policy abstracts from nominal frictions and simply assumes that the central bank can raise the real interest rate via open market sales of government debt that reduce the funds that investors allocate to private investments. This assumption allows for a clear understanding of the mechanisms whereby monetary policy may contribute to financial stability. However, at the end of the day, one would like to have a more realistic model of monetary policy.

Third, following Martinez-Miera & Repullo (2017), our setup could be used as a building block of a dynamic model in which investors and bankers are infinitely lived and their wealth is endogenous. Specifically, their wealth at any date would be the outcome of their investment decisions at the previous date together with the realization of a systematic risk factor that determines the return of the projects of risky entrepreneurs.

Finally, it is important to note that our conclusion in favor of using macroprudential tools as the primary instrument to enhance financial stability should be qualified in situations in which, as analyzed by Martinez-Miera & Repullo (2018), the presence of a shadow banking system may reduce the effectiveness of these tools.

6. APPENDIX

This Appendix shows that perfect competition in the market for risky loans leads to an equilibrium in which the representative bank lends at the minimum feasible rate R^*_1 defined in Equation 3. We first characterize the bank’s choice of capital per unit of loans k, interest rate B offered to investors, and monitoring intensity m for any $R_1 \geq R^*_1$, showing that k and B are decreasing and
m is increasing in R_1. We then show that bank profits are increasing in R_1 for $R_1 \geq R^*_1$. However, since profits are zero for $R_1 = R^*_1$, we conclude that, under perfect competition, the only possible equilibrium loan rate is R^*_1.

Consider a representative bank that, given the loan rate R_1 and the returns R_0 and R_k required by investors and bankers (with $R_k > R_0$ as in a capital-scarce equilibrium), sets a capital per unit of loans k. The bank's choice of borrowing rate B^* and monitoring intensity m^* is given by the solution of the bank's incentive compatibility constraint (Equation 4) and the investors' participation constraint (Equation 6) (written as an equality). Solving for B^* in Equation 6 and substituting it into the first-order condition in Equation 10 that characterizes the bank's incentive compatibility constraint in Equation 4 give the condition in Equation 11. The right-hand side of Equation 11 is convex in m^*, so in general, there will be two solutions for m^*. Solving for B^* in Equation 6, substituting it into the bank's objective function, and differentiating with respect to m^* give

$$\frac{d}{dm^*} [(1 - p + m^*)R_1 - (1 - k)R_0 - c(m^*) - R_kk] = R_1 - c'(m^*),$$

which is positive by Equation 10. Thus, whenever there are two solutions to Equation 11, the bank will strictly prefer the higher one, simply denoted m^*.

The bank's choice of capital per unit of loans is obtained by solving

$$\max_k \left[(1 - p + m^*)R_1 - (1 - k)R_0 - c(m^*) - R_kk \right].$$

The first-order condition that characterizes the solution to this problem is

$$\left[R_1 - c'(m^*) \right] \frac{\partial m^*}{\partial k} = R_k - R_0. $$

Using Equation 11 and $c'(m^*) = \gamma$, this condition reduces to

$$\left[\gamma \frac{(1 - p + m^*)^2}{(1 - k^*)R_0} - 1 \right]^{-1} = \frac{R_k - R_0}{K_0}. $$

Now consider two loan rates R_1 and R'_1, with $R'_1 > R_1$, and denote by k and k, B and B', and m and m' the values of capital per unit of loans, borrowing rate, and monitoring intensity, respectively, corresponding to them. Our previous result together with the assumption $R_k > R_0$ implies

$$\frac{\gamma (1 - p + m^*)^2}{(1 - k)R_0} = \frac{\gamma (1 - p + m')^2}{(1 - k')R_0}. $$

Thus, using Equation 11 and $R'_1 > R_1$, we have

$$\frac{R_1 - \gamma m}{1 - p + m} = \frac{R'_1 - \gamma m'}{1 - p + m'} > \frac{R_1 - \gamma m'}{1 - p + m'},$$

which implies $m' > m$ and $k' < k$. Also, by Equation 6, $m' > m$ implies $B' > B$. Thus, we conclude that an increase in the loan rate R_1 leads to an increase in the monitoring intensity m and a reduction in the borrowing rate B. Since the increase in R_1 improves monitoring incentives, the bank optimally reduces its capital per unit of loans k.

830 Martinez-Miera • Repullo
Now, by the envelope theorem, we have
\[
\frac{d}{dR_1} \left[(1 - p + m^*)R_1 - (1 - k^*)R_0 - c(m^*) - R_1k^* \right] = 1 - p + m^* > 0.
\]
Moreover, we show above that, at the minimum feasible rate \(R_1^* \), the banks’ participation constraint (Equation 5) is binding. Thus, bank profits are zero when \(R_1 = R_1^* \) and are positive and increasing thereafter, so the only possible equilibrium loan rate is \(R_1^* \) obtained by solving Equation 13 subject to Equation 12.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

We would like to thank Jorge Abad, Guillermo Caruana, Martín Gonzalez-Eiras, Florian Heider, Alberto Martin, Natalya Martynova, Nuno Paixão, Enrique Sentana, Jan Stuhler, and Javier Suarez for very useful comments, and Deheng Xu and Yixin Yao for their research assistance. Part of this work was completed when R.R. was a Wim Duisenberg Research Fellow at the Directorate General Research of the European Central Bank. Financial support from the Spanish Ministry of Science, Innovation and Universities grant ECO2017-82385-P (D.M.-M.) and ECO2014-59262-P (R.R.) and from the Bank of Spain (D.M.-M.) is gratefully acknowledged.

LITERATURE CITED

He Z, Krishnamurthy A. 2013. Intermediary asset pricing. _Am. Econ. Rev._ 103:732–70
Stein J. 2013. _Overheating in credit markets: origins, measurement, and policy responses_. Remarks presented at the Research Symposium, Federal Reserve Bank of St. Louis, MO
Contents

The Economics of Kenneth J. Arrow: A Selective Review
Eric S. Maskin ... 1

Econometrics of Auctions and Nonlinear Pricing
Isabelle Perrigne and Quang Vuong 27

The Economics of Parenting
Matthias Doepke, Giuseppe Sorrenti, and Fabrizio Zilibotti 55

Markets for Information: An Introduction
Dirk Bergemann and Alessandro Bonatti 85

Global Wealth Inequality
Gabriel Zucman ... 109

Robustness in Mechanism Design and Contracting
Gabriel Carroll ... 139

Experiments on Cognition, Communication, Coordination, and Cooperation in Relationships
Vincent P. Crawford .. 167

Bootstrap Methods in Econometrics
Joel L. Horowitz ... 193

Experiments and Entrepreneurship in Developing Countries
Simon Quinn and Christopher Woodruff 225

Bayesian Persuasion and Information Design
Emir Kamenica ... 249

Transitional Dynamics in Aggregate Models of Innovative Investment
Andrew Atkeson, Ariel T. Burstein, and Manolis Chatzikonstantinou 273

Echo Chambers and Their Effects on Economic and Political Outcomes
Gilat Levy and Ronny Razin ... 303

Evolutionary Models of Preference Formation
Ingela Alger and Jürgen W. Weibull 329

Approximately Optimal Mechanism Design
Tim Roughgarden and Inbal Talgam-Cohen 355
Auction Market Design: Recent Innovations
Paul Milgrom ... 383

Fair Division in the Internet Age
Hervé Moulin ... 407

Legislative and Multilateral Bargaining
Huilya Eraslan and Kirill S. Evdokimov 443

Social Networks in Policy Making
Marco Battaglini and Eleonora Patacchini 473

Econometric Analysis of Panel Data Models with Multifactor Error Structures
Hande Karabiyik, Franz C. Palm, and Jean-Pierre Urbain 495

Using Randomized Controlled Trials to Estimate Long-Run Impacts in Development Economics
Adrien Bouguen, Yue Huang, Michael Kremer, and Edward Miguel 523

Is Education Consumption or Investment? Implications for School Competition
W. Bentley MacLeod and Miguel Urquiola 563

Productivity Measurement: Racing to Keep Up
Daniel E. Siebel .. 591

History, Microdata, and Endogenous Growth
Ufuk Akcigit and Tom Nicholas .. 615

Production Networks: A Primer
Vasco M. Carvalho and Alireza Tahbaz-Salehi 635

Economic Theories of Justice
Marc Fleurbaey ... 665

Machine Learning Methods That Economists Should Know About
Susan Athey and Guido W. Imbens .. 685

Weak Instruments in Instrumental Variables Regression: Theory and Practice
Isaiah Andrews, James H. Stock, and Liyang Sun 727

Taking State-Capacity Research to the Field:
Insights from Collaborations with Tax Authorities
Dina Pomeranz and José Vila-Belda .. 755

Free Movement, Open Borders, and the Global Gains from Labor Mobility
Christian Dustmann and Ian P. Preston 783
Monetary Policy, Macroprudential Policy, and Financial Stability
David Martinez-Miera and Rafael Repullo ... 809

Has Dynamic Programming Improved Decision Making?
John Rust ... 833

The International Monetary and Financial System
Pierre-Olivier Gourinchas, Hélène Rey, and Maxime Sauzet 859

Symposium: Universal Basic Income

Universal Basic Income: Some Theoretical Aspects
Maitreesh Gbatak and François Maniquet .. 895

Universal Basic Income in the United States and Advanced Countries
Hilary Hoynes and Jesse Rothstein .. 929

Universal Basic Income in the Developing World
Abhijit Banerjee, Paul Niehaus, and Tavneet Suri 959

Indexes

Cumulative Index of Contributing Authors, Volumes 7–11 985

Errata

An online log of corrections to Annual Review of Economics articles may be found at http://www.annualreviews.org/errata/economics