
Very short notes on approximating functions

Josep Pijoan-Mas

CEMFI, January 2009

Let’s define F as the space of continuous real-valued functions with domain x ⊂ R. F is a

vector space. We define also the following inner-product operation,

< g, h >=

∫
x
g (x)h (x)w (x) dx

where g, h, w ∈ F and w is a proper weighting function (this means that it is positive almost

everywhere in x and has a finite integral in x). The pair {F , < ·, · >} form an inner-product

vector space.

Now, let’s assume we want to approximate a known function f : x→ R in {F , < ·, · >}. We

will use a finite number of elements of a basis Ψn ≡ {ψi}n−1
i=0 ⊂ F such that we can write,

f (x) ' f̂ (x,Λ) ≡
n−1∑
i=0

λiψi (x)

where Λ is an n-dimensional vector whose entries are λi ∈ R. We can define a residual function,

χ (x,Λ) ≡ f (x)−
n−1∑
i=0

λiψi (x)

that tells us the size of the error of the approximation at any point x ∈ x. We want to find the

vector Λ that makes the residual function χ (x,Λ) small.

We have to decide what is the exact meaning of small. If the approximation was perfect,

small means that the residual function would be zero in all its domain x. This typically will be

impossible. There are different alternatives we can follow.

1 Minimize the sum of squared errors

One possible choice is the following,

Λ∗ = argmin

∫
x
χ (x,Λ)2w (x) dx



Very short notes on approximating functions

If we wanted a pure OLS, then we could set w(x) = 1. The optimality conditions of this

minimization state, 
< χ (x,Λ) , ψ0(x) > = 0

< χ (x,Λ) , ψ1(x) > = 0

. . .

< χ (x,Λ) , ψn−1(x) > = 0

which can be rewritten as,
< f(x), ψ0(x) > −

∑n−1
i=0 λi < ψi(x), ψ0(x) > = 0

< f(x), ψ1(x) > −
∑n−1

i=0 λi < ψi(x), ψ1(x) > = 0

. . .

< f(x), ψn−1(x) > −
∑n−1

i=0 λi < ψi(x), ψn−1(x) > = 0

Let’s move to matrix form. We define F as the n × 1 vector with entries < f(x), ψi(x) >. We

define the n× n matrix M as follows,

M ≡


< ψ0(x), ψ0(x) > < ψ1(x), ψ0(x) > . . . < ψn−1(x), ψ0(x) >

< ψ0(x), ψ1(x) > < ψ1(x), ψ1(x) > . . . < ψn−1(x), ψ1(x) >

. . .

< ψ0(x), ψn−1(x) > < ψ1(x), ψn−1(x) > . . . < ψn−1(x), ψn−1(x) >


Then, the previous system of equations can be written as,

F −MΛ = 0

The solution to our minimization problem is given by,

Λ = M−1F

If the chosen basis Ψn is such that its elements share a lot of information (for example,

monomials) we might have the problem of M being close to singular and therefore very difficult

to invert. The contrary is also true. If the elements Ψn share very little information, then the

inversion of M will be very easy. In particular, if the elements Ψn of our basis are orthogonal

the matrix M is a diagonal matrix, since all the entries outside the diagonal are zero. Note

that any two elements g, h ∈ F are orthogonal with respect to the inner-product < ·, · > if

g 6= h ⇒< g, h >= 0. With M diagonal, the entries of our vector Λ are just given by the

following expressions,

λi =
< f(x), ψi(x) >

< ψi(x), ψi(x) >
∀ 0 ≤ i ≤ n− 1 (1)

This is a clear advantage. Which bases are orthogonal? It depends on the weighting w (x)

function that defines our inner product < ·, · >. Some examples are the Chebyshev polynomials

2



Very short notes on approximating functions

(see Section 1.1 below), the Hermite polynomials (with respect to the normal distribution) or

the Legendre polynomials (with respect to the uniform probability distribution).

1.1 Chebyshev regression

An element i of the Chebyshev polynomials is defined as ψi(x) = cos (i arccos(x)). They are

defined in the set x ≡ [−1, 1], but this is no limitation as long as x is a compact set. They

are orthogonal under the inner-product with the weighting function w(x) = (1− x2)−1/2. This

means that,

< ψi(x), ψj(x) >= 0 ∀ i 6= j

Chebyshev polynomials have another useful property: using the weighting function just men-

tioned, their products for i = j are very easy to compute,

< ψ0(x), ψ0(x) > = π (2)

< ψi(x), ψi(x) > = π/2 ∀ 0 < i ≤ n− 1

This simplifies the calculations of the denominator terms in (1). Furthermore, using Gauss-

Chebyshev quadrature to approximate the integrals in the vector F makes Λ even easier to

compute. Let’s pick m ≥ n points for the integral approximation. Gauss-Chebyshev quadrature

requires us to choose these {xk}mk=1 points as them roots of themth order Chebyshev polynomial.

Then the integrals in the numerator of equation (1) are given by

< f(x), ψi(x) >=

∫
x
f (x)ψi (x)w (x) dx ' π

m

m∑
k=1

f (xk)ψi (xk) (3)

And hence, the elements of Λ are really simple to obtain,

λ0 =
1

m

m∑
k=1

f (xk)

λi =
2

m

m∑
k=1

f (xk)ψi (xk) ∀ 0 < i ≤ n− 1

Is there any easy way to obtain the m roots xk of the mth order Chebyshev polynomial?

The answer is yes. They are given by the formula,

xi = cos

(
π

2i− 1

2m

)

3



Very short notes on approximating functions

1.2 Chebyshev regression with general domain

Chebyshev polynomials are defined in the compact set z ≡ [−1, 1]. If we want to approximate a

function f (x) defined over a different domain x ≡ [x, x̄], we can still use Chebyshev polynomials

by mapping x into z. We use the linear function ϕ : x→ z,

z = ϕ (x) =
2 (x− x)

x̄− x
− 1

Hence,

f (x) ' f (x,Λ) =

n−1∑
i=0

λiψi (ϕ (x))

In order to find the vector Λ that best approximates our function f (x), we need to convert

the m roots {zk}mk=1 of the mth order Chebyshev polynomial to the new domain x. We do so

by use of the inverse of function ϕ,

x = ϕ−1 (z) =
z + 1

2
(x̄− x) + x

So, let’s call {xk}mk=1 the Chebyshev points in the domain x such that xk = ϕ−1 (zk). Then, to

obtain the elements λi we only need to do:

λ0 =
1

m

m∑
k=1

f (xk)

λi =
2

m

m∑
k=1

f (xk)ψi (zk) ∀ 0 < i ≤ n− 1

2 Make the error function zero at n different points

Another obvious choice to make χ (x,Λ) small is the following. Since we have n unknown

parameters, we may want to make the residual function zero at n different points in x. This

would give us a well-defined system of n equations in n unknowns. In particular, choose a

sequence of points {xk}nk=1 ⊂ x. Then, our vector Λ∗ is given by,
χ (x1,Λ

∗) = 0

χ (x2,Λ
∗) = 0

. . .

χ (xn,Λ
∗) = 0

4



Very short notes on approximating functions

Therefore, 
f (x1)−

∑n−1
i=0 λiψi (x1) = 0

f (x2)−
∑n−1

i=0 λiψi (x2) = 0

. . .

f (xn)−
∑n−1

i=0 λiψi (xn) = 0

Let’s move to matrix form and define F as the n × 1 vector with entries f (xi) and the n × n
matrix M as follows,

M ≡


ψ0(x1) ψ1(x1) . . . ψn−1(x1)

ψ0(x2) ψ1(x2) . . . ψn−1(x2)

. . .

ψ0(xn) ψ1(xn) . . . ψn−1(xn)


Then, the system of equations becomes,

F −MΛ = 0

which yields the solution,

Λ = M−1F

As before, if the elements Ψn share a lot of information this matrix M might be difficult to invert.

However, the matrix M is a different object here: it is just the n basis functions evaluated at

the n different points. In this situation, what may help is to use basis functions that are non

zero in just a small set of x. For example, in the extreme case, using the tent functions as basis

would avoid the inversion of M altogether.

2.1 Chebyshev collocation

The use of Chebyshev polynomials leads to a very easy way of computing the elements in Λ that

does not require matrix inversion. The inner product expressions for the Chebyshev polynomials

in equation (2) and the Gauss-Chebyshev quadrature formula in equation (3) lead to the very

useful property known as discrete orthogonality. If {xk}nk=1 are the n roots of the nth order

Chebyshev polynomial, then

n∑
k=1

ψi (xk)ψj (xk) =


0 i 6= j
m
2 i = j 6= 0

m i = j = 0

Now, let’s go back to our system of equations. For every point xk we have

f (xk)−
n−1∑
i=0

λiψi (xk) = 0

5



Very short notes on approximating functions

Let’s take 0 ≤ j ≤ n− 1 and multiply both sides by ψj (xk) such that,

f (xk)ψj (xk)−
n−1∑
i=0

λiψi (xk)ψj (xk) = 0

and sum up across all points xk,

n∑
k=1

f (xk)ψj (xk) =
n∑
k=1

n−1∑
i=0

λiψi (xk)ψj (xk)

In the right hand side, all the terms such that i 6= j disappear due to the discrete orthogonality.

So, we get,
n∑
k=1

f (xk)ψj (xk) = λj

n∑
k=1

ψj (xk)ψj (xk)

And using the discrete orthogonality once more we obtain that,

λ0 =
1

n

n∑
k=1

f (xk)

λj =
2

n

n∑
k=1

f (xk)ψj (xk) ∀ 0 < j ≤ n− 1

Notice that these expressions are identical to the ones for the Chebyshev regression whenever

m = n. That is to say, Chebyshev collocation is the particular case of Chebyshev regression

when, to approximate the integrals, we use as many points as elements of the basis.

3 Generalization: projection methods

The approach in the previous sections can be generalized. A general definition of making the

residual function χ (x,Λ) small is given by making zero its projections in different directions.

In particular, as we have n parameters, we may want n projecting directions. Let’s define

P ≡ {pi}n−1
i=0 ⊂ F as a set of projecting directions. Then, we might want our vector Λ of

parameters to solve the following system,
< χ (x,Λ) , p0(x) > = 0

< χ (x,Λ) , p1(x) > = 0

. . .

< χ (x,Λ) , pn−1(x) > = 0

6



Very short notes on approximating functions

In matrix form, the vector F is defined by the elements < f(x), pi(x) > and the matrix M is

given by,

M ≡


< ψ0(x), p0(x) > < ψ1(x), p0(x) > . . . < ψn−1(x), p0(x) >

< ψ0(x), p1(x) > < ψ1(x), p1(x) > . . . < ψn−1(x), p1(x) >

. . .

< ψ0(x), pn−1(x) > < ψ1(x), pn−1(x) > . . . < ψn−1(x), pn−1(x) >


Therefore,

Λ = M−1F

Under this generalization, we see that the minimization of the mean squared error is given by

choosing as projection directions the basis functions themselves (which are the gradient of the

error function). Making the error function zero at a given set of points {xi}ni=1 ⊂ x corresponds

to choosing as projection directions the Dirac deltas,

pi(x) ≡

{
+∞ if x = xi

0 otherwise

and a constant weighting function.

4 Functions of more than one variable

Let’s define G as the space of continuous real-valued functions with domain x× z ⊂ R2. G is a

vector space. We can define the inner-product operation,

< g, h >=

∫
x×z

g (x, z)h (x, z)ω (x, z) dx dz

where g, h, ω ∈ G and ω is a proper weighting function. The pair {G, < ·, · >} form an inner-

product vector space.

Now, let’s assume we want to approximate a function f : x× z→ R in {G, < ·, · >}. We can

use tensor products of univariate functions to approximate f . Recall that in previous sections

we defined Ψ as a basis of F . In our two-dimensional setting we can define a basis Φ of the

space G as the tensor product of Ψ against itself:

Φ ≡ Ψ⊗Ψ = {ψ (x)ψ (z) | ψ ∈ Ψ}

And a finite dimension approximation Φn1,n2 to Φ as:

Φn1,n2 ≡
{
{ψiψj}n1−1

i=0

}n2−1

j=0

7



Very short notes on approximating functions

Hence, we can approximate

f (x, z) ' f̂ (x, z,Λ) ≡
n1−1∑
i=0

n2−1∑
j=0

λi,jψi (x)ψj (z)

where Λ is a n1n2 × 1 vector whose entries are λi,j ∈ R. As in the one-dimensional case we can

define a residual function,

χ (x, z,Λ) ≡ f (x, z)−
n1−1∑
i=0

n2−1∑
j=0

λi,jψi (x)ψj (z)

and we will look for the matrix Λ that makes the residual function χ (x, z,Λ) small.

4.1 Minimize the sum of squared errors

As in the one-dimensional case, we may want to choose the Λ such that,

Λ∗ = argmin

∫
x×z

χ (x, z,Λ)2 dx dz

This leads to the optimality conditions,

< χ (x, z,Λ) , ψi (x)ψj (z) >= 0 ∀ 0 ≤ i ≤ n1 − 1, 0 ≤ j ≤ n2 − 1

Let’s define F as the n1n2 × 1 vector with entries < f (x, z) , ψi (x)ψj (z) > and M as the

n1n2 × n1n2 matrix:
< ψ0 (x)ψ0 (z) , ψ0 (x)ψ0 (z) > < ψ0 (x)ψ1 (z) , ψ0 (x)ψ0 (z) > . . . < ψn1−1 (x)ψn2−1 (z) , ψ0 (x)ψ0 (z) >

< ψ0 (x)ψ0 (z) , ψ0 (x)ψ1 (z) > < ψ0 (x)ψ1 (z) , ψ0 (x)ψ1 (z) > . . . < ψn1−1 (x)ψn2−1 (z) , ψ0 (x)ψ1 (z) >

. . .

< ψ0 (x)ψ0 (z) , ψn1−1 (x)ψn2−1 (z) > < ψ0 (x)ψ1 (z) , ψn1−1 (x)ψn2−1 (z) > . . . < ψn1−1 (x)ψn2−1 (z) , ψn1−1 (x)ψn2−1 (z) >


Then, the solution to the system of equations is given by,

F −MΛ = 0 ⇒ Λ = M−1F

The orthogonality properties that we applied in the one-dimensional case can be extended to

the multidimensional problem. We need to define the weighting function ω (x, z) as the product

of the weighting functions w (x) and w (z) that make the one-dimensional basis Ψ orthogonal.

8



Very short notes on approximating functions

Then, the elements of M become the product of the one-dimensional inner-products:

< ψi (x)ψj (z) , ψk (x)ψl (z) > =

∫
x×z

ψi (x)ψj (z)ψk (x)ψl (z)w (x)w (z) dx dz

=

∫
x×z

ψi (x)ψk (x)w (x)ψj (z)ψl (z)w (z) dx dz

=

∫
x
ψi (x)ψk (x)w (x) dx

∫
z
ψj (z)ψl (z)w (z) dz

= < ψi (x) , ψk (x) > < ψj (z) , ψl (z) >

Hence, all the non-diagonal entries of the matrix M are zero and the elements in Λ are easy to

compute:

λi,j =
< f (x, z) , ψi (x)ψj (z) >

< ψi (x) , ψi (x) >< ψj (x) , ψj (x) >
∀ 0 ≤ i ≤ n1 − 1, 0 ≤ j ≤ n2 − 1 (4)

4.2 Chebyshev regression

When we use the Chebyshev polynomials as the elements of the basis, we obtain the elements

in Λ in a further simpler way. The elements in the denominator of equation (4) are given by

the expressions in (2). To compute the elements in the numerator we need to approximate the

integrals. Let’s pick m1 ≥ n1 and m2 ≥ n2 points in each dimension. Following the Gauss-

Chebyshev quadrature procedure take the {xk}m1
k=1 points as the m1 roots of the Chebyshev

polynomial of order m1 and do likewise with the m2 points {zl}m2
l=1. Then, the integrals are

approximated as,

< f (x, z) , ψi (x)ψj (z) >=

∫
x×z

f (x, z)ψi (x)ψj (z) dx dz ' π2

m1m2

m1∑
k=1

m2∑
l=1

f (xk, zl)ψi (xk)ψj (zl)

and hence,

λ0,0 =
1

m1m2

m1∑
k=1

m2∑
l=1

f (xk, zl)

λ0,j =
2

m1m2

m1∑
k=1

m2∑
l=1

f (xk, zl)ψj (zl) ∀ 0 < j ≤ n2 − 1

λi,0 =
2

m1m2

m1∑
k=1

m2∑
l=1

f (xk, zl)ψi (xk) ∀ 0 < i ≤ n1 − 1

λi,j =
4

m1m2

m1∑
k=1

m2∑
l=1

f (xk, zl)ψi (xk)ψj (zl) ∀ 0 < i ≤ n1 − 1, 0 < j ≤ n2 − 1

It is easy to show that whenever m1 = n1 and m2 = n2 we would have Chebyshev collocation.

9



Very short notes on approximating functions

Finally, we can express the n1n2×1 vector Λ in a more compact notation. Define them1m2×1

vector F as the vector whose entries are given by F k,l = f (xk, zl). Define the n1n2 × m1m2

matrix Ψ as follows,

Ψ =


ψ0 (x1)ψ0 (z1) ψ0 (x1)ψ0 (z2) . . . ψ0 (xm1)ψ0 (zm2)

ψ0 (x1)ψ1 (z1) ψ0 (x1)ψ1 (z2) . . . ψ0 (xm1)ψ1 (zm2)

. . .

ψn1−1 (x1)ψn2−1 (z1) ψn1−1 (x1)ψn2−1 (z2) . . . ψn1−1 (xm1)ψn2−1 (zm2)


And finally, define a n1n2 × n1n2 diagonal matrix D whose entries in the diagonal are given by,

Di,j =
2Ii>02Ij>0

m1m2

where Is is a indicator function that takes value 1 when the statement s is true and zero

otherwise. Then,

Λ = DΨF

This notation should make it straightforward to extend Chebyshev regression or Chebyshev

collocation to higher dimensional problems.

5 Integration and differentiation

Approximating a function f (x) as a linear combination of a finite number of some simple and

known basis functions has the important advantage that it becomes quite cheap to either differ-

entiate or integrat. The reason is that both differentiation and integration are linear operators.

Note that,

d

dx
f (x) ' d

dx
f̂ (x,Λ) =

n−1∑
i=0

λi
d

dx
ψi (x)

So, imagine we are doing some value function iteration. We approximate the value function

as a linear combination of some finite number of elements of a basis. Hence, we can write our

Bellman operator T as,

Λ1 = T
(
Λ0
)

Our first guess of the approximation is given by the vector Λ0. Then to obtain Λ1 we need

to evaluate the Bellman operator at some preselected {xk}mk=1 points. If the Bellman operator

implies taking derivatives or integrals of the value function at each iteration, we do not need

to compute the derivative or the integral of the basis functions at each iteration. It suffices to

compute at the beginning of the program d
dxψi (x) at all the values of the set {xk}mk=1, tabulate

10



Very short notes on approximating functions

these values such that δi,k ≡ d
dxψi (xk) and then at each iteration compute,

d

dx
f̂
(
xk,Λ

0
)

=
n−1∑
i=0

λ0
i δi,k

At each new iteration, only the elements in Λ0 will be different. The δi,k will be unchanged and

hence we will not need to differentiate or integrate the basis functions every time.

The extension of this ideas to the multi-dimensional problem is straightforward. Imagine we

have a function of two variables that we approximate with a tensor product of a finite number

of elements of the one-dimensional bases:

f (x, z) ' f̂ (x, z,Λ) ≡
n1−1∑
i=0

n2−1∑
j=0

λi,jψi (x)ψj (z)

Then, if we want to take the derivative of this function with respect to one of its arguments,

∂

∂z
f (x, z) ' ∂

∂z
f̂ (x, z,Λ) ≡

n1−1∑
i=0

n2−1∑
j=0

λi,jψi (x)
d

dz
ψj (z)

And again, we can tabulate the derivatives of the basis functions at the points in which we will

want to evaluate our value function.

Finally, if we want to take derivatives of functions that are defined in a domain x ≡ [x, x̄]

we need to map x into z ≡ [−1, 1]. As mentioned before, we use the linear function ϕ : x→ z.

Hence,

d

dx
f̂ (x,Λ) =

n−1∑
i=0

λi
d

dx
ψi (ϕ (x)) =

n−1∑
i=0

λiψ
′
i (ϕ (x))ϕ′ (x) =

(
2

x̄− x

) n−1∑
i=0

λiψ
′
i (ϕ (x))

Likewise, ∫ x̄

a
f̂ (x,Λ) dx =

n−1∑
i=0

λi

∫ x̄

a
ψi (ϕ (x)) dx

6 Practicalities

Some functions may be difficult to approximate by a linear combination of polynomials. In

particular, it may take a large number of elements to obtain acceptable approximations to the

function, let alone to its derivatives. Using a large number of elements makes the polynomial

approximations expensive in terms of computing time and hence it may undo its main advan-

tage. To help produce good approximations with a small number of elements of our basis we

can do some non-linear transformation to our approximation. For instance, let’s define the

11



Very short notes on approximating functions

approximation f̂ to the function f as:

f (x, z) ' g
(
f̂ (x, z,Λ)

)
≡ g

n1−1∑
i=0

n2−1∑
j=0

λi,jψi (x)ψj (z)


where g : R→ R is an invertible function. For instance, if f is the value function of a problem

with instantaneous log utility, we may want to define g as the log function. Then, we can also

write,

g−1
(
f (x, z)

)
' f̂ (x, z,Λ) ≡

n1−1∑
i=0

n2−1∑
j=0

λi,jψi (x)ψj (z)

And our residual function becomes,

χ (x, z,Λ) ≡ g−1
(
f (x, z)

)
−
n1−1∑
i=0

n2−1∑
j=0

λi,jψi (x)ψj (z)

So, everything described in the previous sections regarding how to find the values in Λ can be

applied easily by just replacing f by g−1 ◦ f . To evaluate the derivatives one has to remember

that,

d

dx
f (x, z) ' d

dx
g

n1−1∑
i=0

n2−1∑
j=0

λi,jψi (x)ψj (z)

 = g′

n1−1∑
i=0

n2−1∑
j=0

λi,jψi (x)ψj (z)

 n1−1∑
i=0

n2−1∑
j=0

λi,j
d

dx
ψi (x)ψj (z)

12



Very short notes on approximating functions

A Recursive definitions for the Chebyshev polynomials

The Chebyshev polynomials, as all orthogonal polynomials, have a recursive definition:

ψi (x) =


1 i = 0

x i = 1

2xψi−1 (x)− ψi−2 (x) i > 1

It is also useful the recursive characterization of their first derivatives:

dψi (x)

dx
=


0 i = 0

1 i = 1

4x i = 2

2iψi−1 (x) + i
i−2

dψi−2(x)
dx i > 2

13


