Rethinking the Welfare State

Nezih Guner, Remzi Kaygusuz and Gustavo Ventura

Mpls Federal Reserve, 2023

Motivation

- Sizeable redistribution via 'welfare' programs and tax-credit provisions in the U.S. (nearly 2.5% of GDP). Transfers critically depend on marital status/gender differences and the presence of children.
- 2 Multiple means-tested programs that transfer to poor and middle-income households. Can simple alternatives do better?
- One of the second secon

account.

Otential interplay between two-earner households, non-linear taxation and the transfer system. Largely unexplored.

This Project

- Focus with high resolution on the U.S. transfer system for working-age households. Exclude health-related transfers.
 Welfare State – amalgam of traditional welfare programs, EITC, childcare subsidies and child-related tax credits.
- We develop an equilibrium framework with uninsurable shocks, labor supply decisions in two-earner households, costly children, and a detailed representation of taxes/transfers.

Questions:

- Do households value current social insurance/redistributive programs in the U.S.?
- What are the macroeconomic and welfare effects of policy reforms?

What we do

- Document facts on inequality over the life-cycle for *different types of households* married, single, skilled, unskilled.
- Develop a life-cycle economy that has the potential to account for these facts under a detailed representation of welfare state.
- Use this framework to quantitatively evaluate/understand:
 - (i) how households value current transfer system;

(ii) a system that replaces current transfers with a Universal Basic Income (UBI);

(iii) a system that replaces current taxes and transfers with a *linear income tax* – a Negative Income Tax (NIT)

Preview of Findings

- Overall, it is hard to improve over the existing welfare state.
- We find that a revenue-neutral elimination of transfers leads to large welfare losses BUT is supported by a majority of newborn households.
- A Universal Basic Income is <u>not</u> a good idea.
- Negative Income Tax arrangements can improve upon the status quo and be supported by a large majority.
- Why a NIT? KEY: larger redistribution is possible via lower distortions that permit larger tax collections.

Model - big picture

- Ex-ante heterogenous married and single households hit by uninsurable productivity shocks;
 - \rightarrow Ex-ante differences in endowments (education).
 - \rightarrow Permanent and persistent shocks to labor endowments.
- Labor supply decisions at intensive and extensive margins;
- Skill depreciation for females associated to non-participation;
- Costly children in married and single households;
- Equilibrium model with imperfect substitutability of skills in production;
- Policy → tax credits, transfers and non-linear taxes (progressive) conditional on income and number of children

Model – Demographics and Heterogeneity

- Life-cycle economy, $j = 1, ..., J_R,J$.
- Males (m) and females (f), who differ in terms of intrinsic types skilled (s) and unskilled (u).
 - Male types (z) map into exogenous productivity profiles
 \$\mathcal{O}(z,j)\$, \$z = s\$, \$u\$.
 - Female types (x) map into initial productivity levels, x = s, u.
- Agents can be single or married. Marital status is exogenous, and does not change over the life-cycle.

Model – Demographics and Heterogeneity

- Married households and single females differ in terms of the number of children attached to them.
 - Three possibilities: without, early, late (b = 0, 1, 2).
- If $b \neq 0$, children show up at ages $\overline{j}(x, z, b)$ for married households and $\overline{j}(x, b)$ for single females.
- If two household members work and children are present, the household has to pay for childcare costs, that vary with the age of children.
- If two adult household members work, the household incurs in additional utility costs. This helps capturing residual female participation differences across households.

Model – Female Skills

- Female types map into initial productivity levels, $h_1 = \eta(x)$.
- After age 1, labor market productivity of females evolves endogenously:

$$h' = \exp[\ln h + \underbrace{\alpha_x^e}_{\text{growth}} \chi(l) - \underbrace{\delta_x}_{\text{depreciation}} (1 - \chi(l))], \quad x = s, u$$

e : labor market experience.

Model – Earnings

• For an age-*j* single male of type z = s, *u*, earnings are given by

$$\underbrace{w_{z}}_{\text{wage by skill}} \underbrace{\mathcal{O}(z,j) \exp(\nu_{m,z}^{S} + \eta_{m,z,j}^{S})}_{\text{labor efficiency}} \underbrace{I_{m}}_{\text{hours}}$$

• Persistent shock:

$$\begin{split} \eta_{m,z,j+1}^S &= \eta_{m,z,j}^S + \varepsilon_{m,z,j+1}^S, \quad z = s, u \\ \text{with } \eta_{m,\times,1}^S &= 0, \ \varepsilon_{m,z,j+1}^S \sim N(0, \sigma_{\varepsilon_{m,z}^S}^2) \end{split}$$

• Permanent shock:

$$v_{m,z}^{S} \sim N(0, \sigma_{v_{m,z}^{S}}^{2}), \quad z = s, u$$

Model – Earnings

• For a single female of age-*j* of type *x* = *s*, *u*, with human capital *h*, earnings are given by

Persistent shock:

$$\begin{split} \eta_{f,x,j+1}^{S} &= \eta_{f,x,j}^{S} + \varepsilon_{f,x,j+1}^{S}, \quad x = s, u \\ \eta_{f,x,1}^{S} &= 0, \ \varepsilon_{f,x,j+1}^{S} \sim N(0, \sigma_{\varepsilon_{f,x}^{S}}^{2}) \end{split}$$

Permanent shock:

$$v_{f,x}^{S} \sim N(0, \sigma_{v_{f,x}^{S}}^{2}), \quad x = s, u$$

Model – Earnings

• Married couples earnings:

$$w_{x} \underbrace{h \exp(\nu_{f,x}^{M} + \eta_{f,x,j}^{M})}_{\text{labor efficiency}} I_{f} + w_{z} \underbrace{\mathcal{O}(z,j) \exp(\nu_{m,z}^{M} + \eta_{m,z,j}^{M})}_{\text{labor efficiency}} I_{m}$$

Persistent shocks:

$$\begin{split} \eta^{M}_{m,z,j+1} &= \eta^{M}_{m,z,j} + \varepsilon^{M}_{m,z,j+1} \quad , \quad \eta^{M}_{f,x,j+1} = \eta^{M}_{f,x,j} + \varepsilon^{M}_{f,x,j+1} \\ \text{with } \eta^{M}_{m,z,1} &= \eta^{M}_{f,x,1} = 0 \text{ and} \\ & (\varepsilon^{M}_{m,z,j+1}, \varepsilon^{M}_{f,x,j+1}) \sim N \left(\begin{array}{cc} 0 & \sigma^{2}_{\varepsilon^{M}_{m,z}} & \sigma_{\varepsilon_{f}\varepsilon_{m}} \\ 0 & \sigma_{\varepsilon_{f}\varepsilon_{m}} & \sigma^{2}_{\varepsilon^{M}_{f,x}} \end{array} \right) \end{split}$$

• Permanent shocks:

$$(v_{m,z}^{M}, v_{f,x}^{M}) \sim N \begin{pmatrix} 0 & \sigma_{v_{m,z}}^{2} & \sigma_{v_{f}v_{m}} \\ 0 & \sigma_{v_{f}v_{m}} & \sigma_{v_{f,x}}^{2} \end{pmatrix}$$

Model – Idiosyncratic Productivity Shocks

Comments:

- Many parameters.
- Variances depend on gender, skill and marital status.
- We infer variances and covariances from data inequality in wages and correlations in wages between spouses at different stages in life cycle.
- Specification of shocks is a mixture of RIP and HIP.

Model – Transfers and Taxes

 Let *I* ≡ household income. Let *k* ≡ number of kids. Let *D* ≡ childcare expenses

Total transfer functions: $TR^{M}(I, k, D)$ and $TR_{i}^{S}(I, k, D)$, i = m, f.

Income tax functions: $T^{M}(I, k)$ and $T^{S}(I, k)$

- Parametric tax functions: $(1 T/I) = \lambda I^{-\tau}$.
 - λ : controls level of taxation;
 - τ : controls curvature.
- There is a social security system financed by a flat payroll tax, τ_p , plus additional flat capital income tax τ_k .

Social Security benefits conditioned on skills (skilled, unskilled) and marital status.

Decisions - Big Picture

- Households have access to one-period, risk-free asset. They decide how much to consume, save and the work of their members.
- Given their state, married households decide whether the female member should work or not.
 - Costs of work: child care expenses, additional taxes.
 - Benefits: higher household income, future human capital.
- Taxation plus structure and generosity of transfers affect the cost and benefits of work.

Benchmark Economy: Transfers

- Welfare Programs: we use the Survey of Income and Program Participation (SIPP), 1995-2013.
 - Include AFDC/TANF, SSI, Food Stamps/SNAP, WIC and Housing Assistance.
- Child-related transfers: Child Tax Credit (CTC), Childcare Credit (CDCTC) and CCDF (childcare subsidies).
- Earned Income Tax Credit (EITC)
- \rightarrow Model last two as they are in the tax code.

Benchmark Economy: Welfare Programs

Benchmark Economy

Skilled individuals (college educated or higher). **Unskilled** (less than college).

Given (i) structure of taxes and transfers and (ii) demographics (who is married and with whom, childbearing, etc), select parameter values so as to

- Match inequality at different stages of life cycle;
- Match (initial) gender-wage gap variation over life cycle;
- Match aggregate participation rates and by age of young child;
- Match skill premium;
- Match capital-output ratio.

Model and Data			
Aggregates	Data	Model	
Capital Output Ratio	2.9	2.9	
Total Transfers (% of GDP)	2.3	2.3	
LFP of Married Females (%), 25-54			
Unskilled	68.2	68.7	
Skilled	77.4	77.7	
Inequality Household Earnings 90-10 ratio	7.8	7.2	
Household Earnings 90-50 ratio	2.6	2.5	
Skill Premium	1.8	1.8	
Variance log-wages (Married Males, age 54, S)	0.45	0.45	
Variance log-wages (Married Males, age 54, U)	0.34	0.34	
Variance log-wages (Married Females, age 54, S)	0.35	0.35	
Variance log-wages (Married Females, age 54, U)	0.26	0.26	
Variance log-hours (Married Females, age 40)	0.13	0.13	
Correlation Between Wages of Spouses (age 25)	0.31	0.31	
Correlation Between Wages of Spouses (age 40)	0.34	0.33	
Variance log-consumption (Age 50-54 vs 25-29)	0.12	0.12	

Rethinking the Welfare State

• What are the effects of abolishing the welfare state? Do households value the current scheme?

 \rightarrow Eliminate all transfers. Taxes reduced for all.

- Replace all transfers with a Universal Basic Income (UBI) transfer.
 - Each household receives a transfer per member (including children) in all dates and states.
 - Existing taxes unchanged. Additional resources shifting up level of tax function.
- Replace income taxes and all transfers with a Negative Income Tax (NIT)
 - Each household receives a transfer per member (including children) in all dates and states.
 - All households face same proportional income tax.

Negative Income Tax

Eliminating Welfare State

	All	Welfare	EITC	Child-Related
		Programs	Program	Programs
Output	1.7	1.1	0.4	0.1
Aggregate Hours	3.0	1.9	0.9	0.1
Married Females LFP				
Unskilled	6.3	4.0	4.0	-1.9
Skilled	2.0	1.4	1.1	-0.6
Total	4.5	2.9	2.8	-1.4
Welfare (CV, Newborns)	-3.2	-1.3	-0.3	-0.8
Winning Households	60.7	66.5	81.0	47.5

Eliminating Transfers (% changes relative to benchmark)

 \rightarrow Large welfare losses – but substantial majority support for eliminating current scheme. Elimination of traditional welfare programs leads to largest losses.

Universal Basic Income

	No Transfers	UBI (Maximum Welfare)
Output	1.7	-0.9
Aggregate Hours	3.0	-0.9
Married Females LFP	6.2	4.4
Chilled	0.5	-4.4
Skilled	2.0	-1.9
Total	4.5	-3.4
Transfer (% Household Income)	-	3.2
Transfers (% Output)	-	5.9
Welfare (CV, Newborns)	-3.0	-1.3
Winning Households	60.7	53.2

UBI (% changes relative to benchmark)

 \rightarrow UBI does NOT lead to welfare gains. But majority support! UBI transfer: about \$ 3,200 per person in current dollars.

Negative Income Tax

	No Transfers	UBI	NIT
Output	1.7	-0.9	-0.6
Aggregate Hours	3.0	-0.9	-1.2
Married Females LFP			
Unskilled	6.3	-4.4	-6.0
Skilled	2.0	-1.9	-2.3
Total	4.5	-3.4	-4.4
Transfer (% Household Income)	-	3.2	4.8
Transfers (% Output)	-	5.9	8.8
Welfare (CV, Newborns)	-3.0	-1.3	0.2
Winning Households	60.7	53.2	68.2

NIT (% changes relative to benchmark)

 \rightarrow UBI dominated by NIT in terms of welfare and support. \rightarrow UPSHOT: more redistribution feasible with lower distortions. NIT transfer: about \$ 4,800 per person in current dollars.

	UBI	NIT	NIT (2)
Output	-0.9	-0.6	-0.4
Aggregate Hours	-0.9	-1.2	-1.0
Married Females LFP			
Unskilled	-4.4	-6.0	-4.2
Skilled	-1.9	-2.3	-1.5
Total	-3.4	-4.4	-3.1
Transfer (% Household Income)	3.2	4.8	7.0, 4.1
Transfers (% Output)	5.9	8.8	8.7
Welfare (CV, Newborns)	-1.3	0.2	0.7
Winning Households	53.2	68.2	51.4
Welfare (with transitions)	-0.5	0.4	1.0

NIT (% changes relative to benchmark)

Note: NIT (2): transfers depend on marital status.

	Baseline	Lower	Cohort
	Findings	Inequality	Effects
_			
Output	-0.6	0.6	0.6
Aggregate Hours	-1.2	0.8	0.4
Married Females LFP			
Unskilled	-6.0	-0.3	-1.1
Skilled	-2.3	-0.2	1.4
Total	-4.4	0.3	0.0
Transfer (% Household Income)	4.8	3.0	4.7
Transfers (% Output)	8.8	5.9	8.6
Tax Rate (%)	19.8	14.8	19.6
Welfare			
All Newborns (%)	0.2	0.7	0.8
Winning Households	68.2	81.0	67.5

Findings in Perspective: NIT (% changes relative to benchmark)

NOTE: Lower Inequality economy \rightarrow parameterized to 1980 data.

Conclusions

- We develop life-cycle model with novel ingredients, suitable for policy analysis. It goes a long way towards reproducing patterns of life-cycle inequality (all and new).
- Overall, it is hard to improve over the existing welfare system.
- A Universal Basic Income is not a good idea.
- NIT arrangements can improve upon the status quo and be supported by a large majority.

NIT is a better option under certain scenarios (cohort view of life-cycle data, lower inequality, etc).

• Why a NIT? KEY: larger redistribution is possible via lower distortions (larger tax collections).

EXTRA SLIDES - new

Problem – Married Households w/kids

$$b = \{1, 2\}, j \in \{\overline{j}(x, b), ..., N + 2\}, S^M \equiv (x, z, \theta, v, q, b)$$

$$V^{M}(a, h, e, S^{M}, \eta, j) = \max_{a', l_{f}, l_{m}} \{ U^{M}(c, l_{f}, l_{m}, q, x, z, b, j) + \beta \mathsf{E}_{\eta'|\eta} V^{M}(a', h', e', S^{M}, \eta', j+1) \},$$

subject to

$$c + a' = \left\{ \begin{array}{c} a(1 + r(1 - \tau_k)) + \mathcal{E}^{\mathcal{M}}(x, z, h, \eta, \nu, I_m, I_f, j)(1 - \tau_p) \\ -T^{\mathcal{M}}(I, \mathcal{K}) + TR^{\mathcal{M}}(I, \mathcal{K}, D) - w^u D\chi(I), \end{array} \right\}$$

where
$$I = \mathcal{E}^{M}(x, z, h, \eta, \nu, l_m, l_f, j) + ra.$$

$$\mathcal{K} = \frac{k(x,z,b)}{2} \left[\underbrace{\chi(\tilde{j}(x,z,b) \leq j \leq \tilde{j}(x,z,b) + N)}_{\text{old children}} + \underbrace{\chi(\tilde{j}(x,z,b) + 2 \leq j \leq \tilde{j}(x,z,b) + 2 + N)}_{\text{young children}} \right],$$

and

$$D = \frac{k(x, z, b)}{2} d(x, z, b, j - \overline{j}(x, z, b) + 1)\chi(\overline{j}(x, z, b) \le j \le \overline{j}(x, z, b) + N) + \frac{k(x, z, b)}{2} d(x, z, b, j - \overline{j}(x, z, b) + 3)\chi(\overline{j}(x, z, b) + 2 \le j \le \overline{j}(x, z, b) + 2 + N)$$

Data

- Earnings and Hours: CPS, 1980-2018
 - Household heads and their spouses between ages 25 to 60;
 - Two groups: skilled (college educated or higher) and unskilled (less than college).
- Drop all observations with

(i) hourly wage lower than federal minimum wage;

(ii) hours lower than 520 hours per year.

- To account for top-coded observations, we fit a Pareto distribution as in Heathcote, Perri and Violante (2010).
- Consumption Expenditure Survey (CEX) \rightarrow non-durable consumption expenditure.
- Benchmark: We estimate age effects controlling for time (year) effects.

$$stat_{a,t} = \beta'_{a}\mathbf{D}_{a} + \beta'_{t}\mathbf{D}_{t} + \varepsilon_{a,t}$$

Data

- Hourly wages grow faster for skilled (college) than for unskilled (non college) workers.
- Variance of log earnings (wages) for males increases non-trivially with age. BUT for females, married or not, we *do not observe* such increase.
- **3** Wage-gender gap increases with age, more rapidly for the skilled group.
- ④ LFP rate of married females first declines and then rises, and then declines again. Stronger changes for the skilled group.
- **5** The variance of log consumption increases over the life-cycle.

 \rightarrow But much less than the increase in the variance of household earnings.

Variance of Log-Wages (males)

Variance of Log-Wages (females)

Tax Functions

EXTRA SLIDES

More on Welfare: NIT

	Unskilled, F	Skilled, F
Unskilled, M	2.8	0.4
Skilled, M	0.3	0.6

CV (%), Married Couples

CV (%), Singles		
Female		
Unskilled	-2.0	
Skilled	-0.7	

Model – Preferences

Single males and single females:

$$U_m^S(c, l) = \log(c) - B_m l^{1+\frac{1}{\gamma}}, \ U_f^S(c, l) = \log(c) - B_f l^{1+\frac{1}{\gamma}}.$$

• Joint market work for married couples also implies a utility cost, *q*. Value of *q* for married couples drawn at start of life cycle.

 \rightarrow Captures residual heterogeneity in labor force participation.

• Married couples also differ in the disutility of work of females, θ .

Model – Preferences

• Married couples (without children)

$$U^{M}(c, l_{f}, l_{m}, \theta, q) = 2 \log(c) - B_{m} l_{m}^{1+\frac{1}{\gamma}} - B_{f} \theta l_{f}^{1+\frac{1}{\gamma}} - \chi\{l_{f}\} q$$

• Married couples (with children at home)

$$U^{M}(c, l_{f}, l_{m}, \theta, q, t) = 2 \log(c) - B_{m} l_{m}^{1+\frac{1}{\gamma}} - B_{f} \theta l_{f}^{1+\frac{1}{\gamma}} - \chi\{l_{f}\} q (1+\vartheta(t)).$$

t: age of youngest children at home.

Benchmark Economy: Child-Related Transfers

Benchmark Economy: EITC

The Structure of Shocks

Permanent Shocks.

Variance single skilled males: 0.281 Variance single unskilled males: 0.244

Variance single skilled females: 0.226 Variance single unskilled females: 0.226

Variance married skilled males: 0.230 Variance married unskilled males: 0.230

Variance married skilled females: 0.220 Variance married unskilled females: 0.228

Covariance(male, female): 0.047

The Structure of Shocks

Persistent Shocks.

Variance single unskilled males: 0.0042 Variance single skilled males: 0.0066

Variance single unskilled females: 0.00195 Variance single skilled females: 0.0015

Variance married unskilled males: 0.0036 Variance married skilled males: 0.0061

Variance married unskilled females: 0.0008 Variance married skilled females: 0.0021

Covariance(male,female): 0.001