
Optimal Spatial Taxation:
Are Big Cities too Small?∗

Jan Eeckhout†and Nezih Guner‡

August 8, 2025

Abstract

We analyze the role of optimal income taxation across different local labor markets. Should labor

in large cities be taxed differently than in small cities? We find that a planner, who needs to raise

a given level of revenue and is constrained by free mobility of labor across cities and endogenous

housing prices, does not choose equal taxes for cities of different sizes. The optimal tax schedule

is place-based and tax differences between large and small cities depend on the level of government

spending and the strength of agglomeration economies. Our estimates for the US imply higher

optimal tax rates in bigger cities. Under the current Federal Income tax code with redistributive

taxes, marginal rates are already higher in big cities which have higher wages, but the optimal

difference we estimate is lower than what is currently observed. Simulating the US economy under

the optimal spatial tax schedule, there are large effects on population mobility: the fraction of the

population in the 5 largest cities grows by 7.65% with 3.31% of the country-wide population moving

to bigger cities. The welfare gains are smaller due to the fact that much of the output gains are

spent on the increased costs of housing in bigger cities. Aggregate goods consumption goes up by

0.95% while aggregate housing consumption goes down by 1.90%.
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1 Introduction

How do income taxes influence where people choose to live? Identical workers tend to earn significantly

more in larger cities—a phenomenon known as the urban wage premium. For example, in the U.S.,

workers with the same skills earn, on average, 50% more in a large metropolitan area like New York

City (with around 9 million workers) than in a smaller city such as Asheville, NC (with a workforce of

about 130,000). Due to the progressive structure of federal income taxes, this wage gap translates into

a nearly 5 percentage point difference in the average tax rate between the two cities, with New York

workers paying more.

Setting aside other sources of heterogeneity—such as differences in skills, race, gender, or age—and

abstracting from redistributive motives, we study how to design optimal spatial taxation. We do so

in a general equilibrium framework where housing prices adjust endogenously, and individuals choose

their location to equalize utility across cities.

Our main finding is that the optimal spatial taxation of labor income for identical workers should

vary depending on where they live. We begin by computing the equilibrium allocation of workers across

cities under the existing U.S. tax system. We then derive the tax schedule that would maximize overall

welfare while maintaining the same level of tax revenue. In doing so, we treat each city’s population

as a representative agent, and assume workers are identical apart from their location. When taxes

change, individuals respond by relocating, which in turn affects equilibrium housing prices. In both the

current and optimal spatial tax regimes, utility is equalized across cities in equilibrium. These general

equilibrium effects are central to determining the optimal spatial tax schedule and its quantitative

consequences.

In this setting—where the planner is constrained by the free mobility of workers—we find that

optimal income tax rates should differ across local labor markets. On one hand, the planner has an

incentive to lower taxes in large, high-productivity cities to attract more workers, thereby raising total

revenue. On the other hand, a larger population in these cities drives up housing prices, reducing their

attractiveness to move to high productivity cities. The optimal policy balances these opposing forces.

Hence, even in an economy with identical workers where the planner does not want to redistribute

among identical workers, the optimal tax regime is location-specific.

We show that this trade-off between attracting workers to productive cities and the resulting increase

in housing costs crucially depends on the level of government spending and its financing. As government

spending rises, the optimal policy is to reduce taxes in large cities relative to small ones. There is a fiscal

externality associated with revenue generation: when public spending finances economy-wide goods and

services, the benefits are equally shared across locations, but the costs depend on where workers live

and how much they earn. When no revenue needs to be raised, the allocation of workers across cities is

efficient, and optimal tax rates are zero. But when the government requires positive revenue, it faces a

trade-off. It can either (i) attract more workers to the productive city by lowering marginal tax rates—
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thereby increasing the tax base and collecting more revenue despite taxing each worker less—or (ii)

maintain a smaller workforce in the productive city and rely on higher marginal tax rates per worker.

Because workers in large cities earn more, a broader tax base with lower rates becomes more efficient.

Thus, as government spending increases, the optimal policy is to reduce marginal tax rates in large

cities to attract more high-earning workers and increase total revenue.

Quantifying these forces for the US economy we find that taxes in big cities should be higher than

those in smaller cities. Due to existing progressive federal income tax schedules in the US taxes in

big cities are already higher than the ones in smaller cities. While there are many reasons why a

redistributive tax schedule might be desirable, our spatial general equilibrium model with homogeneous

workers features optimal spatial tax differences between big and small cities that should be lower than

what we observe in the US tax code. Ideally, the tax schedule should have one tax rate for each city.

To make this computationally feasible, in the quantitative analysis we parametrize the relation between

after and before-tax wages, w̃ and w, as w̃ = λw1−τ , where 1−λ is the level of taxation at mean wages

and τ determines the extent of redistribution. The average tax rate is given by 1−λw−τ . Taxes are more

progressive (regressive) when τ > 0 (τ < 0). For the benchmark economy, λ = 0.856 (i.e. the average

tax rate at w = 1 is 14.4%) and τ = 0.12. We find that the optimal value of τ is smaller, τ∗ = 0.0123.

For US economy, the impact of the optimal spatial tax policy is far-reaching. Implementing the

optimal spatial tax schedule implies that after-tax wages increase in large cities. As a result, there is

a first order stochastic dominance shift in the city size distribution. When we move from the current

to optimal spatial taxes, the population in the five largest cities grows by 7.65%. About 3.31% of the

workforce move from smaller to bigger cities countrywide. The aggregate output increases by 1.00%.

The gains in terms of utility are, however, much smaller, only a 0.05% increase in utilitarian welfare.

The small utility gain is due to the fact that most of the output gain in the more productive cities

is eaten up by higher housing prices, which go up by 4.85% on average. As a result, while aggregate

consumption goes up by 0.95%, aggregate housing consumption declines by 1.90%. Those moving to

the big cities take advantage of the higher after tax incomes, but they end up paying higher housing

prices.

The model that we use to quantify optimal spatial taxation has many features to capture the

trade-offs faced by a Ramsey planner. First, the production of housing is endogenous to account for

the fact that the value share of land is much higher in big cities than in small cities.1 And it takes

into account that the amount of land available for construction differs across locations. Some coastal

cities are constrained by the mountains and the sea, whereas others in the interior have unconstrained

capacity for expansion. Second, the model allows for congestion externalities that are increasing in

city size. Third, housing is modeled in such a way that the rental price of land is retained in the

economy as a transfer, while the construction cost eats up consumption goods. Fourth, we allow for

amenities across different locations as the residual of the utility differences. Finally, while government

1See Davis and Palumbo (2008), Davis and Heathcote (2007), and Albouy and Ehrlich (2012).
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expenditure is distortionary, a share of tax revenues is redistributed to the citizens, and those in less

productive locations get larger per capita transfers. Even if we do not explicitly model expenditure on

public goods, this accounts for the fact that tax revenues also generate benefits.2

We investigate in detail which features matter for the optimal level of tax differences across cities.

We find that the optimal spatial tax schedule depends on the size of the government, distribution of land

rents across the population, the strength of agglomeration economies, and the distribution of available

land across cities. First, higher government spending reduces taxes in more productive cities relative

to less productive ones, and can even imply that taxes in more productive cities are lower than less

productive ones. In our benchmark economy, with a 14.4% average tax rate, the optimal level of τ∗ is

0.0123. When the average tax rate rises to 17%, τ∗ becomes negative (–0.0218), as it becomes optimal

to raise revenue by attracting more workers to high-productivity cities through lower taxes.

Second, the distribution of land rents matters. In the benchmark, land is shared equally among

all households. If land is owned by absentee landlords, the planner cannot redistribute through land

rents, and the optimal spatial tax schedule implies larger tax differences between large and small cities

(τ∗ = 0.0603), to offset the unequal benefits from rising housing prices.

Third, introducing agglomeration economies — where productivity endogenously increases with

city size — makes it optimal to concentrate workers in large cities. This leads to a tax schedule with

lower taxes in more productive cities to encourage migration (τ∗ = −0.0323). Indeed, welfare gains from

adopting an optimal place-based tax schedule is almost three times higher when there are agglomeration

economies, and implies a much larger movement of population, with top 5 cities growing by 14%.

Finally, ignoring differences in the supply of land across cities reduces taxes in more productive cities

even further, making the optimal spatial tax schedule almost linear across cities. In our benchmark

setup, more productive cities have less land, which constrains population growth and pushes up housing

prices. If land were equally available, taxes in productive cities could be lowered further without sharp

increases in housing prices, reinforcing the case for regressive taxation.

This paper is related to the work on urban accounting by Desmet and Rossi-Hansberg (2013) who

analyze the effects on output from the relocation of productive resources.3 Instead of analyzing the

effect of technological change, we take the technology as exogenous and ask what the role is of federal

income taxation. Our paper is also related to the literature that studies inter-state migration in the

US using spatial equilibrium models, e.g. Coen-Pirani (2010), Karahan and Rhee (2014), Kaplan and

Schulhofer-Wohl (2017), Davis, Fisher, and Veracierto (2021), and Albert and Monras (2022) for the US,

and Ahlfeldt, Bald, Roth, and Seidel (2024) for Germany. While we study a model with homogeneous

2We exclusively focus on the spatial distortion at the collection side. There could also be a distortion at the benefit
side, for example where big cities are more or less generous in federal benefits for the unemployed and the disabled (see
for example Glaeser (1998) and Notowidigdo (2020)). Note that local benefits, just like local taxes, have no effect on the
location decisions as they are financed locally. In our model, we abstract from this important channel altogether and focus
on the role of active, full time workers.

3See also Topa, Sahin, and Violante (2014) for the role of unemployment frictions on spatial mismatch.
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workers, our paper is also related to the literature that studies geographical allocation of workers with

different skills, e.g. Diamond (2016). Our results on reallocation of labor across cities echoes Klein and

Ventura (2009) and Kennan (2013) who analyze mobility of workers and find larger output gains. In

the light of the misallocation debate in macroeconomics — the effect on aggregate output differences

due to the misallocation of inputs, most notably capital, e.g. Guner, Ventura, and Yi (2008), Restuccia

and Rogerson (2008) and Hsieh and Klenow (2009) —, we add a different insight. Due to existing

income taxation schemes, also labor is substantially misallocated across cities within countries. Hsieh

and Moretti (2015), Herkenhoff, Ohanian, and Prescott (2018), and Parkhomenko (2023) also study

spatial misallocation of labor across cities. They focus, however, on misallocation caused by restrictive

housing policies. More closely related to our paper, Fajgelbaum, Morales, Suárez Serrato, and Zidar

(2018) study state taxes as a potential source of spatial misallocation in the United States, and find

that tax dispersion across states leads to aggregate losses.

The idea that taxation affects the equilibrium allocation is of course not new. Tiebout (1956)

analyzes the impact of tax competition by local authorities on the optimal allocation of citizens across

communities. Wildasin (1980), Helpman and Pines (1980) and Hochman and Pines (1993), among

others, explicitly consider federal taxation and argue that it creates distortions. A common result in

this literature is that a tax on the immobile factor, land, is necessary to achieve the efficient allocation.

This literature, however, often studies highly stylized models that are not amenable to quantitative

work. In the legal literature, Kaplow (1995) and Knoll and Griffith (2003) argue for the indexation of

taxes to local wages. Albouy (2009) analyzes the question quantitatively. Starting from the Rosen-

Roback trade-off with equalizing differences across locations, he calibrates the model and concludes

that any tax other than a lump sum tax is distortionary. He does not, however, attempt to characterize

the optimal spatial tax structure. Albouy, Behrens, Robert-Nicoud, and Seegert (2019) study optimal

city size in a model where both the city size and the number of cities are allowed to vary and reach

a similar conclusion to ours, i.e. that big cities are too small. What sets our work apart from the

existing literature is a comprehensive quantitative framework that fully takes into account the general

equilibrium effects, the endogeneity of housing prices and consumption, which in turn allows us to

focus on the optimality of taxation. Finally, recent work builds our analysis: Colas and Hutchinson

(2021) extends our model to an environment with heterogenous agents where the planner has incentives

to redistribute across agents, and Huggett and Luo (2023) characterize Mirrleesean taxes in a spatial

model like ours.

2 The Model

Population. The economy is populated by a continuum of identical workers. There are J locations

(cities), j ∈ J = {1, ..., J}. The amount of land in a city is fixed and denoted by Tj . Workers are

identical and the total workforce in city j is denoted by lj . The country-wide labor force is given by
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L =
∑

j lj .

Preferences, Amenities and Congestion. All citizens have Cobb-Douglas preferences over consumption

c, and housing h, with a housing expenditure share α ∈ [0, 1]. This choice is motivated by Davis and

Ortalo-Magné (2011), who find that expenditure shares on housing are constant across U.S. metropolitan

statistical areas. The consumption good is a tradable numeraire with price normalized to one. Workers

are perfectly mobile and can relocate instantaneously and at no cost.4 Thus, in equilibrium, identical

workers obtain the same utility level wherever they choose to locate. Therefore for any two cities, it

must be the case that corresponding consumption bundles for a worker satisfy

uj(cj , hj) = uj′(cj′ , hj′) for all j and j′.

Cities inherently differ in their attractiveness that is not captured in productivity (wages), but

rather is valued directly by its citizens. This can be due to geographical features such as bodies of

water (rivers, lakes and seas), mountains and temperature, but also due to man-made features such as

cultural attractions (opera house, sports teams, etc.). We denote the city-specific amenity by aj . We will

interpret the amenities as unobserved heterogeneity that will account for the non-systematic variation

between the observed outcomes and the model predictions.5 In addition to city-specific amenities, to

capture the cost of commuting, we allow for a congestion externality. The congestion depends on the

city size and is given by lδj , where δ < 0.6

The utility in city j from consuming the bundle (c, h) is therefore written as

uj(c, h) = ajl
δ
jc

1−αhα.

Our assumption of a perfectly mobile workforce where workers respond instantaneously to changes in

prices and taxes is a direct consequence of the Rosen-Roback framework. In reality there are of course

frictions and our frictionless benchmark is only meant as a description of the economy in the long run.

Frictions and the resulting transition will surely affect the welfare calculations. That said, this only

pertains to net migration (the difference between in and out-migration), and gross migration is roughly

three times net migration (Davis, Fisher, and Veracierto (2021)).

Technology. Cities differ in their total factor productivity (TFP), denoted by Aj . TFP is exogenously

given. In each city, there is a linear technology operated by a representative firm that has access to a

city-specific TFP, given by

F (lj) = Ajlj .

4The model could be extended to allow for mobility costs and location-specific preference heterogeneity, as in Fajgel-
baum, Morales, Suárez Serrato, and Zidar (2018).

5In Diamond (2016) amenities depend endogenously on the characteristics, such as income, of individuals living in a
city.

6See Eeckhout (2004).
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Housing Supply. The existing housing stock in each city j is denoted by Hj and the production of new

houses are denoted by Nj . New houses are produced by builders using capital Kj (forgone consumption)

and the exogenously given land area in city j, Tj , with a CES production technology:

Nj = B
[
(1− θ)Kσ

j + θT σj
]1/σ

, (1)

where θ ∈ [0, 1] indicates the relative importance of capital and land in housing production, and B the

total factor productivity of the construction sector. The elasticity of substitution between K and T

is given by 1
1−σ . We assume that housing capital is paid for with consumption goods, and hence the

marginal rate of substitution between consumption and housing is equal to one and the rental price of

capital is equal to the numeraire. The rental price of land is denoted by rj . Given this constant returns

technology, we assume a continuum of competitive construction firms with free entry.

As in Kaplan, Mitman, and Violante (2020), builders sell new housing units to competitive firms

called renters. Renters own housing units and rent them out to households. Let p̃j be the price that

developers charge to renters, and pj be the rental price that renters charge to households. The housing

stock depreciates at rate δh each period so in the steady state δhHj = Nj . In the model, households

solve a static maximization problem. Renters live forever and each period, they face a new generation

of households that solve a static problem that is identical to that solved by the previous generation.

Land Rents. While the housing capital to build structures is foregone consumption, the land rents stay

in the economy. We assume that land is owned in equal shares by each worker in the economy in the

form of a bond that is a diversified portfolio of the country’s land supply. As a result, each worker

receives rents R, given by

R =

∑
j rjTj∑
j lj

. (2)

In an extension, we also consider the polar opposite case where all rents are received by absentee

landlords.

Taxation. The federal government imposes an economy-wide taxation schedule. Its objective is to raise

an exogenously given level of revenue G to finance government expenditure. Denote the pre-tax income

by w and the post-tax income by w̃. Denote by tj the specific tax rate that applies to workers in city j.

Then w̃j = (1− tj)wj . We assume that the tax schedule can be represented by a two-parameter family

that relates after-tax income w̃ to pre-tax income w as:

w̃j = λw1−τ
j ,

where λ is the level of taxation and τ indicates the degree of redistribution (τ > 0). As a result, in the

6



quantitative analysis, instead of looking for optimal tj for each city, we find the optimal τ that, given

city-specific wages, characterizes city-specific taxes.

This is the tax schedule proposed by Bénabou (2002). Recent papers, e.g. Heathcote, Storesletten,

and Violante (2017), Guner, Lopez-Daneri, and Ventura (2016) and Kindermann and Krueger (2022),

use the same function to study optimal redistribution of income taxation in the U.S. The average tax

rate is given by 1 − λw−τj and the marginal tax rate is 1 − λ(1 − τ)w−τj . Taxes are the same in each

city when τ = 0, with the average rate and the marginal rates given by 1− λ. If τ 6= 0, average income

taxes are city specific. In particular, τ > 0, average tax rate in more productive cities with higher wages

are higher than in less productive cities with lower wages.

The total tax collection is given by G =
∑

j tjwjlj . A share φ of total tax revenue is transferred back

to households as transfers. To capture redistribution across geographic areas by the federal government,

we assume that transfers are city-specific, denoted by TRj , with
∑

j TRjlj = φG.

Four caveats are in order about the way we model taxes and transfers: First, the analysis abstracts

from local taxes. In the model, each location is populated by a representative household, hence the

planner has no incentive to treat households within a city differently. Furthermore, taxes in one location

only affect the location decisions of workers. Allowing a local tax that is entirely spent locally does not

affect the location decision.7

Second, we focus on taxation of labor income. The federal tax schedule in the US also determines

taxes paid by S-corporations (pass-through entities).8 Hence, changes in spatial taxes can affect not

only the location decisions of workers but also businesses. In the current analysis, we assume that some

cities are more productive and offer higher wages to workers. If these cities are also more productive

for businesses, this can create an additional motive for the planner to locate more economic activity in

more productive locations. function in labor, hence there are no profits.

Third, government spending does not affect production, as part of G is rebated to households.

Part of this rebate might be used for local infrastructure that can affect aggregate productivity, Aj , or

amenities aj . In particular, if local spending is more productive in higher wage cities that are densely

populated, this can affect the planner’s optimal choice for city-specific taxes and transfers.9

Finally, we assume a linear production function in labor; hence, there are no profits. Profits would

raise two issues that affect the planner’s problem. On the one hand, as we mentioned above, income

taxes can affect how these profits are taxed. Second, our quantitative results show that land ownership

matters for optimal spatial taxation. When the land is owned equally across the whole population, the

planner is less concerned about higher housing prices, as it benefits everyone via higher rent transfers.

With profits, a similar concern would arise about the ownership of firms. For example, if, by lowering

7That is not the case if some local taxes are used for expenditures in other locations. However, the coexistence of a
local tax authority together with a federal tax authority would imply modeling multiple planners who interact in a fiscal
union and engage in tax competition, which is very interesting but beyond the main focus of the analysis here.

8On the increase in S-corporation in the US in recent decades, see Dyrda and Pugsley (2024).
9On the effect of infrastructure on city growth, see, among others, Haughwout (2002) and Duranton and Turner (2012).
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taxes in more productive cities, planners could attract more workers and firms to more productive cities,

it would matter who benefits from higher profits in more productive locations. If these profits go to

a large share of the population, the planner will be more willing to concentrate economic activity in

high-productivity locations.

The linear technology in the model only has labor as an input. Although technology is linear, the

utility in city j depends on the number of workers there through congestion, adding curvature in the

utility function. Adding intermediate goods, produced in each city, as inputs in the production function

will add curvature to output in labor. Such an extension can also affect tax incentives as allocating

more workers in a city can have additional benefits by the production of intermediate goods. On the

other hand, the current production structure allows a more tractable and transparent interpretation of

our results.

It is also important to stress we abstract from mobility frictions and dynamics, which potentially

bias our policy experiments. Taxes can affect allocation of people in a dynamic framework as there can

be additional dynamics benefits from moving workers to high productive cities, such as opportunities

to accumulate more human capital (as in Roca and Puga (2016)). When there are mobility frictions,

the planner needs to take into account the monetary and utility costs of moving people across space,

which can lower incentives to concentrate people in high-wage cities. Furthermore, any transaction costs

associated with buying and selling houses is another source of mobility costs. Extending the model to

allow for mobility frictions and dynamic decisions by the households, as in Oswald (2019), Luccioletti

(2024), or Giannone, Paixão, Pang, and Li (2023), would not be trivial, and beyond the main point

made in this paper.

Equilibrium. In a competitive equilibrium, workers and firms take wages wj , housing prices p̃j and

pj , and the rental price of land rj as given. The price of consumption is normalized to one. Because

housing capital is perfectly substitutable with consumption, the rental price of housing capital is also

equal to one. All prices satisfy market clearing. The country-wide market for labor clears,
∑J

j=1 lj = L,
and for housing, there is market clearing within each city hjlj = Hj and δhHj = Nj . Under this market

clearing specification, only those who work have housing. We interpret the inactive as dependents who

live with those who have jobs. Workers optimally choose consumption and housing as well as their

location j to satisfy utility equalization. Firms in production and construction maximize profits, which

are driven to zero by free entry.

Welfare Criterion. When we evaluate social welfare, we use the utilitarian social welfare function,

i.e. the sum of individual utilities. We have a representative agent economy, where all agents are

ex ante identical, yet ex post households are heterogeneous in their consumption bundles and incomes

depending on their location, which differ by wages and housing prices. Nonetheless, even ex post, utility

is equalized across locations due to free mobility. In large cities, wages are high but also housing prices

are high; the opposite in small cities. As long as there is free mobility, utility equalizes. Therefore, any
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location-neutral welfare function will generate the same outcome. For example, a concave social welfare

function (concave in utilities, not in wages) will not affect the result since the concave social welfare

function evaluates the outcome at one point only (at the representative agent’s utility).

3 The Equilibrium Allocations

A representative worker in city j solves

max
{cj ,hj}

uj(cj , hj) = ajl
δ
jc

1−α
j hαj (3)

subject to

cj + pjhj ≤ w̃j +R+ TRj .

Taking first order conditions, the equilibrium allocations are cj = (1 − α)(w̃j + R + TRj) and hj =

α
(w̃j+R+TRj)

pj
.10 The indirect utility for a worker in city j is given by

uj = ajl
δ
jα

α(1− α)1−α
(w̃j +R+ TRj)

pαj
. (4)

Optimality in the location choice of any worker-city pair requires that uj = uj′ for all j′ 6= j. The

optimal production of goods in a competitive market with free entry implies that wages are equal to

marginal product: wj = Aj .

Optimality in the production of new housing in each city j requires that construction companies

solve the following maximization problem:

max
Kj , Tj

p̃jB[(1− θ)Kσ
j + θT σj ]1/σ − rjTj −Kj .

The solution is characterized by K?
j =

(
1−θ
θ rj

) 1
1−σ Tj . This, together with the zero profit condition

allows us to calculate the new housing supply in each city, which in turn determines a relation between

the rental price of land rj and the new house prices p̃j .

The problem of the renters is given by

V (Hj) = max
H′j

[pjH
′
j − p̃j(H ′j − (1− δh)Hj) +

1

1 + r
V (H ′j)],

where

Nj = H ′j − (1− δh)Hj ,

10The construction firms buy capital from households. Since the price of capital is one, however, this transaction does
not affect the household budget constraint.
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is the new housing demanded by the renters, and ρ is the interest rate used by renters to discount

future. The FOC and Envelope conditions for this problem imply that in a steady state,

p̃j = pj
1 + ρ

ρ+ δh
= pj + pj

1− δh
1 + ρ

+ pj

(
1− δh
1 + ρ

)2

+ ...

which equates what the rental firms pay for a new unit (p̃j) to income stream generated from renting

these units. Note that if δh = 1, i.e. with full depreciation of the housing stock, p̃j = pj . In a stationary

equilibrium, Nj = δhHj , or Hj =
Nj
δh
.

In equilibrium, given amenities aj , wages wj , prices p̃j , pj and rj , taxes tj , and transfers TRj : i)

households choose cj and hj optimally; ii) given wages wj , production firms choose lj optimally; iii)

given p̃j and rj , construction firms choose Kj and Tj optimally; iv) given p̃j , the renters choose pj

optimally, v) markets clear to pin down prices, wj , p̃j , pj and rj ; vi) government budget constraint

holds,
∑

j TRjlj = φ
∑

j tjljwj ; and vi) utility equalization across locations pins down lj . Further

details are provided in the Appendix.

4 The Planner’s Problem

We study a Ramsey optimal spatial taxation problem where the planner chooses tax instruments to

affect the equilibrium allocations. The planner assumes agents operate in a decentralized economy

with equilibrium prices and free choice of consumption and location decisions, albeit affected by a city-

specific tax tj , where w̃j = (1− tj)wj . Consider now a utilitarian planner who chooses the tax schedule

{tj} to maximize the sum of utilities subject to: 1. the revenue neutrality constraint, i.e. she has to

raise the same amount of tax revenue; 2. individually optimal choice of goods and housing consumption

in a competitive market; and 3. free mobility – utility across local markets is equalized.

As in the case of the equilibrium allocation, the utility given optimal consumption (c, h) in a local

labor market is given by (4). Then we can write the Ramsey planner’s problem as:

max
{tj}

∑
j

ujlj ,

subject to
∑

j tjAjlj = G, uj = uj′ , ∀j′ 6= j, and
∑

j lj = L.
The solution to this problem involves solving a system of J + J + 2 equations (J FOCs and J + 2

Lagrangian constraints) in the same number of variables. We cannot derive an analytical solution, so

we will characterize the optimal tax schedule from simulating the US economy in the next section.

In order to provide intuition for our simulations, we start, however, by showing that the first welfare

theorem holds when there is no housing production, no exogenous government expenditure (G = 0),

and no externalities (δ = 0).11 We then analyze the Ramsey problem for a simple two-city example.

11We are grateful to John Kennan for pointing us to this equivalence.
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Figure 1: Optimal Ramsey taxes in a two city example as a function of government expenditure G in
the benchmark setup with A1 = 1, A2 = 2,L = 100, α = 0.28, φ = 0.82; A. optimal spatial tax rates
t1, t2; B. populations l1, l2; C. Output Y and output net of government expenditure Y −G.

Proposition 1 Let there be a two city economy with θ = 1, δ = 0, δh = 1, aj = 1 and preferences

u(c, h) = cαh1−α. If there is no government expenditure G = 0, then the decentralized equilibrium

allocation and the Ramsey planner’s optimal allocation coincide. In the Ramsey problem, when G > 0,

taxes are positive and increasing faster in G in the city 1 than in city 2, and population share in city 1

declines in G.

Proof. In Appendix.

This result for the two-city economy illustrates how the equilibrium allocation changes with gov-

ernment expenditure G. Figure 1 illustrates the result in Proposition 1 for a simulation of the optimal

solution to the Ramsey problem for a two-city example.

Relative taxes in big cities decrease as G increases. When G = 0, taxes in both cities are zero.

As government expenditure G increases, the planner faces a trade-off in setting different taxes in more

productive, big cities relative to less productive small cities: higher taxes in more productive cities

generate bigger revenue per person, but attract fewer workers, and hence leads to a smaller tax base. We

find that it is optimal to increase the base (number of people) in more productive cites: as G increases,

the planner taxes those in highly productive city less to make sure that there are enough of them to pay

for G. This implies a divergence of the population distribution as the large city becomes larger (Figure

11



1.B): higher government spending goes together with bigger population differences between small and

large difference. That of course implies that output increases in government expenditure since more

people live in more productive city, but the output net of government expenditure is decreasing (Figure

1.C).

In this simple model with two cities, j = 1, 2,given equation (4), the utility equalization implies

αα(1− α)1−α
(w1(1− t1) +R+ TR)

pα1
= αα(1− α)1−α

(w2(1− t2) +R+ TR)

pα2
.

Using hj = α
(wj(1−tj)+R+TR)

pj
and hj = HJ

lj
where Hj is the housing supply in city j, we obtain

l2
l1

=
H2

H1

(
w2(1− t2) +R+ TR

w1(1− t1) +R+ TR

) 1−α
α

.

Hence, all else equal: i) more people live in cities with higher housing supply, as housing cheaper;

ii) more people live in more productive cities; iii) more people live in cities with lower taxes; iv) the

elasticity of relative size of city 2 to city 1 with respect to relative net earnings is 1−α
α , which is higher

the lower the share of housing in the utility function (as people care relatively more about their net

income).

5 Quantifying the Optimal Spatial Tax

We now quantify the magnitude of the impact spatial taxation. We proceed as follows: First, given the

U.S. data on the distribution of labor force across cities (lj) and wages in each city (wj), we back out

the productivity parameters Aj . Second, given (lj , wj), a parametric representation of current US taxes

on labor income, (λUS , τUS), and land area of each city (Tj), we compute amenity values aj under the

assumption that the current allocation of the labor force across cities is an equilibrium, i.e. utility of

agents are equalized across cities. Third, given aj , for any τ 6= τUS , we compute the counterfactual

distribution of labor across cities. In these counterfactuals, we assume revenue neutrality, and for any

τ , find the level of λ such that the government collects the same amount of revenue as it does in the

benchmark economy. Finally, we find the level of τ that maximizes welfare.

5.1 Labor Force and Wages

The data on the distribution of labor across cities (lj) and wages in each city (wj) are calculated

from 2015 American Community Survey (ACS). For 254 Metropolitan Statistical Areas (MSA), we

compute lj as the population above age 16 who are in the labor force. While the model economy is

populated by identical workers, average wages in each MSA in the data reflect several permanent worker

characteristics, such as education. If more educated workers sort themselves into more productive cities,

12



then higher average wages in more productive cities would partly be due to higher average human capital

of workers in these cities.12

In order to mitigate this problem, we calculate wj as weekly residual average wages for each MSA

that controls for workers’ education, age, gender and race, by estimating

log(wij) = κ+ µ1Educationi + µ2Hispanici + µ3Whitei + µ4Age + µ5Age2 + γj + εij , (5)

where wij is weekly wage of worker i in MSA j, calculated as the total annual earnings divided by total

number of weeks worked. Education is a dummy variable for educational attainment (with high-school

dropouts, high school graduates, college graduate categories), Hispanic and White are dummies for race,

and γj is an MSA fixed-effect. The residual wage for each worker is then calculated as κ+ γj + εij .
13

Figure 13.A and B in the Appendix show the distribution of population and wages across MSAs.

The average labor force is 485,301, with a maximum (New York, NY-Northeastern NJ) of about 9

million and a minimum (Asheville, NC) of 43,619. The population distribution is highly skewed, close

to log-normal, where the top 5 MSAs account for 21.4% of total labor force.14 Average weekly wages

are $918. The highest weekly residual wage is 50% higher than the mean (Stamford, CT) and the lowest

one is 20% of the mean level (Muncie, IN). Figure 2 shows the positive relation between population size

and wages, the well-known urban wage premium in the data. We take both population and wage data

as inputs to simulate the benchmark economy. The elasticity of wages with respect to population size

is about 0.043. In Figure 2, as well as in all other figures below, we indicate the ten most populated

MSAs together with five MSAs with the highest and the lowest wages.

5.2 Taxes

The relation between after and before tax wages is given by w̃ = λw1−τ , where λ is the level of taxation

and τ indicates the degree of redistribution (τ > 0). In order to estimate λ and τ for the US economy,

we use the OECD tax-benefit calculator that gives the gross and net (after taxes and benefits) labor

income at every percentage of average labor income on a range between 50% and 200% of average labor

income, by year and family type.15 The calculation takes into account different types of taxes (central

government, local and state, social security contributions made by the employee, and so on), as well as

many types of deductions and cash benefits (dependent exemptions, deductions for taxes paid, social

assistance, housing assistance, in-work benefits, etc.).16 Non-wage income taxes (e.g., dividend income,

12The evidence suggest that even though the average skill levels are constant across cities, the variance is increasing in
city size, see Eeckhout, Pinheiro, and Schmidheiny (2014).

13We remove wages that are larger than 5 times the 99th percentile threshold and less than half of the 1st percentile
threshold.

14The five largest MSAs are New York, NY-Northeastern NJ; Los Angeles-Long Beach, CA; Chicago, IL; Dallas-Fort
Worth, TX; and Washington, DC/MD/VA.

15 http://www.oecd.org/social/soc/benefitsandwagestax-benefitcalculator.htm, accessed on March 15, 2013.
16In this exercise we add local and federal taxes and related it to household income. Local taxes in the US can be

progressive or regressive; see Fleck, Heathcote, Storesletten, and Violante (2025). They find that for the US as a whole
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Figure 2: The Urban Wage premium.

property income, capital gains, interest earnings) and non-cash benefits (free school meals or free health

care) are not included in this calculation.

We simulate values for after and before taxes for increments of 25% of average labor income. As

the OECD tax-benefit calculator only allows us to calculate wages up to 200% of average labor income,

we use the procedure proposed by Guvenen, Burhan, and Ozkan (2014) detailed in the Appendix,

to calculate wages up to 800% of average labor income. As a benchmark specification, we calculate

taxes for a single person with no dependents. Given simulated values for wages, we estimate an OLS

regression

ln(w̃) = ln(λ) + (1− τ) ln(w).

The estimated value of τUS is 0.127. Estimating the same tax function with the U.S. micro data on

tax returns from the Internal Revenue Services (IRS), Guner, Kaygusuz, and Ventura (2014) estimate

lower values for τ, around 0.05. Their estimates, however, are for total income while the estimates here

are for labor income. One advantage of the OECD tax-benefit calculator, compared to the micro data

is that it includes social security taxes, which is not possible with the IRS data. Taking in account

transfers, Heathcote, Storesletten, and Violante (2017) estimate a larger value of τ, around 0.18. Our

estimates are closer to the ones provided by Guvenen, Burhan, and Ozkan (2014) who also use the

OECD tax-benefit calculator to estimate tax rates using a more flexible functional form.

Below we report results with estimates for τ from Guner, Kaygusuz, and Ventura (2014) and Heath-

the local taxes and transfers are proportional, i.e., the estimated τ would be close to zero. The differences in estimated τ
across states is small, between -0.02 and 0.02.
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cote, Storesletten, and Violante (2017) as a robustness check. The parameter λ determines the average

level of taxes. We obtain λUS = 0.856, i.e., at mean wages (w = 1) taxes are about 14.4% of GDP

in the benchmark economy. This is the average value for sum of personal taxes and contributions to

government social insurance program as a percentage of GDP for 1990-2015 period.17 As a result, the

size of the government in the model is limited by the extent of tax collection from personal income

taxes. Tax rates at w = 0.5 and w = 2 are 6.5% and 21.6%, respectively.

Figure 3 shows what our representation of the effective Federal Taxes in the US implies for how

tax rates differ across cities. The average tax rate in San Jose, CA, for example, is about 7% points

higher than it is in Bloomington, IN. Clearly, the Federal Tax Schedules do not differ across cities in

the US. However, since taxes are progressive, higher average wages in a city map into higher taxes. The

parametric representation captures differences across cities in average tax rates in a parsimonious way.

Furthermore, it allows us to search for a single parameter, τ , to maximize welfare.
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Figure 3: Taxes across cities

5.3 Transfers

To set φ, the share of tax revenue that is rebated to households, we assume that government expenditure

(excluding defense) provides a direct income to households. The share of defense expenditure in the

Federal Government’s budget was about 18% in the US for the 1990-2015 period.18 Therefore, we

17 National Income and Product Accounts, Bureau of Economic Analysis, Table 3.2. Federal Government Current
Receipts and Expenditures, http://www.bea.gov/iTable/index nipa.cfm

18National Income and Product Accounts, Bureau of Economic Analysis, Table 3.16. Government Current Expenditures
by Function, http://www.bea.gov/iTable/index nipa.cfm
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assume that the rest, 82% of taxes, is rebated back to households, i.e. φ = 0.82. We assume that

city-specific transfers, TRj , are a declining function of city-specific wages, given by

TRj = η1 + η2wj , with η1 > 0, and η2 < 0.

Since, total transfers must be equal to total government spending,

∑
j

TRjLj = η1
∑

Lj + η2
∑

wjLj = φG.

To calibrate parameters η1 and η2, we use the Bureau of Economic Analysis regional economic accounts,

and choose η1 and η2 so that the model reproduces the relation between per-capita transfers (net of

social security and disability payments) and per-worker wage and salary earnings across MSAs. Figure

4 shows the data. On average the poorest MSAs get a per capita transfer of around 6,000$, which

declines below 4,000$ in richer MSAs. Further details on the data and the calibration of η1 and η2 are

provided in the Appendix.
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Figure 4: Local Transfers

These local transfers already capture part of the place-based policy. Of course, also local taxes are

an important part of the fiscal tools which can be place-based. We have taken the view in the paper

that most local taxes are also spent locally, and there is no redistribution across cities. Since we do not

model local public goods, our model has nothing to say about this. The extent to which local taxes are

also used for redistribution (maybe state taxes are used to redistribute across cities within the state)
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would alter the interpretation.

5.4 Housing Production

The CES housing supply technology basically stipulates that the cost of construction of housing is

increasing in the size of the house, but at a (weakly) decreasing rate. If housing capital and land are

complements (the elasticity of substitution is less than one), then the housing cost is decreasing in the

size of the house. For example, small apartments still need a bathroom and a kitchen, so the unit cost

per square meter is higher, or, it is more expensive per unit of housing to build a high-rise than a stand

alone home. The implication of this is that the share of land in the value of housing is increasing in the

population density, as transpires from the data.

The data on land areas of cities (MSAs), Tj , is taken from Lutz and Sand (2019), who update

land availability measure constructed by Saiz (2010). For each MSA, the available land is measured as

the fraction of land that can be developed in a 50 km radius from an MSA’s center. Land that can’t

be developed are either mountains (or steep slopes) or water (e.g., oceans, lakes, etc.). The maximum

available land for an MSA is the area of a circle with a 50 km radius, 7875 km2. The fraction of available

land varies from about 0.12, i.e. 921 km2, for Honolulu (HI) to 1, i.e. 7875 km2, Anchorage (AK).

The average fraction is 0.72, i.e. 5703 km2. Appendix Figure 14 shows the distribution of available

land across MSAs. Figure 15 depicts the relation between wages and available land across MSAs; more

productive cities tend to have less available land (the correlation between available land and wages is

-0.23).

Davis, Larson, Oliner, and Shui (2021) show that the land share in housing is around one-third

across MSAs, while Davis, Larson, Oliner, and Shui (2021) document that it is about 26.6% across US

counties. We set θ = 0.2750 to match an average land share of one-third in the benchmark economy.

Davis, Larson, Oliner, and Shui (2021) also show that the land share ranges from 15.7% (10th percentile)

to 41.5% (90th percentile). The parameter σ = −0.1412 is chosen to a maximum land shares of 41.5%.19

Then, we set B = 0.00738 such that on average housing consumption is about 200m2.20 Following Davis

and Heathcote (2007) and Kaplan, Mitman, and Violante (2020), we set δh = 0.015. Finally, we assume

that the rental companies discount future at 4%.

5.5 Preferences and Productivity

Given wj = Aj , and w̃j = λw1−τ
j , we calculate amenities aj from utility equalization condition across

cities. Given the indirect utility function in equation (4), for any two locations j and j′, the following

19We use 90th percentile of the land share distribution from Davis, Larson, Oliner, and Shui (2021) (Table 1, Annual
Panel) as the maximum since model abstract from features that might generate a long tail of land shares. The 99th
percentile is about 62% in the data.

20The average size of new single-family houses sold in the US between 1990 and 2015 was 2134.4 square feet (198.3
square meter) - of Commerce (2015), page 745.
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equality must hold:

uj = aj [(1− α)1−α](w̃j +R+ TRj)
1−αlδ−αj Hα

j

= aj′ [(1− α)1−α](w̃j′ +R+ TRj)
1−αlδ−αj′ Hα

j′

= uj′

Let a1 = 1. Then, for each city j,

aj =
(w̃1 +R+ TRj)

1−αlα−δj Hα
1

(w̃j +R+ TRj)1−αl
α−δ
1 Hα

j

(6)

=
(w̃1 +R+ TRj)

1−αlα−δj

[
(1− θ)

(
1−θ
θ r1

) σ
1−σ + θ

]α/σ
Tα1

(w̃j +R+ TRj)1−αl
α−δ
1

[
(1− θ)

(
1−θ
θ rj

) σ
1−σ + θ

]α/σ
Tαj

Calculations for aj obviously depend, among other parameters, on the values we assume for α and

δ. We set α = 0.2804. Davis and Ortalo-Magné (2011) estimate that households on average spend about

24% of their before-tax income on housing. This would translate to a spending share of α = 0.24
λ =

0.24
0.856 = 0.2804 from after-tax income at mean income (w = 1).

We interpret the congestion term l−δ in the utility as commuting costs and calibrate it using

the available evidence on the relationship between city size and commuting costs. The elasticity of

commuting time with respect to city size is estimated to be 0.13 by Gordon and Lee (2011). Average

commuting time in the US is about 50 minutes (McKenzie and Rapino (2011)). Assuming a 20$ hourly

wage, this 50 minutes costs about 17$ for households, which is about 11% of their daily income (17/160).

Commuting also has a monetary cost. Roberto (2008) reports that households on average spend about

5% of their income on transportation expenditures, while Lipman et al. (2006) find these costs to be

higher, close to 20%. If we take 10% as an intermediate value, then the total, time and money, cost of

travel for households is about 20% of their income, which is simply the elasticity of the total commuting

costs with respect to the commuting time. As a result, the elasticity of total commuting costs with

respect to city size, which is the elasticity of the total commuting costs with respect to the commuting

time times the elasticity of commuting time with respect to the city size is (0.13)(0.2) = 0.026.21 Table

1 shows the parameter values for the benchmark economy.

21In this paper, we assume each city has a different, exogenously given, land area and there is congestion. An alternative
strategy would be to endogenize land area by capturing the cost of commuting, for example as in Combes, Duranton, and
Gobillon (2018), in the presence of a central business district. However, in our model there is no within city heterogeneity,
and commuting costs are captured by the congestion externalities in utility, rather than in housing production. As we
show in section 6, incorporating the exact land area in the model is an important ingredient to fit the data.
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Parameters Values Comments

Taxes and Transfers
λ 0.856 Benchmark tax rate for w = 1
τ 0.127 Benchmark place-based tax
φ 0.820 Fraction of taxes rebated
η1 0.2249 Transfer function, TRj = η1 + η2wj
η2 -0.1063 Transfer function, TRj = η1 + η2wj
Parameters set a priori
α 0.280 Davis and Ortalo-Magné (2011)
δ -0.026 See text
δh 0.015 Davis and Heathcote (2005), Kaplan et al (2020)
ρ 0.040 Standard
Parameters calibrated
B 0.00738 Average household size, 200 m2

θ 0.2750 Average land share in housing, 1/3
σ -0.1412 Max land share in housing, 0.415

Table 1: Parameter Values of the Benchmark Economy

5.6 Benchmark Economy

In Figure 5.A we report the computed values of aj , adjusted for congestion, i.e. al−δ, across metropolitan

statistical areas. We set a1 = 1 for New York-Northeastern NJ MSA. The mean value of aj across

MSAs is also about 0.72. The highest levels of aj , about 1.04, is calculated for Los Angeles-Long

Beach (CA), followed by New York-Northeastern NJ MSA (1), Miami-Hialeah, FL (0.996), Chicago,

IL (0.938), and Atlanta, GA (0.920). The calibration assigns a high value of a for places like NY, LA,

Chicago and Atlanta, relatively high-wage places, to account for their large size. On the other hand,

a relatively low-productivity MSA like Miami-Hialeah (FL), with averages wages that are about 90%

of the national average, also requires a high a to justify its current size, which possibly reflects better

weather conditions. On the other hand, the lowest values of a are 0.57 for Waterbury, CT, 0.55 for

Anchorage, AK and 0.53 for Odessa, TX. These are MSAs with relatively high wages but with small

populations and low values of a are assigned to justify why more people are not living there, which

might again reflect weather. Overall, the correlation between amenities and population size is about

0.6 in the benchmark economy.

Figure 5.B shows the relation between population size and the share of land values in housing

prices, which we use as a target to calibrate housing production technology. Finally, the benchmark

economy generates a distribution of equilibrium housing prices across MSAs. Estimated housing prices

are highest in NY, followed by LA, while the lowest housing prices are computed for Sharon, PA and

Muncie, IN. The ratio of the highest to lowest prices is around 8. While the average housing consumption

is calibrated to be around 200m2 across MSAs, those in NY live in houses that are about 83m2 and

about 10 times smaller than houses in Sharon, PA. Figure 5.C shows the relation between population
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size and housing prices across MSAs in the benchmark economy. The figure implies an elasticity of

housing prices with respect to population size that is about 0.35.
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Figure 5: Benchmark Economy: A. Amenities and Population; B. Land Share in the Value of Housing
and Population; C. Housing Prices and Population.

Next we compare the model outcomes, which were not directly targeted, with the data. First, we

compare housing prices from the benchmark economy with housing prices in the data. In the model

economy, housing is a homogeneous good with a location-specific per unit rental price pj . In the data,

on the other hand, housing units differ in many observable dimensions, and as a result, observed housing

prices reflect both the location and the physical characteristics of the unit. We estimate the city-specific

price level as a location-specific fixed effect in a simple hedonic regression of log rental prices on the

physical characteristics, such as age, number of rooms, age of the unit, and the unit structure (one

family detached unit vs. one family attached unit etc.).22 For both the model and the data, we report

prices in each city as a fraction of average prices across all cities. The model does an excellent job

capturing the variation in housing prices in the data (Figure 6.A). The correlation between the model-

22We use 2015 American Community Survey (ACS) data on housing rentals and housing characteristics. See also
Eeckhout, Pinheiro, and Schmidheiny (2014).

20



implied and actual prices is 0.58. The variance of housing prices in the model economy is higher than

it is in the data.
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Figure 6: Housing prices (A) and Amenities (B): Data versus Model.

Second, we compare amenities from the model, aj , with amenities in the data. We use data from

Diamond (2016), who collects information on city amenities related to retail, transportation, crime,

the environment, schooling and job quality. Using a principal component analysis, she summarizes the

amenity into a single index for each metropolitan area and decade (years 1980, 1990, and 2000). In

Figure 6.B, we use her most recent data for 2000. The correlation between amenities in the model and

the data is around 0.27. Both in the data and the model, large MSAs, e.g. NY-NJ, have a high level

of amenity, while high-wage, small MSAs, e.g. Odessa TX, are not attractive places to live.

5.7 Optimal Spatial Taxes

Given values for Aj and aj , the next step is to find counterfactual allocations for any level of τ 6= τUS .

This is done simply by first writing equation as

aj =
(λw1−τ

1 +R+ TR1)
1−αlα−δj

[
(1− θ)

(
1−θ
θ r1

) σ
1−σ + θ

]α/σ
Tα1

(λw1−τ
j +R+ TRj)1−αl

α−δ
1

[
(1− θ)

(
1−θ
θ rj

) σ
1−σ + θ

]α/σ
Tαj

, (7)

which can be used to calculate new allocations for any τ

lj(τ) = l1(τ)

a 1
α−δ
j

(
λw1−τ

j +R+ TRj

λw1−τ
1 +R+ TR1

) 1−α
α−δ

(
(1− θ)

(
1−θ
θ rj

) σ
1−σ + θ

(1− θ)
(
1−θ
θ r1

) σ
1−σ + θ

)α
σ

1
α−δ (

Tj
T1

) α
α−δ

 .
where lj(τ) is the counterfactual allocation for tax schedule τ .

We want the counterfactual to be revenue neutral, so for each τ we find a value of λ such that the
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Figure 7: A. Welfare gain for different values of τ ; B. The optimal spatial tax schedule τ? compared to
that in the benchmark economy τUS .

government collects the same tax revenue as it does in the benchmark economy, i.e.

∑
j

lj(τ)wj(τ)(1− λw−τj ) =
∑
j

ljwj(1− λUSw−τ
US

j ). (8)

Figure 7.A shows the percentage change in utility and output from the benchmark economy for different

values of τ . The planner problem is given by

max
τ

u(τ),

subject to equation (8) and utility equalization across cities.

u(τ) = ui(τ) = uj(τ), for ∀i, j

An alternative objective function for the planner, following Bénabou (2002), could take into account

inequality across cities, i.e.,

max
τ

u(τ)− θ∆J(w),

where ∆J(w) is the inequality across cities in wages, and θ is inequality aversion of the planner. We

could, for example, choose θ so that the observed level of τ in the US would correspond to the solution

of this alternative planner problem. However, there is no reason to focus on inequality in wages and

not on utilities across cities, which also takes into account housing prices. But with utility equalization,

∆J(u) = 0, this formulation coincides with ours.

The optimal value τ?, is 0.0123.The optimal τ? is less than τUS , i.e. taxes in big cities should be

lower than those implied by the degree of redistribution of observed income taxes. However, the optimal

τ is not zero. As shown in the Figure, lower values of τ results in larger movements of population to more
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productive cities and generates larger output gains. But it does not necessarily maximize consumer’s

utility as consumers are hurt by higher housing prices in larger cities. Figure 7.B shows the implied

tax schedule under (λUS , τUS) and (λ?, τ?). The tax function is more flat with (λ?, τ?). As a result, for

w = 0.5, w = 2 and w = 5, the tax rates are 13.6%, 15.0% and 16.0%, respectively under the optimal

τ∗, in contrast to 6.5%, 21.6% and 30.2% under τUS .
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Figure 8: Implied changes of implementing the optimal policy τ?. A. Change in population by TFP;
B. Change in population by a; C. Change in w̃ by TFP; D. Change in housing prices p by TFP.

How can a change in τ from 0.127 to 0.0123 be implemented in practice? Clearly any change

in the federal income tax schedule that makes it less progressive will translate into lower taxes in

more productive cities in our framework. The tax reforms in the early 1980s, for example, resulted in

significantly less progressive taxes in the US (as documented by Guner, Kaygusuz, and Ventura (2014)

and Borella, De Nardi, Pak, Russo, and Yang (2023)). Incidentally, after the 1980s, there was also an

increase in the concentration of population in larger cities.

The mortgage interest deductions in the US also lower τ, as most of these deduction accrue to higher-

income households. Hence, all else equal, higher deductions might make income effective taxes lower in

high-income cities. Yet, in equilibrium, lowering τ though mortgage interest payments deduction might
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not be an effective way of attracting workers to high-wage cities, as it will also increase housing demand,

making high-wage cities less attractive. This will also be the case for other policies, such as deductions

for property taxes, which is again likely to benefit high-income households. Indeed, equilibrium models

of mortgage interest payment reductions with heterogenous agents (but without a spatial aspect), such

as Floetotto, Kirker, and Stroebel (2016) and Sommer and Sullivan (2018), find that eliminating these

deductions would be welfare improving as they would lower house prices. This also holds for other

policies, such as tax deductions for property taxes, which are likely to benefit high-income households,

and increase housing demand.23

5.8 Optimal Allocation

Now we can evaluate the implications of a tax change in the tax schedule from τUS to τ?, both for

individual cities and in the aggregate. Consider first the impact on individual cities, which is summarized

in Figure 8 and Table 2. The table gives the numerical values for those cities with extreme values either

for TFP A or for amenities a.

MSA A a %∆l %∆p %∆c %∆h

Highest A
Stamford, CT 1.37 0.60 27.32 10.38 3.51 -6.22
San Jose, CA 1.37 0.73 23.57 10.50 3.80 -6.37
Odessa, TX 1.31 0.53 26.20 8.62 3.56 -5.15

Lowest A
Asheville, NC 0.73 0.72 -20.15 -7.23 -2.60 4.99
Bloomington, IN 0.73 0.70 -20.99 -7.18 -2.61 4.92
Muncie, IN 0.73 0.66 -22.17 -7.08 -2.62 4.80

Highest a
LA-Long Beach, CA 1.09 1.04 5.50 2.87 0.99 -1.83
NY, NY-Northeastern NJ 1.18 1.00 10.67 5.53 1.84 -3.49
Miami-Hialeah, FL 0.91 1.00 -5.06 -2.44 -0.77 1.71

Lowest a
Waterbury, CT 0.99 0.57 -0.08 -0.01 0.05 0.06
Anchorage, AK 1.21 0.55 17.45 5.80 2.07 -3.52
Odessa, TX 1.31 0.53 26.20 8.62 3.56 -5.15

Table 2: Benchmark Economy, move from τUSA to τ?. Outcomes for Selected Cities.

Since the optimal degree of tax difference τ? is below existing τUS , the optimal policy lowers tax

payments in high productivity cities. Figure 8.A. shows that the high A cities grow in size while the

low productivity A cities lose population. The largest population growth rate, for Stamford (CT), is

around 27% whereas Muncie (IN) loses 22% of its population. As is apparent in Figure 8.B., in contrast

232017 Tax Cut and Jobs Act (TCJA) reduced the debt limits for mortgage interest rate deductions from $1 million to
$750,000. The reduction become permanent with the 2025 One Big Beautiful Bill Act.
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with productivity, there is no systematic relation between amenities and population change.

The economic mechanism that drives the population mobility is the following. Due to lower

marginal taxes, more productive cities pay higher after tax wages (Figure 8.C). This in turn attracts

more workers relative to the benchmark equilibrium with τUS . The new equilibrium is attained when

utility across locations equalizes. The main countervailing force that stops further population mobility

against the attractiveness of higher after tax wages is housing prices. Figure 8.D shows the change in

housing prices. High productivity cities are up to 10% more expensive while low productivity cities

face housing price drops of up to 7%.

Figure 9 shows the distribution of output and price changes across MSAs. Output in some MSAs

grows as much as 27% while in others it declines by 20%. Output declines in the majority of MSAs, as

many small MSAs lose population. Few productive, and large, MSAs on the other hand gain population.

The distribution of changes in prices reflects the same forces. Prices decline in many small MSAs, and

increase in few large ones. Figure 10 shows the same information in a map. The increase in population

(Panel A) and prices (Panel B) are concentrated on a few locations, around NY, San Francisco, Chicago,

and a few locations in Texas, while many cities experience small changes.
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Figure 9: Distribution of changes: A. Output; B. Housing Prices.

Of course with higher housing prices goes substitution of housing for consumption (see Figure 11.A).

In the high productivity cities, workers live in even smaller housing while increasing goods consumption.

Housing consumption decreases by more than 6% in the high productivity cities in substitution for nearly

4% higher goods consumption. In the less productive cities housing consumption increases by up to 5%

at the cost of decreased goods consumption by 2.5%. Given homothetic preferences, the marginal rate

of substitution is constant.

Table 3 shows the aggregate outcomes from moving the benchmark allocation to the optimal. On

average output and consumption go up by about 1.00% and 0.95%, respectively. This is driven by

the population moving to the more productive cities. The population in the 5 largest cities grows by
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Figure 10: Distribution of changes in Population and Prices across MSAs.
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Figure 11: Implied changes of implementing the optimal policy τ?: A. Substitution between c and h;
B. Cumulative Distribution of city sizes.

7.65%, despite the fact that the top three are large in part because they also offer high amenities a.

Most importantly, in the aggregate there is a reallocation of population from less productive, smaller

cities to the more productive, larger cities. As a result there is first-order stochastic dominance in the

population distribution, as is evident from Figure 11.B. Not surprisingly, aggregate housing prices go

up by 4.85%. Due to higher prices, aggregate housing consumption declines by 1.90%.

Despite relatively large output gains, welfare gains are tiny. Given free mobility and a representative

agent economy, all agents have the same utility level. After implementing the optimal policy, utility

increases by only 0.05%. The reason for such tiny welfare gains is quite simple. Under the optimal spatial

taxes, after-tax wages increase in cities that have initially high productivity. These cities, however, also

get more crowded and housing prices go up. With higher prices, housing consumption in these cities
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Aggregate Outcomes

Welfare Gain (%) 0.0534
Output Gain (%) 1.00
Consumption (%) 0.95
Housing Consumption (%) -1.90
Population Change, top 5 cities (%) 7.65
Fraction of Population that Moves (%) 3.31
Change in Average Housing Prices (%) 4.85

Table 3: Benchmark Economy, move from τ to τ?

declines, and from the substitution of goods for housing, this generates higher goods consumption.

However, the welfare gains associated with higher goods consumption get almost completely offset by

lower housing consumption.

6 Understanding the Mechanism

The critical trade-off that determines the optimal τ in the model is between higher output and higher

housing prices. Lower τ implies lower taxes in high-wage cities, making them more attractive. As more

workers move to more productive cities, the planner has a larger tax base in these cities that more

than compensates for lower revenue per person in these cities. This force towards lower τ is stronger

if we allow for agglomeration externalities. On the other hand, as more workers move to high-wage

cities, housing prices increase, reducing the utility gain from higher after-tax wages. Without changes

in housing prices or other congestion effects, the planner would like to locate everyone in the most

productive city. But higher housing prices, and the associated decline in housing consumption, limit

how much the planner can lower taxes in high-wage cities. In this section, we highlight key model

features that affect this trade-off.

6.1 Level of Government Spending

First, we show that the level of taxes collected matters. If the planner has to collect higher tax revenue,

placing more people in high-wage cities, i.e., increasing the tax base, becomes relatively more attractive.

Based on the evidence for the US economy, we have chosen parameter values for λ and τ that

are most plausible. The total tax revenue is given by 1 − λ. Our value for the tax revenue of 15%

(λ = 0.856) includes income taxes as well as social security taxes. Instead, if we exclude social security

contributions, the tax revenues would be around 8% (λ = 0.922). Alternatively, if consider the whole

tax revenue including corporate and other taxes not related to labor income, then the tax revenue is
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λ = 0.922 λ = 0.856 λ = 0.828
Benchmark

Optimal τ∗ 0.0856 0.0123 -0.0218
Welfare Gain (%) 0.0078 0.0534 0.0858
Output Gain (%) 0.38 1.00 1.27
Consumption (%) 0.37 0.95 1.18
Housing Consumption (%) -0.71 -1.90 -2.43
Population Change, top 5 cities (%) 2.92 7.65 9.67
Fraction of Population that Moves (%) 1.27 3.31 4.19
Change in Average Housing Prices (%) 1.81 4.85 6.19

Table 4: The Role of Government Revenue Requirements

18.2% (λ = 0.828).24 As Table 4 shows when government spending increases (λ decreases), the optimal

τ∗ declines and taxes becomes relatively lower in bigger cities. Indeed, with λ = 0.828, the optimal

spatial tax schedule is regressive with τ∗ = −0.0218, and workers in more productive cities pay lower

average taxes compared to the ones in smaller cities. In contrast, when revenue requirements are smaller

(λ = 0.922), government does not need so many people in productive cities and instead chooses a much

more progressive schedule with τ∗ = 0.0856.

In contrast to λ, as we show in the Appendix, the initial level of τ does not change the level of

optimal dramatically. It does have an important effect on output changes and as a result on welfare.

6.2 Absentee Landlords

Second, we focus on the ownership of land. Often in the urban economics literature as in our benchmark

model, housing ownership is assumed to be 100% in the hands of workers. Alternatively, at the other

extreme, some models assume ’absentee landlords’, where all housing is owned by a zero-measure of

agents who do not enter in the planner’s social welfare function. In our benchmark economy, rents from

land are distributed equally across all workers in the economy, i.e., as if each worker holds an equal

share of a diversified portfolio of land across US MSAs. This particular ownership structure allows the

planner to choose a low τ , reducing after-tax wages in highly-productive cities. After all, the increase in

housing prices benefits all households through the redistribution of land rents. Hence even workers in a

less productive town that loses population benefit from higher housing prices in NY and LA. Instead,

when ownership of land is in the hands of absentee landlords, benefits of higher land prices in more

productive cities do not stay in the economy and can limit the planner’s willingness to lower τ .

The right panel in Figure 12 shows average taxes across locations in the benchmark economy (dark

blue) together with the tax function that arises when the planner chooses τ to maximize welfare (red).

The same figure also shows the tax function with absentee landlords (green dash line). In an economy

24Source: National Income and Product Accounts (NIPA) Table 3.2. - Federal Government Current Receipts and
Expenditures.
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with absentee landlords where workers do not receive any income from land ownership, the planner

lowers τUS from 0.0123 to τ∗ = 0.0603, so taxes for w = 0.5, 2 and 5 are 10.5%, 15% and 22.6%,

respectively, while they were 6.5%, 21.6% and 30.2% in the benchmark. But the level of τ is considerably

higher compared to the benchmark where the land rents were distributed equally to all workers (see

Table 5). As a result, there is a smaller rise in output, and therefore also a smaller increase in housing

prices. The welfare gains from choosing τ optimally are much higher when land rents are distributed

among all households equally.

Benchmark Absentee Landlords Agglomeration Equal Land

Optimal τ 0.0123 0.0603 -0.0323 0.0064
Welfare Gain (%) 0.0534 0.0196 0.1430 0.0598
Output Gain (%) 1.00 0.60 2.09 1.07
Consumption (%) 0.95 0.55 1.98 1.00
Housing Consumption (%) -1.90 -1.14 -3.72 -1.80
Population Change, top 5 cities (%) 7.65 4.60 14.27 8.01
Fraction of Population that Moves (%) 3.31 1.99 6.33 3.51
Change in Average Housing Prices (%) 4.85 2.85 9.59 4.79

Table 5: The Role of Absentee Landlords, Agglomeration and Land Availability

6.3 Agglomeration Economies

There is a large empirical literature in urban economics that documents the extent of agglomeration

economies in cities. Rosenthal and Strange (2004), Duranton and Puga (2004), Combes, Duranton,

and Gobillon (2018) and Combes and Gobillon (2015) provide reviews of the recent papers that find

elasticities of city level productivity with respect to the city size that are of the order of 0.03 to 0.08.

In this section, we introduce agglomeration economies as an externality in the production function.

We assume that the production is given by F (lj) = (Ajl
γ
j )lj , where the lγj term captures the level of

agglomeration economies. Competitive firms still choose lj to maximize profits, taking as given the

externality (Ajl
γ
j ). The resulting wage rate is now given by wj = Ajl

γ
j , where γ is the elasticity of wages

with respect to the city size. As above, we use data on wages and the size of the work force across MSAs

to estimate Aj and v, and then repeat our main quantitative exercise.25 Given lj , we estimate Aj and

γ to fit the observed wages, wj , in each city. Therefore the benchmark allocations in the economy with

agglomeration externalities are identical to ones in the benchmark economy. The planner problem, on

the other hand, now takes into account the fact that a larger workforce in a given city has a positive

effect on average wages there.

Table 5 shows the aggregate outcomes for an economy with agglomeration externalities. Since there

25The estimated value of γ is about 0.045.
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is now an extra external benefit from allocating workers to productive cities, the planner chooses a

regressive tax schedule with τ = −0.0323. The resulting tax function is shown in the left panel of

Figure 12 (light blue line). Taxes decline in city size, and for w = 0.5, w = 2 and w = 5, the tax rates

are 16.2%, 12.3%, and 9.7%, respectively. As a result, the share of population in the largest five MSAs

grows by more than 14% and the resulting reallocation of labor generates a significant output gain that

is higher than 2%.26
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Figure 12: Changes in Optimal Spatial Tax Progressivity: A. Alternative Economies; B. Allowing for
Tax Credits

6.4 An Economy with Identical Land Areas

We also study the effect of land distribution across MSAs. In the benchmark economy, more productive

MSAs have less land; the correlation between wages and land size across MSAs is about -0.23. As a

result, a lower τ makes these densely populated cities even more crowded, pushing housing prices up.

Suppose NY or LA had as much available land as Anchorage, AK. Then, the higher population that

results from lower τ would not influence housing prices as much. When we impose that each MSA has

the same amount of land (the US average), the planner chooses an even less progressive tax schedule,

which is almost proportional with a constant rate of around 14%, as shown in Table 5. The planner

can now lower taxes in productive cities more than she did in the benchmark economy since the rise in

housing prices is slightly more muted.

26Changing the congestion externality parameter has qualitatively similar effects as the introduction of agglomeration
externalities since the functional form is the same. Congestion externalities however are tiny compared to the agglomeration
externalities we find here. If we only shut down the congestion, i.e. set δ equal to zero, the optimal τ∗ would be close to
zero (-0.009). Hence, the planner would lower taxes in bigger cities more than she would do in the benchmark economy,
which is not surprising.
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6.5 Allowing for Tax Credits

Finally, we also study whether allowing the planner to use additional tax instruments can generate

higher welfare gains. In particular, as the changes in house prices play a key role for the results, we

consider refundable tax credits on housing expenditure. Hence, if in city i , households spend pihi on

housing, the after tax wages are now given by

w̃i = λw1−τ
i + χpihi

where χ ≤ 1 is the share of housing expenditure rebated to households. The planner chooses both

τ and χ to maximize the welfare of the representative agent, and, as in other exercises, λ is adjusted

so that the total tax collection is the same as in the benchmark economy. The resulting optimal spatial

tax function is shown in in the right panel of Figure 12, together with the benchmark tax function

and the optimal one obtained when the planner can only choose τ. The tax function with a tax credit

is surprisingly close to one when the planner is constrained to use only τ. The tax credit allows the

planner to lower taxes in low and high wage locations, creating a slightly hump-shaped tax function.27

Yet, the welfare gains from using this additional instrument is small: welfare gains were 0.0534% when

the planner can only choose τ, while they are only slightly higher, 0.0541%, when the planner can also

choose χ, and the aggregate effects are very similar to the ones obtained in the benchmark experiment.

7 Conclusions

We have studied the role of federal income taxation on the misallocation of labor across geographical

areas. More productive cities pay higher wages, and with redistributive taxes, workers in those cities

also pay higher average taxes. Given perfect mobility, the tax schedule affects the incentives of where

workers locate. Our objective has been to calculate the shape of the optimal spatial tax schedule

in general equilibrium. When taxes change, citizens respond by relocating, but that in turn affects

equilibrium prices. Those equilibrium effects determine both the optimal spatial tax schedule as well

as the quantitative implications.

Our findings are, first, that the optimal spatial tax schedule is not flat and is sensitive to the level

of government spending, to the presence of agglomeration externalities, and to the concentration of

housing wealth. From a welfare viewpoint, what matters for the population allocation is the amount of

government revenue and hence where it is best generated across differentially productive locations.

Second, quantitatively, the optimal spatial tax is less redistributive across space than the existing

schedule in the data. Implementing the optimal schedule therefore favors the more productive cities.

27The optimal τ in this case is -0.1058, resulting in a regressive tax function. The optimal χ is close to 1, hence the
planner wants to rebate the whole tax expenditure. This rebate lower the taxes paid more in low wage locations, so the
resulting tax function turns out to be pretty flat, with a slight hump-shape.
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In equilibrium this leads to output growth economy-wide, and population growth in the largest cities.

The output growth is 1.42%. At the same time, there is first-order stochastic dominance in the city

size distribution where the fraction of the population living in the five largest cities grows by 8%. The

welfare effects however are small, 0.07%. Welfare obviously goes up, but in small amounts. This is

due to the fact that the cost of living in the productive cities has increased commensurately. Our

quantitative exercise also shows that the size of the government, the concentration of housing wealth,

as well as the presence of agglomeration externalities play a critical role in determining the optimal

spatial tax differences between large and small cities.
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Appendix

Characterization of Equilibrium

Consider first the problem of construction firms. The First-Order Conditions are given by

p̃jB
1

σ
[(1− θ)Kσ

j + θT σj ]
1
σ
−1(1− θ)ρKσ−1

j = 1, (9)

and

p̃jB
1

σ
[(1− θ)Kσ

j + θT σj ]
1
σ
−1θρT σ−1j = rj . (10)

These conditions imply

K?
j =

(
1− θ
θ

rj

) 1
1−σ

Tj , (11)

and

Nj = B

[
(1− θ)

(
1− θ
θ

rj

) σ
1−σ

+ θ

]1/σ
Tj . (12)

The zero-profit condition then implies (after factoring out Tj and rj):

p̃j = rj

(
1 +

(
1−θ
θ

) 1
1−σ r

σ
1−σ
j

)
B
[
(1− θ)

(
1−θ
θ rj

) σ
1−σ + θ

]1/σ . (13)

From the household problem we know that pjhj = α(w̃j +Rj + TR). Since market clearing in the

housing market requires that hjlj = Hj , this implies α(w̃j + R + TR)lj = pjHj . Also, we know that

Hj =
Nj
δh

and pj = r+δh
1+ρ p̃j which can be written as

pjB

[
(1− θ)

(
1− θ
θ

rj

) σ
1−σ

+ θ

]1/σ
Tj = αδhlj(w̃j +R+ TR),

Substituting for other prices:

ρ+ δh
1 + ρ

p̃jB

[
(1− θ)

(
1− θ
θ

rj

) σ
1−σ

+ θ

]1/σ
Tj = αδhlj(w̃j +R+ TR),

or, after substituting equation (13), rearranging and canceling terms:

rj

(
1 +

(
1− θ
θ

) 1
1−σ

r
σ

1−σ
j

)
=
αδhlj(w̃j +R+ TR)

Tj

1 + ρ

v + δh
. (14)
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Observe that this expression consists of one equation in one unknown, rj . Given the solution for rj , we

can use equation (13) to find pj .

In equilibrium each location has to give the same utility. Given equation (4), and normalizing

a1 = 1, we have

aj
a1

=
lδ1(w̃1 +R+ TR1) ((w̃1 +R+ TR1)l1)

−αHα
1

lδj (w̃j +R+ TRj) ((w̃j +R+ TRj)lj)
−αHα

j

.

Using the expression for Hj in (12) and since Nj = Hjδh we obtain

aj
a1

=
(w̃1 +R+ TRj)

1−αlα−δj

[
(1− θ)

(
1−θ
θ r1

) σ
1−σ + θ

]α/σ
Tα1

(w̃j +R+ TRj)1−αl
α−δ
1

[
(1− θ)

(
1−θ
θ rj

) σ
1−σ + θ

]α/σ
Tαj

.

The first order condition of production firms implies wj = Aj , and w̃j is given by (1 − tj)wj .

Individuals own an equal share in a diversified portfolio of land holdings. Therefore R satisfies:

R =

∑
j rjTj∑
j lj

.

The population allocation must satisfy feasibility:
∑

j lj = L, and
J∑
j=1

TRjlj = φG. Hence, equation

(??) can be used to pin down lj for a given values of aj .

Finally, in order to arrive at the aggregate resource constraint for this economy, we first aggregate

the household budget constraints, cj + pjhj ≤ w̃j +R+ TR, across cities

J∑
j=1

ljcj +
J∑
j=1

ljpjhj =
J∑
j=1

ljw̃j +
J∑
j=1

ljR+
J∑
j=1

ljTRj .

Since ljhj = Hj ,
∑J

j=1 ljR =
∑J

j=1 lj

∑
j rjTj∑
j lj

=
∑

j rjTj , and
∑J

j=1 ljTRj = φG, we have

J∑
j=1

ljcj +

J∑
j=1

pjHj =

J∑
j=1

ljw̃j +

J∑
j=1

rjTj + φG.

Adding and subtracting
∑

jKj to the right-hand side of this expression, we get

J∑
j=1

ljcj +
J∑
j=1

pjHj =
J∑
j=1

ljw̃j +
J∑
j=1

rjTj +
J∑
j=1

Kj −
J∑
j=1

Kj+φG.

Since the housing production function is constant returns to scale,
∑J

j=1 p̃jNj =
∑

j rjTj +
∑

jKj ,

Nj = Hjδh, p̃j = 1+r
r+δh

pj , which would mean:
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δh(1 + r)

r + δh

J∑
j=1

pjHj =
∑
j

rjTj +
∑
j

Kj

J∑
j=1

pjHj =
r + δh
δh(1 + r)

∑
j

rjTj +
∑
j

Kj


Plug it in budget constraint:

J∑
j=1

ljcj +
r + δh
δh(1 + r)

∑
j

rjTj +
∑
j

Kj

 =

J∑
j=1

ljw̃j +

J∑
j=1

rjTj + φG.

Factoring out terms:

J∑
j=1

ljcj =

J∑
j=1

ljw̃j +
r(δh − 1)

δh(1− r)

J∑
j=1

rjTj −
r + δh
δh(1 + r)

J∑
j=1

Kj + φG.

Finally:
J∑
j=1

ljw̃j =
J∑
j=1

lj(1− tj)wj =
J∑
j=1

ljwj −
J∑
j=1

ljtjwj

so that

J∑
j=1

ljcj =
J∑
j=1

ljwj −
J∑
j=1

tjljwj + φ
J∑
j=1

tjwjlj +
r(δh − 1)

δh(1− r)

J∑
j=1

rjTj −
r + δh
δh(1 + r)

J∑
j=1

Kj ,

which delivers the aggregate resource constraint for the economy:

J∑
j=1

ljcj +
r + δh
δh(1 + r)

J∑
j=1

Kj + (1− φ)
J∑
j=1

tjwjlj =
J∑
j=1

ljwj +
r(δh − 1)

δh(1− r)

J∑
j=1

rjTj .
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Proof of Proposition 1

The Ramsey planner’s problem can be written as:

max
t1,t2

c1−α1 hα1x+ c1−α2 hα2 (1− x)

s.t. t1w1x+ t2w2(1− x) = G

c1−α1 hα1 = c1−α2 hα2

R = p1h1x+ p2h2(1− x)

h1x = 1; h2(1− x) = 1

max
ci,hi

c1−αi hαi

s.t. ci + pihi = (1− ti)wi +R

The consumer’s problem satisfies

hi =
α((1− ti)wi +R)

pi
and ci = (1− α)((1− ti)wi +R).

Using h1 = 1
x , h2 = 1

1−x , prices can be written as:

p1 = α((1− t1)w1 +R)x and p2 = α((1− t2)w2 +R)(1− x).

Then R is equal to:

R = p1 + p2

= α((1− t1)w1 +R)x+ α((1− t2)w2 +R)(1− x)

=
α

1− α
(x(1− t1)w1 + (1− t2)(1− x)w2)

Utility equalization implies:

((1− t1)w1 +R)1−α

xα
=

((1− t2)w2 +R)1−α

(1− x)α

or (
(1− x)

α
1−α − x

α
1−α
)(α(x(1− t1)w1 + (1− t2)(1− x)w2)

1− α

)
+ (1− x)

α
1−α (1− t1)w1−

−x
α

1−α (1− t2)w2 = 0
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or

α((1− x)
α

1−α − x
α

1−α )(x(1− t1)w1 + (1− t2)(1− x)w2) + (1− α)((1− x)
α

1−α (1− t1)w1−

−x
α

1−α (1− t2)w2) = 0

There is no explicit solution for general α, but for illustration, when α = 0.5 we obtain two solutions:

x∗1,2 =
2w2(1− t2)±

√
2(w2

2(1− t2)2 + w2
1(1− t1)2)

2(w2(1− t2)− w1(1− t1))

Since x and t1, t2 are constrained to be in the unit interval [0, 1], the only feasible solution is x∗2 (the

negative root).

The planner problem can now be rewritten as:

max
t1,t2

((1− α)(1− t1)w1x+ αw1x
2(1− t1) + αx(1− x)(1− t2)w2)

1−α + ((1− α)(1− x)(1− t2)w2

+αx(1− x)(1− t1)w1 + α(1− x)2(1− t2)w2)
1−α

s.t. α((1− x)
α

1−α − x
α

1−α )(x(1− t1)w1 + (1− t2)(1− x)w2) + (1− α)((1− x)
α

1−α (1− t1)w1−

−x
α

1−α (1− t2)w2) = 0

t1 =
G− t2w2(1− x)

w1x

The Lagrangian:

L = ((1− α)(1− t1)w1x+ αw1x
2(1− t1) + αx(1− x)(1− t2)w2)

1−α + ((1− α)(1− x)(1− t2)w2

+αx(1− x)(1− t1)w1 + α(1− x)2(1− t2)w2)
1−α

−λG(t1w1x
∗
2 + t2w2(1− x∗2)−G)

−λx
(
α((1− x)

α
1−α − x

α
1−α )(x(1− t1)w1 + (1− t2)(1− x)w2) + (1− α)((1− x)

α
1−α (1− t1)w1

−x
α

1−α (1− t2)w2)
)

We are not able to derive the analytical solution to the system of FOCs of this Lagrangian. Numerical

solutions show that t1 = G
w1

and t2 = G
w2

. We plug these solutions in the expression for x with general

α:

α((1− x)
α

1−α − x
α

1−α )(x(1− G

w1
)w1 + (1− G

w2
)(1− x)w2) + (1− α)((1− x)

α
1−α (1− G

w1
)w1

−x
α

1−α (1− G

w2
)w2) = 0

α((1− x)
α

1−α − x
α

1−α )(x(w1 −G) + (w2 −G)(1− x)) + (1− α)((1− x)
α

1−α (w1 −G)− x
α

1−α (w2 −G)) = 0(15)
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If G = 0, the expression looks like:

α((1− x)
α

1−α − x
α

1−α )(xw1 + w2(1− x)) + (1− α)((1− x)
α

1−αw1 − x
α

1−αw2) = 0

Comparative Statics:

∂t1
∂G

=
1

w1
> 0

∂t2
∂G

=
1

w2
> 0

∂(t1 − t2)
∂G

=
w2 − w1

w2w1
> 0

dx

dG
=

(1− α)x
1−2α
1−α (1− x)

1−2α
1−α

(
1− x)

α
1−α − x

α
1−α
)

α
(

(1− x)
1−2α
1−α + x

1−2α
1−α

)
(G− w1x− w2(1− x))

< 0

The last inequality follows from the fact that G − w1x − w2(1 − x) < 0 and all other expressions are

positive.

This establishes the results in the Proposition regarding the change of taxes, population and output

as G changes. Now, we show the last piece that establishes that when G = 0, the decentralized

equilibrium allocation coincides with the Ramsey solution.

Decentralized allocation when G = 0. The household’s problem is:

max
ci,hi

c1−αi hαi

subject to

ci + pihi = wi +R,

and market clearing:

xp1h1 + (1− x)p2h2 = R

xh1 = 1

(1− x)h2 = 1.

These market clearing equations jointly imply

p1 + p2 = R.
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The FOC to the consumer maximization problem are:

(1− α)c−αi hαi + λi = 0

αhα−1i c1−αi + λipi = 0

or
αci

(1− α)hi
= pi

Aggregate consumption satisfies:

x(c1 + p1h1) + (1− x)(c2 + p2h2) = xw1 + (1− x)w2 +R

xc1 + (1− x)c2 = xw1 + (1− x)w2

The FOC together with feasibility in the housing market implies:

α

1− α
c1x = p1

α

1− α
c2(1− x) = p2

then

α

1− α
c1x+

α

1− α
c2(1− x) = p1 + p2 = R.

Now we can write the budget constraint of an individual household as:

ci + pihi = ci +
α

1− α
c1 = wi +R ⇒ ci = (1− α)(wi +R),

and we obtain

ci = (1− α)(wi +R)

hi =
α(wi +R)

pi

and

R =
α

1− α
c1x+

α

1− α
c2(1− x)

= α(x(w1 +R) + (1− x)(w2 +R))

=
α(w1x+ w2(1− x))

1− α
.
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Utility equalization in cities implies:

c1−α1

xα
=

c1−α2

(1− x)α

(w1 +R)1−α(1− x)α = (w2 +R)1−αxα

(1− x)
α

1−α

(
w1 +

α(xw1 + (1− x)w2)

1− α

)
= x

α
1−α

(
w2 +

α(xw1 + (1− x)w2)

1− α

)
or equivalently

((1− x)
α

1−α − x
α

1−α )

(
α(xw1 + (1− x)w2)

1− α

)
+ (1− x)

α
1−αw1 − x

α
1−αw2 = 0

α((1− x)
α

1−α − x
α

1−α )(xw1 + (1− x)w2) + (1− α)((1− x)
α

1−αw1 − x
α

1−αw2) = 0

Where the last expression gives solution for x∗ which is the same as in Ramsey problem with G = 0.

Wage and Population Distributions
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Figure 13: A. Histogram and Kernel density of labor force; B. Histogram and Kernel density of wages.

Estimating the Tax Functions

The OECD tax-benefit calculator provides the gross and net (after taxes and benefits) labor income at

every percentage of average labor income on a range between 50% and 200% of average labor income,

by year and family type. We simulate values for after and before taxes for increments of 25% of average

labor income. As the OECD tax-benefit calculator only allows us to calculate wages up to 200% of

average labor income, we use the procedure proposed by Guvenen, Burhan, and Ozkan (2014). In

particular, let w denote average wage income before taxes as a multiple of mean wage income before

taxes, and t(w) and t(w) the marginal and average tax rates on wage income w. Also let ttop and wtop
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be the top marginal tax rate and top marginal income tax bracket.28 Suppose w > 2 and wtop < 2 , i.e.

top income bracket is less than 2. Then,

t(w) =
(t(2)× 2 + ttop × (w − 2))

w
.

If wtop > 2 (which is the case for the US), we do not know the marginal tax rate between w = 2 and

wtop. First set

t(2) =
(t(2)× 2− t(1.75)× 1.75)

0.25

and use linear interpolation between t(2) and ttop

t(w) =


(t(2) +

ttop−t(2)
wtop−2 (w − 2) if 2 < w < wtop

ttop if w > wtop

Then average tax rate function for w > 2 is

t(w) =

(t(2)× 2 + t(w)× (w − 2))/w if 2 < w < wtop

(t(2)× 2 +
ttop+t(2)

2 (wtop − 2) + ttop × (w − wtop))/w if w > wtop

Land Distribution across MSAs

The Figure 14 shows the distribution of land across MSAs.

Figure 15 shows the relation between weekly wages and available land across MSAs.

28 Top marginal tax rate is taken from http://www.oecd.org/tax/tax-policy/oecdtaxdatabase.htm, Table I.7.
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Figure 15: Land and Wages

City-Specific Transfers

The data in Figure 4 is from the US Bureau of Economic Analysis (BEA) Regional Accounts (https://www.bea.gov/regional/).

Per capita transfers, excluding social security payments, are calculated, using data from Table CA35

Personal Current Transfer Receipts. The regression line is obtained from an OLS regression with per-
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capita transfers as the dependent variable and per-worker wage income (productivity) as the explanatory

variable.

We assume that city-specific transfers, TRj , are a declining function of city-specific wages in the

model, given by

TRj = η1 + η2wj , with η1 > 0, and η2 < 0.

Then,

TRmin = η1 + η2wmax (16)

TRmax = (1 + χ)TRmin = η1 + η2wmin, (17)

where χ = 0.857 is calculated from the ratio of maximum to minimum transfers along the OLS line

estimated in the model.

We want to find TRmin, η1 and η2 in the model satisfies equations (16) and (17) and

∑
i

TRLi = η1
∑

Li + η2
∑

wiLi = G, (18)

where Li population of MSA i, and G is total government transfers.

From equations (16) and (17), we have

χTRmin = η2(wmin − wmax),

or

η2 = − χTRmin

(wmax − wmin)
.

Let wmax − wmin = wgap, then equation (3) implies

η1
∑

Li −
χτmin

wgap

∑
wiLi = G.

Using TRmin = η1 + η2wmax, we have

η1 = TRmin − η2wmax.

As a result,

(τmin − η2wmax)
∑

Li −
λTRmin

wgap

∑
wiLi = G,

or

(TRmin − (−λTRmin

wgap
)wmax)

∑
Li −

λTRmin

wgap

∑
wiLi = G,
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which is one equation in one unknown τmin, given by

TRmin

[∑
Li +

χ

wgap
wmax

∑
Li −

χ

wgap

∑
wiLi

]
= G,

or

TRmin =
G[∑

Li + λwmax
wgap

∑
Li − χ

wgap

∑
wiLi

] . (19)

Once TRmin is determined, η1 and η2 can also be determined, from equations (16) and (17).

Note that we could also use (1 + χ)TRmin = η1 + η2wmin to set

η1 = (1 + χ)TRmin − η2wmin.

Then,

[(1 + χ)TRmin − η2wmin]
∑

Li −
λTRmin

wgap

∑
wiLi = G,

This is equivalent to equation (19) since

TRmin − η2wmax = (1 + χ)TRmin − η2wmin.

The Effect of Initial τ

The benchmark value of τ = 0.127 reflects taxes on labor income based on the OECD tax calculator.

Instead, we could have focused on total household income from the IRS micro data that includes income

on assets. Considering both taxes paid and Earned Income Tax Credits (EITC) refunds received by

the households, Guner, Kaygusuz, and Ventura (2014) estimate a lower τ = 0.053, for all households.

Their estimates for married households with children, who are much more likely to benefit EITC, imply

a higher τ = 0.2. Also, taking into account transfers, Heathcote, Storesletten, and Violante (2017)

estimate τ = 0.18. We repeat the same exercise for different initial values of τ, the results of which are

reported in Table 6. The initial level of τ does not change the level of optimal dramatically, it does

have an important effect on output and as a result welfare.
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λ = 0.856
τ = 0.053 τ = 0.127 τ = 0.2

Benchmark

Optimal τ∗ 0.0092 0.0123 0.0159
Welfare Gain (%) 0.0077 0.0534 0.1389
Output Gain (%) 0.38 1.00 1.62
Consumption (%) 0.36 0.95 1.54
Housing Consumption (%) -0.71 -1.90 -3.12
Population Change, top 5 cities (%) 2.91 7.65 12.29
Fraction of Population that Moves (%) 1.26 3.31 5.33
Change in Average Housing Prices (%) 1.80 4.85 8.01

Table 6: The effect of different initial τ

.
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