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Abstract

The demographic transition –the move from a high fertility/high mortality regime into

a low fertility/low mortality regime– is one of the most fundamental transformations that

countries undertake. To study demographic transitions across time and space, we compile

a data set of birth and death rates for 186 countries spanning more than 250 years. We

document that (i) a demographic transition has been completed or is ongoing in nearly

every country; (ii) the speed of transition has increased over time; and (iii) having more

neighbors that have started the transition is associated with a higher probability of a coun-

try beginning its own transition. To account for these observations, we build a quantitative

model in which parents choose child quantity and educational quality. Countries differ in

geographic location, and improved production and medical technologies diffuse outward

from Great Britain. Our framework replicates well the timing and increasing speed of

transitions. It also produces a correlation between the speeds of fertility transition and

increases in schooling similar to the one in the data.
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1 Introduction

Few observations are as consequential for understanding the modern world as the demo-

graphic transition: the worldwide move from a high fertility/high mortality regime into a low

fertility/low mortality regime. From its start in Northern Europe in the late 18th century

to the present day, every country on Earth has undertaken or is currently undertaking this

fundamental transformation.1

In a given country, the demographic transition typically starts with a decline in mortality,

followed by a fall in fertility a few decades later. Due to this pattern, the demographic transition

has also brought a spike in world population growth (Figure 1). We moved from very slow

population increases during most of human history, with growth rates of a few basis points per

year, to rates above 2% per year in the late 1960s. Since then, the growth rate of the world

population has been falling, with current growth already below 1% per year. According to U.N.

population projections, population growth will be just 0.1% by 2100.
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Figure 1: World population growth, 1600-2100

Note:1600-2016: authors’ calculations; see Appendix A. 2017-2100: medium scenario of UN
World Population projections.

Another way to look at the ongoing transformation is to consider the total number of children

born in the world. After increasing rapidly throughout the first part of the 20th century, total

world births barely increased from 1980 to 2016 and have been falling since then. With the

current world fertility at 2.4 children per woman (according to the World Bank) and naively

1Section 4 documents that, according to our estimates, every country has either completed or started the
mortality transition and that only one country, Chad, has not yet started the fertility transition. But even
in Chad, birth rates have been falling during the last 25 years and, with just a few more years of data, our
econometric method is likely to identify that the fertility transition has started in Chad as well.
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extrapolating the drop in fertility from the last 25 years, the world will fall below the replacement

rate (2.1 children per woman) around 2040.

How can we account for this momentous transformation of the world’s population? Have

demographic transitions changed in speed and shape over time? Was Great Britain’s transi-

tion similar to the ongoing transition in Uganda, or are these two inherently different? What

mechanisms explain the timing of the demographic transition? And what is the link between

demographic transformation and economic development?

While the literature on the demographic transition is enormous, these questions have not

been fully answered. Our paper advances the inquiry in two ways: first, we document demo-

graphic patterns across a broad array of countries in a data set stretching back more than 250

years. Second, we propose a simple quantitative model that can account for the emergence of

these cross-country patterns during the course of a global demographic transition.

Our first step is to put together and analyze a data set of crude death rates (CDR) and crude

birth rates (CBR) for 186 countries that spans more than 250 years. Following the textbook

description of the demographic transition, we propose an econometric method to estimate, for

each country in our sample: i) initial (pre-transition) levels of the CDR and CBR, ii) the start

dates of the mortality and fertility transitions, iii) the end dates of the mortality and fertility

transitions, and iv) final (post-transition) levels of the CDR and CBR.2 This procedure allows

us to estimate the length and the speed of each transition.

Looking at demographic transitions across time and space, we show that: i) the start dates

of the CDR transitions are more dispersed over time than the start dates of the CBR transitions,

ii) transitions are becoming faster, iii) the average level of GDP per capita at the start of a

transition is roughly constant, and iv) demographic transitions are contagious: an important

predictor of a country’s transition is the prior transition of other countries that are “close” to it

geographically or culturally. To the best of our understanding, we are the first to document the

first three facts, which are central aspects of the demographic transformation of humanity. The

fourth fact has been partially documented within specific regions (e.g., 19th-century Europe in

Coale and Watkins, 1986, and Spolaore and Wacziarg, 2021), but we are the first to document

it for a comprehensive set of countries across the planet.

Next, we build a quantitative general equilibrium model that can account for these facts

across all countries using a single piece of country-specific information–each country’s great

circle distance from Great Britain. Again, to the best of our understanding, we are the first to

conduct such an exercise in a cross-country context. We consider a model with four overlapping

2See, for example, Bongaarts (2009, p. 2985): “The recent period of very rapid demographic change in most
countries around the world is characteristic of the central phases of a secular process called the demographic
transition. Over the course of this transition, declines in birth rates followed by declines in death rates bring
about an era of rapid population growth....Population growth is again near zero after the completion of the
transition as birth and death rates both reach low levels in the most developed societies.”
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generations and multiple locations, each representing one country. Each location is populated

by a representative household that decides how many children to have and how much to invest in

their education. Having and educating children is costly for parents. There are two production

technologies: ancient and modern. Both technologies use unskilled labor, skilled labor, and

land, but modern technology uses skilled labor more intensively. Survival rates at each age

depend on an aggregate medical technology, which improves over time.

The economy is initially in a Malthusian steady state with high and constant fertility and

mortality. The economy does not grow since the total factor productivity (TFP) in both the

ancient and modern technologies, as well as the level of medical knowledge, is constant. At some

moment, the TFP in both sectors and medical technology start growing. This occurs first in the

frontier country (Great Britain in our calibration) and then diffuses slowly to other locations.

Higher demand for skilled labor and a rising skill premium make investment in children more

valuable, and parents react by reducing the number of children but educating them better.

First, we calibrate the model economy to replicate the demographic and economic transition in

Great Britain. Next, we show that a diffusion mechanism where technological change travels

from Great Britain to the rest of the world in a manner that depends on geographic distance

can generate sequences of demographic transitions, each happening faster than the previous

one, exactly as we observe in the data.

As a country embarks on its demographic transition, the educational attainment of its pop-

ulation increases. Thus, together with the demographic transition, the world also experiences

an economic transition, and global GDP per capita increases by more than tenfold between

the middle of the 19th century and today. Inequality across countries in GDP per capita first

increases sharply until the 1980s and then declines as more and more countries experience de-

mographic and economic transformation, in line with the data. The model can broadly account

for the changes in education levels across countries and their correlation with the fall in fertility.

Understanding the relationship between income and population is one of the oldest challenges

in economics, going back to Malthus (1993). Becker (1960) and Becker and Lewis (1973)

postulated a trade-off between quantity and quality of children that can account for the co-

emergence of growing per capita incomes and low fertility. The interest in this mechanism was

revived with the presentation of an operational dynastic model of fertility in Barro and Becker

(1989) and Becker and Barro (1988).

Building on this work, Becker et al. (1990), Lucas (1988, 2002), Jones (2001), and, in par-

ticular, Galor and Weil (1996, 1999, 2000) present models that try to capture the historical

evolution of population and output. Fernández-Villaverde (2001), Greenwood and Seshadri

(2002), Kalemli-Ozcan (2003), Doepke (2017), and Bar and Leukhina (2010) present quantita-

tive versions of these models that can account for historical evidence on demographic transitions

for specific countries. Within this literature, De Silva and Tenreyro (2020) and Cavalcanti et al.
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(2021) emphasize the role of contraception and population planning programs, Vogl (2016) high-

lights a historical shift, from positive to negative, in the relationship between family size and

educational attainment of children, and Manuelli and Seshadri (2009) explore productivity and

taxes to explain the differences in fertility between Europe and the U.S. Cervellati and Sunde

(2015) conducts a cross-country quantitative analysis of demographic transitions. As we do,

they focus on a frontrunner country (Sweden in their case) and study differences in the timing

of the fertility transition for the post-1960 world due to country-specific exogenous differences

in mortality. Finally, Vogl (2020) argues that intergenerational associations of fertility vary

over the fertility transition due to a reversal of fertility differences by skill.

Following the influential Princeton study (Coale and Watkins, 1986), researchers have em-

phasized the importance of cultural factors in the diffusion of fertility behavior across time and

countries. Spolaore and Wacziarg (2021) document that genetic and linguistic distance from

France was associated with the onset of the fertility transition in Europe. De la Croix and

Perrin (2018) focus on the fertility and education transition in France during the 19th century

and show that a simple quality-quantity model can explain variations in fertility across time and

French counties. Their results, however, also indicate that cross-country differences in cultural

barriers do interact with economic incentives. Building on these contributions, our paper is the

first to detect empirically a “demographic contagion” effect at a global scale and to investigate

it within a quantitative framework.

Our paper is also related to recent studies that provide an empirical analysis of demographic

transitions across countries. Reher (2004) looks at a broad panel of countries and compares

earlier with later demographic transitions, with a particular focus on the role of mortality in

driving fertility changes. Murtin (2013) finds evidence for a robust effect of early childhood

education on fertility decline.

Lastly, by proposing technology diffusion as a mechanism linking the process of the demo-

graphic transition across countries, our analysis borrows from the influential work on technology

diffusion by Lucas (2009), Comı́n and Hobijn (2010), and Comı́n and Mestieri (2018).

The rest of the paper is organized as follows. Section 2 presents our methodology for

measuring the demographic transitions. Section 3 describes the data and Section 4 our empirical

results. Section 5 introduces our model, which is analyzed quantitatively in Sections 6 and 7.

Section 8 concludes. Several appendices add further details.

2 Measuring demographic transitions

This section proposes a methodology for documenting the shape and speed of demographic

transitions across time and space. In a textbook demographic transition, mortality and fertility

go through three stages (Chesnais, 1992):
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a. In stage 1, both the crude birth rate (CBR) and crude death rate (CDR) are high and

stationary.3

b. In stage 2, they decline.

c. In stage 3, both the CBR and CDR stop falling and become stationary at a lower level.

Taking this three-stage demographic transition as a benchmark, we fit it to available data

for each country by estimating: i) an initial (pre-transition) average level of the CBR and CDR;

ii) the start date of the decline of each rate; iii) the end date of the decline of each rate; and iv)

a final (post-transition) average level of the CBR and CDR. We do not impose the requirement

that, either before or after the demographic transition, the average level of the CBR and CDR

be equal to each other. Pre- or post-transition, the population of a country may be growing (the

average CBR is higher than the average CDR) or declining (the average CBR is lower than the

average CDR). We also do not impose a relative ordering of the start dates of CBR and CDR

declines: the CDR may begin declining before the CBR, as in a typical textbook configuration,

or the CBR may decline first.4

2.1 Econometric model

Consider a dependent variable yt observed for t ∈ {1, ..., T}. We assume that yt is a linear

function of a vector xt of k regressors and a residual. Furthermore, suppose that the relationship

between yt and xt evolves over time and can be broken into S distinct stages s ∈ {1, 2, ..., S}
connecting S+1 distinct endpoints represented by {τ1, τ2, ..., τS+1}, such that τ1 = 1, τS+1 = T ,

τs ∈ {2, ..., T − 1} for s ∈ {2, ..., S}, and τs < τs+1 for all s ∈ {1, ..., S}.
At each endpoint τs, the dependent variable is defined by:

yτs = x′τsαs + σsνs,τs ,

where νs,t ∼ N (0, 1) for all s, αs is a k × 1 vector of regression coefficients, and σs is a scalar

that determines the volatility of the residual at point τs.

3The CBR is the number of live births per year per 1,000 in a population. The CDR is the number of deaths
per year per 1,000 in a population.

4We focus on the CBR and the CDR instead of statistics such as the total fertility rate (TFR) or life
expectancy because CBRs and CDRs are more reliably measured in the data: a researcher only needs an
accurate count of births, deaths, and total population. Thus, CBRs and CDRs are available for long periods of
time and are comparable across many different countries. In contrast, estimating current TFR or life expectancy
requires both additional data, such as exact current age-specific fertility rates, and additional assumptions, in
particular about mortality rates. These additional data are not available or are imprecisely measured for most
countries during the pre-modern era and many countries today.
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Now suppose that in each stage s, i.e., when τs < t < τs+1, the dependent variable is defined

by:

yt = x′tfs(αs, αs+1, t) + ε′s,tgs(σs, σs+1, t),

where εs,t ∼ N (0, 1) for all s, and fs and gs are continuous functions fs : Rk×Rk×R→ Rk, gs :

R+ × R+ × R→ R+ such that fs(αs, αs+1, τs) = αs, fs(αs, αs+1, τs+1) = αs+1, gs(σs, σs+1, τs) =

σs, and gs(σs, σs+1, τs+1) = σs+1.

While it is possible to analyze the more general class of transition functions we just defined,

we restrict our attention to the simplest case where fs and gs are linear transitions with respect

to time between the parameters at τs and τs+1 for all s ∈ {1, ..., S}, i.e.,

fs(αs, αs+1, t) =
1

τs+1 − τs
[(τs+1 − t)αs + (t− τs)αs+1] , (1)

and

gs(σs, σs+1, t) =
1

τs+1 − τs
[(τs+1 − t)σs + (t− τs)σs+1] . (2)

To apply this framework to demographic transitions, suppose that the dependent variable

yt is either the CBR or the CDR for a particular country and that S = 3 (i.e., there is a stage

where yt is stationary, another stage where it is declining, and a final stage where it is stationary

again). Also, we are interested in transitions between two stable regimes (high vs. low CBR

and CDR), so assume that αs = αs+1, σs = σs+1, and νst = νs+1,t = εst for s ∈ {1, 3}.
Substituting in for f1 and g1 as given by equations (1) and (2), we can write yt as:

yt = d1t[x
′
tα1 + ε1tσ1] + d2tx

′
t

1

τ3 − τ2

[(τ3 − t)α1 + (t− τ2)α3]

+d2t
1

τ3 − τ2

[(τ3 − t)σ1 + (t− τ2)σ3] ε2t + d3t[x
′
tα3 + ε3tσ3], (3)

where {dst}3
s=1 are indicator functions given by d1t = 1 {t ≤ τ2}, d2t = 1 {τ2 < t < τ3}, and

d3t = 1 {t ≥ τ3}.
Equation (3) can then be rearranged as:

yt =

[
d1t + d2t

(
τ3 − t
τ3 − τ2

)]
x′tα1 +

[
d3t + d3t

(
t− τ3

τ3 − τ2

)]
x′tα3

+

[
d1tε1t + d2t

(
τ3 − t
τ3 − τ2

)
ε2t

]
σ1 +

[
d3tε3t + d2t

(
τ3 − t
τ3 − τ2

)
ε3t

]
σ3, (4)

where τ2 ∈ {1, ..., T − 1} and τ3 ∈ {τ2 + 1, ..., T}, with τ2 ≤ τ3.
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2.2 Estimation

The model, as specified above, has 2k + 2 free parameters: the k parameters in α1, the

k parameters in α3, plus τ2 and τ3. We choose these parameters to minimize the unweighted

sum of squared errors. Thus, for a given (τ2, τ3) pair, the estimation of (α1, α3) reduces to

ordinary least squares (OLS). The optimal (τ2, τ3) can then be located by a search algorithm

across possible values. To this end, we define the scalars:

z1t ≡ d1t + d2t

(
τ3 − t
τ3 − τ2

)
,

and:

z3t ≡ d3t + d2t

(
t− τ2

τ3 − τ2

)
.

Then, given y′
1×T
≡ [y1 . . . yT ] and

Z ′
2k×T

≡

[[
z11x1

z31x1

]
...

[
z1TxT

z3TxT

]]
,

the OLS estimators of (α1, α3) given (τ2, τ3) have a closed-form expression:[
α̂1

α̂2

]
= [Z ′Z]−1Z ′y.

Estimating σ1 and σ3 in this configuration is straightforward, except for the fact that the

contribution of each variance to the total variance differs across periods and so the errors must

be weighted accordingly. To this end, define:

et ≡ yt − [z11x1 z31x1]

[
α̂1

α̂3

]
,

e1
z
′

1×T
≡ [z11e1 . . . z1T eT ] ,

and:

e3
z
′

1×T
≡ [z31e1 . . . z3T eT ] .

Given (τ2, τ3), we calculate the estimators for σ1 and σ3:

σ̂2
1 =

(
T∑
t=1

z1t

)−1

e1′

z e
1
z
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and

σ̂2
2 =

(
T∑
t=1

z3t

)−1

e3′

z e
3
z.

These estimators are asymptotically equivalent to the OLS estimators.5

While in general it may be interesting to include a larger number of regressors in xt, we

only consider the specification where xt contains only a constant term, x′t = 1 for ∀t and k = 1.

Hence, before a transition starts, i.e., while t < τ2, yt = α1 (stage 1); between τ2 and τ3, yt

declines linearly (stage 2); and at τ3, yt = α3 (stage 3).

2.3 Restricted cases

A challenge in estimating the econometric model described above is data limitations. Even

if the three-stage model of the demographic transition is a valuable characterization of the

empirical evidence, one or more stages might not be observed, either because the sample is too

short or because the demographic transition is still ongoing. In particular, we can have six

different cases, as illustrated in Figure 2 for CBR transitions.
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Figure 2: Six cases of the CBR transition

5When
T∑

t=1
dst = 1 and

T∑
t=1

d2t = 0 for s ∈ {1, 3}, σs is not identified, but this is of little consequence as none

of the estimators for the other parameters depend on the variance estimates.
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In the top left panel of Figure 2, we have case 1: all three stages are observed. In the top

right panel, we have case 2: only stages 2 and 3 are observed. In the middle row, we see case

3, where only stages 1 and 2 are observed, and case 4, where just stage 2 is observed. In the

bottom left panel, we see the rare case 5, where only stage 1 is observed, and in the bottom

right panel, case 6, where only stage 3 is observed. To distinguish case 5 from case 6, as they

are equivalent econometrically, we look at the pre- and post-transition levels of the CBR and

the CDR in comparison with historical averages across countries to classify the country either

as case 5 or case 6.

To discriminate between these possibilities, we estimate, for each country in the data, all

six cases. Table 1 summarizes the nesting structure among cases. We select the version of the

model that has the best trade-off between fitting the data and fewer restrictions. That is, we

select a less restricted case only if it does a significantly better job of fitting the data. To this

end, we use as our primary guide an F -test at the 95% confidence level:

SSEb − SSEa

ma −mb

SSEa

T −ma

, (5)

where a, b ∈ {1, 2, 3, 4, 5, 6} and a nests b.

Table 1: Different cases of the general model

Parameter restriction Explanation Num. of parameters
Case 1 − All three stages are observed 2k + 2
Case 2 τ2 = 1 Only stages 2 and 3 are observed 2k + 1
Case 3 τ3 = T Only stages 1 and 2 are observed 2k + 1
Case 4 τ2 = 1, τ3 = T Only stage 2 is observed 2k
Case 5 τ2 = 1, τ3 = T, α1 = α3 Only stage 1 is observed k
Case 6 τ2 = 1, τ3 = T, α1 = α3 Only stage 3 is observed k

This statistical test performs best for countries with a long series of observations extending

both before and after the transition in birth rates and/or death rates. To prevent our statistical

method from over-fitting short-run anomalies in countries for which the time series is short,

we also apply a set of simple auxiliary rules, all of them with a clear and simple intuitive

interpretation (see Appendix B for a complete description of the auxiliary rules). For example,

suppose the statistical method picks case 2 but detects the end of a fertility transition at a final

level of higher than 20 per 1,000, with an end date less than 20 years before the end of the data

series. Since this conflicts with the wide consensus of demographers that the fall in fertility does

not stop until the CBR is at least around 10 per 1,000, we throw out this transition end date,

moving the country from case 2 to case 4. The purpose of these auxiliary rules is, therefore, to

10



ensure that the starts and ends of the transitions are clearly present in the data and are not

the consequence of random fluctuations within short data series. Also, most importantly, our

auxiliary rules do not change the dates selected for each case, only which case we select as the

“best” description of the data.

3 Data

We merge data from different sources to obtain time series for CBRs and CDRs that go back

as long as possible for the greatest possible number of countries.6 From 1960 onward, we rely

on the World Bank Development Indicators. For many countries, we fill in the period between

1950 and 1960 with data from the U.N. data service of the United Nations Statistics Division.

To gather vital statistics before 1950, we start with data from Chesnais’ (1992) classic book

on the demographic transition and augment them with observations from Mitchell’s (2013)

International Historical Statistics. We also use additional sources for a few countries: State

Statistical Institute of Turkey (1995) and Shorter and Macura (1982) for Turkey; Swiss Federal

Statistics Office (1998) for Switzerland; Maines and Steckel (2000) for the U.S.; Schofield and

Wrigley (1989) for Great Britain/United Kingdom; Edvinsson (2015) and National Central

Bureau of Statistics (1969) for Sweden; and Davis (1946) for India. The resulting data set

of CDRs and CBRs covers 186 countries from 1541 to 2016. There are 16,206 country×year

observations for CDRs and 16,198 for CBRs. We take data on real GDP per capita (GDPpc),

given in constant 2011 U.S. dollars purchasing power parity (PPP), from the 2018 version of

Maddison’s database.7 The Madison data cover 165 countries between the years 1 and 2016,

with 16,694 country×year observations.8

Vital statistics from the 19th century and before are available for only a few countries. Many

countries have no data until after 1950. As a result, there are numerous countries for which the

start of either the CBR or the CDR transition is not observed (cases 2 and 4 in Figure 2). CDR

transitions start, on average, earlier than CBR transitions, so we have more “missing starts”

for the former than for the latter.

We observe a CBR start, and no CDR start but a downward trend in CDR, for 109 countries.

We project a CDR start date for 96 of them by drawing a line straight backward on the CDR

trend until it hits the average observed starting gap between CBR and CDR, 8.86 per 1,000,

the unweighted arithmetic mean across the 23 countries for which we observe the start of both

6Our database can be accessed interactively through the following web page: https://sites.google.com/
view/demographic-transitions.

7Bolt et al. (2018). The database can be accessed here: https://www.rug.nl/ggdc/

historicaldevelopment/maddison/releases/maddison-project-database-2018.
8There are 31 countries, most of them tiny island territories, for which we have data on CDRs and CBRs,

but which are not included in Maddison’s database. Maddison’s database has data for Slovakia, but we exclude
it to avoid double-counting, since for the majority of the covered period, Slovakia was part of Czechoslovakia.
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transitions, and the fertility transition starts before 1950.9 Using this procedure, we are able

to more than double the number of countries for which some estimate of the CDR transition

start date is available, from 46 to 142. The empirical analysis of mortality transitions is based

on this extended data set.

4 Empirical results

Table 2 documents the distribution of all countries in our sample according to the six cases

in Table 1. For each cell, we report two numbers: first, the number of cases before we make

projections for the CDR, and then (in parenthesis) the change due to CDR projections. Hence,

while the raw data have only 27 countries that have completed CDR and CBR transitions (case

1), this number increases to 52 after the adjustment, as we can pinpoint the start of CDR

transitions for an additional 25 countries. Similarly, the number of countries with a complete

CDR transition (case 1) and ongoing CBR transition (case 3) increases by 70.

Table 2: Case counts

CDR \CBR Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Total
Case 1 27 (+21) 0 15 (+73) 0 0 0 42 (+94)

Case 2 25 (-21) 20 82 (-73) 6 0 0 133 (-94)

Case 3 0 (-0) 0 1 (+2) 0 1 0 2 (+2)

Case 4 0 (-0) 0 2 (-2) 0 0 0 2 (-2)

Case 5 0 0 0 0 0 0 0
Case 6 0 7 0 0 0 0 7
Total 52 27 100 6 1 0 186

Out of 186 countries, we have 175 countries that have completed the mortality transition and

80 that have completed the fertility transition (cases 1 and 2). This shows how the global drop

in death rates is considerably more advanced than the decline in birth rates: most of the planet

has finished the drop in CDRs, but there is still space to cover in the fall of CBRs. We do not

find any country where the drop in the CDR has not started. We find one country, Chad, where

we do not detect the beginning of a CBR transition. Finally, we have seven countries in case

6 of the CDR. These are typically Eastern European countries that started their demographic

transitions earlier than the availability of data.

Figure 3 displays the time series of the CBRs and CDRs, along with the fitted transitions,

for six representative countries.10 The top left panel is the demographic transition of Great

9We dropped ten out of 109 countries because this backward projection would imply adding more than 100
years to the timeline, which we judge to produce results that are not reliable. We drop three out of 109 countries
because their estimated initial CBR-CDR gap is already smaller than the average.

10The interested reader can replicate this graph for any other country of interest on our companion web page.
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Figure 3: Six examples of demographic transitions
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Britain, a typical instance of an early demographic transition. The CDR started falling in 1794

and stabilized by 1958, while the CBR began dropping in 1885 and stabilized around 1937. The

top right panel is the demographic transition of Denmark, a representative of many Western

European countries that followed Great Britain’s lead with a few decades delay. The left middle

panel shows the demographic transition of Spain, a late but completed transition, with the CBR

stabilizing in 1999. The right middle panel is the demographic transition for Chile, a typical case

of late and ongoing transitions, where the CBR still has not stabilized. Finally, in the bottom

row, we have Malaysia, a late demographic transition for which we calculate a projected start

date for the fall of the CDR, and Chad, the one remaining country in our sample where it is

not clear whether the fall in the CBR has started. Table C in the Appendix reports the start

and end dates of the demographic transition for each country in our sample.

4.1 Demographic transitions and GDP per capita

The average observed mortality transition starts at 27.05 deaths per 1,000, and ends when

the CDR is 8.06 per 1,000. The average observed fertility transition begins with 42.87 births

per 1,000 and ends with the CBR at 7.91 per 1,000. GDP per capita is equal to $1,938 at

the start of the average mortality transition, and $2,724 at the start of the average fertility

transition. Figure 4 plots the empirical frequency of log GDP per capita at the start of each

transition. These distributions are roughly unimodal.
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Figure 4: log GDP per capita at the start of each transition

Table 3 reports initial levels (α1 from equation 4), slopes, and initial GDP per capita levels

for CDR and CBR transition starts, grouped into six time periods. Here three facts are revealed.

First, the start dates of the CDR transitions are more dispersed over time than the start dates

14



Table 3: Countries entering transitions

bef. 1870 1870-1900 1900-1930 1930-1960 1960-1990 after 1990 All
exp{mean init. lnGDPpc} $2,231 $2,322 $1,882 $1,604 $1,808 – $1,939
mean init. CDR 29.92 26.37 25.08 28.01 29.94 – 27.05
mean slope CDR -0.18 -0.26 -0.40 -1.01 -1.13 – -0.51
N 11 12 25 12 5 0 65

bef. 1870 1870-1900 1900-1930 1930-1960 1960-1990 after 1990 All
exp{mean init. lnGDPpc} $1,845 $4,403 $2,208 $2,807 $2,893 $1,525 $2,724
mean init. CBR 42.53 35.90 37.87 41.08 44.26 46.40 42.87
mean slope, CBR -0.19 -0.32 -0.32 -0.55 -0.54 -0.50 -0.49
N 6 11 5 19 71 11 123

of the CBR transitions. Figure 5, which shows scatter plots of log GDP per capita in each

country at the start of its CDR and CBR transition, also illustrates this fact. The circle for

each country in these plots (and all the other plots in the paper) is proportional to its share

of the 2016 world population. The start dates of the CDR transition peak sooner, with many

starts clustered between 1900 and 1960. In comparison, most CBR transitions start between

1960 and 1990, with nine transitions starting since 1990.

Log GDPpc at the start of the CDR transition Log GDPpc at the start of the CBR transition
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Figure 5: Log GDPpc at the start of transitions

Second, later transitions are faster. The slope of the reduction in the CDR and the CBR

during the transition is much larger for later transitions. Figure 6 shows this pattern for all the

countries in our sample with complete transitions. Figure 7 makes the same point alternatively

by plotting the measured transition length from plateau to plateau. A linear regression for the

slope and length of the transition speeds as a function of the start date (controlling for the level

of GDP per capita at the transition start and the initial level of the CBR) shows a large and

statistically significant negative coefficient: the later the start of the transition, the shorter it

lasts.
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CDR transition slope CBR transition slope
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Figure 6: Transition slopes

Third, the average GDP per capita at the start of CDR and CBR transitions is roughly

similar across time (see, again, Figure 5). For example, for the CDR transitions that began

in 1870-1900, GDP per capita at the start of the transition was $2,322, while for the 1960-90

period, it was $1,808.
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Figure 7: Transition lengths

4.2 A statistical model of demographic transitions

The fact that the distributions of log GDP per capita levels at the start of transitions in

CBRs or CDRs are i) fairly stable over time and ii) roughly unimodal suggests a link between

the level of log GDP per capita and transition takeoffs. To model this link, we can think about

the start of each transition as a random event whose probability of occurring depends on log

GDP per capita and possibly other variables.
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Consider a world populated with N different countries indexed by i ∈ {1, 2, ..., N} for which

a set of variables xit ∈ X is observed at time t ∈ {1, 2, 3, ...T}. Let T i represent the period at

which a one-off event, such as the start of a CDR or CBR transition, occurs in country i.

Next, suppose that the probability of the event occurring at period t in country i, conditional

on not having occurred previously, can be expressed as:

Pr(T i = t|T i ≥ t) = G

(
k−1∑
l=0

xl,itβl

)
, (6)

where G(·) is a function bounded between 0 and 1, and (x0,it, x1,it, ..., xk−1,it) is a set of k

explanatory variables with coefficients βL. We will assume that G(·) is the logistic CDF. Then,

if the conditional probability of a transition is given by equation (6), the parameters of this

model can then be estimated by maximizing the log-likelihood:

logLN =
N∑
i=1

Ti∑
t=1

log

[
IitG

(
k−1∑
l=0

xl,itβl

)
+ (1− Iit)

(
1−G

(
k−1∑
l=0

xl,itβl

))]
, (7)

where Iit is an indicator function taking the value 1 if the event occurs in country i at time t

and 0 otherwise.

We incorporate information from before the demographic transitions by constructing a bal-

anced panel with yearly interpolated values for real GDP per capita and transition status,

starting in 1500. This latter date is more than 250 years before the first observed CBR tran-

sition starts. The 2018 version of the Maddison database assigns GDP per capita values for

11 countries in the year 1500. We expand our panel by making cautious imputations for 37

additional countries. These are countries that have some pre-modern GDP per capita data

in the Maddison data set, though not for 1500 specifically (see Appendix D). After excluding

countries for which we do not observe the start of the CBR transition, this gives us a panel of

44 countries between 1500 and 2016.

The first column of Table 4 reports the logit estimation for the CBR when the only ex-

planatory variable is log GDP per capita. Figure 8 shows how well this specification replicates

the distribution of log GDP per capita at the start of the transition. The predicted mean and

standard error are 8.2 and 0.70, versus an observed mean and standard error of 7.9 and 0.63,

a remarkably close fit. In other words, this simple specification is sufficient to generate the

observed aggregate timing of transition starts across levels of GDP per capita. It does not

perform as well, however, in matching the timing of transition starts across time.

Figure 9 plots observed and predicted start dates for individual countries. Three-letter

country abbreviations and 60% confidence intervals are plotted for a subset of countries. The

mean predicted transition dates for the majority of countries are close to the 45-degree line
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Table 4: Determinants of the start of the CBR transition

(1) (2) (3) (4) (5) (6) (7) (8) (9)
cons -55.79 -73.97 -61.95 -55.27 -49.10 -61.71 -68.59 -53.69 -35.95

(17.22) (18.40) (18.58) (17.96) (18.09) (20.48) (18.97) (14.33) (17.84)

lnGDPPC 1.03 1.61 1.29 10.97 9.40 1.23 14.57 10.76 6.19
(0.43) (0.46) (0.47) (4.45) (4.49) (0.51) (4.79) (3.74) (4.46)

lnGDPPC 2 -0.00 -0.01 -0.01 -0.63 -0.54 -0.07 -0.86 -0.63 -0.35
(0.00) (0.00) (0.00) (0.28) (0.28) (0.03) (0.29) (0.25) (0.28)

access 0.13 0.75 6.77 3.18 0.12 0.03 1.35 5.14
(0.01) (0.44) (1.75) (0.45) (0.08) (0.15) (0.26) (0.72)

determinants of Ait

geo prox. 4.39

< 800km 1.83 1.80

800-2000km 0.53 0.57

ling. prox. -5.87

relig. prox. -5.04

legal prox. 0.71 0.90

ψ, curv. 0.57 0.47 0.51 0.41 0.61 0.51 0.50

LLn -254.1 -208.6 -206.2 -202.9 -198.5 -209.2 -204.6 -205.9 -196.9
Pseudo-R2 0.184 0.330 0.338 0.349 0.363 0.328 0.343 0.339 0.368
N. Obs. 19230 19230 19230 19230 19230 19230 19230 19230 19230

Note: Standard errors of the estimated parameters are given in parentheses.
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Figure 8: Distribution of log GDPpc at the start of the CBR transitions
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(although they are, in many cases, below this line). The confidence intervals are large, though

they tend to be smaller for late transitions. Since growth in GDP per capita was faster in

the second half of the 20th century than in the second half of the 19th, late transitioners, on

average, pass through the critical window of GDP per capita levels over a shorter span of time.
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Figure 9: Within sample predictions
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Figure 10: Distribution of transition dates

Equation (6) predicts start dates that are too early for most of the early-transitioning

European countries. Several of these countries enjoyed levels of GDP per capita throughout the

17th and 18th centuries that, while low by today’s standards, were higher than what most of

the late-transition countries would achieve until the latter half of the 20th century.11 The early

predicted transitions show up as a large mass of predicted transitions prior to 1700 in Figure

10, which plots the observed distribution of start dates across decades against the distribution

generated by the model. The bars represent observed transition starts, with the number above

each bar representing the number of transitions observed starting during that decade. The

dotted line represents the predicted density of transition starts over time.

Although the predictions from our logit model match some aspects of the distribution (e.g.,

the peak of transition starts in the 1960s and 1970s), it misses the clustering of CBR transitions

around the turn of the 20th century and the very large peak around the 1960s. These clusters of

start dates suggest the presence of demographic contagion: the possibility that prior transitions

by a country’s neighbors may push forward its own demographic transition. We move now to

study whether the data statistically support this reading of the evidence.

11Country fixed effects would bring each country’s mean predicted transition start date in line with the
observed date, but would not narrow the confidence intervals.
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4.3 Demographic contagion

To measure demographic contagion, we define access to existing transitions by country i in

period t as:

Ait ≡

[
N∑
j=1

gijIj,t−1

]ψ
. (8)

That is, Ait is a weighted sum of all countries that have already begun their transitions. Ij,t
is an indicator function taking a value of 1 if country j started its transition before period t,

and 0 otherwise. The inverse bilateral distance between countries i and j is represented by gij .

Close-by countries (i.e., gij close to 1) have a larger weight than distant ones (i.e., gij is close

to 0). The parameter ψ > 0 adds curvature. If ψ < 1, then each additional transition start

has a small marginal impact on the probability of future transition starts. If ψ > 1, then each

additional transition start has a larger marginal impact.

We parameterize gij as:

gij = exp{z′ijγ}, (9)

where zij is a column vector of bilateral distance measures and γ is a vector of coefficients.

To construct zij, we use data on geographic, linguistic, and cultural distance among countries

from Mayer and Zignago (2011).12 For geographic distance, we take the normalized average

great circle distance between the top 25 most populated cities in country i and the top 25 most

populated cities in country j, weighted by the share of each city in the national population in

2011 (city size rankings have high historical persistence).13 To infer linguistic distance, we use

the LP2 measure, which assesses linguistic similarity between 40 key words in each language.14

To reflect connections that may exist between countries independently of shared language, we

consider an index of a common religion and a dummy variable for common legal origins.15

Given equations (8) and (9), we estimate:

Pr(T i = t|T i ≥ t) = G

(
k−1∑
l=0

xl,itβl + βkAit

)
. (10)

The parameter vectors β, γ, and ψ are estimated by maximizing the log-likelihood function

12We follow the literature on international trade that highlights the importance of non-geographic factors in
gravity equations. See Egger and Lassmann (2012) and Melitz and Toubal (2013).

13We divide log geographical distance (ln diij) by ln(20, 015) to normalize the distance between 0 and 1. The
maximum great-circle distance between any two points on Earth is roughly 20,015 kilometers.

14Melitz and Toubal (2013) test several alternative measures of the degree of linguistic commonality between
countries, ranging from the narrowest definition (i.e., whether the two countries share an official language), to
more nuanced definitions based on the shares of the population in each country that speak the same or similar
languages. “LP2” is comprehensive yet parsimonious. See also Bakker et al. (2009).

15The linguistic, religious, and legal proximity measures are transformed into distance measures by calculating
distance = 1 - proximity.
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given by equation (7) and using the same balanced panel of 44 countries as in Subsection 4.2.

Columns (2) through (9) of Table 4 show the results of several specifications of equation

(10). In specification (2), “access” is equal to an unweighted count of the number of countries

that have begun the transition. The coefficient on Ait is strongly significant and the pseudo-

R2 nearly doubles with respect to specification (1), our baseline exercise that only includes

GDP per capita. Specification (3) adds curvature to this global sum. The estimated value of

ψ, 0.57, implies that there are diminishing returns: each additional country that begins the

transition has a smaller effect on other countries’ odds of entering the transition than previous

ones. Specifications (4) and (5) weigh the count of countries by geographic distance. The

discrete measure of distance used in specification (5) captures the data slightly better than

the continuous measure in specification (4). But for both formulations, the association of

shorter geographic distances with stronger spillover effects is large and statistically significant.

Interestingly, specifications (6) and (7) do not detect a significant coefficient on Ait when we

weigh countries by linguistic or religious proximity. In comparison, specification (8) shows

a statistically significant association with legal distance at the 95% level. This significance

suggests a channel of fertility transmission through technology or knowledge diffusion, which is

likely to be easier in countries with similar legal structures. Finally, specification (9) includes

geographic distance and legal distance in the same estimation. In this case, the coefficient on

Aitt is also significant at the 95% level.
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Figure 11: Within sample predictions, Spec.
(9)
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Figure 12: Distribution of transition dates,
Spec. (9)

Figures 11 and 12 show the improvement of specification (9) in matching the observed

transition starts across time. Except for calling France and the U.S. too late, the specification

with demographic contagion does appreciably better. For example, it captures the twin peaks

of demographic transitions in the late 19th century and in the 1960s. Appendix E checks
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that weighting each country by its population (i.e., having a neighbor with a larger population

might have a bigger impact on contagion) does not affect our results. Appendix F repeats all

the exercises described in this section for the CDR. The lessons are very similar, although the

neighborhood effect is weaker for mortality transitions.

Our findings do not ascertain causality: we only measure that countries that have neighbors

(defined geographically and culturally) that have experienced the start of the demographic

transition are more likely to begin their own transition. This might be due to a common shock

or to transmission mechanisms between two countries. Nonetheless, this is an important result

that will motivate, later on, much of our economic model in Section 5.

In Figure 13, we explore the distribution of countries across levels of access to transitions

and levels of GDP per capita at different points in time, and the impact of each of factor on

transition probabilities according to specification (9). Each plotted distribution is smoothed

using a Gaussian kernel. Using estimated parameters from specification (9), we calculate access

as

Ait ≡

[
N∑
j=1

exp[Dij + 0.90× legal-distanceij]Ij,t−1

]0.41

,

where Dij ≡ 1.80× 1{ldiij < ln800}+ 0.57× 1{ln800 ≤ ldiij < ln2000} is the step variable for

distance.

The top left panel of Figure 13 shows the distribution of access at four different points in

time. Not surprisingly, as more countries transition, this distribution moves steadily to the

right. The top right panel of Figure 13 plots the transition probabilities implied if each country

is assigned its actual access to transitions value and GDP per capita equal to $2000. Here we

can see that in 1850, 1900, and 1950, “access to transitions” in the great majority of countries

was such that their probability of transition at $2000 GDP per capita would have been relatively

small. In 2000, this situation changes dramatically, and even the lowest yearly probability of

transition for any country with a $2000 GDP per capita would be 10%.

The bottom left panel of Figure 13 shows the evolution of the distribution of GDP per capita

over time. This distribution shifts to the right as more countries enjoy higher levels of GDP

per capita. The bottom right panel of Figure 13 shows the distribution of the probability of

transition, given the observed GDP per capita for each country, assuming they have the mean

level of “access to transitions” existing in 2000. Taken together, these panels demonstrate the

importance of the complementarity between a country’s level of development and the influence

of its neighbors. In 1850, even countries with relatively high log GDP per capita had a low

transition probability. In comparison, by 2000, a country with a relatively low level of GDP per

capita ($2000) has a probability of transition close to 1 if enough of its neighbors have already

started the transition.
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“Access to transitions” variable Transition prob., given access implied
implied by spec. (9) by spec. (9) and GDPpc = $2000
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Figure 13: Demographic contagion

4.4 Taking stock

This section has documented four findings. First, the start dates of the CDR transitions are

more dispersed over time than the start dates of the CBR transitions. Second, transitions in

both fertility and mortality have been getting faster over time. Third, in spite of this increase

in the speed of the transitions, the average GDP per capita at the start of the CDR and CBR

transition is similar across time. Finally, we have significant demographic contagion, whereby a

transition in one country is statistically associated with following transitions in countries that

are close to it geographically and have related legal systems.
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5 An economic model of demographic transitions

We now build a model of endogenous fertility, education, and technology diffusion to under-

stand our previous four empirical findings. Following Barro and Becker (1989), parents face a

quantity-quality trade-off between how many children to have and how much to educate them.

The economy has an ancient and a modern sector, as in Hansen and Prescott (2002). Both

sectors use land and skilled and unskilled labor, but the modern sector uses skilled labor more

intensively. With economic growth, total factor productivity (TFP) in both sectors increases

and the skill premium rises as resources move from the ancient to the modern sector. Economic

growth also brings improvements in life expectancy. As in Lucas (2009), economic growth

starts in Britain and then diffuses to other countries. In our model, there is an advantage to

backwardness: the later economic growth starts in a country, the faster it occurs.

5.1 Preferences, fertility, and education decisions

Consider a world that consists of many locations, which will correspond to countries in our

analysis. For ease of exposition, we drop the country index i whenever this does not cause any

confusion. Households in each country i live for four periods: period 0 as children, period 1

as young adults, period 2 as middle-aged adults, and period 3 as elders. The probability of an

infant born at time t surviving birth and becoming a child is s0
t . The probability of a child

born at time t surviving to adulthood is s1
t . Finally, the probability that a young adult and a

middle-aged adult survive to middle and old age are given by s2
t and s3

t , respectively.

Children are provided with basic sustenance by adults and do not earn an income or make

independent decisions. Young adults are endowed with 1 unit of time, denoted by ζ1 = 1, which

they divide between market work, caring for children, and educating them, and human capital,

ht. Middle-aged adults and elders are endowed with ζ2 ≥ ζ3 units of time, which they provide

inelastically to the labor market. The income that parents receive per unit of labor depends

on unskilled and skilled wages, wUt and wSt and their human capital ht. The total income of an

age j worker born at time t is given by ζj
(
wUt+j−1 + ht+j−1w

S
t+j−1

)
for j = 1, 2, 3.

Young adults choose how many children to have, nt, and how much education, et, to provide

for each child that survives infancy (a concave utility ensures it is optimal to give each child the

same level of education). The level of education that children receive, et, and parental human

capital, ht, determine their level of human capital when they are adults: ht+1 = hυt e
ξ
t , with

υ, ξ ∈ (0, 1).

Each birth requires a time commitment of τ1 and giving each surviving child a unit of

education requires a time investment of τ2. Since a young adult who chooses to have nt births

at time t will have s0
tnt surviving children to educate, the total time cost of education is ntτ2s

0
t et.

Parents must provide themselves, and each child who survives infancy, at least c̄ units of the
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consumption good as sustenance.

Let cjt be the consumption of an age-j adult at time t. Parents choose
{
cj+1
t+j

}2

j=0
, et, and nt

to maximize

log
(
c1
t

)
+ γ log

(
s0
tnt − n

)
+ φs1

t log
(
wut+1 + wst+1ht+1

)
+ s2

t log
(
c2
t+1

)
+ s3

t+1 log
(
c3
t+2

)
,

subject to

c1
t = (wut + wstht)(1− nt(τ1 + τ2s

0
t et))− (1 + s0

tnt)c,

cj+1
t+j = ζj+1(wut+j + wst+jht)− c for j = 1, 2,

ht+1 = hυt e
ξ
t .

Aside from their own consumption, adults derive utility from the number of children who

survive infancy, s0
tnt. The parameter γ ≥ 0 encodes the strength of this preference, and n is a

parameter representing the minimum desired number of descendants who survive to adulthood.

They also derive “warm glow” utility from anticipating the future wage income of their children,

wut+1 + wst+1ht+1. The parameter φ ≥ 0 represents the strength of this preference.

The first-order conditions for an interior solution for nt is:

1

c1
t

[
(wut + wstht)(τ1 + τ2s

0
t et) + s0

t c
]

= γ
s0
t

s0
tnt − n

. (11)

The marginal cost of additional children (i.e., the left-hand side of equation 11) is increasing in

the opportunity cost of parents’ time, wut +wstht, the time cost of children, τ1, and, if et > 0, in

the time cost of education, τ2. The marginal benefit of additional children (i.e., the right-hand

side of equation 11) is decreasing in nt.

Similarly, the first-order condition for et > 0 is:

1

c1
t

[
(wut + wstht)nts

0
t τ2

]
= φ

ξs1
th

υ
t

(
wst+1

wut+1

)
1 + hυt

(
wst+1

wut+1

)
eξt

eξ−1
t , (12)

where the marginal cost of et is increasing in (wut + wstht) and nt while the marginal benefit

(i.e., the right-hand side) is increasing in the skill premium
wst+1

wut+1
at time t+ 1.16

Notice that et increases the marginal cost of a child in equation (11) and the marginal benefit

in equation (12). These two opposite forces embody the quality-quantity trade-off that parents

face.

16See Vogl (2016) for the importance of corner solutions in the fertility/education decisions of poorer parents.
Since we worked with a representative household within each location, we ignore that possibility.
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5.2 Population dynamics

Survival probabilities are determined as a function of Mt, the medical technology at time t:

sjt = 1− (1− sj0)
1 + e1−δ

1 + eMt−δ
, for j = 0, 1, 2, 3, (13)

where sj0 is the initial survival probability for age j. We assume that the initial level of

medical technology M0 is equal to 1. The parameter δ determines how slowly survival rates

increase as Mt increases. A higher value of δ implies slower increases in survival. In the limit,

as δ approaches infinity, survival probabilities will never change, regardless of the value of Mt.

For the purposes of calculating model-implied crude birth rates and death rates, we take the

total population to be equal to the number of age-1 adults, plus the number of age-2 adults,

plus the number of age-3 adults, plus the total number of children born: (1 +nt)N
1
t +N2

t +N3
t .

The total number of births is given by ntN
1
t , and therefore the crude birth rate is given by

CBRt ≡
ntN

1
t

(1 + nt)N1
t +N2

t +N3
t

The total number of deaths that occur during a model period is equal to the sum of infant

and childhood deaths, plus those young adults who do not make it to middle age, plus those

middle-aged adults who do not survive to be elders, plus the entire elderly cohort. The crude

death rate, therefore, is given by

CDRt ≡
(1− s0

t s
1
t )ntN

1
t + (1− s2

t )N
1
t + (1− s3

t )N
2
t +N3

t

(1 + nt)N1
t +N2

t +N3
t

.

The law of motion of the population is determined by the size of the young adult and middle-

aged cohorts (N1
t , N2

t ), the fertility rate nt, and survival rates. Given these time-t objects, time

t+ 1 adult population levels are given by N1
t+1 = nts

0
t s

1
tN

1
t , N2

t+1 = s2
tN

1
t , and N3

t+1 = s3
tN

2
t .

5.3 Production

For any country i, the economy consists of two sectors: ancient and modern, which produce

the same homogeneous good. Ancient sector production Ya,t (i.e., agriculture, servants, small-

scale low-skill artisans, etc.) is carried out by a representative firm with a production function

Ya,t = AtL
α
a,tH

ρa−α
a,t T 1−ρa

a,t , using unskilled labor, La,t, skilled labor, Ha,t, and land, Ta,t and given

a TFP level At. We will assume that 1 > ρa > α > 0.

In comparison, modern sector production Ym,t (i.e., mechanized industry, professional ser-

vices) is carried out by a representative firm with a production function Ym,t = BtL
β
m,tH

ρb−β
m,t T 1−ρm

m,t ,

using unskilled labor, Lm,t, skilled labor, Hm,t, and land, Tm,t and given a TFP level Bt. We
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will assume that 1 > ρb > β > 0.

The main difference between the sectors is that the ancient sector is more unskilled-labor

intensive than the modern sector, that is, α > β. We assume that there is a fixed amount of

land used in each sector, normalized to Ta,t = Tm,t = 1.17 Thus, total production Yt is

Yt = Ya,m + Ym,t = AtL
α
a,tH

ρa−α
a,t +BtL

β
m,tH

ρb−β
m,t ,

and it is divided between wages paid for unskilled and skilled labor, which is consumed by

workers, and rents paid for land, which is consumed by the absentee landlords. We assume

that landlords are a distinct class with a negligible population size who play no economic or

demographic role other than to receive land rents.

There is a representative firm in each sector that solves a standard profit-maximization

problem under conditions of perfect competition. This, combined with the perfect mobility of

skilled and unskilled labor, implies that:

wut = αAtL
α−1
a,t H

ρa−α
a,t = βBtL

β−1
m,t H

ρb−β
m,t , (14)

and

wst = (ρa − α)AtL
α
a,tH

ρa−α−1
a,t = (ρb − β)BtL

β
m,tH

ρb−β−1
m,t . (15)

Together, these conditions imply that the skill premium,
wst
wut

, must have a particular rela-

tionship with the relative importance of each skill type, and the ratio of unskilled to skilled

labor in each sector:
wst
wut

=
ρb − β
β

Lm,t
Hm,t

=
ρa − α
α

La,t
Ha,t

.

This, combined with market clearing conditions Ha,t +Hm,t = H t and La,t +Lm,t = Lt, further

implies:

wst
wut

=

[
ρa − α
α

La,t

Lt
+
ρb − β
β

Lm,t

Lt

]
Lt

H t

. (16)

Equation (16) reveals that the equilibrium skill premium depends on two components. First,

it depends on the supply of skilled relative to unskilled labor, Lt
Ht

. The relatively scarcer skill

is, the better it will be paid. Second, it depends on the relative importance of skilled versus

unskilled labor in production. Because we have two production functions, this mechanism

depends on a weighted average of the factor-share ratios for the ancient and modern sectors,
ρa−α
α

and ρb−β
β

, where the weights are the fraction of unskilled labor in each sector, La,t
Lt

and
Lm,t
Lt

. If ρb−β
β

> ρa−α
α

, an increase in the share of output produced in the modern sector will lead

17An alternative, isomorphic specification would have no land and decreasing returns to scale in production.
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to an increase in the skill premium unless we see a sufficiently large counterbalancing increase

in the relative supply of skilled labor.

5.4 An economic-demographic history of the world

We now use our model to describe the timeline of the world’s economic and demographic

changes in a stylized way. From the start of time until a time t = τ , the growth rates of ancient,

modern, and medical technologies are, in every country of the world, zero (the “Malthusian

era”). For any country i, Mi,t = M0, Ai,t = A0, B0,t = B0, and

Ai,t+1 − Ai,t
Ai,t

=
Bi,t+1 −Bi,t

Bi,t

=
Mi,t+1 −Mi,t

Mi,t

= 0,

for all t < τ (we characterize this Malthusian steady state analytically in Appendix J).

There exists one country, i = f , which we call the “frontier country”–in our simulations

Great Britain. At time t = τ , ancient, modern and medical technologies in the frontier country

begin to grow at constant, possibly different, rates:

Af,t+1 − Af,t
Af,t

= µaf ,
Bf,t+1 − Af,t

Bf,t

= µbf ,
Mf,t+1 −Mf,t

Mf,t

= µmf for all t ≥ τ.

This can be interpreted as the dawn of the industrial revolution.

Each country i 6= f in the world exists at a certain effective distance di,t from the frontier

country. This distance represents a combination of geographical distance and other possible

barriers to trade and the exchange of ideas.18 For t < τ , it takes a constant value di,tdi,0. At

time t = τ , when frontier technology begins to grow, effective distances simultaneously begin

to shrink at constant rate ϕ > 0, reflecting concurrent improvements in transportation and

communication. Thus, for t ≥ τ ,

di,t = di,0(1− ϕ)t−τ .

As di,t falls, the technological progress of the frontier country diffuses, first to its near

neighbors, and eventually to the whole world. More concretely, for a country i that is at a

18Trade in particular may be important since much new technology is embodied in traded capital goods.
Barriers to the exchange of ideas may include linguistic affinity or the closeness of legal systems.
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distance di,t from Great Britain, the growth rates of Ai,t, Bi,t, and Mi,t are

µbi,t = µbf × exp(−db × dλi,t)×
(
Bf,t−1

Bi,t−1

)θ
(17)

µai,t = µaf × exp(−da × dλi,t)×
(
Af,t−1

Ai,t−1

)θ
, (18)

and:

µmi,t = µmf × exp(−dm × dλi,t)×
(
Bf,t−1

Bi,t−1

)θ
,

where db, da, dm > 0 represent the strength of distance as a barrier to the diffusion of technology

in the modern, ancient, and medical sectors, respectively. The parameter λ > 1 captures the

convex relationship between geographic distance and the diffusion of technology.

Hence, all countries have the potential to grow, but in the first periods following time τ ,

those countries that are farther away from Great Britain will see close to zero growth, while

nearby countries grow at rates close to µjf , j ∈ {a, b,m}. Effective distances keep shrinking,

and eventually even the most remote countries experience economic growth and demographic

change.

Countries that begin to grow later have the advantage of backwardness. After time τ , any

distant country growing at a slow rate will see its technology gap with the frontier,
Xf,t−1

Xi,t−1

for X = A,B,M , widen. But this has a positive effect on the growth rate, captured by the(
Xf,t−1

Xi,t−1

)θ
term in (17), (18), and (5.4). The parameter θ > 0 controls the elasticity of catch-up

growth to backwardness.

6 Quantitative analysis

To take the model to the data, we proceed in two steps. First, we select preference and

technology parameters so that a single simulated country matches demographic and economic

observations in Great Britain, our frontier country. Then, we choose the parameters that

determine cross-country technology diffusion so that a simulation of all countries matches key

features of the global demographic and economic transition.

6.1 Great Britain

We start by normalizing some parameters or borrowing them from the literature, as sum-

marized in Table 5. Following Desmet and Rappaport (2017), we set ρa = 0.7 (a land share of

0.3 in the ancient sector) and ρm = 0.9 (a land share of 0.1 in the modern sector). The labor

endowment for middle-aged adults ζ2, is set to 1, and the labor endowment for the elderly, ζ3,
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is set to 0.5.19 The initial levels of agricultural technology, A0, and medical technology, M0, are

normalized to 1. The initial mortality levels sj0 are calculated from the mortality rates for the

1675-1699 period reported by Schofield and Wrigley (1989). Appendix K explains the mapping

between age-specific mortality rates in the data and their model counterparts.

Table 5: Parameters set exogenously

Description Parameter Value
Technology
Complement of land share, ancient ρa 0.7
Complement of land share, modern ρb 0.9
Initial level of At A0 1
Initial level of Mt M0 1
Labor endowment of old adults ζ2 1
Labor endowment of elderly ζ3 1

2

Initial prob. that infants survive to be children (age 1-20) s0
0 0.685

Initial prob. that children survive to be young adults (age 21-40) s1
0 0.752

Initial prob. that young adults survive to be old adults (age 41-60) s2
0 0.620

Initial prob. that old adults survive to be elderly (age 61-80) s3
0 0.344

Next, we select 15 parameters so that the simulation of a single country matches the observed

demographic and economic transitions in Great Britain. The parameters

{γ, φ, τ1, τ2, c, n, υ, ξ, α, β, µ
a
f , µ

b
f , µ

m
f , B0, δ}

determine preferences for and the cost of children, human capital production, the shares of

skilled and unskilled labor in each sector, and the growth rates of At, Bt, and Mt in the post-

Malthusian era, respectively.

A model period is 20 years and, motivated by the evidence in Broadberry et al. (2015), we

set τ = 1690. To compare model and data targets, we take a moving average of the data where

for any variable Xt, the data target is calculated as a moving average of values from t− 10 to

t+ 9. Hence, the data targets for 1690 are an average of the data from 1680 to 1699.

Starting from τ = 1690, we simulate the model economy moving forward and choose these

fifteen parameters to match the following moments:

1. The levels of the CDR and CBR between 1690 and 2010 (Figure 14). For the pre-transition

period, we assume that CBR and CDR are constant and equal to their 1690 values.20

19Historically, the labor force participation of the elderly was low and most worked less than full time, and
typically in lower-paid jobs. For example, in 1891, 64.8% of males above 65 were in the labor force (Boyer and
Schmidle, 2009).

20For the end of transitions, we observe CDR2010 and CBR2010. We assume that CDR and CBR are 12.5
after 2070. Between 2010 and 2070 (three model periods), we asume that they decline linearly.
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2. The share of labor employed in the ancient sector: 85.5% in 1690 and 30% in 1890. These

shares correspond to the fraction of England’s population living in rural areas in these two

years, according to Bairoch (1991). Figure 15 plots our simulated ancient sector share

(dashed line) against Bairoch’s (1991) data for the fraction of the population living in

rural areas. The simulated path is broadly consistent with these data in spite of the fact

that we only target two points.

3. The GDP per capita between 1690 and 2010 (Figure 16).

4. The years of education between 1870 and 2010 (Figure 17). The data on educational

attainment are taken from the Lee and Lee (2016) data set. The average total years of

enrollment in Great Britain was only 1.0 in 1870, after which the total grows very rapidly,

reaching 6.6 by 1950 and 11.4 by 2010.

Table 6: Calibrated parameters, first stage

Description Parameter Value

Utility Function
Utility weight for fertility γ 0.583
Parental altruism, warm glow φ 0.640
Minimum consumption as fraction of wage c̃ 0.128
Minimum fertility n 0.172

Cost of Children
Quantity τ1 0.092
Quality τ2 0.032

Technology
Unskilled labor share, ancient α 0.69
Unskilled labor share, modern β 0.098
Growth rate of At µaf 0.54% (yearly)
Growth rate of Bt µbf 0.61% (yearly)
Growth rate of Mt µmt 0.67% (yearly)
Medical technology lag δ 3.87
Dynamic complementarity of human capital υ 0.483
Elasticity of education effort to human capital ξ 0.671

Figures 14 to Figure 17 show that the model does an excellent job matching these targets.

Table 6 reports the parameter values calibrated in this first stage. Our estimates imply that

each child reduces the available time for work by around 9%, and each year of education for

a surviving child reduces it by another 3%. For example, having five surviving children and
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Figure 14: GB CBR/CDR, sim vs. data
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Figure 15: GB ancient sector share, sim vs.
data

providing them with ten years of schooling would leave parents almost no time for work. Our

estimates for exogenous technological change in the ancient and modern sectors are 0.54% and

0.61% per year. Yet, the model generates the observed growth in GDP per capita due to

endogenous human capital accumulation. The estimated value for δ implies that if the initial

survival rate was around 0.6 (recall that a model period is 20 years), doubling the medical

technology from its initial value of 1 would increase the survival rate by 50% to around 0.9.

With an annual growth rate of 0.67%, this would take around 100 years. Finally, the model

detects a large gap between α and β, the shares of unskilled labor in the ancient and modern

sectors. The calibrated value for α, 0.69, implies that the ancient sector uses very little skilled

labor, an intuitive result if we interpret this sector as (mostly) farmers, servants, and small-scale

low-skill artisans such as bakers and bricklayers.
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Figure 16: GB GDP per capita, sim vs. data

1650 1700 1750 1800 1850 1900 1950 2000 2050

year

0

2

4

6

8

10

12

to
ta

l y
ea

rs
 o

f e
nr

ol
lm

en
t

education, 20-year av.
education, simulation

Figure 17: GB years of education, sim vs. data
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The calibrated differences between α and β are key to understanding why our model repli-

cates the demographic transition of Great Britain (Figure 14). As TFP starts to grow, it does

so faster in the modern sector than in the ancient sector. Thus, the modern sector grows more

quickly (Figure 15) and, because of its higher skill intensity, the skill premium rises (equation

16). A higher skill premium leads, through the quality-quantity trade-off, to an increase in

education (Figure 17), a fall in births, and sustained growth in GDP per capita (Figure 16).21

We test the importance of the change in the skill premium by running a counterfactual

simulation in which the premium does not change. We achieve this by assuming that the two

sectors are identical: α = β = 0.69, and ρa = ρb = 0.7.22 Figures 18 and 19 illustrate the

result. With no change in the skill premium, there is no increase in education. The CBR only

falls to around 25 instead of 12. Interestingly, we also see that growth in GDP per capita levels

off in the middle of the 19th century and then reverses. This is consistent with Malthusian

theory and with the importance many scholars have placed on education in the escape from the

“Malthusian trap” (Becker et al., 1990).

It is also instructive to analyze the reasons behind the small reduction in fertility seen in

Figure 19. Part of this is due to better medical technology reducing the need for “extra” births

to hit parents’ preference to have a minimum number of surviving children, represented in

our model by the parameter n. Another part of the effect is Malthusian. Lower death rates

mean a higher population growth rate, which causes the land/labor ratio to fall faster. In

this simulation, decreasing returns to labor overwhelm TFP growth from the middle of the

19th century. This leads to a fall in GDP per capita back toward the minimum consumption

constraint c, contributing further to the fall in fertility.

6.2 Rest of the world

Taking the parameters calibrated in the first stage as given, in the second stage we choose

six parameters that govern the process of technology diffusion, {λ, db, da, dm, ϕ, θ}. Among

these parameters, ϕ determines how fast the distances between countries shrink once Great

Britain starts to grow, while λ determines the elasticity of the effective distance to kilometers

of the great-circle distance between each country’s capital city and London. The values dj for

j = a, b,m determine the cost of distance as a barrier to technological diffusion in the ancient,

modern, and medical sectors, respectively. Finally, θ is the elasticity of catch-up growth to

backwardness.

To discipline these parameters, we simulate the model and calculate CBR and CDR levels

as well and GDP per capita for all countries in our sample after 1690. We choose these six

21The increase in medical technology also lowers births, as fewer births are required to obtain the same level
of surviving children, but this effect is smaller.

22For simplicity, we also assume A = B, but this is immaterial for our point.
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Figure 18: GB GDP per capita, no rise in skill
premium
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Figure 19: GB vital statistics, no rise in skill
premium

parameters to match:

1. The global average CBR and CDR between 1950 and 2017 (Figure 20).

2. The global average GDP per capita between 1950 and 2017 (Figure 21).

3. The cumulative fraction of the world’s population that lives in countries that have perma-

nently crossed below CBR = 25 per 1000, representing the definitive start of the fertility

transition (Figure 22).

We construct the targets of the calibration by weighting each country by its population in

2016 according to World Bank data. The calibrated parameter values are given in Table 7.

Table 7: Calibrated parameters, second stage

Description Parameter Value

Distance
elasticity of effective distance to km of geographic distance λ 5.13
log cost of distance for anc. tech. diffusion ln db -26.7
log cost of distance for non-anc. tech. diffusion ln da -26.4
log cost of distance for medical tech. diffusion ln dm -23.1
growth rate of cost of physical distance ϕ -10.3% (yearly)
elasticity to backwardness θ 1.83

We construct our measure of effective distance accounting only for geographic distance.

While other determinants of technology diffusion may be relevant (such as legal distance), we
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lack obvious targets to calibrate additional parameters, and the calibrated model conforms well

to the data with this single distance measure.
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Figure 20: World CBR and CDR, 1600-2100
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Figure 21: Global mean GDP per capita
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Figure 22: Fraction of world population in
countries below 25 births per 1000

Figures 20-22 show that the model replicates the world demographic transition and the

evolution of the global mean of GPD per capita reasonably well. But those were targeted

moments to learn about the parameters controlling technological diffusion. How well does the

model match non-targeted moments?

We assess the performance of the model by looking, in Figure 23, at the standard deviation

of log GDP per capita for the whole world between 1950-2017. Despite this not being a targeted

moment, the model does a nice job replicating the initial increase and subsequent decline in

inequality across countries. The level of inequality is smaller in the model economy since we
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Figure 23: Global standard deviation of log GDP per capita

assume that countries were identical in 1690. It would not be difficult to add initial differences

in the level of technology to account for cross-country income differences in 1690.

The most interesting test, however, is to gauge how well the model replicates the demo-

graphic transition for individual countries. This is a powerful measure of the strength of the

model as we do not use data from any particular country (except Great Britain) beyond its

distance to the frontier and that all the calibrated parameters –e.g., for parental altruism, cost

of children, elasticity to backwardness– are the same across countries.

Figure 24 shows the model vs. the data for the same set of countries that appear in Figure

3 (in the next section, we will explore all countries more systematically). The model does

surprisingly well accounting for the demographic transitions of Denmark and Spain, a fairly

good job with Chile and Malaysia, but it fails with Chad.

We take Figure 24 as a strong validation of the model. For countries like Denmark and

Spain, close to Great Britain geographically and culturally, a simple quantity-quality trade-off

together with technological diffusion can account for a large part of the observed demographic

transitions. The model, obviously, does not fit the data perfectly. Other mechanisms (culture,

social norms, legislation, taxes, migration, labor market regulations) play a role in fertility

decisions and mortality. It is therefore not surprising that we miss an important part of the

action in Chad, a country with economic and social institutions very different from those of

Great Britain. For example, cultural norms might cause different levels of parental altruism

across countries. But Figure 24 strongly suggests that the trade-offs our model highlights are

of first-order importance.
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Figure 24: Six examples of demographic transitions, compared with simulation
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7 Assessing the model

How general are the results of Figure 24? Does our model generate demographic transitions

that look like those in the data for the cross-section of countries? Does the model generate the

four findings that emerged from Section 4? And does the model generate changes in education

levels that resemble those in the data? This section assesses the model along these dimensions.

7.1 The past and present of demographic transitions

The first finding from Section 4 was that the start dates of the CDR transitions are more

dispersed over time than the start dates of the CBR transitions. Figures 25 and 26 compare

the start dates of the mortality and fertility transitions for the last 300 years in the data and

the simulation. The model does an excellent job of matching the data in terms of timing

and range: the CDR transitions’ start dates are more dispersed than the start dates of the

CBR transitions. The model only performs more weakly by underestimating the number of

very early transitions, not a surprise since some of those might have been triggered by factors

not included in our model (e.g., Cummins, 2013, argues for the importance of changed social

mobility triggered by the French Revolution).
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Figure 25: CDR transition starts over time
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Figure 26: CBR transition starts over time

The second finding from Section 4 was that transitions in both fertility and mortality have

been getting faster over time. Figures 27 and 28 corroborate that our model replicates this

observation (the plotted line is a simple linear regression, blue for data and red for simulation).

We match the regression intercept and slope of the regression nearly perfectly for the CDR

transition and the slope of the CBR transition while missing the intercept by around 25 years.
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As effective distance falls, each country experiences a growth take-off, with closer countries

taking off first. Catch-up growth is, however, faster in countries that join the growth process

later, as they have a wider gap in TFP to close. Since the increase in the skill premium and the

associated rise in education levels are sharper in later-transitioning countries, the fall in fertility

is also more rapid, and the overall transition period is shorter. For transitions starting in the

19th century, it took more than 100 years for the CDR and CBR to fall by 20 points (the pre-

transition levels were around 30 per 1000 for the CDR and 40 for the CBR). For the transitions

in the 20th century, on the other hand, from similar pre-transition levels, the required time for

a 20-point decline was around 50 years.
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Figure 27: Transition slopes
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Figure 28: Transition slopes
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The third finding from Section 4 was that average GDP per capita at the start of the CDR

and CBR transitions is similar across time. Figure 29 shows the level of GDP per capita at the

beginning of the observed (blue bars) and simulated (red bars) CDR and CBR transitions. There

is a more significant variance in GDP per capita at the start of the transitions for the later years,

particularly for the CBR transitions of the 1960-2000 period. The model performs quite well

at capturing the observed distribution of transitions, although the match is not perfect. This is

not a surprise, as there are many country-specific factors behind the demographic transitions,

which we purposefully left out of the analysis. For example, oil revenues for Oman and Iran

allowed these countries to reach high levels of GDP per capita at a relatively lower level of

the technology adoption that drives our model. Soviet-style regimes in countries like Romania

also experienced lower fertility for reasons we do not model. Furthermore, as highlighted by

De Silva and Tenreyro (2020), several low-income countries achieved lower fertility rates due to

population control policies introduced in the 1960s and 1970s.
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Figure 29: Log GDPpc at the start of transitions

The fourth fact, demographic contagion, was explicitly incorporated into the model and so

is replicated by construction.

7.2 Education and fertility

Next we take a closer look at the relationship between education and fertility. Our model

predicts that countries that reduce fertility faster will also increase years of education more

quickly. As we have not used any information on trends in education to inform our model or its

calibration so far, this presents two excellent tests of the model’s performance: first, whether
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the qualitative pattern predicted by the model exists in the data, and second, how well the

model matches the data on education and fertility.

Lee and Lee (2016) provide data on total years of schooling for 110 countries at 5-year

intervals from 1870 to 2010. We calculate the slope of total years of schooling during the CBR

transition for each country by dividing the total increase in years of schooling that takes place

during the observed CBR transition by the total number of years for which the CBR transition

is observed.
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Figure 30: Fertility and education, initial rates of change

Figure 30 plots rates of change in total years of schooling against CBR transition slopes,

both for the data and our model. The data do indeed show a robust positive relationship

between the speed of the fertility transition and the speed of educational progress, consistent

with the quantity-quality trade-off at the center of our model. Quantitatively, the slope of

the best-fit relationship is a bit steeper in our simulation than in the data, and our model

does not produce examples of very rapid education increases such as those observed for many

late-developing countries such as South Korea and India. That may be partly because these

countries embarked on aggressive government-sponsored education programs that may have

changed the costs faced by parents (e.g., by redistributing the cost of education across income

levels) or even pushed some parents away from their optimal quantity-quality mix.23

Overall, we judge our model to be successful at replicating the main patterns the reduction

in fertility and the increases in education in the data. Despite the lack of any country-specific

details regarding educational policy, our model captures much of the co-movement in the data.

23For South Korea, see Seth (2002). For India, and in particular, the role of the Kothari Commission (1964-
1966), see Ayyar (2017). Our data set also includes cases such as Cuba, where wages (and hence the skill
premium) and educational forces are not determined by the decisions of private agents.
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8 Conclusions

In this paper, we have constructed a data set consisting of birth rates, death rates, and GDP

per capita for a panel of 186 countries spanning from 1735 until 2014. We have proposed a way

to measure demographic transitions that lets the data pick start and end dates for fertility and

mortality transitions. Our method documented several important findings regarding when and

how quickly countries go through the demographic transition. We highlighted, in particular,

the existence of a “demographic contagion” across countries that are close to each other (either

geographically or in terms of legal systems). Finally, we argued that a simple model where

parents choose child quantity and educational quality and where technology diffuses from a

frontier country to the periphery can account for all of these observations.
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A Historical estimates of world vital statistics

We construct world average CDRs and CBRs from 1600 to 2016 using:

• Data on birth rates and death rates by country from the sources detailed in Section 3

• Data on population by country from the Maddison 2018 database (Bolt et al., 2018).

For the world average birth rate, we then proceed in three steps:

1. First, we linearly interpolate gaps in birth rate and population data for each country.

2. Then, for each of the 152 countries for which we observe the start of the fertility transition,

we assume CBR is equal to the pre-transition mean between 1600 and the start of the

transition.

3. Finally, we calculate the world average crude birth rate for each year as the population-

weighted average of all countries that have both population data from the Maddison 2018

database and an observation, an interpolated value, or a backward-projected value for the

CBR in that year.

Following the same process for CDRs as we did for CBRs would lead to an implied rate of

pre-modern world population growth that is much higher than all available historical estimates.

To avoid this problem, we follow a slightly modified process for CDRs:

1. First, we linearly interpolate gaps in the death rate and population data for each country.

2. Then, for each of the 44 countries for which we observe the start of the mortality transition,

we project CDR backward from the start of the data to 1600 by assuming that it is equal

to the CBR minus the annual population growth rate implied by the population data.24

3. Then, for the 96 countries for which we do not observe the start of the mortality transition

but for which we can impute a transition start date using the method described in Section

3, we project CDRs backward from the start of the data until the imputed start of the

CDR transition by assuming it is equal to the transition mean.

4. Then, for each of these 96 countries, we project CDRs backward from the imputed tran-

sition start date to 1600, by assuming that it is equal to the CBR minus the annual

population growth rate.

24In the pre-modern era, net migration was pretty close to zero everywhere and, in any case, we are computing
a global average CDR. Earth has net migration of zero.
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5. Finally, we calculate the world average CBR for each year as the population-weighted

average of all countries that have both population data and an observation, an interpolated

value, or a backward-projected value for the CDR in that year.
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Figure 31: World CBR and CDR, 1600-2100

Figure 31 shows the results of these calculations, and combines them with post-2016 pro-

jections from the United Nations (United Nations, 2017). Looking at the period from 1850

to 1900, the lower volatility of these rates in comparison to the series for individual countries

(see Figure 3) can partly be interpreted as the result of local shocks in different parts of the

world canceling each other out. During the 20th century the world became more connected

and shocks more correlated. We can see the effects of the global influenza pandemic of 1918,

and the global baby boom of the 1950s and 1960s. Prior to 1850, it is less clear how we should

interpret the relative “smoothness” of the rates shown on the graph. The farther we go back in

time, the fewer countries have complete data available and, thus, some part of this smoothness

must be due to an increasing share of back-projected pre-transition means being included in

the average.

The world average rate of population growth is calculated as the difference between CBRs

and CDRs. The total number of annual births is calculated by multiplying the world average

CBR by the total world population, taken from the HYDE 3.1 database (Klein Goldewijk et al.,

2011). Figure 32 compares the constructed annual population growth rates to those implied by

the world population data in the HYDE 3.1 database.
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Figure 32: World population growth, comparison

B Auxiliary rules for model selection

B.1 Auxiliary rules of transition starts

A statistically detected CDR transition start date is removed, moving the country from case

1 to case 2, or case 3 to case 4, if one or more of the following conditions hold:

1. Estimated initial CDR level of less than 25, less than 20 years after the start of the series.

2. Estimated initial CDR level of less than 15, regardless of timing.

3. Estimated initial CDR level more than 20 points below the initial level of CBR, regardless

of timing.

A CDR transition start date is added, moving the country from case 2 to case 1, or case 4

to case 3, if both of the following conditions hold:

1. Estimated initial CDR level greater than 35.

2. CDR start date has not been previously removed by the first set of rules.

A statistically detected CBR transition start date is removed, moving the country from case

1 to case 2, or case 3 to case 4, if one or more of the following conditions hold:

1. Estimated initial CBR level of less than 30, less than 20 years after the start of the series.

2. Estimated initial CBR level of less than 20, regardless of timing.
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A CBR transition start date is added, moving from case 2 to case 1, or case 4 to case 3, if

both of the following conditions hold:

1. Estimated initial CBR level greater than 50.

2. CBR start date has not been previously removed by the first set of rules.

B.2 Auxiliary rules of transition ends

A statistically detected CDR transition end date is removed, moving the country from case

1 to case 3, or case 2 to case 4, if one or more of the following conditions hold:

1. Estimated final CDR level of greater than 20, less than 20 years after the start of the

series.

2. Estimated final CDR level greater than 25, regardless of timing.

A CDR transition end date is added, moving the country from case 3 to case 1, or case 4 to

case 2, if both of the following conditions hold:

1. Estimated final CDR level less than 12.

2. CDR end date has not been previously removed by the first set of rules.

A statistically detected CBR transition end date is removed, moving the country from case

1 to case 3, or case 2 to case 4, if one or more of the following conditions hold:

1. Estimated final CBR level of greater than 20, less than 20 years before the end of the

series.

2. Estimated final CBR level of greater than 25, regardless of timing.

A CBR transition end date is added, moving the country from case 3 to case 1, or case 4 to

case 2, if both of the following conditions hold:

1. Estimated final CBR less than 12.

2. CBR end date has not been previously removed by the first set of rules.

C Supplementary tables

A CDR calculated by projecting backward using the method described in Section 2 is indi-

cated by ?.
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Calculated Transition Start and End Dates

CDR CBR

Country Start End Start End

Afghanistan 1941? 2009 1999 n/a

Albania 1900? 1977 1963 2010

Algeria 1919? 1993 1965 n/a

Angola 1930? 2016 1988 n/a

Argentina 1869 1945 1862 n/a

Armenia n/a n/a n/a 2001

Australia n/a 1961 n/a 1987

Austria 1881 1941 1899 1934

Azerbaijan n/a 1988 n/a 1999

Bahamas, The 1918? 1967 1954 n/a

Bahrain 1918? 1979 1960 2011

Bangladesh 1910? 2004 1973 2011

Barbados 1923 1957 1954 1987

Belarus n/a n/a n/a 1998

Belgium n/a 1956 1884 1940

Belize 1910? 1972 1981 n/a

Benin 1939? 2001 1987 n/a

Bhutan 1938? 2004 1977 2012

Bolivia 1910? 2011 1969 n/a

Bosnia and Herzegovina n/a 1964 n/a 2000

Botswana 1913? 1977 1971 n/a

Brazil 1857? 1994 1957 2010

Brunei Darussalam 1904? 1974 1954 2007

Bulgaria 1918 1948 1906 1991

Burkina Faso 1951 2016 1997 n/a

Burundi 1880? 2016 1987 n/a

Cambodia 1981 1987 1985 n/a

Cameroon 1888? 2016 1988 n/a

Canada n/a 1955 n/a 2009

Cape Verde 1893? 2000 1984 n/a

Central African Republic 1961 1979 1978 n/a

Chad 1953 n/a n/a n/a

Channel Islands n/a 2016 n/a 2013
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Calculated Transition Start and End Dates

CDR CBR

Country Start End Start End

Chile 1921 1978 1929 n/a

China n/a 1972 n/a 2005

Colombia 1876? 1990 1971 n/a

Comoros 1921? 1999 1980 n/a

Congo, Dem. Rep. 1892? 2016 2004 n/a

Congo, Rep. 1930? 1974 1970 n/a

Costa Rica 1878? 1982 1958 2008

Cote d’Ivoire 1927? 1981 1963 n/a

Croatia n/a n/a n/a 2002

Cuba n/a 1946 1970 1981

Cyprus 1922 1955 1945 2010

Czechoslovakia 1867 1951 1834 2000

Denmark 1834 1943 1886 1982

Djibouti 1935? 1979 1978 n/a

Dominica 1915? 1975 1960 n/a

Dominican Republic 1903? 1981 1954 n/a

Ecuador 1885? 1992 1957 n/a

Egypt, Arab Rep. 1934 1997 1968 n/a

El Salvador 1877? 1996 1968 n/a

Equatorial Guinea 1947? 2009 1997 n/a

Eritrea 1914? 2015 1967 n/a

Estonia n/a n/a n/a 2001

Ethiopia 1919? 2016 1992 n/a

Fiji 1866? 1976 1964 n/a

Finland 1866 1957 1862 1996

France 1740 1990 1763 1939

French Polynesia 1861? 1987 1956 n/a

Gabon 1961 1989 1990 n/a

Gambia, The 1955 1999 1981 n/a

Georgia n/a 1967 n/a 2000

Germany 1880 1932 1880 1975

Ghana 1881? 1996 1967 n/a

Greece 1916 1955 1930 1994

Grenada 1883? 1973 1957 2004
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Calculated Transition Start and End Dates

CDR CBR

Country Start End Start End

Guam 1946? 1950 1966 n/a

Guatemala 1902? 1999 1971 n/a

Guinea 1941? 2014 1990 n/a

Guinea-Bissau 1923? 2012 1991 n/a

Guyana (British Guiana) 1919 1962 1971 n/a

Haiti 1922? 2004 1983 n/a

Honduras 1913? 1992 1971 n/a

Hong Kong SAR, China 1941 1947 1960 1989

Hungary 1875 1943 1886 1966

Iceland n/a 2006 1963 n/a

India 1917 2002 1982 n/a

Indonesia 1928? 1983 1959 n/a

Iran, Islamic Rep. 1927? 1997 1984 1999

Iraq n/a 1992 n/a n/a

Ireland 1899 2014 1942 1999

Israel n/a 1945 n/a n/a

Italy 1874 1955 1885 1992

Jamaica 1920 1965 1965 n/a

Japan 1945 1951 1935 1993

Jordan 1922? 1980 1964 n/a

Kazakhstan n/a 1971 n/a 1996

Kenya 1914? 1983 1975 n/a

Kiribati 1910? 1996 1962 n/a

Korea, Dem. Rep. 1950? 1969 1970 1980

Korea, Rep. 1947? 1970 1958 1996

Kuwait n/a 1985 1968 n/a

Kyrgyz Republic n/a 1992 n/a n/a

Lao PDR 1915? 2012 1988 n/a

Latvia n/a n/a n/a 2002

Lebanon n/a 1972 n/a 2008

Lesotho 1924? 1981 1974 n/a

Liberia 1925? 2016 1982 n/a

Libya 1930? 1983 1967 n/a

Lithuania n/a n/a n/a 2004
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Calculated Transition Start and End Dates

CDR CBR

Country Start End Start End

Luxembourg n/a 2016 n/a 1978

Macao SAR, China n/a 1970 n/a 1969

Macedonia, FYR n/a 1967 n/a 2005

Madagascar 1916? 2012 1978 n/a

Malawi 1912? 2016 1981 n/a

Malaysia 1908? 1975 1958 n/a

Maldives 1936? 2000 1986 2001

Mali 1963 2014 2003 n/a

Malta n/a 2000 n/a 2001

Mauritania 1916? 1989 1962 n/a

Mauritius 1930 1965 1958 2009

Mexico 1905 1982 1971 n/a

Micronesia, Fed. Sts. n/a 1986 1971 n/a

Moldova n/a 1963 n/a 2007

Mongolia 1895? 2002 1965 n/a

Morocco 1905? 1993 1958 n/a

Mozambique 1924? 2016 1977 n/a

Myanmar 1925? 1990 1961 n/a

Namibia 1926? 1982 1977 n/a

Nepal 1946? 2004 1984 n/a

Netherlands 1869 1932 1883 1995

New Caledonia 1861? 1992 1968 2008

New Zealand n/a 2016 1870 1929

Nicaragua 1900? 1996 1973 n/a

Niger 1917? 2016 1987 n/a

Nigeria 1897? n/a 1978 n/a

Norway n/a 1954 1879 1980

Oman 1934? 1991 1978 n/a

Pakistan 1918? 1994 1980 n/a

Panama 1859? 1982 1966 n/a

Papua New Guinea 1938? 1986 1967 n/a

Paraguay n/a 1994 1950 n/a

Peru 1921? 1989 1962 n/a

Philippines 1894? 1981 1985 n/a

54



Calculated Transition Start and End Dates

CDR CBR

Country Start End Start End

Poland n/a 1957 n/a 2004

Portugal 1919 1959 1925 2009

Puerto Rico 1905? 1961 1947 2008

Qatar n/a 1970 n/a 2013

Romania 1902 1962 1903 1998

Russian Federation 1891 1951 1900 1990

Rwanda 1881? n/a 1984 n/a

St. Lucia 1899? 1978 1969 2010

St. Vincent and the Grenadines 1884? 1977 1961 2002

Samoa n/a 1992 n/a n/a

Saudi Arabia 1932? 1988 1974 n/a

Senegal 1931? 2001 1972 n/a

Serbia (Yugoslavia from 1900) 1875 1958 1920 1998

Seychelles 1874? 1980 1965 2001

Sierra Leone 1956 n/a 1997 n/a

Singapore 1910 1961 1959 1981

Slovenia n/a 2011 n/a 1998

Solomon Islands 1861? 2014 1979 n/a

Somalia 1915? 2016 2004 n/a

South Africa n/a 1972 n/a n/a

Spain 1890 1960 1890 1999

Sri Lanka 1935 1962 1962 n/a

Sudan 1862? 2010 1974 n/a

Suriname n/a 1985 1963 n/a

Swaziland 1922? 1982 1978 n/a

Sweden 1710 1958 1854 1969

Switzerland n/a 1953 n/a 1996

Syrian Arab Republic 1915? 1985 1975 n/a

Taiwan 1904? 1966 1955 n/a

Tajikistan n/a 2012 1962 n/a

Tanzania 1870? 2016 1966 n/a

Thailand 1902? 1979 1959 1999

Togo 1928? 1987 1975 n/a

Tonga n/a 1974 1963 n/a
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Calculated Transition Start and End Dates

CDR CBR

Country Start End Start End

Trinidad and Tobago 1897 1966 1961 2002

Tunisia 1881? 1999 1975 1999

Turkey 1927 1990 1958 2006

Turkmenistan 1869? 1992 1960 n/a

Uganda n/a 2016 2001 n/a

Ukraine n/a n/a n/a 1999

United Arab Emirates n/a 1977 n/a 2010

United Kingdom 1794 1958 1885 1937

United States 1700? 1954 1803 1980

Uruguay n/a 1939 n/a 1941

Uzbekistan 1861? 1995 1960 n/a

Vanuatu n/a 1998 n/a n/a

Venezuela, RB 1915 1975 1973 n/a

Vietnam 1925? 1981 1962 2005

Yemen, Rep. 1938? 1996 1986 n/a

Zambia n/a 2016 1971 n/a

Zimbabwe 1925? 1968 1956 n/a

D Extension of GDP per capita data

Our main source for GDP per capita data is the 2018 version of Maddison’s database. While

this database provides us with estimates for some countries going as far back as the year 1 CE,

the time series for most countries does not start until the early 19th century or later, which

is after many countries entered the CBR and CDR transitions. To allow the construction of

a balanced panel for the empirical analysis in Section 4, we make a small number of cautious

imputations of GDP per capita values for the year 1500. The set of countries in the Maddison

database can be divided into four categories:

1. Countries that have a GDP per capita value for the year 1500.

2. Countries that do not have a GDP per capita value for the year 1500, but which have

some value given between the years 1 and 1650.

3. Countries that do not have any GDP per capita value between the years 1 and 1650, but

which have a value given between 1650 and 1900, which is not greater than $1,176.

56



4. All other countries.

There are 11 countries in category 1. There are also 11 countries in category 2. For these

countries, we assign for the year 1500 the value of GDP per capita from the closest year prior

to 1650. In doing so, we are taking advantage of the historical consensus that GDP per capita

changed very slowly and exhibited close to zero long-run growth during the pre-modern era.

Category 3 is comprised of 26 countries. These countries have some data available for GDP

per capita prior to the 20th century. Furthermore, based on these data, they were not at

this point any richer than was England in the 13th century–the mean GDP per capita that

the Maddison database gives for England from 1262-1312 is $1,176. There is little harm in

assuming that these countries were in the pre-modern regime of no economic growth, and that

their GDP per capita was the same in 1500 as it was in the first year we observe it. While

this may not be exactly true, it is approximately so. Thus, for these countries we impute the

earliest available value for GDP per capita to the year 1500.

Categories 1 through 3 are comprised of 48 countries. The remaining 138 countries in our

data set belong to category 4. Some of these countries have GDP per capita estimates dating

back to the 18th or 19th centuries, but these estimates are too high to presume that they

pre-date the advent of modern economic growth. Some countries do not have any data for

GDP per capita until well into the 20th century. For these countries, even if they appear quite

poor during the first year of observation, we do not project their initial first GDP per capita

observation all the way back from, say, 1950 or 1975 to the year 1500.

E Demographic contagion: Population-weighted

Here we show results for an alternative version of the demographic contagion model presented

in Section 4.3, in which the spillover effect is weighted by a country’s share of the population.

Formally, equation (8) is now:

Ait ≡

[
N∑
j=1

gijpjIj,t−1

]ψ
, (19)

where pj is country j’s share of the global population. For each year from 1950 onward, the

weight applied is equal to the country’s share of the global population (using World Bank data).

Prior to 1950, population data by country are less available, so we simply apply the 1950 weights

to all previous years, as a first approximation. In order to use weights based on population

shares from the data for these years, many less developed countries with shorter data samples

need to be excluded.
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Table A2: Determinants of the start of the CBR transition, population-weighted

(1) (2) (3) (4) (5) (6) (7) (8) (9)
cons -55.79 -68.23 -63.93 -59.77 -57.36 -91.31 -79.77 -52.72 -48.19

(17.22) (19.31) (19.53) (19.53) (19.45) (21.76) (22.33) (21.63) (19.43)

lnGDPPC 1.03 1.45 1.33 11.99 11.43 1.95 17.41 10.46 9.23
(0.43) (0.48) (0.49) (4.85) (4.84) (0.54) (5.66) (5.36) (4.85)

lnGDPPC 2 -0.00 -0.01 -0.01 -0.69 -0.66 -0.11 -1.04 -0.61 -0.53
(0.00) (0.00) (0.00) (0.30) (0.30) (0.03) (0.36) (0.33) (0.30)

access 0.09 0.19 5.68 1.14 0.00 0.00 0.43 1.67
(0.01) (0.16) (0.60) (0.16) (0.00) (0.05) (0.11) (0.26)

determinants of Ait

geo prox. 4.63

< 800km 1.63 1.57

800-2000km 0.54 0.53

ling. prox. -7.96

relig. prox. -3.66

legal prox. 0.64 0.53

ψ, curv. 0.84 0.72 0.84 0.90 0.97 0.76 0.86

LLn -254.1 -206.1 -205.8 -201.8 -196.7 -200.0 -203.9 -205.2 -195.2
Pseudo-R2 0.184 0.338 0.339 0.352 0.368 0.358 0.345 0.341 0.373
N. Obs. 19230 19230 19230 19230 19230 19230 19230 19230 19230

Note: Standard errors of the estimated coefficients are given in parentheses.

Table A2 and Figures 33, 34, and 35 show the results. The direction, magnitude, and

significance of all estimated parameters are essentially unchanged.
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“Access to transitions” variable Transition prob., given access implied
implied by spec. (11) by spec. (11) and GDPpc = $2000
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Figure 33: Demographic contagion

59



1750 1800 1850 1900 1950 2000
observed transition date

1750

1800

1850

1900

1950

2000

m
ea

n 
pr

ed
ic

te
d 

tr
an

si
tio

n 
da

te

IND

USA
IDN

JPN
MEX

DEU

TUR

FRA

GBR

ITA

MMR

ESP

MARROM
CHL

GRCPRT

SWE

FIN

ALB

Figure 34: Within sample predictions, Spec.
(9)
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F An empirical analysis of CDR transitions

Figure 36 shows the fit of the logit estimation for CDR when the only explanatory variable is

log GDP per capita. This specification replicates well the distribution of log GDP per capita at

the start of the CDR transition. This specification does not perform well, however, in replicating

the distribution of CDR transition starts over time or in predicting transition start dates for

individual countries, as seen in Figures 37 and 38.
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Figure 37: Within sample predictions
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Figure 38: Distribution of Transtion Dates

F.1 Demographic contagion for the CDR

Table A3 reports the results of the logit regression described in Section 4 for the CBR. Spec-

ification (1) shows the results of the regression without including any inter-country influence.

Specification (2) adds a global count of the number of countries that have begun the transition,
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and specification (3) adds some curvature to that sum. Specifications (4) through (11) weight

the influence of one transitioned country on other countries according to the inverse distance

between them, as determined by various measures of distance. When included by themselves,

geographic distance, linguistic distance and legal distance have positive and significant esti-

mated coefficients, with geographic distance having somewhat more explanatory power than

the others. While no significant relationship is detected for religious distance, legal proximity

is clearly significant.

Table A3: Determinants of the start of the CDR transition

(1) (2) (3) (4) (5) (6) (7) (8) (9)
cons 9.28 -16.00 1.27 13.13 -36.07 1.81 1.36 -8.60 -30.40

(57.42) (56.19) (54.76) (57.08) (62.46) (54.52) (54.72) (56.57) (57.90)

lnGDPPC -0.63 0.15 -0.34 -6.42 6.81 -0.32 -3.44 0.02 6.19
(1.52) (1.49) (1.45) (15.14) (16.47) (1.44) (14.52) (15.20) (15.29)

lnGDPPC 2 0.01 -0.00 0.00 0.47 -0.41 0.02 0.29 -0.00 -0.44
(0.01) (0.01) (0.01) (1.00) (1.08) (0.10) (0.96) (1.02) (1.01)

access 0.13 1.22 9.68 3.09 2.13 1.29 2.41 3.96
(0.02) (0.85) (2.28) (0.55) (0.55) (0.51) (0.45) (0.70)

determinants of Ait

geo prox. 5.08

< 800km 1.92 0.94

800-2000km 0.88 0.92

ling. prox. 1.81

relig. prox. 0.18

legal prox. 2.08 1.37

ψ, curv. 0.42 0.60 0.70 0.50 0.43 0.55 0.86

LLn -128.0 -106.7 -104.1 -98.6 -94.3 -103.0 -104.0 -100.6 -92.5
Pseudo-R2 0.079 0.232 0.251 0.291 0.321 0.259 0.251 0.277 0.334
N. Obs. 7680 7680 7680 7680 7680 7680 7680 7680 7680

Note: Standard errors of the estimated coefficients are given in parentheses.

In Figure 39, we look at the access to transitions measure implied by specification (9) (all the

distributions are smoothed using a Gaussian kernel). Using the estimated parameters, access

is calculated as

Ait ≡

[
N∑
j=1

exp[Dij + 1.37× cmlij]Ij,t−1

]0.86

,
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where Dij ≡ 0.94× 1{ldiij < ln800}+ 0.92× 1{ln800 ≤ ldiij < ln2000}.

“Access to CDR transitions” variable Transition prob., given access implied
implied by spec. (11) by spec. (11) and GDPpc = $2000
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Figure 39: Demographic contagion

The top left panel of Figure 39 shows the distribution of this measure at different points

in time. Not surprisingly, as more countries transition, this distribution moves steadily to the

right. The top right panel of Figure 39 plots the transition probabilities implied if each country

is assigned its actual access to CDR transitions value and GDP per capita equal to $2000.

Here we can see that in 1850 and 1900 “Access to CDR transitions” in the great majority of

countries was such that their probability of transition at $2000 GDP per capita would have

been relatively small. In 1950 and the year 2000, the distributions shift outward somewhat.

The bottom left panel of Figure 39 shows the evolution of the distribution of GDP per capita

over time. This distribution shifts to the right as time passes and more countries enjoy higher
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levels of GDP per capita. The bottom right panel of Figure 39 shows the distribution of the

probability of CDR transition, given the observed GDP per capita for each country, assuming

they have the mean level of “Access to CDR transitions” existing in the year 2000. This panel

demonstrates the importance of the complementarity between a country’s level of development

and the influence of its neighbors. In 1850, even countries with relatively high log GDP per

capita had a low transition probability. In comparison, by 2000, a country with a relatively

low level of GDP per capita ($2000) has a greater than 40% probability of starting the CDR

transition if enough of their neighbors started before them.

G A note on British data

Since a large part of our calibration relies on British data, which come in different territorial

units (e.g., England and Wales vs. Great Britain vs. the United Kingdom), this appendix

provides further details.

For vital statistics, 1541 through 1839 correspond to England only, while 1840 through

1854 correspond to England and Wales. From 1855 through 1921, these variables correspond

to Great Britain: England, Wales, and Scotland. From 1922 onward, they correspond to the

United Kingdom (Great Britain plus Northern Ireland).

For GDP per capita, 1500 through 1700 corresponds to England alone. From 1700 to 1850,

the numbers correspond to Great Britain: England, Wales, and Scotland. After 1850, they

correspond to the United Kingdom, which exists in two phases: from 1850 to 1921 including

all of Ireland, and from 1922 onward including only Northern Ireland.

Nonetheless, given the demographic and economic weight of England within the British

Islands, adjusting these data to slightly different territorial units (if we had access to the raw

micro data, which, unfortunately, we do not) would have only a minor impact on our results.

H Optimality conditions

First, notice that no solution for the household problem exists if the income of the current

adults cannot cover the subsistence requirement c. Also, any nt ≤ n
s0t

cannot be part of an

optimal solution. Combining these two requirements, a necessary and sufficient condition for

the existence of an optimal solution is that

1− (1 + n)c

wut + wstht
> 0.

If this condition is met, we can turn our attention to the optimality conditions. The first-
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order condition for nt is:

1

c1
t

[
(wut + wstht)(τ1 + τ2s

0
t et) + s0

t c
]
≥ γ

s0
t

s0
tnt − n

. (20)

This equation must hold with strict equality if nt > 0, which will always be the case, as long

as n > 0, as we assume in our calibration. Thus, we get an expression for nt in terms of et:

nt =
γ

1 + γ

 1− c
wut +wstht

τ1 + τ2s0
t et +

s0t c

wut +wstht

+
1

γ

n

s0
t

 (21)

The first-order condition for et ≥ 0 is given by

(wut + wstht)nts
0
t τ2

c1
t

≥
φs1

th
υ
tw

s
t+1

wut+1 + hυtw
s
t+1e

ξ
t

eξ−1
t . (22)

Since ξ ∈ (0, 1), et = 0 can never be optimal. Therefore, this equation holds with strict equality

and we get another closed-form expression for nt in terms of et:

nt =

φs1t
1+φs1t

(
1− c

wut +wstht

)
φs1t

1+φs1t

(
τ1 +

s0t c

wut +wstht

)
+

s0t τ2
1+φs1t

wut+1

hυt w
s
t+1
e1−ξ
t + τ2s0

t et
(23)

Combining equations (21) and (23), we can derive ∂u(nt(et),et)
∂et

≡ f(et):

f(et) =

φs1t
1+φs1t

(
1− c

wut +wstht

)
φs1t

1+φs1t

(
τ1 +

s0t c

wut +wstht

)
+

s0t τ2
1+φs1t

wut+1

hυt w
s
t+1
e1−ξ
t + τ2s0

t et︸ ︷︷ ︸
b̃(et)

− γ

1 + γ

 1− c
wut +wstht

τ1 + τ2s0
t et +

s0t c

wut +wstht

+
1

γ

n

s0
t


︸ ︷︷ ︸

k̃(et)

(24)

Next, we can examine the labor-market clearing conditions. The total number of young and

middle-aged adults and elders working in the economy at time t is given by N1
t , N2

t , and N3
t

respectively. Market clearing for labor requires that

La,t + Lt = N1
t + ζ2N2

t + ζ3N3
t ≡ Lt, (25)
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and

Ha,t +Ht = htN
1
t + ζ2ht−1N

2
t + ζ3ht−2N

3
t ≡ H t. (26)

Combining equation (14) with equations (25) and (26), we get

αAt
(
Lt − Lm,t

)α−1 (
H t −Hm,t

)ρa−α
= βBtL

β−1
m,t H

ρm−β
m,t . (27)

Similarly, combining equation (15) with equations (25) and (26)), we get

(ρa − α)At
(
Lt − Lm,t

)α (
H t −Hm,t

)ρa−α−1
= (ρm − β)BtL

gb
m,tH

ρm−β−1
m,t . (28)

The last two equations imply:

Hm,t

H t

=
1

β
α
ρa−α
ρm−β

Lt
Lt

+ 1− β
α
ρa−α
ρm−β

. (29)

Equation (27) can be developed into

α

β

At
Bt

Lα−βt

Hα−β+ρm−ρa
t

=

(
1− Lm,t

Lt

)1−α

(
Lm,t
Lt

)1−β

(
Hm,t
Ht

)ρm−β
(

1− Hm,t
Ht

)ρa−α (30)

Equations (29) and (30) are two equations in two unknowns, Hm,t
Ht

and Lm,t
Lt

.

Combining equations (29) and (30), we can derive z
(
Lm,t
Lt

)
:

z

(
Lm,t

Lt

)
≡ 1− Lm,t

Lt

−
(
Lm,t

Lt

) 1−ρm
1−ρa

((
1− β

α

ρa − α
ρm − β

)
Lm,t

Lt
+
β

α

ρa − α
ρm − β

)−ρa+ρm−β+α
1−ρa

×

×

(
α

β

At
Bt

Lα−βt

Hα−β+ρm−ρa
t

) 1
1−ρa (β

α

ρa − α
ρm − β

) ρa−α
1−ρa

(31)

The equilibrium value of Lm,t
Lt

can be characterized as the unique point at which z
(
Lm,t
Lt

)
= 0.

66



I Equilibrium

Define the vector of time-t state variables xt ≡ [At, Bt,Mt, N
1
t , N

2
t , N

3
t , h

1
t , h

2
t , h

3
t ]
′
. Let the

law of motion xt+1 = mt(xt) be given by:

N1
t+1 = s0

t s
1
tntN

1
t

N2
t+1 = s2

tN
1
t

N3
t+1 = s3

tN
2
t

h1
t+1 = et

h2
t+1 = h1

t

h3
t+1 = h2

t (32)

and a series of technology levels {At, Bt,Mt}Tt=0. The survival probabilities s0
t , s

1
t , s

2
t and s3

t are

determined by Mt according to equation (13).

Labor allocations Lm,t and Hm,t are implicit functions of xt characterized by equations (25),

(26), (29), and (31). Given labor allocations, the wages wut and wst are also implicit functions

of xt characterized by equations (14) and (15).

Define w̃t+1 ≡
wst+1

wut+1
. According to the solution characterized by (21) and (24), nt and et are

both implicit functions of xt and w̃t+1. From equation (32), we see that xt+1 is determined by

xt and the choices nt and et, so we can reformulate Lm,t and Hm,t as functions of xt, nt, and et.

Finally, employing equations (14) and (15) once more, define

gt(w̃) ≡ ρb − β
β

Lt+1,m[xt, nt(xt, w̃), et(xt, w̃)]

Ht+1,m[xt, nt(xt, w̃), et(xt, w̃)]
− w̃. (33)

Given a set of initial cohort sizes and education levels N1
0 , N2

0 , N3
0 , h1

0, h2
0, and h3

0, and

a series of technology levels {At, Bt,Mt}Tt=0, an equilibrium consists of a series {w̃t+1}Tt=0 such

that gt (w̃t+1) = 0 and xt+1 = mt(xt) for all t.

The function gt(w̃) is monotonically decreasing and continuous almost everywhere. For

certain parameter values, it may have a single point of discontinuity at w̃0, the level of the

wage ratio where the optimal choice of education shifts from positive to zero. The only way

for a solution not to exist for equation (33) is if lim
w̃→w̃+

0

gt(w̃) > 0 and lim
w̃→w̃−0

gt(w̃) < 0. With the

subset of the parameter space that we work with, however, this condition never holds and we

always find a solution.
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J Steady state

In the steady state, fertility is constant at replacement level: nt = ñ = 1
s0s1

. The size of

each cohort is constant over time, with N2 = s2N1 and N3 = s3N1. Education e, human capital

h, technologies A and B, and wages wu and ws are likewise constant over time.

Then, the stock of unskilled and skilled labor is constant and given by:

L = (1 + s2ζ2 + s2s3ζ3)N1

H = (1 + s2ζ2 + s2s3ζ3)N1h.

Skilled and unskilled wages are:

wu = αALα−1
a Hρa−α

a = βBLβ−1
m Hρb−β

m ,

and

ws = (ρb − α)ALαaH
ρa−α−1
a = (ρb − β)BLβmH

ρb−β−1
m .

For the purposes of characterizing the steady state, it is convenient to define c̃ ≡ c
wu

.

Lemma 1 If a steady state exists, it can be characterized by the following four equations:

h =

(
φs1

ñs0τ2

(1 + z̃)(1− τ1ñ)− c̃(1 + s0ñ)

z̃(1 + φs1) + 2 + φs1 + 1
z̃

) ξ
1−υ

N1 =

 (
1− Lm

L̄

)1−ρa
(1 + s2ζ2 + s2s3ζ3)

ρm−ρa hα−β+ρm−ρa(
Lm
L̄

)1−ρm
((

1− β
α
ρa−α
ρm−β

)
Lm
L̄

+ β
α
ρa−α
ρm−β

)−ρa+ρm−β+α
α
β
A
B

(
β
α
ρa−α
ρm−β

)ρa−α

ρa−ρm

Lm
L̄

=
z̃ − ρa−α

α
ρb−β
β
− ρa−α

α

z̃ =
−b̂±

√
b̂2 − 4âĉ

2â
,
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with â, b̂, and ĉ defined as:

â ≡ 1− φs1(1− n̄s1)

γ
− τ1

s0s1

(
1 +

1− n̄s1

γ

)
b̂ ≡ 1−

(
1 +

1− n̄s1

γ

)
2τ1 + s0c̃

s0s1
+ (1− c̃)

(
1− φs1(1− n̄s1)

γ

)
ĉ ≡ 1− c̃−

(
1 +

1− n̄s1

γ

)
τ1 + s0c̃

s0s1

Proof: In the steady state, the stock of unskilled and skilled labor is given by:

L = (1 + s2ζ2 + s2s3ζ3)N1

H = (1 + s2ζ2 + s2s3ζ3)N1h

Furthermore, skilled and unskilled wages are:

wu = αALα−1
a Hρa−α

a = βBLβ−1
m Hρb−β

m ,

and

ws = (ρb − α)ALαaH
ρa−α−1
a = (ρb − β)BLβmH

ρb−β−1
m

Thus, the skill premium is

ws

wu
=
z̃

h
. (34)

where z̃ ≡ ρa−α
α

(
1− Lm

L

)
+ ρb−β

β
Lm
L

.

The choice of education is characterized by:

− e1+ ξ
1−υws

1 + φs1

φs1
− ewu2 + φs1

φs1
+ e

ξ
1−υ

ws(1− τ1ñ)

ñs0τ2

− e1− ξ
1−υ

1

φs1

wu

ws
wu +

wu(1− τ1ñ)

ñs0τ2

− c(1 + s0ñ)

ñs0τ2

≤ 0.

To analyze this expression, substitute ws = z̃
h
wu, c = c̃wu, and h = e

ξ
1−υ , and then divide

everything by wu:

−ez̃1 + φs1

φs1
− e2 + φs1

φs1
+ z̃

1− τ1ñ

ñs0τ2

− e1

z̃

1

φs1
+

1− τ1ñ

ñs0τ2

− c̃(1 + s0ñ)

ñs0τ2

≤ 0.
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Rearranging:

e ≥ φs1

ñs0τ2

(1 + z̃)(1− τ1ñ)− c̃(1 + s0ñ)

z̃(1 + φs1) + 2 + φs1 + 1
z̃

. (35)

Since in the steady state, fertility must be at replacement level, n = ñ ≡ 1
s0s1

, we use

equations (21) and (34) to obtain

ñ =
γ

1 + γ

[
1− c̃wu

wu+z̃wu

τ1 + τ2s0e+ s0c̃wu

wu+z̃wu

+
1

γ

n

s0

]

=
γ

1 + γ

[
1− c̃

1+z̃

τ1 + τ2s0e+ s0c̃
1+z̃

+
1

γ

n

s0

]

or:

ñ− 1

1 + γ

n

s0
=

γ

1 + γ

1− c̃
1+z̃

τ1 + τ2s0e+ s0c̃
1+z̃

.

Next, we substitute in for e using equation (35), and solve for z̃:

z̃2

[
1− φs1(1− ns1)

γ
− τ1g̃

]
+ z̃

[
1− g̃(2τ1 + s0c̃) + (1− c̃)

(
1− φs1(1− ns1)

γ

)]
+ 1− c̃− g̃(τ1 + s0c̃) = 0 (36)

where g̃ ≡ ñ
(

1 + 1−ns1
γ

)
.

If a solution for z̃ exists, then it solves:

z̃ =
−b̂±

√
b̂2 − 4âĉ

2â

where:

â = 1− φs1(1− ns1)

γ
− τ1

s0s1

(
1 +

1− ns1

γ

)
b̂ = 1−

(
1 +

1− ns1

γ

)
2τ1 + s0c̃

s0s1
+ (1− c̃)

(
1− φs1(1− ns1)

γ

)
ĉ = 1− c̃−

(
1 +

1− ns1

γ

)
τ1 + s0c̃

s0s1
.
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The fraction of unskilled labor used in the modern sector can then be recovered as:

Lm

L
=

z̃ − ρa−α
α

ρb−β
β
− ρa−α

α

If Lm
L

implied by one of the two quadratic solutions is between 0 and 1, then it is a solution. If

neither quadratic solution meets this criterion, then no steady state exists.25 In the case of its

existence, the steady-state education is:

e =
φs1

ñs0τ2

(1 + z̃)(1− τ1ñ)− c̃(1 + s0ñ)

z̃(1 + φs1) + 2 + φs1 + 1
z̃

,

and steady-state human capital is simply h = e
ξ

1−υ .

Next, we can solve for the steady-state level of population. From equation (31):

(
Lm

L

) 1−ρm
1−ρa

((
1− β

α

ρa − α
ρm − β

)
Lm

L
+
β

α

ρa − α
ρm − β

)−ρa+ρm−β+α
1−ρa

×
(
α

β

A

B

Lα−β

Hα−β+ρm−ρa

) 1
1−ρa

(
β

α

ρa − α
ρm − β

) ρa−α
1−ρa

= 1− Lm

L
.

Substituting in for L an H yields:

N1 =

 (
1− Lm

L

)1−ρa
(1 + s2ζ2 + s2s3ζ3)

ρm−ρa hα−β+ρm−ρa(
Lm
L

)1−ρm
((

1− β
α
ρa−α
ρm−β

)
Lm
L

+ β
α
ρa−α
ρm−β

)−ρa+ρm−β+α
α
β
A
B

(
β
α
ρa−α
ρm−β

)ρa−α

ρa−ρm

.

K Accounting for intra-period mortality

This section describes the initial values of the survival probabilities that we use in our

calibration of the model. A proper definition of s0
0, s1

0, s2
0, and s3

0 will take into account both

the probability of survival until the next period and the average number of years alive during

the following period (our period lasts 20 years). To that end, we define s̃x as the average fraction

of those alive at the beginning of age x that are alive during age x; and sx as the fraction of

those alive at the beginning of age x that are alive at the beginning of age x+ 1, where x takes

25We checked, numerically, that for our calibration (and a wide range of robustness values of parameters),
we have one and only one solution to this quadratic equation between 0 and 1. We conjecture that, if a solution
exists between 0 and 1, such a solution is unique.
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values in {1, 2, 3, 4}. Then:

s0 ≡ s̃1

s1 ≡ s1s̃2

s2 ≡ s2s̃3

s3 ≡ s3s̃4.

Furthermore, let the function St(x), mapping R+ → [0, 1], represent the survival probability

of birth cohort t to age x, where x is measured in years. Let St(0) = 1 and St(80) = 0. We can

then define:

s1(t) ≡ St(20)

s2(t) ≡ St(40)

St(20)

s3(t) ≡ St(60)

St(40)

s̃1(t) ≡ 1

20

∫ 20

0

St(x)dx

s̃2(t) ≡ 1

20

1

s1(t)

∫ 40

20

St(x)dx

s̃3(t) ≡ 1

20

1

s2(t)

∫ 60

40

St(x)dx

s̃4(t) ≡ 1

20

1

s3(t)

∫ 80

60

St(x)dx.

Finally, let st represent the fraction of a cohort alive at the start of a given time t that

is alive at the end of the period. Suppose that instead of everyone dying in a single moment

at the end of the period, mortality is spread out across x distinct sub-periods and that the

mortality hazard is constant across sub-periods. Then, the constant mortality hazard is s
1
x
t ,

and the average fraction of people alive during the entire period is:

s̃t =
1 + s

1
x
t + s

2
x
t + · · ·+ s

x−1
x

t

x
=

1− st
x(1− s

1
x
t )
.

L English mortality data

Table A4 shows the English mortality data that we use to pin down the pre-modern survival

probabilities in our model. The data are derived from Wrigley et al. (1997, ch. 6). Deaths
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during the first year of life are derived from Table 6.4 and represent averages over the period

from 1675 to 1699. Deaths between the ages of 1 and 14 are derived from Table 6.1 and represent

averages over the period 1680-1699. Deaths between the ages of 25 and 79 are derived from

Table 6.19 and represent averages over the period 1680-1699. Deaths between the ages of 15

and 24 are imputed by assuming a linear progression between the 10-14 years age range and

the 25-29 years age range. All deaths are given as rates per 1000 living members of the cohort.

Initial survival probabilities are calculated using the method described in Section K, where

St(x) is a stepwise function consistent with the data in Table A4.

Table A4: Mortality in England, 1680-1699

age range deaths per 1000
0 days 50.90

1-6 days 28.90
7-29 days 34.10

30-59 days 17.80
60-89 days 13.10

90-179 days 24.60
180-274 days 16.00
275-364 days 16.60

1-4 years 108.65
5-9 years 45.05

10-14 years 26.15
15-19 years 46.83
20-24 years 67.52
25-29 years 88.20
30-34 years 87.20
35-39 years 97.20
40-44 years 93.95
45-49 years 119.15
50-54 years 145.85
55-59 years 191.15
60-64 years 244.70
65-69 years 269.70
70-74 years 411.85
75-79 years 524.00
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