
Online appendix: Algorithm for finite-action two-player games

This appendix describes the algorithm that computes the grid-invariant equilibrium for finite-

action two-player games, and for any finite grid g, in a similar spirit to Appendix B of the paper.

One can also use this algorithm to introduce its limiting version, that is, as the fineness of the

grid ϕ(g) goes to zero.1 A Matlab code for the limiting version of this algorithm is also available

online, at http://www.stanford.edu/~leinav.

This algorithm and the one presented in Appendix B of the paper are similar, but are not

the same. Solving for an arbitrary number of actions requires significant adaptations. Most

importantly, the mechanics of the two-by-two algorithm follow more closely the concepts of critical

points and associated stages defined in the paper (Definitions 1 and 2): each additional step in the

algorithm of Appendix B is associated with a new single stage. In contrast, this new algorithm

sometimes merges multiple stages into one. Loosely speaking, this happens when critical points

“trigger” each other, and therefore converge to each other as the fineness of the grid ϕ(g) goes to

zero.2 Another adaptation is in the search for the next critical point (part 2 of the algorithm).

With two actions, we only needed to consider a binary decision by each player: whether to switch

at (a, t) or not.With more actions, this decision also includes the choice of which action to switch

into.

Let us make a few additional comments. First, for simplicity of computation and notation,

we have written this algorithm (and the Matlab code) for the set of cost technologies that can

be described by Cp(ap → a0p, t) = c(t). It would be easy to extend it for some more general

families. For example, we could easily allow cost technologies that can be described by Cp(ap →
a0p, t) = θ

ap→a0p
p c(t) (where the θ

ap→a0p
p ’s are a set of parameters). However, more work would be

needed to accommodate other types of cost technology. Second, we introduce some notation. As

in Appendix B of the paper, if p is one player we use ∼ p to denote the other player. We also

define nextroundp(t) ≡nextp(next˜p(t)). In words, nextroundp(t) is the first point in time after t
at which player p can play after the other player has already moved. We also use this operator

recursively, so that nextroundnp (t) would mean applying this operator n times.

Given a particular game (Π, c, g) with K1 and K2 actions for players 1 and 2, respectively, the

algorithm steps are described below.

Initialization: Set m = 0 (stage counter, starting from the end); t∗0 = T (the last critical

time encountered); V0(a, p) = Π (continuation value of player p at profile a just before t∗0);
AM0(a, p) = ∅ (a function that indicates if there is an active switch just before time t∗m by player
p from profile a, and, if there is, to which action. With some abuse of notation, we designate this

by ∅ when there is no active switch).

1Since the switching cost technology is continuous, the limiting version is almost identical to the finite version

of the algorithm. Unless otherwise noted, the only changes are that nexti(t) and previ(t) are replaced by t.
2As an example, running this algorithm on the motivating example of Section 2, the stages described in the third

and fourth row of the table in that section would be associated with a single step of the algorithm.

1

Update (m,Vm, AMm):

1. m = m+ 1

2. Find the next critical time t∗m, and the action a∗ and player p∗ associated with it.3 This is
done by comparing the potential benefits and costs for each move.

(a) We use some auxiliary definitions:

i. Let q(a, p) be the first player who switches out of a if player ∼ p is the first who

moves. More precisely, let

q(a, p) =


∼ p if AMm−1(a,∼ p) 6= ∅
p if AMm−1(a,∼ p) = ∅ and AMm−1(a, p) 6= ∅
∅ otherwise

ii. Let SMm−1(a, p) be the longest ordered set of action profiles (a0, a1, ..., ak−1, ak)
such that a0 = a and, for i > 0

ai =

(
(ai−1∼q(a,q), AMm−1(ai−1, q(a, q))) if i is odd and AMm−1(ai−1, q(a, q))) 6= ∅
(ai−1q(a,q), AMm−1(ai−1,∼ q(a, q))) if i is even and AMm−1(ai−1, q(a, q)) 6= ∅

This defines the sequence of consecutive switches within stage m− 1 that starts at
a and ends at a profile from which there is no active move. We denote this final

node by SMm−1(a, p). The sequence is finite and is solely a function of AMm−1.

iii. Given SMm−1(a, p) = (a0, ..., ak), define FSm−1(a, p) =
kP
i=1

I(ai−1p 6= aip) where I(·)
is the indicator function. FSm−1 computes the number of switches by player p in
the SMm−1(a, p) sequence.

iv. Let ∆Vm−1(a, p, bp) ≡ Vm−1(SMm−1((bp, a∼p), p)) − Vm−1(SMm−1(a, p)). This

difference in values stands for the benefit (or loss) of a switch by player p from

profile a to action bp ∈ Ap − {ap}, without accounting for the switching cost of
such a move. Let also∆FSm−1(a, p, bp) ≡ FSm−1((bp, a∼p), p)−FSm−1(a, p). This
difference stands for the difference in the number of subsequent immediate moves

by player p, when considering a move from profile a to action bp.

(b) We now use these definitions to find the next critical time:

i. First, we compute ttm(a, p, bp), the first point in time at which player p would

find it profitable to switch from profile a to action bp. This involves three different

cases, as shown below. The first is when the switch gives a negative value (and

therefore is never profitable). The second is a case in which the difference in values

favors a switch, and, moreover, if player p does not switch, he will be making

more immediate subsequent switches than if he switches. This means that player

3This part of the algorithm corresponds to the subroutine FindNextStage in the associated Matlab code.

2

p would prefer to switch right away rather than staying put, so ttm(a, p, bp) kicks

in immediately. The third case is the “standard” case, in which the critical time is

the latest point on the gird at which the cost of switching is less than its benefit.4

ttm(a, p, bp)
5=



0

if ∆Vm−1(a, p, bp) < 0 or (∆Vm−1(a, p, bp) = 0 and ∆FSm−1(a, p, bp) ≥ −1)
prevp(t

∗
m−1)

if ∆Vm−1(a, p, bp) ≥ 0 and ∆FSm−1(a, p, bp) < 0, except for
(∆Vm−1(a, p, bp) = 0 and ∆FSm−1(a, p, bp) = −1)
max

n
t ∈ gp, t < t∗m−1|c(t) +

PFSm−1((bp,a∼p),p)
i=FSm−1(a,p)+1 c(nextroundip(t)) ≤ ∆Vm−1(a, p, bp)

o
if ∆Vm−1(a, p, bp) > 0 and ∆FSm−1(a, p, bp) ≥ 0

ii. Next, we compute for each profile a what is the latest time at which it is profitable

to switch out from this profile by each player. We make sure not to account

for those switches which were already active. More precisely, for each (a, p) we

compute

tm(a, p) =


0 if AMm−1(a, p) = argmax

bp∈Ap\{ap}
ttm(a, p, bp)

max
bp∈Ap\{ap}

ttm(a, p, bp) otherwise

iii. Finally, we compute the next critical time by finding the latest such time across

profiles and players. That is, we compute:

(a∗, p∗) = argmax
(a,p)

{tm(a, p)}, and

t∗ = max
(a,p)

tm(a
∗, p∗)

(c) Given (a∗, p∗):

Terminate if t∗ = 0, and if so set also m = m− 1.
Abort if |p∗| > 1.6 This implies that there are equal critical times for different players,
and that the solution is not grid invariant.

Otherwise, set t∗m = t∗ and p∗m = p∗, and continue to part 3.

4When ∆FSm−1(a, p, bp) > 0 one has to account for multiple switches. It is in this last case when the assumption

that c(t) is common to all players and moves helps considerably. To accommodate richer families of cost technologies,

one would need to introduce cumbersome notation to keep track of the costs associated with switching along the

SM sequence, instead of simply counting them.
5Note that by having weak inequalities within the max operator we implicitly assume that a player switches

whenever he is indifferent between switching or not.
6argmax is a correspondence. Given the way we construct tm(a,p), the multiple solutions must be associated

with a unique p∗ for any finite grid. In the limiting case, this is the only generic case. This is why the algorithm

may abort in non-generic cases.

3

3. We now enter a (“short”) phase in which the set of active switches gets computed at every

point in the grid until it “stabilizes,” as defined below. This is where (potentially) multiple

stages of the game (as defined in Definition 2) are computed within a single step of the

algorithm. This part of the algorithm is considerably different from the one described in

Appendix B of the paper.

(a) First, let

V temp(a, p) = Vm−1(SMm−1(a,∼ p∗m))−
PFSm−1(a,∼p∗m)

i=0 c(nextroundip(t
∗
m))

These are the continuation values for each player and profile just after t∗m.

(b) Second, use these continuation values and apply standard backward induction on the

game grid from time t∗m backwards. At each point in time, record the full set of

equilibrium strategies. Stop applying backward induction when the strategies for both

players remain constant for a full round. More precisely, stop at the latest t ∈ gp that

satisfies the following conditions: (i) next(t) ∈ g∼p; (ii) the strategies for p at t and
nextp(t) are the same; (iii) the strategies for ∼ p at next(t) and nextround∼p(next(t))
are also the same; and (iv) nextround∼p(next(t)) ≤ t∗m.7

(c) Finally, update AMm and Vm. The strategies for player p at t and those of ∼ p at

next(t) constitute AMm. The continuation values for player p at next(p) and those of

∼ p at t constitute Vm.

Terminate if
P
(a,p) I (AMm(a, p) 6= ∅) = K1(K2 − 1) + K2(K1 − 1) where I(·) is

the indicator function. This condition implies that the maximal possible switches are

active. Before termination, let also m = m, t∗m+1 = 0. Otherwise, go to part 1.

Output: The essential information of the algorithm consists of the number of stages of the

game, m, the critical points that define the end of each stage, (t∗m)mm=0, the strategies at every
stage (AMm)

m
m=0, and the continuation values at the earliest stage, Vm. The initial equilibrium

actions are given by the (generically) unique profile ainitial that has no active switches at the

earliest stage, i.e. AMm(ainitial, p) = ∅ for p = 1, 2. The equilibrium path can be computed by

tracing the sequence along the SMm(a, p)’s, stage by stage. In other words, start at ainitial, go to

SM1(ainitial, p), then continue to SM2(SM1(ainitial, p), p), and so on. The values for the game

are given by Vm(ainitial, p) for each player p.

7 In the case of the limiting algorithm this step is done by letting the players take alternate moves, all of them

taking place at time t∗m. This is correct since we know that when a player has consecutive moves, his incentives do

not change.

4

