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Commitment is typically modeled by assigning to one of the players the ability to

take an initial binding action. The weakness of this approach is that the fundamental

question of who has the opportunity to commit cannot be addressed, as it is assumed.

This paper presents a framework in which commitment power arises endogenously

from the fundamentals of the model. We construct a �nite dynamic game in which

players are given the option to change their minds as often as they wish, but pay

a switching cost if they do so. We show that for games with two players and two

actions there is a unique subgame perfect equilibrium with a simple structure. This

equilibrium is independent of the order and timing of moves and robust to other

protocol speci�cations. Moreover, despite the perfect information nature of the model

and the costly switches, strategic delays may arise in equilibrium. The �exibility of the

model allows us to apply it to various environments. In particular, we study an entry-

deterrence situation. Its equilibrium is intuitive and illustrative of how commitment

power is endogenously determined.

1 Introduction

Ever since Schelling (1960), commitment has been a central and widely used concept in economics.

Parties interacting dynamically can often bene�t from the opportunity to credibly bind themselves

to certain actions, or, alternatively, to remain �exible longer than their opponents. Commitment

is typically modeled through dynamic games in which one of the players is given the opportunity

to take an initial binding action, allowing him to commit �rst. This approach has the drawback

that the fundamental question of who has the opportunity to commit is driven by a modeling

decision. The main goal of this paper is to provide a game-theoretic framework in which the set of
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commitment possibilities is not imposed, but arises naturally from the fundamentals of the model.

Thus, issues such as preemption, bargaining power, credibility, and leadership can be addressed.

Consider Schelling�s original example of an army burning its bridges in response to a potential

attack by its enemy. If the enemy can commit to attack before the army decides to burn its

bridges, the enemy would obtain an easy victory. In contrast, if the army burns the bridges �rst

(and cannot rebuild them), this would prevent the attack, as the enemy would su¤er a signi�cant

loss from attacking. A simple way to capture these two alternative stories is to consider a game in

which each player makes a decision only once. The order of play gives the opportunity to commit

to the army who moves �rst. But which army is more likely to use this commitment opportunity?

How would the answer depend on the importance of the disputed land for each army�s chances of

winning the war? This stylized model cannot address these questions, as the ability to commit is

simply assumed. In contrast, the framework we develop does not rely on an exogenously speci�ed

choice of the order or timing of moves.

To o¤er a more speci�c and recent example, consider the competition between Boeing and

Airbus over the launching of the superjumbo. Both �rms had initially committed resources to

the development of a very large aircraft. Ultimately, Boeing backed o¤ and Airbus launched the

A380 superjumbo. As convincingly argued by Esty and Ghemawat (2002), since both �rms were

likely to share similar abilities in taking initial binding actions, the ultimate outcome was likely

to be driven by the asymmetric e¤ect of competition at the superjumbo segment on Boeing�s

and Airbus� pro�ts. Since Boeing�s existing jumbo (the 747) is the closest substitute to the

superjumbo, Boeing had a stronger incentive to soften superjumbo competition, and therefore a

greater incentive not to launch. Esty and Ghemawat (2002) make this argument using a simple

two-stage game of entry and exit. The premise of our model is that these stages (and their timing)

are not imposed; they will endogenously emerge as the key binding entry and exit decisions out

of a much larger set of decision opportunities. One of the main advantages of the framework is

its wide applicability; it provides a uni�ed way to think about the role of commitment in a broad

range of strategic interactions.

The model we develop has a �xed and known date in the future at which a �nal decision has

to be made. Prior to that date, players announce the actions they intend to take in this �nal date.

They can change their announced actions as often as they want. But, for the announcements to

be credible rather than cheap talk, we assume that if a player changes his previously announced

action he incurs a switching cost. In this manner, the announcements play the role of an imperfect

commitment device. We assume that as the �nal deadline approaches, the cost of switching

increases, and that just before the deadline these costs are so high that players are fully committed

to their announced actions. Generically, the model has a unique subgame perfect equilibrium

(henceforth spe). In Section 4 we show that in games with two players and two actions the spe

strategies have a simple structure. They can be described by a �nite and small number of stages.

Within a stage, a player�s decision only depends on the most recent announcements made, but not

on the exact point in time within the stage. This implies that, although players could potentially
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vary their decisions often, in equilibrium they seldom do so. In particular, on the equilibrium path

at most one player switches, and when he does so he does it only once. This equilibrium feature

points to another (endogenous) commitment strategy. Commitment may be achieved by partially

committing to a strategy that is eventually abandoned. Such ine¢ cient delays are often explained

by uncertainty or asymmetric information. Our model can rationalize such costly delays even in

a world of perfect information.

The main result of the paper (Theorem 1) is that the equilibrium of games with two players

and two actions is independent of the order and the timing of the moves. As long as both players

can revise their announcements frequently enough, the exact order and timing of their moves

have no impact. This accomplishes the main task of laying out a setting in which commitment

is not driven by order and timing assumptions. The model and results are presented for a two-

player and two-action setting. In Section 6 we show that while the results also generalize to any

�nite two-player game, the order independence result does not extend for general N -player games.

Nevertheless, we suggest interesting families of games for which it does. We defer the discussion

of the related literature to Section 7.

The three main assumptions of the model �a �xed deadline, increasing switching costs, and

payo¤s (net of switching costs) that only depend on the �nal decisions taken � cannot �t all

possible scenarios. However, the framework is �exible enough to accommodate a wide range of

interesting economic situations. Section 5 analyzes the well-studied problem of entry deterrence.

Consider any new market which is to be opened at a pre-speci�ed date (e.g. as a result of a patent

expiration, the introduction of a new technology, or deregulation). All the potential competitors

have to decide whether or not to enter. In order to be ready and operative on the opening day

they need to take certain actions (build infrastructure, hire labor, etc.). The increasing cost

assumption �ts well, as one can assume that the later these actions are taken, the more costly

they are.1 Other economic problems that can be analyzed using this setting are those that involve

strategic competition in time. Consider, for example, the decision of when to release a motion

picture. Movies� distributors compete for high demand weekends, but do not want to end up

releasing all at the same time. This raises the question of what determines the �nal con�guration

of release dates.2 Finally, the model may be also applied to elections and other political con�icts

in which a deadline is present.3

1Exiting may seem to be free. But if the assets bought for entering become more speci�c to the �rm as time

goes by, this involves an implicit cost in holding them: their scrap value diminishes. See Section 5 for more details.
2See Einav (2003) for an empirical analysis of the release date timing game.
3Consider for example the strategic decision by presidential candidates regarding the allocation of their resources

in the last weeks of the campaign (Strömberg, 2005).
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2 An Example

Before we formally introduce the model, we present a simple example that illustrates the model�s

�mechanics�and equilibrium structure. Consider the following entry deterrence game between an

incumbent and a potential entrant:

Entry No Entry

Fight 2;�10 10; 0

No Fight 5; 3 12; 0

The game is dynamic, but �nite. Time goes from t = 0 until t = 20, and players alternate and

decide every 0:01 increment in the following way: the entrant plays at " 2 (0; 0:01), the incumbent
at 0:01+", the entrant at 0:02+", and so on. When each player gets to play at time t, he chooses

one of the two possible actions. If this action is di¤erent from the one he has chosen previously

(at t � 0:02) he pays a switching cost t, so late switches are more costly than early switches. If
it is the same, he pays nothing. Initial actions are free. Gross payo¤s, based on the above payo¤

matrix, depend on the �nal actions of both players (chosen at 19:98 + " and 19:99 + "). Final

payo¤s are the gross payo¤s net of the switching costs each player incurred along the way.

In Section 5 we will analyze in detail a parameterized version of this game. We defer to that

point the economic interpretation of the spe. Our focus now is on the equilibrium structure. The

game is solved using backward induction. Late enough in the game, the switching costs are higher

than any possible pro�ts. The latest date at which a player would switch is at 9:98 + ", the �rst

node before t = 10 at which the entrant plays. At this point, if the action pro�le is [Fight, Entry ]

(that is, if the most recent actions were Fight by the incumbent and Entry by the entrant), the

entrant would switch and not enter the market. Consider now a decision node in the interval

(5; 10] at action pro�le [Fight, Entry ]. For the incumbent it is still too costly to make a change.

If it is the entrant�s turn, he will play No Entry immediately to save on switching costs. For any

pro�le di¤erent from [Fight, Entry ] it is still too costly to consider any change of actions.

Next, consider the pro�le [No Fight, Entry ] at t = 4:99 + ", the last node before t = 5 at

which the incumbent plays. If he plays No Fight now, he will keep on playing it until the end and

get a �nal payo¤ of 5. By switching to Fight, however, the entrant would react by not entering,

guaranteeing the incumbent a �nal payo¤ of 10. Given that the switching cost is less than 5,

the incumbent �nds it pro�table to switch to Fight. We can now move one step backwards and

analyze the entrant�s decision at [No Fight, Entry ] at t = 4:98+ ". He anticipates that if he plays

Entry, the incumbent will respond by �ghting, which will force the entrant out of the market.

Thus, the entrant prefers to play No Entry immediately in order to save on switching costs. From

this point backwards, the entrant always plays No Entry. As a consequence, the players�initial

decisions are [No Fight, No Entry ] and on the equilibrium path the players do not switch. Notice

that this outcome is not an equilibrium of any of the one-shot sequential games. The table below

presents the complete equilibrium strategies.
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Time Switches

Initial actions NE by the entrant; NF by the incumbent

[0:02 + "; 1:99 + "]
[F;E]! [NF;E] and [F;NE]! [NF;NE] by the incumbent

[F;E]! [F;NE] and [NF;E]! [NF;NE] by the entrant

[2 + "; 4:98 + "] [F;E]! [F;NE] and [NF;E]! [NF;NE] by the entrant

4:99 + " [NF;E]! [F;E] by the incumbent

[5 + "; 9:98 + "] [F;E]! [F;NE] by the entrant

[9:99 + "; 19:99 + "] None

The second column indicates the pro�les at which a player decides to change his previous action. If a
pro�le is not on the list it is because the player�s action is to continue playing the same action as before.

Notice that despite the fact that players have many opportunities to play, the structure of

the equilibrium is quite simple: there are long periods of time in which players�incentives remain

constant, and there are only a few instances at which they change. In the analysis we refer to these

instances as the critical points of the game and to the intervals in which the strategies remain

constant as stages. As we will see, this structure is common.

3 The Model

Consider two players, i = 1; 2, each with two possible actions, which we will generically refer to

by ai; a0i 2 Ai with ai 6= a0i. The game starts at t = 0. There is a deadline T by which each player
will have to take a �nal action. These �nal actions determine the �nal payo¤s for each player.

Between t = 0 and t = T players will have to decide about their �nal actions, taking into account

that any time they change their decisions they have to pay a switching cost. Formally, a game is

described by (�; C; g), where � stands for the payo¤ matrix, C for the switching cost technology,

and g for the grid of points at which players get to play. We specify each below.

Time is discrete. Each player i takes decisions at a large but �nite set of points in time.

We refer to this set as the grid for player i, and denote it by gi. Formally gi 2 G, where G
is the set of all �nite sets of points in [0; T ]. We assume that players play sequentially, so that

gi \ gj = ;. Given a grid gi = fti1; ti2; :::; tiLig where t
i
l < t

i
m if l < m, we de�ne the �neness of the

grid as '(gi) = maxfti1; ti2 � ti1; ti3 � ti2; :::; T � tiLig. Finally, denote the game grid by g = fg1; g2g
and its �neness by '(g) = max f'(g1); '(g2)g. Throughout the paper, '(g) is considered to be
small (more precisely speci�ed later). The idea is that players have many opportunities to switch

their decisions.4 This is also a convenient point to introduce some additional notation. Given a

4To gain intuition, the reader could imagine the model in continuous time. Our model is constructed in discrete

time to avoid the usual problems of existence of equilibria in continuous models.
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point in time t, denote the next and previous points on the grid at which player i gets to play

by nexti(t) = minft0 2 gijt0 > tg and previ(t) = maxft0 2 gijt0 < tg, respectively. Similarly, let
next(t) = minfnext1(t);next2(t)g and prev(t) = maxfprev1(t);prev2(t)g.

When player i = 1; 2 gets to play at t 2 gi, he has to take an action from his action space Ai.

At every point in time all previous actions are common knowledge. We now de�ne the switching

costs. The very �rst move by player i, taken at ti1, is costless. From then on, if he sticks to his

previous action he pays no cost, i.e. Ci(ai ! ai; t) = 0 8ai 2 Ai 8t 2 [0; T ]. However, if he changes
his decision he has to pay a switching cost Ci(ai ! a0i; t) > 0.5 We assume that Ci(ai ! a0i; t)

is a continuous and strictly increasing function in t on [0; T ], that Ci(ai ! a0i; 0) = 0, and that

Ci(ai ! a0i; T ) is large enough (see below).
6

Finally, payo¤s are given by

Ui(a) = �i(a1(t
1
L1); a2(t

2
L2))�

X
t2gi�fti1g

Ci(ai(previ(t))! ai(t); t) (1)

where ai = (ai(t))t2gi is player i�s sequence of decisions over his grid, ai(t
i
Li
) is his �nal action, and

� = (�1;�2) is the payo¤ function for the normal-form game with strategy space A = A1 � A2.
Thus, the payo¤s for player i are the payo¤s he collects at the end, which depend on the �nal

play by both players, net of the switching costs he incurred in the process, which depend only on

player i�s own sequence of actions.

The equilibrium concept that we use is subgame perfect equilibrium (spe). Notice that, by con-

struction, for a generic (�; C; g) there is a unique spe. This is a �nite game of perfect information.

Hence, one can solve for the equilibrium by applying backward induction. The only possibility

for multiplicity arises when at a speci�c node a player is indi¤erent between two actions. If this

happens, any perturbation of the �nal payo¤s � or the grid g eliminates the indi¤erence. More

precisely, given a cost function C, the set of games that have multiple equilibria has measure

zero.7 For this reason and to simplify the analysis we abstract from these cases. We will discuss

the non-generic cases as we proceed with the analysis.

We make two �nal remarks with respect to the cost function. First, we assume that switching

late in the game is expensive. In particular, it has to be more costly than any possible bene�t

achieved in the �nal payo¤s. Formally, we assume that

Ci(ai ! a0i; T ) > maxaj

�
�i(a

0
i; aj)��i(ai; aj)

�
8i; ai (2)

5Notice that the cost does not depend on the opponents�actions. This simpli�es the analysis. Allowing it would

not qualitatively change any of the main results of the paper.
6As will become clear later, all three assumptions are necessary for the main result of grid invariance (Theorem

1).
7 In the paper we will use the following measures: (i) for the space of gi�s: �(B) =

1P
n=1

�n(B \Gn), where Gn is

the set of all grids on [0,T ] that contain exactly n elements and �n is the Lebesgue measure on [0,T ]
n ; (ii) for the

space of g�s the product of the gi�s measures; (iii) for the space of ��s the usual Lebesgue measure on R8; and (iv)
for the space of (�,g)�s the product measure of the two.
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This guarantees that, in equilibrium, no player will switch after t < T , where

t = max
i;ai;aj

ft : Ci(ai ! a0i; t) = �i(a
0
i; aj)��i(ai; aj)g (3)

Second, note that switching costs are sunk. This and the absence of indi¤erence nodes make

history irrelevant. If a player has to take an action at t and the last decisions taken by all

players are a, when or how often he or other players had changed their minds before this point

has no impact on their future payo¤s. Thus, we can de�ne the relevant state space by f(a; t) j
a 2 A; t 2 gg and denote the spe strategy for player i by si(a; t) 2 Ai 8a 2 A, 8t 2 gi.8

4 Results

4.1 Structure of the Equilibrium Strategies

This section shows how commitment is achieved in this model. Given that the switching costs are

low early in the game and only increase as the game advances, real commitment to an action is

only attained at some point in the game. This endogenously creates a �commitment ladder,�such

that over time each player is able to commit better to certain actions. Each step in the ladder

corresponds to a stage and each new critical point introduces a new commitment possibility.

For any two-player game (�; C; g) and the corresponding spe strategies si(a; t) for both players,

we formally introduce the above mentioned concepts.

De�nition 1 For any i, t� 2 gi is a critical point if there exists an action pro�le a = (ai; aj)
such that si((ai; aj); t�) = a0i and si((ai; aj);nexti(t

�)) = ai.

De�nition 2 Let ft�1; t�2; :::; t�kg be the set of critical points, such that t�i < t�j if i < j. The

corresponding k+1 stages are the following intervals: [0; t�1]; (t
�
1; t

�
2]; (t

�
2; t

�
3]; :::; (t

�
k�1; t

�
k]; (t

�
k; T ].

Each critical point t� is associated with a speci�c action pro�le a and a speci�c player i. Player

i�s response at pro�le a is changed just after t�. This happens for one of two reasons. First, it

can be due to a pure time phenomenon. It is the last point at which it is still pro�table for player

i to switch away from a. After this point, such a switch would be too costly, so the player may

be thought of as committed to this action. Second, it can be a consequence of a change by the

opponent: player i anticipates that immediately afterwards player j will do something new, which

in turn changes player i�s incentives. In the example of Section 2, t = 9:98 + " is a critical point

of the �rst type and t = 4:98 + " of the second.

Given the de�nition of a stage, we �rst establish that the strategies for both players are held

constant throughout a stage. This fact is not directly implied by De�nition 2.

Proposition 1 8i 2 f1; 2g 8t; t0 2 gi, if t; t0 are in the same stage then si(a; t) = si(a; t0) 8a 2 A.
8 If at t a player has not played yet, clearly the state does not depend on his action space.
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The proof, as well as all other proofs, is relegated to the appendix. Note that an important

consequence of Proposition 1 is that on the equilibrium path of any subgame, switches occur only

at the beginning of a stage. The last stage of a game is given by equation (3), which provides

a point t after which no player switches. Note, however, that before this point players could in

principle build up very complicated strategies. As a result, there could potentially be as many

stages in the game as points in the grid between 0 and t. The next proposition shows that this is

not the case. The equilibrium has a simple structure and the number of stages is quite limited.

Proposition 2 Given a cost structure C, generically for every (�; g), the unique spe of (�; C; g) is

completely characterized by m � 7 critical points ft�mgmm=1 and the corresponding stage strategies.

The number of stages for any game is at most eight. The number eight is of no particular

interest, but re�ects the fact that the complexity of the equilibrium is limited. The proposition�s

statement is generic because the argument assumes no indi¤erence at all t 2 g. The proof uses
an algorithm (see Appendix B) that computes the stages and the corresponding strategies. In

a similar manner to the way the equilibrium was computed in the example of Section 2, the

algorithm �nds the equilibrium strategies without the need to apply backward induction at every

decision node; it computes continuation values only after each critical point.

An alternative approach to describe the spe strategies is to use the notion of strategic delays.

Given that switching is more costly as time goes by, one could think that whenever there is

a pro�table switch, it would be carried out earlier rather than later in order to save on costs.

Nevertheless, we show that delays may occur in equilibrium for strategic reasons.

De�nition 3 Consider a decision node (a; t) for t 2 gi at which player i switches, i.e. si(a; t) =
a0i. This switch is a delayed switch if there exist ea and t0 < t such that t0 2 gi and (a; t) is on
the equilibrium path of the subgame (ea; t0).

Note that a delayed switch may never materialize. It is de�ned with respect to a subgame,

which may be on or o¤ the equilibrium path of the game. The next proposition argues that on

the equilibrium path of any subgame (a; t), there can be at most one delayed switch.

Proposition 3 Given a cost structure C, generically for every (�; g), the unique spe strategies of

(�; C; g) are such that the equilibrium path of any subgame contains at most one delayed switch.

In the proof we proceed in two steps. First, we show that for a switch to be delayed it has to be

credible. If player i delays a switch, and then reverses this switch later on, then player j will ignore

the original delay, making it wasteful �it could have been done earlier at a lower cost. Second, we

show that for a switch to be delayed, it has to be bene�cial, in the sense that it has to make player

j do something di¤erent than what he would have done without the delay. For two-action games,

this means that a player delays a move until the point at which the other player is committed to an

action. Hence, for a delayed switch to be credible and bene�cial it must be the last switch on the
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path. A delayed switch by the row player can be viewed as credible (irreversible) if it eliminates

a row of the payo¤ matrix from further consideration, and as bene�cial if it eliminates a column

of the payo¤ matrix from further consideration. For two-by-two games, these eliminations result

in a unique outcome, so there are no further switches. Finally, we apply Proposition 3 to the

equilibrium path of the full game to obtain:

Corollary 1 On the equilibrium path, one of two patterns are observed: (a) both players play

immediately the �nal pro�le and never switch thereafter; or (b) one player immediately plays the

�nal action and the other starts by playing one action and switches to the other later on.9

4.2 Grid Invariance

We want to compare the equilibria of a given game for di¤erent grids. Clearly, the exact position

of the critical points depends on the grid chosen. We show, however, that as long as the grid is

�ne enough, the number of stages and the corresponding strategies are invariant to the grid. This

allows us to de�ne a notion of equilibrium for a given (�; C) without making any reference to the

speci�c grid. To do so formally, we de�ne a notion of equivalence between two equilibria.

De�nition 4 Consider two games (�; C; g) and (�; C; g0). The unique spe equilibria of both

games are essentially the same if the number of stages in both coincide and the strategies at

each stage are the same.

It is according to this de�nition of equivalence that we state the grid-invariance property:

Theorem 1 Given C, generically for every � there exists � > 0 such that for almost every g 2 G,
'(g) < � the spe equilibria of (�; C; g) are essentially the same.

This result is obtained by making extensive use of the limit version of the model, that is,

taking the �neness of the grid to zero. Generically, the limit of the equilibria exists. This implies

that the order of the stages in the limit is also the order of the stages of the �nite game, as long as

the grid for that game is �ne enough. In other words, in the limit the critical points converge to

the limit game�s critical points. Therefore, as long as the limit game�s critical points for di¤erent

players are separated, �ne grids provide players with the opportunity to play and react at all the

relevant points in the game.

The maximal �neness of the grid allowed � depends on how far apart the limit game�s critical

points for the two players are. It also depends on the slope of the cost function at the points of

delayed switches, if those exist. Within a stage, a player switches at most once. Thus, all he needs

is one opportunity to play at the beginning of each stage. Including more points on the grid does

not change his strategic opportunities.

9 In Section 4.3 we provide an example of a game with a delayed switch on the equilibrium path.
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Let us stress the importance of the quanti�ers used in the theorem. We state the result for

almost every grid in order to avoid the multiplicity of equilibria, and generically for every � to

guarantee the existence of the limit of the equilibria. The limit may not exist for two reasons.

First, we want to rule out those games that have multiple equilibria for any grid. This happens if

one of the players is initially indi¤erent between two di¤erent actions. A slight perturbation of the

payo¤ matrix would eliminate such multiplicity. Second, the theorem also rules out an additional

non-generic case, which arises when the two players have a limit game�s critical point at the same

time. Suppose this common critical point is t�. Then, for any given grid g, no matter how �ne

it is, the equilibrium may depend on whether previ(t�) < prevj(t�) or the reverse. Therefore, the

limit of the equilibria may not exist. A slight perturbation of the payo¤s of one of the players

separates the critical points for both players, making the problem disappear. For example, a fully

symmetric Battle of the Sexes exhibits grid dependence, but any perturbation provides a unique

outcome.

4.3 Additional Results

A natural question at this point is whether there are any easy conditions on the primitives (�; C)

that determine the shape of the outcome. The short answer is no. Even though the equilibrium

structure is simple, the combination of incentives along the eight possible stages is su¢ cient to

provide a rich variety of possible dynamic interactions.10 One can establish some simple results,

such as the fact that players�equilibrium payo¤s are bounded from below by their maxmin payo¤s

of the one-shot game. But in order to obtain sharper equilibrium predictions one has to restrict

attention to speci�c families of games. In this manner, one can show that common interest games

always result in the Pareto e¢ cient outcome, or use the notion of defendability introduced by

Lipman and Wang (2000) to provide su¢ cient conditions for a Nash Equilibrium (of the one-shot

game) to be the outcome of the dynamic game. The study of the parameterized entry deterrence

situation in Section 5 is another example of this approach.

Cost invariance The shape of the equilibrium of a game (�; C) depends on the choice of

the cost technology. If one wanted to empirically use this model, information about the cost

technology, C, is unlikely to be available. Here we suggest a restriction on the cost structure that

make the equilibrium invariant to it. This can be achieved because the model is independent of the

�nominal�units of time. All that matters is the value of the cost function at each decision node.

Consequently, rescaling time has no impact on the spe strategies. Formally, let C(t) be a cost

technology, g the grid, and f(�) any strictly increasing function. Then, the games (�; C; g) and
(�; C(f(t)); f(g)) have the same equilibrium strategies, outcome, and values (and, consequently,

so do the grid invariant games (�; C) and (�; C(f(t))).

10By focusing only on the direction of the incentives for each player at each stage, one can obtain a full taxonomy

of all the possible two-by-two games. In this way, all such games can be classi�ed into 75 distinct types (compared

to only 4 types of a simultaneous two-by-two one-shot game).
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Consider now a cost technology of the form Ci(ai ! a0i; t) = �
ai!a0i
i c(t) 8ai; a0i, where c(t) is,

as usual, continuous and strictly increasing in t, with c(0) = 0 and c(T ) big enough. By setting

f(�) = c�1(�) and rescaling time, any such game can be thought of as a game with proportional
linear costs (across players and actions), namely Ci(ai ! a0i; t) = �

ai!a0i
i t. Thus, the equilibrium

only depends on (�;�), where � stands for the full matrix of �
ai!a0i
i �s, but not on c(t). There are

two special cases of the former result that are worth mentioning. First, if Ci(ai ! a0i; t) = c(t)

8ai; a0i then the equilibrium of (�; C; g) only depends on �. Second, if Ci(ai ! a0i; t) = �ic(t)

8ai; a0i then the equilibrium only depends on �� =
n
�1
�1
; �2�2

o
.11

The use of strategic delays Finally, we provide an illustration of the strategic use of delayed

moves. Denote action ai as super-dominant for player i if min
aj

�i(ai; aj) > max
aj

�i(a
0
i; aj)

8a0i; ai. By the maxmin argument, it is clear that if player i has a super-dominant action, this
has to be his �nal action. This may lead us to think that in equilibrium player j best-responds to

player i�s super-dominant action. If such a response leads to the best outcome for player i then

this is indeed true. However, when there is a con�ict, and player j�s best-response works against

player i�s incentives, player i may be able to �discipline� player j and force him to choose the

other action. The following game (with symmetric switching cost functions, c(t)) illustrates this

case:
L R

U 13; 3 1; 10

D 0; 5 0; 0

Although U is super-dominant for player 1, in equilibrium he starts by playingD. He then switches

to his super-dominant strategy U if player j �behaves�and plays L, and only after t = c�1(7);

when player j is fully committed to his �disciplined� behavior. This is credible since if player

2 played R , switching to U would not justify the costs. It is also pro�table: player 1�s payo¤s,

13� c(c�1(7)) = 6, are higher than 1, which he could obtain by playing U throughout.

5 An Application: Entry Deterrence

This section illustrates how the model can be applied to a particular family of games. In entry

deterrence situations �xed deadlines arise naturally. The expiration of a patent on a certain drug,

the introduction of a new hardware technology, or the scheduling decision for the release of a new

product are only some examples. The values in the matrix � capture the resulting payo¤s of the

ex-post competition. As for the increasing switching costs, imagine that the incumbent (entrant)

�ghts (enters) by investing in, say, physical capital. At any point before the opening of the market,

he can contract the delivery of this investment for the opening day, when it is actually needed.

Delaying these contracts naturally increases costs. One reason for this can be that the machinery

11To see this, note that multiplying a player�s switching costs and payo¤s by a common factor has no e¤ect on

the game, except for a normalization of this player�s �nal payo¤s (see equation (1)).
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suppliers may be aware of the deadline and may charge the incumbent (entrant) more for it.

Alternatively, the supply of these factors may decrease over time because they get committed to

other tasks.

Imagine now a �rm that has previously contracted the physical asset and now wants to get

rid of it. At �rst glance one may think that this involves no cost, as the �rm can sell the asset for

its market value. But implicitly there is a cost. As in the previous example, it may be reasonable

to assume that the scrap value of the asset diminishes over time. Thus, by leaving the market

late a �rm loses the money it could have earned had it left earlier. The increasing switching costs

capture the diminishing value of the physical capital in the outside market. As the deadline gets

closer the wedge between the value of the capital within the �rm, if it �ghts (or enters), and its

value elsewhere gradually increases. Additionally, one can interpret these costs in contracting

terms. If a contract is nulli�ed, there is a penalty involved in it, which increases as the deadline

approaches. Our assumptions also require that writing new contracts or nullifying existing ones

becomes su¢ ciently costly when the opening of the market is close enough.

The entry game that we consider has the following general payo¤ matrix:

Entry No Entry

Fight d;�a m; 0

No Fight D; b M; 0

where all the parameters are positive and satisfy M > m > D > d and M > D+ b. For simplicity

only, we also assume that the switching costs, c(t), are equal for both parties and across di¤erent

actions. As described in the introduction, the one-shot sequential games exogenously give all the

commitment power to one of the parties. If the entrant plays �rst the spe outcome is [No Fight,

Entry ], but if the incumbent is able to commit �rst then the equilibrium is [Fight, No Entry ].

The following proposition describes all possible equilibrium outcomes. It shows that four

possible cases may arise in equilibrium: three outcomes played immediately, and one more which

involves a strategic delay. The four cases create a partition of the parameter space.

Proposition 4 The spe outcome of the entry game is:

(i) [No Fight, Entry] with no switches , D � d > a.

(ii) [Fight, No Entry] with no switches , D � d < a, b > M �m, and b > minfa;m�Dg.

(iii) Start with [Fight, No Entry] and switch (by the incumbent) to [No Fight, No Entry] at

t� = c�1(b), D�d < a and either a < b < M�m or both (M�D)=2 < b < minfM�m;ag
and minfa;m�Dg < M �m.

(iv) [No Fight, No Entry] with no switches, D�d < a and either b < minfM�m; (M�D)=2; ag
or maxfM �m; bg < minfa;m�Dg.

The proof of this proposition is a simple application of the limiting version of the algorithm

to all the relevant cases.12 Below we provide some economic intuition. Given that neither of the

12See Caruana and Einav (2005) for this (tedious) exercise.
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players wants to stay at [Fight, Entry ] till time T , and that both would rather have the opponent

switch, there is an out-of-the-equilibrium-path war of attrition taking place at this pro�le. Each

player prefers to wait and let the other player move away from it. The party that wins the war of

attrition is the �rst one that can credibly tie himself to that position. Given that we have assumed

the same switching cost technology for both parties, the winner is the player with smaller bene�ts

of making the move (D�d for the incumbent and a for the entrant). The other party foresees this
and moves away immediately. Thus, when a < D � d the incumbent is forced to accommodate,
resulting in [No Fight, Entry ], the best outcome for the entrant. This is case (i) of the proposition.

If D � d < a, the war of attrition is won by the incumbent. The threat, in equilibrium, is

su¢ cient to keep the potential entrant out of the market. However, while the incumbent is happy

deterring entry, he can do so at di¤erent costs. He could �ght till T , but, if possible, he would

prefer to either deter entry by not �ghting at all, or by switching to No Fight later in the game.

These di¤erent levels of commitment correspond to cases (ii), (iii), and (iv) of the proposition.

The intuition for which case arises can be illustrated by examining the parameter b and its impact

on the incumbent�s strategies at pro�le [Fight, No Entry ].

If b is high we are in (ii). In this case, as long as it is still pro�table for the incumbent to quit

�ghting, it is also pro�table for the entrant to react by entering. Thus, the only way entry can be

deterred is through �ghting. In case (iii) the incumbent achieves [No Fight, No Entry ], but only

after paying the cost of strategically delaying the switch to No Fight till c�1(b), the point after

which the entrant is committed to staying out. This happens when b has an intermediate value. It

has to be low enough so that late in the game it is still pro�table for the incumbent to switch and

stop �ghting; but it has to be high enough so that earlier in the game, if the incumbent decided to

switch to No Fight, the entrant would enter, knowing that the incumbent cannot restart �ghting.

Finally, in case (iv) the commitment power of the incumbent is the highest. He can deter

entry without ever �ghting. This is achieved by maintaining a credible threat to react by �ghting

whenever the entrant decides to enter. For this threat to be successful, the entrant needs to

lack the credibility to enter the market and stay. In other words, as long as the entrant �nds it

pro�table to enter, he still �nds it pro�table to switch to no entry if he were subsequently fought.

This is guaranteed by b < a. On top of that, the incumbent must be able to credibly commit

to respond by �ghting to any entry attempt by the entrant. This occurs either because m is big

enough (which can be thought of as a case in which it is quite cheap for the incumbent to �ght),13

or because M is very big (which implies that after deterring entry by �ghting, the incumbent still

�nds it pro�table to pay the extra cost to get rid of the additional capacity).

We think that the �nal two cases of the proposition are sensible and appealing outcomes,

which rationalize how an incumbent can deter entry without actually �ghting. Similar results

were obtained in Milgrom and Roberts (1982) and Kreps and Wilson (1982). Our solution,

however, does not rely on the introduction of asymmetric information, as the previous papers do.

13Note that the example presented in Section 2 is covered by this case.
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6 K Actions and N Players

So far the analysis has focused on two-by-two games. This was done for several reasons. First,

these games are su¢ cient to illustrate the main ideas and the richness of the dynamic framework

considered. Second, the proofs and notation are more tractable. Finally, the grid invariance result

fails for generic games of more than two players.

Consider �rst games of two players and larger �nite action spaces.14 For such games, the

central result (Theorem 1) still applies: the game has a grid-invariant equilibrium, which can be

described by a stage structure.15 The reason for this is the same as before: as long as the critical

points for the two players do not coincide (and this happens generically), for �ne grids the players

will have the opportunity to carry out all their relevant decisions. To show it, we construct an

algorithm that solves for the spe of any �nite game, and then follow the approach we use in the

proofs of Proposition 2 and Theorem 1 to verify that, as the �neness of the grid goes to zero, the

algorithm output converges (to the grid-invariant equilibrium). While the idea is the same, the

general algorithm requires several important adaptations of the two-by-two algorithm described

in Appendix B.16

While the central result extends to more than two actions, and so do certain intermediate

technical results,17 it is hard to extend the results regarding the bounds on the number of stages

(the result that m � 7 in Proposition 2) and the number of delayed switches (Proposition 3) to
a general K1 �K2 game. This is mainly due to the curse of dimensionality, which makes it hard
to analytically analyze large games. For example, it is easy to see that the number of stages is at

least K1 �K2, but it can be much higher due to strategic delays. For similar reasons, the number
of possible delayed switches could also grow quite rapidly in the number of actions.18

Consider now games with more than two players. Given a particular grid the equilibrium still

exhibits a stage structure.19 But while the exact point in time at which a player plays is not

14The framework can be applied to continuous action spaces as well, but the stage structure concept becomes

vacuous. In Caruana and Einav (2005) we describe a symmetric two-player homogeneous-product price (Bertrand)

competition, and in Caruana, Einav, and Quint (2007) we analyze a bargaining situation.
15Additional technical restrictions on the cost technology are required. A su¢ cient condition is that switching

costs across players and potential switches are proportional to each other.
16The description of the algorithm for general K1�K2 games and the associated Matlab code are available online

at http://www.stanford.edu/~leinav. It is easy (but tedious) to show that the algorithm always ends for games with

a small number of actions. For arbitrary �nite two-player games we con�rm this numerically.
17The appendix of Caruana and Einav (2005) proves some of the intermediate results for general �nite two-player

games.
18We think, but cannot prove, that the upper bound on the number of stages and on the number of delayed

switches grows at an exponential rate in K1 �K2. As an example, while for K1 = K2 = 2 we have at most eight

stages (Proposition 2), we used simulations to �nd games with K1 = K2 = 3 and 30 stages, and games with

K1 = K2 = 5 and 150 stages.
19For N > 2 one has to modify the stage de�nition to accommodate stages in which, at a given pro�le, the

strategies are not constant but follow a cyclical pattern.
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important, the identity of the player who plays next may be crucial. To gain intuition, consider

a three player game in which players play sequentially in a pre-speci�ed order. Imagine a stage

at which, confronted with pro�le a, both player 1 and player 2 want to switch their actions

immediately. Now, imagine that we are at pro�le (a03; a�3) with a
0
3 6= a3. It is player 3�s turn

to move and he considers switching to a3. He likes the consequences of player 1�s switch from a,

but not those of 2�s. Here the order of play is key. If player 3 has the opportunity to move right

before player 1, he will move to a3. If player 3 gets to play only before player 2, however, he will

prefer not to switch to a3. This change in player 3�s incentives can have drastic consequences on

the overall shape of the equilibrium. Notice that this grid dependence property persists no matter

how �ne the grid is.

Despite this negative result, we should stress that there are interesting families of N -player

games which are robust to changes in the grid. We believe that price competition, quantity

competition, public good games, and bargaining are among those. Caruana, Einav, and Quint

(2007) study an N -player bargaining setting using this paper�s framework and obtain a unique

order-independent outcome. Quint and Einav (2005) analyze an N -player entry game with a

similar structure which also preserves order independence. We also conjecture that games with

convex and compact action spaces and continuous and concave payo¤ functions should exhibit

grid invariance.

7 Related Literature

We are, clearly, not the �rst to investigate the determinants of commitment. Rosenthal (1991) and

Van Damme and Hurkens (1996) consider a dynamic game in which players have two opportunities

to move. In their setting, however, once an action is taken it cannot be changed later on, while in

our model players can reverse their actions. Indeed, in our framework players eventually get locked

into their actions, but this happens only gradually. This reversibility aspect also distinguishes

our paper from Saloner (1987), Admati and Perry (1991), and Gale (1995, 2001). They all allow

for changes in one�s actions, but only in one direction. Allowing for the possibility to reverse

one�s actions is important. This goes back to Judd�s (1985) critique of the product proliferation

literature (Schmalensee, 1978; Fudenberg and Tirole, 1985); as he points out, high exit costs and

not only high entry costs are crucial in making product proliferation credible. Finally, Henkel

(2002) has a similar motivation to ours and some of his results are related (e.g. the potential for

strategic delays). In his work, however, the players�roles (leader and follower) are exogenously

imposed.

The paper most similar to ours is Lipman and Wang (2000) (henceforth: LW) that, like us,

analyzes �nite games with switching costs. They analyze the robustness of the results for �nitely

repeated games to the introduction of small switching costs. Their modeling strategy is, therefore,

driven by the repeated game literature. Our purpose is di¤erent. We analyze commitment in

situations which are essentially played only once. We use switching costs as the commitment
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device. This dictates a di¤erent set of considerations. Among others, we emphasize the need

of a framework that exhibits grid-invariance. We envision the �order of moves� as a modelling

assumption which tries to capture a more amorphous set of rules. Thereby, to capture the sources

of commitment, one needs the equilibrium predictions to be robust to changes of this sort. This

property, for instance, is not a concern (and, as we point out below, does not apply) in the LW

framework.

Still, some of our speci�c results for coordination games or the Prisoners�Dilemma resemble

theirs. This is not coincidental: the constant payo¤s and increasing switching costs in our setting

have a similar �avor to the decreasing future payo¤s and constant switching costs in LW. Loosely

speaking, in LW one compares the switching costs �i to the future payo¤s, namely (T � t)�i.
One may be tempted to think that this is equivalent to having constant payo¤s �i and increasing

switching costs of ci(t) = �i
T�t , which would satisfy the assumptions of our paper. This argument

is, in general, wrong. Whenever there are delayed switches (on or o¤ the equilibrium path), a

short-run vs. long-run trade-o¤ appears in LW, but is not present here. The reason for this is

that in our setting a player only cares about his own actions and his opponent�s �nal action.

In contrast, LW use �ow payo¤s and therefore players care about the whole sequence of their

opponent�s actions. This results in di¤erent equilibrium outcomes for the two models.

To illustrate, consider the example in Section 4.3. In equilibrium player 1 starts playing his

dominated strategy, and switches to his dominant strategy only later. This is not an spe in the

LW setup. With �ow payo¤s, player 1 would lose too much from �waiting� at his dominated

strategy. He would rather play his dominant strategy throughout and obtain payo¤s of at least 1

for the whole duration of the game. Indeed, [U,R] played throughout the game is the spe in LW.

The di¤erence in the payo¤ structure has consequences in terms of the grid invariance result

as well. LW�s model is sensitive to the choice of the exact points in time at which players get to

play (in particular, to whether the decision nodes are set equidistantly from each other). Consider

for instance the games studied in Theorem 6 and 7 of LW. These very similar games result in

di¤erent equilibria because of minor di¤erences in (very) short-term incentives that player 1 faces.

Changes in the exact timing of play (keeping the simultaneous-move assumption) will change

these short-term incentives, and ultimately (as consecutive distances become less equal) a¤ect the

equilibrium prediction. This argument is true even in the limit, when the grid is very �ne.20

8 Conclusions

We considered a dynamic model in which players repeatedly announce their intended �nal ac-

tions and incur switching costs if they change their minds. Thus, the switching costs serve as a

mechanism by which announcements can be made credible and commitment achieved. Although

20A more technical di¤erence between this paper and LW is the timing of actions. LW use a simultaneous move

game, while we use a sequential one. As we discuss in the previous section, a sequential structure eliminates the

need to deal with multiplicity of equilibria and mixed strategies.

16



players are allowed to play very often, the equilibrium can be described by a small number of

stages. Within each stage, players� strategies remain constant. This stage structure does not

change when the order of the moves is altered or more decision nodes are added. This is because

players are given the opportunity to react at all the relevant points in the game. Throughout the

paper we assume that players move sequentially in a pre-speci�ed order. This restriction simpli�es

the proofs but does not drive the results.21 In this sense, the relevant order by which parties get

to commit is endogenously determined.

Our analysis suggests that the notion that commitment is achieved �once and for all� is too

simplistic. Early on players are completely �exible. Late in the game they are fully committed.

In between, however, commitment depends on the actual positions of the players. This is why we

describe our equilibrium as a �commitment ladder,�according to which players are able to bind

themselves to certain actions only gradually. This allows for a richer range of possible dynamic

stories. The entry deterrence case provides a good example. On top of the two outcomes that

arise when one applies the simple one-shot sequential analysis, the model provides a rationale for

entry deterrence with no actual �ght. This is achieved by a credible threat to �ght in retaliation

to entry. In this manner, our framework provides an umbrella that covers dynamic interactions

that were previously captured only with di¤erent models.

The model has several additional desirable features. First, if one assumes that switching costs

are identical across players, the equilibrium is invariant to the speci�c choice of the cost structure.

Second, if one thinks that players have some control over their switching cost technology, this

can be incorporated by simply increasing the players� action spaces.22 Third, the framework

is �exible enough to accommodate many di¤erent strategic situations. We have studied entry

and bargaining, and suggested elections, political con�icts, and competition in time as other

potential applications. Fourth, we believe that the model may be attractive for empirical work.

The uniqueness of equilibrium is important in the empirical analysis of discrete games, in which

relying on �rst order conditions is impossible. On top of this, the algorithm we provide signi�cantly

reduces the computational burden of estimating the model.

Finally, let us mention two potential directions for future research. First, we think that the

protocol invariance property is attractive, so it may be interesting to search for other frameworks

which satisfy it. For example, one could explore games in which players can build up stocks of

strategy-speci�c investments. Consider, for instance, a �rm announcing its intention to enter a

new market by acquiring some industry-speci�c human capital. If it later decides not to enter, this

human capital cannot simply be erased, as it is implied by the current model. Second, we think

21 In Caruana and Einav (2005) we argue that this rationale is robust to other protocol speci�cations. In particular,

we claim that as long as some asynchronicity exists, as in Laguno¤ and Matsui (1997), the qualitative results of the

paper remain the same.
22For example, if a player has an action space Ai and can choose either high or low switching costs (H or L), we

just need to consider a new action space, fH;Lg �Ai. Accordingly, the switching cost function would be higher if
the switch is done under the H regime and lower under L, and switching between regimes would be costly.
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that the notion of strategic delays deserves more attention. In a world of imperfect information

delaying an action has an option value. In our (perfect information) model delays still occur in

equilibrium, but for pure strategic reasons.23 Delays are costly, but allow players to make threats

credible. It would be interesting to introduce incomplete information into the framework and

analyze the interaction of these two types of incentives to delay.24

Appendix A: Proofs

Before we tackle the proofs of the propositions, we �rst establish a de�nition and two useful lemmas that
are used throughout the rest of the appendix.

De�nition 5 For a given player i, t 2 gi, and action pro�le a, if si(a; t) = a0i then player i has an active
switch at (a; t):

Lemma 1 If si(a; t) = a0i then si((a
0
i; a�i); t) = a

0
i.

Proof. Let Vi(a; t) be the continuation value of player i at decision node (a; t). By si(a; t) = a0i we know
that Vi((a0i; aj);next(t)) � Ci(ai ! a0i; t) � Vi((ai; aj);next(t)). Since costs are non-negative, this trivially
implies Vi((a0i; aj);next(t)) � Vi((ai; aj);next(t))� Ci(a0i ! ai; t) proving the the lemma.

Lemma 2 If there exists a point in time t 2 gi such that si(a; t) = si((a
0
i; aj); t) 8a 2 A, then the

strategies of both players are independent of player i0s position for any t0 � t: That is, if t0 2 gk then
sk(a; t

0) = sk((a
0
i; aj); t

0) 8a 2 A. Moreover, there are at most three stages in the interval [0; t]:

Proof. We prove this by induction on the level of the game tree, starting at t and going backwards. By
assumption, the statement holds at t, i.e. si(a; t) = si((a0i; aj); t) 8a 2 A. Now, suppose it holds for time
t0 � t. We have to show that it holds for t00 =prev(t0). Let player k be the player who plays at time t00, i.e.
t00 2 gk. We check two cases: �rst, when k = j, and second, when k = i. We use the following notation:
asj(a; t) denotes player j�s position at time s according to the equilibrium path that starts at (a; t).

If k = j all we have to check is that player j�s continuation values just after his move at t00, Vj(a; t0),
are independent of ai. By the induction assumption from time t0 until time t, no player�s strategy depends
on player i�s action. Thus, the actions of both players evolve independently of it and atj(a; t

0) = atj(aj ; t
0).

Moreover, player i plays at t and therefore ati(a; t
0) = ati(aj ; t

0). This implies that player j�s continuation
values satisfy Vj(a; t0) = Vj((a0i; aj); t

0) 8a 2 A.
If k = i, the induction assumption implies that at(a; t0) = at(aj ; t

0). Thus, player i knows that,
independently of his action at t00, he will end up at subgame a� = (ati(aj ; t

0); atj(aj ; t
0); t). Therefore,

in order to save on switching costs, he should switch at t00 to his equilibrium strategy at (a�; t), i.e.
si(a; t

00) = si(a
�; t), which is independent of ai. This concludes the �rst part of the lemma.

We prove now the second part of the lemma. Denote by t� the last point in time at which the hypothesis
of the lemma is satis�ed. Note that t� is a critical point. Given that player j�s continuation values at t�

depend only on aj , we denote them by Vj(aj ; t�). Player j can obtain the outcome that is more favorable
for him just by playing eaj = argmax

aj

Vj(aj ; t
�) at his �rst grid point and not switching ever until t�. At any

pro�le a with aj = ea0j , player j switches immediately to eaj if and only if Vj(eaj ; t�) > Vj(ea0j ; t�)� Cj(ea0j !eaj ; t). Clearly, early in the game such a switch is pro�table, but as we approach t� it may not be. Denote
by t�� 2 gj the last point before t� at which this switch would be made. Player i�s strategy at each time
before t� mimics his strategy at t�, with respect to player j�s anticipated action. To summarize, prior to
t�� both players play (si(eaj ; t�);eaj) at any pro�le, and between t�� and t� the strategies of both players
23Henkel (2002) and Gale (1995) obtain a similar result, although in the latter this is driven by a coordination

motive.
24Maggi (1996) extends Saloner (1987) to obtain an interesting interaction between commitment and uncertainty.
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at pro�le a are (si(aj ; t�); aj). Thus, we have at most three stages and three critical points: previ(t��),
t��, and t�. The critical point at previ(t��) does not always exist. It appears only when player i needs to
re-adjust to the expected move at t�� by player j. This happens when si(eaj ,t�) 6= si(ea0j ,t�).
Proposition 1 8i 2 f1; 2g 8t; t0 2 gi, if t,t0 are in the same stage then si(a; t) = si(a; t0) 8a 2 A.

Proof. We prove by contradiction that there are no two consecutive decision nodes for player i, t;nexti(t) 2
gi, within a stage satisfying si((ai; aj); t) = ai and si((ai; aj);nexti(t)) = a0i for a given a 2 A. If player
j does not move between t and nexti(t) the contradiction is immediate. Consider the case in which he
does. W.l.o.g. suppose that he plays only once in between and does it at t0. We consider di¤erent cases
depending on what player j does at pro�les ((ai; aj); t0) and ((a0i; aj); t

0):

1. If sj((ai; aj); t0) = aj and sj((a0i; aj); t
0) = aj player i can deviate from the proposed equilibrium and

increase his pro�ts by playing a0i at (a; t), which leads to a contradiction.

2. If sj((ai; aj); t0) = aj and sj((a0i; aj); t
0) = a0j , and given that t

0 is not the end of a stage, we know
that sj((a0i; aj);nextj(t

0)) = a0j . This implies that the equilibrium path starting at (a; t) leads to
((a0i; a

0
j);nexti(nextj(t

0))). But player i can get there at a lower cost by deviating and playing a0i at
(a; t) and not switching until nextj(t0). This provides the contradiction.

3. If sj((ai; aj); t0) = a0j and sj((a
0
i; aj); t

0) = a0j , and given that t
0 is not the end of a stage, we know that

sj((ai; aj);nextj(t0)) = sj((a0i; aj);nextj(t
0)) = a0j . Using Lemma 2 we know that si((ai; aj);nexti(t)) =

si((ai; a
0
j);nexti(t)) = a

0
i. Now it is easy to see that player i can improve by deviating at (a; t) and

playing a0i. Again, this leads to a contradiction.

4. Finally, if sj((ai; aj); t0) = a0j and sj((a
0
i; aj); t

0) = aj and given that t0 is not the end of a stage,
we know that sj((ai; aj);nextj(t0)) = a0j . Consider what player i does at ((ai; a0j);nexti(t)). If
si((ai; a

0
j);nexti(t)) = ai, one can check that player i can bene�t from playing a0i at (a; t), provid-

ing a contradiction. If si((ai; a0j);nexti(t)) = a0i = si((ai; aj);nexti(t)), by Lemma 2 we have that
sj((ai; aj); t

0) = sj((a
0
i; aj); t

0), which is a contradiction.

Proposition 2 Given a cost structure C, generically for every (�; g), the unique spe of (�; C; g) is com-
pletely characterized by m � 7 critical points ft�mgmm=1 and the corresponding stage strategies.

Proof. The proof makes use of the algorithm (Appendix B). The proof applies only generically to avoid
those cases in which the algorithm aborts. This happens when a player is indi¤erent about what to play
at a node. Given (�; C; g), the algorithm provides the following output (t�m; Sg(i; a;m); Vm; AMm)

m
m=0: All

we have to show is that the algorithm replicates the spe. More precisely, that

esi(a; t) = Sg(i; a; em(t)) where em(t) = fmjt 2 (t�m+1; t�m]g
are indeed the spe strategies. We will also see that the following de�nition of eVp(a; t) coincides with the
continuation values of the game for player i at node (a; t)

eVi(a; t) � � V new(Vem(t)�1; AMem(t)�1; t; i) evaluated at (a; i) if t 2 gi
V new(Vem(t)�1; AMem(t)�1; t; j) evaluated at (a; i) if t =2 gi (4)

where V new(V;AM; t; i) is de�ned in Appendix B, part 4.
We prove the proposition by induction on the level of the game tree, starting at T and going backwards.

The induction base is straight forward: as time approaches T the costs go to in�nity. Therefore, provided
that the grid is �ne enough, the cost of switching at the �nal decision node is too high. The algorithm
initializes with AM0(a; i) = 0 for all a; i. Thus, esi(a; T ) = ai and eVi(a; T ) = �i(a) which coincide with the
equilibrium strategies and continuation values.

Suppose now that the statement is true for next(t). We will show that it is true for t as well. Fix a
pro�le a. As before, once we have proven that the proposed strategy esi(a; t) is indeed optimal, verifying
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the update of the continuation values is immediate. Because of the induction hypothesis we know thateVi(a;next(t)) are the continuation values of the game. Therefore the spe strategy is the solution to
si(a; t) = argmax

a0i2Ai

feVi((a0i; aj);next(t))� Ci(ai ! a0i; t)g

Proving that esi(a; t) = si(a; t) is equivalent to proving that
AMem(t)(a; i) = 1() eVi((a0i; aj);next(t))� Ci(ai ! a0i; t) >

eVi(a;next(t)) (5)

The advantage of using equation (5) is that it only involves functions de�ned in the algorithm. Therefore,
the problem is reduced to an algebraic check. This is simple but tedious, as it involves many di¤erent cases.
First, eV is de�ned piecewise and recursively, thus it can have eight di¤erent expressions depending on the
values of AM and FS. Second, the statement deals with em(t) and em(next(t)), which may take the same
or di¤erent values. Potentially, thirty two cases have to be checked. Many of the cases can be ruled out as
impossible or easily grouped and checked together. Including a full check for all the cases in the Appendix
would be too long, and would not provide much intuition. Still, we present one case to show how easy each
check is. Consider a point t 2 gi in the middle of a stage. Suppose that only player i has an active move
(at pro�le a) on this stage. These conditions translate into em(t) = em(next(t)) and all the AMem(t)�s are
equal to zero except for AMem(t)(a; i) = 1. In this case, applying equation (4), we have that

eVi(a;next(t)) = Vem(next(t))((a0i; aj); i)� Ci(ai ! a0i;nexti(t))eVi((a0i; aj);next(t)) = Vem(next(t))((a0i; aj); i)
Now one can easily check that equation (5) is satis�ed. Moreover, once we know that the algorithm solves
for the unique spe of the game, then, as a direct application of Remark 1 (in the end of Appendix B), we
get that the equilibrium has no more than eight stages.

Proposition 3 Given a cost structure C, generically for every (�; g), the unique spe strategies of (�; C; g)
are such that the equilibrium path of any subgame contains at most one delayed switch.

Proof. Consider a subgame (ea; t0) with t0 2 gi with a delayed switch by player i at t > t0. First, we
show that on the equilibrium path of this subgame player j will never switch after t. Suppose towards
contradiction that player j switches at t1 > t. W.l.o.g. assume that the last delayed switch by player i
before j�s �rst switch is at (a; t): Thus, player i switches from ai to a0i , after which player j at ((a

0
i; aj); t1)

switches to a0j . By Lemma 1, player j plays a
0
j at ((a

0
i; a

0
j); t1) as well. This means that at (ea; t0) player i

has a pro�table deviation: by always playing a0i he obtains the same outcome with lower switching costs.
Next, we show that player i will not switch after t either. We prove it by contradiction. Without

loss of generality, assume that t =nexti(t0) and that the last two delayed switches by player i are at
(a; t) from ai to a0i and at ((aj ; a

0
i); t1) from a0i to ai. Note that we are making use of the �rst part of

the proposition, which guarantees that player j does not switch after t. Denote the possible continuation
values for player j at t1 by A � Vj((ai; a

0
j); t1); C � Vj((ai; aj); t1) = Vj((a

0
i; aj); t1). Observe that the

delayed switch of player i at t1 implies that player j switches from aj to a0j at ((ai; aj);prevj(t1)), implying
A� Cj(aj ! a0j ;prevj(t1)) > C.

Now, player j must play a0j at ((a
0
i;eaj);nextj(t0)), otherwise there would not have been any reason

for player i to delay the switch at ((ai; aj); t0). Thus, Vj((a0i; a
0
j);nextj(t0)) � Cj(eaj ! a0j ;nextj(t0)) >

C � Cj(eaj ! aj ;nextj(t0)). Observe also that for t0 < t0 � t1 at ((a0i; a0j); t0) player j always sticks to a0j ,
otherwise player i could play a0i at ((ai; aj); t0) instead of delaying. Denote by t the �rst time, if any, that
player i plays a0i at ((ai; a

0
j); t) for t0 < t � t1. If t does not exist, the following is a pro�table deviation for

player j: play a0j at ((ai;eaj);nextj(t0)) and stick to a0j at any t0 < t0 � t1. This strategy would yield payo¤s
of A � Cj(eaj ! a0j ;nextj(t0)), which are greater than C � Cj(eaj ! aj ;nextj(t0)) (player j�s value from
playing aj at nextj(t0)), and hence provides a contradiction. If t exists then the following is a pro�table
deviation for player j: play a0j at ((ai;eaj);nextj(t0)) and after that mimic the spe strategy at every node.
It is easy to check that this results in payo¤s of at least Vj((a0i; a

0
j);nextj(t0)) � Cj(eaj ! a0j ;nextj(t0)),

which are greater than C �Cj(eaj ! aj ;nextj(t0)), as shown before. Thus, leading to a contradiction. The
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reason for this is that, given the switch by player i at t, the only case in which Vj((a0i; a
0
j);nextj(t0)) 6=

Vj((ai; a
0
j);nextj(t0)) is if player j switches to aj at ((ai; a

0
j); t

0) for nextj(t0) < t0 < t. But if this happens,
by revealed preferences we know that Vj((a0i; a

0
j);nextj(t0)) < Vj((ai; a

0
j);nextj(t0)).

Theorem 1 Given C, generically for every � there exists � > 0 such that for almost every g 2 G,
'(g) < � the spe equilibria of (�; C; g) are essentially the same.

Proof. It is su¢ cient to show that generically for every (�; C) the limit of the equilibria of the �nite
games, taking '(g) ! 0, exists and is independent of the order of moves. Precisely we will prove that
lim

'(g)!0
Sg(i; a;m) = S(i; a;m) where Sg(i; a;m) and S(i; a;m) are de�ned in Appendix B.

First, note that the statement of the theorem is generic to avoid the cases for which the limiting version
of the algorithm aborts. This rules out the cases in which the critical points are the same for both players.

We prove the statement above recursively on the stages of the algorithm. For a given m we check the
convergence of the functions used in the algorithm (t; a�; p�; t�m; AMm; Vm; FSm). This task has to be done
in the same order in which the algorithm proceeds. It is su¢ cient to realize that each function is piecewise
de�ned by continuous transformations of (i) other functions for which the convergence has already been
checked (because of the recursive procedure); or (ii) the cost function, which is continuous. Finally, the
cuto¤ points in the piecewise functions also converge. This is so because the mutually exclusive conditions
that de�ne the cuto¤ points are (except for the case of t(a; i)) functions with a �nite range (and for which
the recursive procedure applies). For the case of t(a; i) the cuto¤ is determined by �V = 0, at which there
is no discontinuity. This essentially �nishes the proof of the theorem. The existence of � is an immediate
consequence of the fact that the range of Sg(i; a;m) is �nite.

Appendix B: Algorithm

Here we describe the algorithm, which is essential for the proof of Theorem 1. In the proof we also refer
to the limiting version of the algorithm, that is, as the �neness of the grid '(g) goes to zero. Since
the switching cost technology is continuous, the limiting version is identical to the �nite version of the
algorithm, with the only changes a¤ecting parts 2 and 4, in which nexti(t) and previ(t) are replaced by t.
A Matlab code for the limiting version of the algorithm is available at http://www.stanford.edu/~leinav.

In the end of this appendix we prove that the algorithm terminates in a small and �nite number of
steps, for any grid. Finally, in what follows, if p is one player we use � p to denote the other player. Given
a particular game (�; C; g) the algorithm steps are described below.

Initialization: Set m = 0 (stage counter, starting from the end); t�0 = T (the last critical time
encountered); V0(a; p) = � (continuation value of player p at pro�le a just after t�m); AM0(a; p) = 0 (an
indicator function; it equals one i¤ there is an active switch at time t�m by player p from pro�le a); and
IM = f(a; p)ja 2 A; p = 1; 2g (the set of inactive moves).

Update (m;Vm; AMm):

1. m = m+ 1

2. Find the next critical time t�m, and the action a
� and player p� associated with it. This is done by

comparing the potential bene�ts and costs for each move. We use some auxiliary de�nitions:

(a) We use some auxiliary de�nitions:

i. Let q(a; p) be the �rst player who switches out of a if player � p is the �rst who moves.
More precisely, let

q(a; p) =

8<: � p if AMm�1(a;� p) 6= ?
p if AMm�1(a;� p) = ? and AMm�1(a; p) 6= ?
? otherwise
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ii. Let SMm�1(a; p) be the longest ordered set of action pro�les (a0; a1; :::; ak�1; ak) such that
a0 = a and, for i > 0

ai =

(
(ai�1�q(a;q); AMm�1(a

i�1; q(a; q))) if i is odd and AMm�1(a
i�1; q(a; q))) 6= ?

(ai�1q(a;q); AMm�1(a
i�1;� q(a; q))) if i is even and AMm�1(a

i�1; q(a; q)) 6= ?

This de�nes the sequence of consecutive switches within stagem�1 that start at a and ends
at a pro�le from which there is no active move. We denote this �nal node by SMm�1(a; p).
The sequence is �nite, contains up to three switches, and is solely a function of AMm�1.

iii. Given SMm�1(a; p) = (a0; :::; ak), de�ne FSm�1(a; p) =
kP
i=1

I(ai�1p 6= aip) where I(�)

is the indicator function (FSm�1 computes the number of switches by player p in the
SMm�1(a; p) sequence).

iv. Let �Vm�1(a; p) � Vm�1(SMm�1((a
0
p; a�p); p))� Vm�1(SMm�1(a; p)). This di¤erence in

values stands for the potential bene�ts of each move at pro�le a by player p.

(b) Now, compute the critical time associated with each move. This involves four di¤erent cases,
as shown below. The �rst is when the move gives negative value. The second is a case in which
if player p does not move, he will be moving at his next turn (because the other player will
move to a pro�le in which player p prefers to move). This means that player p prefers to move
right away, rather than delaying his move, so the critical time kicks in immediately before the
next critical time. The third case is the �standard�case, in which the critical time is the last
time at which the cost of switching is less than its bene�t. The last case is similar, but takes
into account that the move involves an extra immediate switch at the next period.

tm(a; p)
25=

8>>>>>>>>>><>>>>>>>>>>:

0
if �Vm�1(a; p) < 0
prevp(t

�
m�1)

if �Vm�1(a; p) � 0 and FSm�1(a; p) > 0
max

�
t 2 gp; t < t�m�1jCp(ap ! a0p; t) � �Vm�1(a; p)

	
if �Vm�1(a; p) � 0 and FSm�1(a; p) = 0 and FSm�1((a0p; a�p); p) = 0
max

�
t 2 gp; t < t�m�1jCp(ap ! a0p; t) + Cp(a

0
p ! ap;nextp(t)) � �Vm�1(a; p)

	
if �Vm�1(a; p) � 0 and FSm�1(a; p) = 0 and FSm�1((a0p; a�p); p) > 0

The next critical time is the one associated with the move that maximizes the above, out of
the moves that are not active yet.

(a�; p�) = argmax
(a;p)2IM

ftm(a; p)g

(c) Given (a�; p�):
Abort if jp�j > 1.26 Equal critical times for di¤erent players (the solution is not grid invariant).
If not, set t�m = tm(a

�; p�)

Abort if t�m = 0 (a player is indi¤erent between two actions at t = 0)
If not, set p�m = p

�

3. Update the set of active moves. First, activate the move associated with the new critical time.
Second, deactivate moves by the other player that originate from the same action pro�le, but only if
m = 2 or if we are in the early part of the game. The third case involves a move whose destination

25Note that by having weak inequalities within the max operator we implicitly assume that a player switches
whenever he is indi¤erent between switching or not.
26argmax is a correspondence. This is why we use �2�rather than equalities in part 3 of the algorithm. Given

the way we construct tm(a,p), the multiple solutions must be associated with a unique p� for any �nite grid. In the
limiting case, this is the only generic case. This is why the algorithm may abort in non-generic cases.
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is the origin of the new active move. Such a move is deleted and reevaluated in the next iteration.
Finally, the rest of the moves remain as they were before.

AMm(a; p) =

8>><>>:
1 if (a; p) 2 (a�; p�)
0 if (a; p) 2 (a�;� p�) and (m = 2 or AMm�1(a

0; p) = 1)
0 if (a; p) 2 ((a�p� ;� a��p�);� p�)
AMm�1(a; p) otherwise

4. Compute the continuation values of the players just after t�m. This is done by using the value at the
terminal node of an active sequence of consecutive moves (as de�ned in part 2), and subtracting the
switching costs incurred by the player along this sequence. These switching costs are incurred just
after t�m. First, de�ne the following mapping

V new(V old; AM; t; p)(a; p) = V new(V old; SM(AM); t; p)(a; p) = V old(SM(a; p))�CC(SM(a; p); t; a; p)

where CC is recursively de�ned as follows:

CC(SM(a; p); t; a; p) =

8>><>>:
0 if SM(a; p) = (a)
CC(SM(a1;� p);next�p(t); a1; p) if ap = a1p where (a

0; :::; ak) = SM(a; p)
CC(SM(a1; p);nextp(t); a1; p)+

+Cp(ap ! a1p;nextp(t))
if ap 6= a1p where (a0; :::; ak) = SM(a; p)

Now, compute the continuation values by Vm = V new(Vm�1; AMm�1; t
�
m; p

�
m).

5. Let IM =
�
(a; p)jAMm(a; p) = 0 and AMm((a

0
p; a�p); p) = 0

	
.

6. Terminate if #IM = 0 (all moves are active), and let m = m, t�m+1 = 0. Otherwise, go to part 1.

Output: The essential information of the algorithm consists of the number of stages of the game, m,
the critical points that de�ne the end of each stage, (t�m)

m
m=0, and the strategies at every stage

Sg(p; a;m) =

�
ap if AMm(a; p) = 0
a0p if AMm(a; p) = 1

Nevertheless, for practical reasons we de�ne the output of the algorithm to be

(t�m; Sg(p; a;m); Vm; AMm)
m
m=0

In the limiting case, we use the notation S(p; a;m) instead of Sg(p; a;m).

Lemma 3 For any (�; C; g), the algorithm ends in a �nite number of stages, and in particular m � 8.

Proof. The algorithm �nishes when #IM = 0. Observe that:

1. If AMm(a; p) = 1 then AMm((a
0
p; a�p); p) = 0 and vice versa, thus #IM = 0 implies that #AM = 4.

2. Whenever 9p;m s.t.
P

aAMm(a; p) = 2 we get into a �termination phase� (which corresponds to
Lemma 2) and the algorithm is guaranteed to terminate within at most two more stages. It can
be veri�ed that

P
aAMm+1(a;� p) = 2 and that both active moves by player � p are in the same

direction. Therefore, player p�s two moves immediately become active at stage m + 2, without any
deletion of an active move by player � p, terminating the algorithm.

3. #AM is non-decreasing in m: each iteration adds an active move (AM(a�; p�)) and may potentially
remove at most one active move.27

27Whenever the argmax is not a singleton, then it is easy to see that we add two active moves by the same player,
thus we are done by observation 2 above.
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4. For m > 2, and before reaching the �termination phase,�an active move (a; p) is deleted only when
(a; p) 2 ((a�p� ; a0��p�);� p�). In particular, at stage m, a deleted move must belong to player � p�m.

5. Observations 2 and 4 imply that once #AM = 2 the algorithm terminates within at most 3 stages.
If the two active moves are by the same player then we can use observation 2. If they are by di¤erent
players, observation 4 guarantees that in the next stage one player will have 2 active moves.

Using all the above, all we need to show is that it is not possible to have an in�nite sequence of stages
with only one active move in each of them. That is, such that any move that becomes active at stage
m, becomes inactive at stage m+ 1. Suppose, toward contradiction, that such an in�nite sequence exists.
Without loss of generality, consider m = 2, in which AM2(a; p) = 1 for some (a; p), and AM2(ea; p0) = 0
for any (ea; p0) 6= (a; p). If (a; p) is deleted at m = 3, it must be that the new active move is such that
AM3((eap; a�p);� p) = 1. Similarly, we obtain that AM4(a

0; p) = 1 and that AM5((ap; a
0
�p);� p) = 1.

This gives the following contradiction. By AM2(a; p) = 1 we know that V3(a;� p) = V3((a
0
p; a�p);� p).

By AM3((a
0
p; a�p);� p) = 1 we know that V3((a0p; a�p);� p) < V3(a

0;� p) � C�p(a�p ! a0�p; t) for
any t < t�3. It is easy to see that t

�
4 < t�3, so the above implies that V5(a;� p) = V3((a

0
p; a�p);� p) <

V3(a
0;� p) � C�p(a�p ! a0�p; t

�
4) = V5((a

0
p; a�p);� p), while by AM4(a

0; p) = 1 we also know that
V5(a

0;� p) = V5((ap; a
0
�p);� p). The two last equations imply that �V5(a0;� p) > �V5((ap; a

0
�p);� p),

which is a contradiction to the fact that (a�; p�) = ((ap; a0�p);� p) atm = 5. This, together with observation
5 above, also shows that m � 8.

Remark 1 In fact, it can be shown that m � 7 because a deletion at m = 2 according to (a; p) 2 (a�;� p�)
and m = 2 implies that there can be only one (rather than two) additional deletions later on.
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