
XXVIII Simposio de Análisis Económico
Sevilla, December 11, 2003

Presidential Address: Underidentification?
Manuel Arellano

A lecture from joint work with L. P. Hansen & E. Sentana

• This lecture is concerned with testing for underidentifica-
tion in instrumental variable models.

• The early econometric literature recognized that underi-
dentification is testable, but to date such tests are uncom-
mon in econometric practice.

• Many econometric models imply a large number of mo-
ment restrictions relative to the number of unknown pa-
rameters and are therefore seemingly overidentified.

• However, this is often coupled with informal evidence
that identification may be at fault.

• In those cases, a test of underidentification (denoted an I
test here) may provide a useful diagnostic of the extent to
which estimates are well identified.



Outline

1. Introduction
What can and what cannot be tested?
Meaning and implications of test outcomes

2. A GMM testing approach
3. Identification testing in a single equation
4. Higher order underidentification
5. Taylor rules and Phillips curves
6. Cross-equation restrictions
Asset pricing
Demand systems with symmetry
Sequential moments for panel data

7. Conclusions

2



1. Introduction

• Take as a first example a relationship between two en-
dogenous variables with one instrument zt

yt = βxt + ut.

• Identification of β relies on two assumptions:
Cov (zt, ut) = 0 Orthogonality
Cov (zt, xt) 6= 0 Relevance

• Orthogonality is not testable, but relevance is.
• If there is more than one instrument, their compatibility
for the same relationship can be tested (Sargan test):

Cov (zt, yt − βxt) = 0.

• In testing for underidentification the null hypothesis is
H0 :

½
Cov (zt, yt) = 0
Cov (zt, xt) = 0

• Failure to reject H0 is not evidence against the model. It
is evidence that identification of β from ztmay be at fault.

• Under H0 the model has no empirical content, and esti-
mates of β are just the reflection of sample noise.

• Ideally, a confidence interval for β would reflect close-
ness toH0, but it is based on large sample approximations
which may be unreliable when instruments are weak.
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• Suppose a relationship between three endogenous vari-
ables with instrument vector zt

yt = αwt + βxt + ut Cov (zt, ut) = 0

or
Cov (zt, yt)− αCov (zt, wt)− βCov (zt, xt) = 0. (1)

• Now zt need not be uncorrelated to the 3 variables for
underidentification. Lack of correlation with two linear
combinations of them is enough.

• To see this, write the null of underidentification as
H0 :

½
Cov (zt, yt − γ1xt) = 0
Cov (zt, wt − γ2xt) = 0

• IfH0 holds, for any α∗
Cov (zt, yt − γ1xt)− α∗Cov (zt, wt − γ2xt) = 0

or
Cov (zt, yt)−α∗Cov (zt, wt)−(γ1 − γ2α

∗)Cov (zt, xt) = 0

so that (1) is satisfied not only for the true values but also
for any other α∗ and β∗ such that β∗ = γ1 − γ2α

∗.

• UnderH0 the observationally equivalent values of (α∗,β∗)
are contained in the line β∗ = γ1 − γ2α

∗.

• i.e. β is identified given prior knowledge of α.
• When zt is uncorrelated to the 3 variables, there is ‘‘2nd
order underidentification’’. In such case, all values of α∗
and β∗ are observationally equivalent.
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2. A GMM testing approach

• We adopt a GMM perspective and write the model as:
E(Ψt)α = 0 (2)

where Ψt is an r× (k + 1) matrix constructed from data.
• α is a k+1 unknown parameter vector, which is identified
subject to some normalization when rank of E(Ψt) is k.

• We suppose the order condition is satisfied: r ≥ k, but
not necessarily the rank condition.

• When r > k and themodel is identified, it is over-identified
and E(Ψt) has reduced rank k (the null of J tests).

• We take as our null that there are multiple solutions to (2),
which requires thatE(Ψt) has some prespecified reduced
rank, usually k − 1.

• In this case there exists another solution α∗ not propor-
tional to α such that

E(Ψt)α
∗ = 0. (3)

• We regard (2) and (3) as a newaugmentedmodel. If (α,α∗)
satisfy the combined overidentifyingmoment restrictions,
we conclude that the original model is not identified.

• Therefore, our approach is to test for underidentification
by testing for overidentification in the augmented model
using standard Sargan/Hansen J tests.
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Two complications in this implementation:

(1) Normalization

• The augmentedmodel is itself not identified. Further nor-
malization of (α,α∗) is needed to extract linearly inde-
pendent elements from the null space of E(Ψt).

• Since the parameter estimates of the augmentedmodel are
of no particular interest, any convenient normalizations
will suffice.

• It is known how to construct GMM estimators that are
invariant to normalization.

(2) Redundancy

• The effective number of moment conditions may be less
than 2r. For some examples, some of the additional mo-
ments are simply duplicated in the augmented system.

• This is important to sort out in advance, since the degrees
of freedom for the I test are given by the effective no. of
moment conditionsminus the effective no. of parameters.
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3. Identification testing in a single equation

• Consider:
w0tα = ut (4)

where ut is orthogonal to an r×1 vector zt of instruments
E(ztut) ≡ E(ztw0t)α = 0.

α (of order k + 1) is identified up to scale iff
rank E(ztw

0
t) = k. (H∗o )

• A standard Sargan test of overidentifying restrictions is a
test ofH∗o against the alternative of no relationship.

• In contrast, an I test of underidentification tests the null
rank E(ztw

0
t) = k − 1 (Ho)

against the alternative of identification.

• Assume that r ≥ k but rank ofE(ztw0t) is k−1. Then all
parameter values compatible with E (ztut) = 0 lie in a
linear subspace of dimension 2, and the admissible equa-
tions are linear combinations of the 2rmoment conditions

E(ztw
0
t)α = 0

E(ztw
0
t)α
∗ = 0.

• Thus to test for underidentification, we effectively intro-
duce a second equation to the system:

w0tα
∗ = vt (5)

combined with the orthogonality condition E (ztvt) = 0,
and study the joint overidentification of the 2 equations.
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• Even after normalizing each equation, there are two su-
perfluous dimensions to this parameterization.

• It may be possible, for example, to avoid indeterminacy
by choosing the two top rows of (α,α∗) equal to I2, which
eliminates two parameters per equation.

• More generally, we can impose the proper normalizing
restrictions (α,α∗)0(α,α∗) = I2 and setting the (1, 2)-th
element of (α,α∗) to zero.

• In any event, the effective number of parameters is 2k−2
and the number of moment conditions is 2r.

• If the 2(r − k) + 2 overidentifying restrictions for the
augmented system are rejected, then we have rejected the
underidentification of the original econometric relation.

• In practice, it is desirable to construct a test statistic of
underidentification using a version of the test of overi-
dentifying restrictions that is invariant to normalization.

• For example, those based on continuously updated GMM
(Hansen, Heaton, & Yaron, 1996) or empirical likelihood
estimation (Imbens, 1997, Kitamura & Stutzer, 1997).
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4. Underidentification of a Higher Order

• Although the null hypothesis that sets rank of E(ztw0t)
to k − 1 is the natural leading case in testing for underi-
dentification, it is straightforward to extend the previous
discussion to higher orders of underidentification.

• Suppose that the rank of E(ztw0t) is k − j for some j.
Then we can write all the admissible equations as linear
combinations of the (j + 1)r orthogonality conditions

E(ztw
0
t)(α,α

∗
1, ...,α

∗
j) = 0. (6)

• If we impose (j+1)2 normalizing restrictions on (α,α∗1, ...,α∗j)
to avoid indeterminacy, the effective number of parame-
ters is (j +1)(k+1)− (j +1)2 = (j +1)(k− j) and the
number of moment conditions is (j + 1)r.

• Therefore, by testing the (j+1)(r−k+j) overidentifying
restrictions in (6) we test the null that α is underidentified
of order j against the alternative of underidentification of
order less than j or identification.
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Other Approaches

• Tests of underidentification in a single structural equation
were first considered by Koopmans and Hood (1953) and
Sargan (1958).

• When r > k and the rank ofE(ztw0t) is k, as long as ut is
conditionally homoskedastic and serially uncorrelated, an
asymptotic χ2 test statistic of overidentifying restrictions
with r − k degrees of freedom is given by Tλ1, where

λ1 = min
a

a0W 0Z (Z 0Z)−1Z 0Wa
a0W 0Wa

,

is the smallest characteristic root of W 0Z (Z 0Z)−1Z 0W
in the metric ofW 0W =

PT
t=1wtw

0
t, etc. (Anderson and

Rubin, 1949, Sargan, 1958).

• Koopmans and Hood, and Sargan indicated that when the
rank ofE(ztw0t) is k−1 instead, if λ2 is the second small-
est characteristic root, T (λ1+ λ2) has an asymptotic chi-
square distribution with 2(r−k)+2 degrees of freedom.

• These authors suggested that this result could be used as a
test of the hypothesis that the equation is underidentified
and that any possible equation has a homoskedastic and
non-autocorrelated error.
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• The statistic T (λ1+ λ2) has a straightforward interpreta-
tion in terms of our approach.

• It can be regarded as a continuously updated GMM test of
overidentifying restrictions of the augmented model, sub-
ject to the additional restrictions on the error terms men-
tioned above.

• To see this, letA = (a, a∗) and consider the minimizer of

(a0W 0Z, a∗0W 0Z) (A0W 0WA⊗ Z 0Z)−1
µ
Z 0Wa
Z 0Wa∗

¶
subject to A0W 0WA = I2.

• This is given by

min
a0W 0Wa∗=0

a0W 0Z (Z 0Z)−1Z 0Wa
a0W 0Wa

+
a∗0W 0Z (Z 0Z)−1Z 0Wa∗

a∗0W 0Wa∗
,

which coincides with λ1 + λ2.
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• More recently, Cragg and Donald (1993) considered sin-
gle equation tests of underidentification based on the re-
duced form.

• Let us partition wt into a (p + 1)- and a r1-dimensional
vectors of endogenous and predetermined variables, re-
spectively, wt = (y0t, z01t)0, so that k = p + r1 and zt =
(z01t, z

0
2t)
0, where z2t is the vector of r2 instruments ex-

cluded from the equation.

• Moreover, let Π and bΠ = Y 0Z(Z 0Z)−1 be the (p+1)× r
matrices of population and sample reduced form linear-
projection coefficients, respectively.

• With this notation and the partition Π = (Π1,Π2) corre-
sponding to that of zt, if rank ofΠ2 is p, α is identified up
to scale, but it is underidentified if rank is p− 1 or less.

• To test for underidentification Cragg and Donald consid-
ered the minimizer of the minimum distance criterion

T [vec(bΠ− Π)]0V −1vec(bΠ− Π) (7)

subject to the restriction that the rank ofΠ2 is p−1. Under
the null of lack of identification and standard regularity
conditions, this provides a minimum chi-square statistic
with 2(r − k) + 2 degrees of freedom, as long as V is a
consistent estimate of the asymptotic variance of vec(bΠ).

12



• To relate (7) to our framework, write the augmentedmodel
as a complete system by adding to it p− 1 reduced form
equations, and denote it by

Byt + Czt = u
†
t .

• Then, since vec(bΠ−Π) = (B⊗Z 0Z)−1PT
t=1(u

†
t ⊗ zt),

(7) can be expressed as
TX
t=1

(u†t ⊗ zt)0[(B ⊗ Z 0Z)V (B0 ⊗ Z 0Z)]−1
TX
t=1

(u†t ⊗ zt),

which is in the form of a continuously updated GMM cri-
terion that depends on (α,α∗) and the coefficients in the
additional p− 1 reduced form equations.

• Since B does not depend on the latter, they can be easily
concentrated out of the criterion.
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5. Taylor rules and Phillips curves

• Wenext illustrate the previous ideas by examining the em-
pirical content of recently estimated forward looking ver-
sions of Taylor rules and Phillips curves.

• Since these estimates are subject to structural interpreta-
tion and have attractedmuch attention, our illustration has
some substantive interest.

Forward looking monetary policy rules

• Clarida, Galí and Getler (QJE, 2000) estimate the follow-
ing quarterly policy reaction function for the US Fed:
r∗t − r∗ = β [Et(πt+1)− π∗] + γEt(xt+1)

rt = ρ1rt−1 + ρ2rt−2 + [1− (ρ1 + ρ2)] r
∗
t

• rt, r∗t : actual and target nominal Federal Funds rates
• πt, π∗: actual (GDP deflator) and desired inflation rates
• xt: output gap (as constructed by the CBO)
• Orthogonality conditions:
E [zt (rt − φ1 − φ2πt+1 − φ3xt+1 − φ4rt−1 − φ5rt−2)] = 0

• Instrumental variables: 4 lags of rt, πt, xt, commodity
price inflation, M2 growth, and a ‘‘spread’’ variable

• Subsamples:
– 60Q1-79Q2: Pre-Volcker: β < 1?
– 79Q3-96Q4: Volcker and Greenspan: β > 1?
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• bβ is below unity for the pre-Volcker period, and much
greater than one for Volcker–Greenspan (Table A).

• From this it is concluded that interest rate policy in the
latter period has been much more sensitive to changes in
expected inflation than in the former.

• The J test does not reject the overidentifying restrictions
for any subsample.

• A possible augmented model is:
E [zt (rt − γ11 − γ12xt+1 − γ13rt−1 − γ14rt−2)] = 0

E [zt (πt+1 − γ21 − γ22xt+1 − γ23rt−1 − γ24rt−2)] = 0

• Since there are 11 other possible asymmetric normaliza-
tions, only normalization-invariant CU versions of the I
test are reported.

• The I test fails to reject in both subsamples.
• Using a smaller number of lags as instruments, our con-
clusions are unaffected.
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Table A
Forward Looking Taylor Rules

GMM Estimates from US Quarterly Data

1960:1-1979:2 1979:3-1996:4
2S CU 2S CU

β .834 .813 2.153 4.175
(.067) (.074) (.379) (.541)

γ .274 .265 .933 .152
(.087) (.080) (.454) (.215)

J test (df) 13.08 (20) 12.22 (20) 21.38 (20) 16.15 (20)
p-value (%) 87.4 90.8 37.5 70.7
I test (df) 35.8 (42) 34.05 (42)
p-value (%) 73.8 80.4
NOTES: 1960:1-1979:2 is the pre-Volcker period.

1979:3-1996:4 corresponds to the Volcker-Greenspan era.

2S stands for two-step GMM, CU for continuously-updated GMM.

Asymptotic standard errors robust to heteroskedasticity shown in parentheses.
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New Phillips Curves

• Galí, Gertler and López–Salido (EER, 2001) estimate for-
ward looking Phillips curves based on marginal cost:

πt = µ+ δEt(πt+1) + λmct
and on detrended output:

πt = µ + δEt(πt+1) + κ (yt − y∗t )
• πt: actual (GDP deflator) inflation rate.
• mct: average real marginal cost (measured by log real
unit labour costs).

• yt − y∗t : output gap (measured by detrended GDP).
• GGL argue that the mc version is based on a theory of
price setting by monopolistically competitive firms sub-
ject to constraints in the frequency of price adjustment.

• The fact that detrended output is not a good approxima-
tion tomc in the EU area may explain the empirical fail-
ure of the output gap-based Phillips curve.

• Orthogonality conditions:
E [zt−1 (πt − µ− δπt+1 − λmct)] = 0

• Error: πt+1 −Et(πt+1) and measurement error inmct.
• Instrumental variables: 2 lags of mct, output gap and
wage inflation, plus lags of πt (5 Europe, 4 US).

• Sample: 70:Q1-98:Q2.
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• Tables B and C: 2S GMM estimates of themc and output
gap versions. The finding that λ > 0 but κ < 0 appears
to favor themc version.

• Butworrying discrepancies between 2S andCU, specially
the estimated negative discount factors using CU.

• The J test never rejects the overidentifying restrictions.
• Augmented model: Order 1

E [zt−1 (πt − ϕ11 − ϕ12mct)] = 0

E [zt−1 (πt+1 − ϕ21 − ϕ22mct)] = 0

• Since there are 11 other possible normalizations, only CU
versions of the I1 test are reported.

• CU tests are robust to autocorrelation. Two bandwidth
choices are reported: Newey-West with ι = 8, and an
automatic optimal choice (Andrews, 1991) based on op-
timal instruments.

• The I1 test does not reject, so there seems to be again
insufficient information in the instruments employed.

• We are very grateful to Jordi Galí andDavid López-Salido
for kindly making available their datasets, and to Jesús
Carro and Francisco Peñaranda for their excellent research
assistance.
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Comparisons with F tests

• F tests of significance of slope coefficients in the regres-
sion of πt+1 on the instruments are testing a subset of the
restrictions in our I2 test.

• The augmented model for order 2 underidentification is:
E [zt−1 (πt − µ1)] = 0

E [zt−1 (πt+1 − µ2)] = 0

E [zt−1 (mct − µ3)] = 0

• Since µ1 = µ2, many moments in the first set are dupli-
cated in the second, so the I2 test should be based on:

E

 µ zt
zt−1

¶
(πt+1 − µ2)

zt−1 (mct − µ3)

 = 0
• Rejection of these restrictions does not guarantee identi-
fication of the original parameters.

• The I2 test fails to reject the null (Tables B and C).
• Table D reports F tests constructed under the null (LM)
and the alternative (Wald).

• There is a stark contradiction in that the Wald versions
reject but the LM versions do not.
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Table B
Forward Looking Phillips Curves (Marginal Cost Version)
GMM Estimates from US and Euro Area Quarterly Data

US Euro Area
2S (ι=8) CU (ι=8) CU [opt. ι] 2S (ι=8) CU (ι=8) CU [opt. ι]

δ .924 -4.679 .904 .914 -1.393 1.055
(.030) (2.319) (.061) (.041) (.676) (.076)

λ .149 4.093 .178 .088 1.884 -.084
(.075) (2.319) (.241) (.042) (.606) (.077)

J test (df) 5.76 (8) 5.56 (8) 10.47 (8) [0] 8.21 (9) 5.20 (9) 10.20 (9) [3]
p-value (%) 67.4 69.6 23.3 51.3 81.7 33.5
I1 test (df) 8.93 (18) 9.12 (18) [8] 10.02 (20) 8.30 (20) [11]
p-value (%) 96.1 95.7 96.8 99.0
I2 test (df) 9.35 (24) 7.09 (24) [12] 10.68 (26) 10.18 (26) [10]
p-value (%) 99.7 99.9 99.7 99.7
NOTES: The sample period is 1970:1-1998:2.

2S stands for two-step GMM, CU for continuously-updated GMM.

HAC standard errors (triangular weights) shown in parentheses. Optimal value of ι shown in brackets.



Table C
Forward Looking Phillips Curves (Output Gap Version)
GMM Estimates from US and Euro Area Quarterly Data

US Euro Area
2S (ι=8) CU (ι=8) CU [opt. ι] 2S (ι=8) CU (ι=8) CU [opt. ι]

δ 1.012 1.013 1.019 .990 -.575 .962
(.026) (.025) (.047) (.018) (.489) (.027)

κ -.021 -.018 -.024 -.003 -.282 .012
(.007) (.006) (.010) (.007) (.170) (.011)

J test (df) 5.06 (8) 5.03 (8) 8.11 (8) [1] 7.93 (9) 6.18 (9) 10.51 (9) [3]
p-value (%) 75.1 75.4 42.3 54.2 72.2 31.1
I1 test (df) 8.70 (18) 4.85 (18) [22] 8.65 (20) 3.30 (20) [35]
p-value (%) 96.6 99.9 98.7 100
I2 test (df) 9.9 (24) 5.32 (24) [19] 10.58 (26) 4.48 (26) [24]
p-value (%) 99.5 100 99.7 100
NOTES: The sample period is 1970:1-1998:2.

2S stands for two-step GMM, CU for continuously-updated GMM.

HAC standard errors (triangular weights) shown in parentheses. Optimal value of ι shown in brackets.



Table D
Forward Looking Phillips Curves

Robust GMM versions of F tests from US and Euro Area Quarterly Data
πt+1 = β0zt−1 + εt H0 : β

0 = (µ2, 00)

US (df=10) (R2=81.5%) Euro Area (df=11) (R2=87.7%)
ι=8 ι opt. H0 ι opt. H1 ι=8 ι opt. H0 ι opt. H1

FT under H0 9.06 5.29 [19] 13.78 [4] 10.07 4.79 [24] 19.18 [3]
p-value (%) 52.6 87.1 18.3 52.4 94.1 5.8
FT under H1 386.9 920.2 [19] 318.0 [4] 1289.8 3694.4 [24] 955.3 [3]
p-value (%) 0 0 0 0 0 0
NOTES: The sample period is 1970:1-1998:2.

Optimal value of ι shown in brackets.



Monte Carlo simulation of rejection rates

• Wald tests of predictability without strict exogeneity have
a known tendency to over-reject in finite samples. We
conducted a simulation exercise to further investigate this
matter.

• Tables E and F report simulated rejection rates. The con-
clusion is that Wald over-rejects while LM and I2 under-
reject. However, with an automatic choice of ι (based on
optimal instruments) LM and I2 are more reliable than
Wald.

Table E
Rejection rates in Monte Carlo experiments
Under the null of 2nd order underidentification

Nominal rejection rate: 5 percent
Robust GMM F tests

Bandwidth Wald LM
ι = 0 10.9 4.6
ι = 1 12.7 3.2
ι = 2 14.7 2.3
ι = 3 16.6 1.6
ι = 4 18.8 1.0
ι = 8 27.0 0.
automatic (H1) 12.3 3.8
automatic (H0) 12.3 3.8
NOTE: 10,000 replications, T = 100.
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Table F
Rejection rates in Monte Carlo experiments
Under the null of 2nd order underidentification

Nominal rejection rate: 5 percent
I2 tests

Bandwidth CU 2S
ι = 0 4.9 5.0
ι = 1 1.0 1.0
ι = 2 0.8 0.8
ι = 3 0.5 0.5
ι = 4 0.2 0.3
ι = 8 0. 0.
automatic1 2.8 3.2
NOTE: 10,000 replications, T = 100.
180.5% ι = 0, 18.5% ι = 1, 1% ι = 2.
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6. Cross-equation restrictions

• In the standard simultaneous equations system, we may
test for identification equation by equation using the ap-
proach just described.

• Moreover, if we were to look at multiple equations simul-
taneously, our implicit null hypothesis would be that none
of the equations are identified. Rejecting this hypothesis
we could only conclude that at least one of the equations
is identified. We could not conclude that all equations are
identified from this one system test.

• Thus in the absence of cross-equation restrictions it seems
only interesting to proceed with one equation at a time.

• When cross equation restrictions are present matters are
different. It now makes sense to look at more than one
equation at a time when testing for identification, since
parameters are no longer uniquely tied to equations. In
so doing, we may encounter a problem of redundancy in
our moment conditions, as we now illustrate.
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Example 1 Consider the following two equation model:
y1t = α1 + xtβ + u1t
y2t = α2 + xtβ + u2t

where y1t, y2t and xt are endogenous variables. Let zt de-
note a vector of IVs appropriate for both equations:

E (ztujt) = 0 (j = 1, 2).

To test for underidentification in the 1st equation we would
introduce a 2nd equation and 3 additional normalizations:

y1t = γ1 + v1t
xt = γ0 + v0t.

But for the two equation system, we do not want to augment
each equation because in both cases we would arrive at the
same relation for xt. Thus to test for underidentification,
we are led to study a three equation nonredundant system.
Therefore, what is tested is:

E[zt(y1t − γ1)] = 0

E[zt(y2t − γ2)] = 0

E[zt(xt − γ0)] = 0.

This example illustrates a common phenomenon. Sup-
pose we look atm equations with g endogenous variables.
If the instrumental variables are the same for each of them
equations, then augmenting the m equations to 2m equa-
tions in the g variables will generate redundant moment
conditions whenever 2m exceeds g. The maximal number
of additional nonredundant equations is min {2m, g}.
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An Asset Pricing Model The example can be motivated in
the GMM estimation of a standard consumption-CAPM.

Suppose a representative agentwhomaximizes expected
isoelastic utility over present and future consumption. The
Euler equations for the agent’s consumption and portfolio
allocation decision are given by

Et−1[exp(yjt + ln ρ− βxt)] = 1 (j = 1, ...,m)

xt is the change in log consumption between t− 1 and t,
yjt is the return on the j-th financial asset in period t,
β is the coefficient of relative risk aversion,
and ρ is the discount factor.

There arem assets, andEt−1(.) is taken with respect to
the agent’s information set in period t − 1, which includes
past returns and consumption.

Moreover, if (xt, y1t, ..., ymt) are conditionally jointly
normally distributedwith a constant covariancematrix, then

Et−1(yjt − αj − βxt) = 0 (j = 1, ...,m), (8)
where the asset-specific intercepts αj depend on the dis-
count factor, and the conditional variances and covariances
of asset returns and consumption growth.
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In the example there are two assets, and estimation of
the αj and β is based on the unconditional moment restric-
tions:

E[zt(yjt − αj − βxt)] = 0 (9)

where zt is a vector of instrumental variables whose values
are known in t− 1.

The coefficient of relative risk aversion is identified as
the common slope of linear combinations of asset returns
and consumption growth that are unpredictable on the basis
of the vector of instruments.

However, if

cov(zt, xt) = cov(zt, yjt) = 0

(the null of our test in this example) there will be a multi-
plicity of linear combinations with the same property, and
as a result the true value of β will not be empirically iden-
tifiable from (9).
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Empirical Application to US Data As an illustration we
use US annual data on returns and consumption growth for
1889-1994 (as in Campbell, Lo and MacKinlay, 1997, 8.2).

The asset returns are:
(1) the real commercial paper rate, and
(2) the real stock return.

Apart from the constant, the instruments are one lag of:
the real commercial paper rate,
the real consumption growth rate, and
the log dividend-price ratio.

In Table 1 we report two-step and continuously updated
GMM estimates and test statistics (robust to heteroskedas-
ticity but not to serial correlation) of the original and the
augmented models.

There seems to be information in the instruments since
the I tests reject the null of underidentification. However,
the results are not very encouraging for the original speci-
fication, since the J tests only marginally accept the overi-
dentifying restrictions (at 1 percent, but not at 5 percent),
and the estimated relative risk aversion parameter has the
wrong sign.
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Table 1
Consumption-Based Capital Asset-Pricing Model

GMM Estimates from US Annual Data

two-step continuous-updating

β -1.533 -3.108
(1.12) (1.70)

α1 .054 .085
(.020) (.031)

α2 .101 .127
(.025) (.035)

γ0 .022 .024
(.003) (.003)

γ1 .022 .024
(.004) (.004)

γ2 .078 .084
(.015) (.014)

I test (df) 23.94 (9) 23.93 (9)
p-value (%) 0.4 0.4
J test (df) 13.2 (5) 11.6 (5)
p-value (%) 2.1 4.0
NOTE: The sample period is 1889-1994.

Asymptotic standard errors robust to heteroskedasticity shown in parentheses.
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MonteCarlo Experiment in theAsset Pricing SettingWe
generated 10,000 time series with T = 100 from:

y1t = α1 + β[µ + δ(y1(t−1) + xt−1 + wt−1)] + ε1t
y2t = α2 + β[µ + δ(y1(t−1) + xt−1 + wt−1)] + ε2t
xt = µ+ δ(y1(t−1) + xt−1 + wt−1) + ε3t
wt = πwt−1 + ε4t.

This ensured that the original moments were satisfied
with zt = (1, y1(t−1), xt−1, wt−1)0 as in the application.

We considered one experiment under the null of under-
identification, setting δ = 0, and another under the alterna-
tive of identification with δ = 0.05.

In both cases, we set α1 = α2 = 0, µ = 0.05, β =
1, and π = 0.9. Disturbances were generated as N(0, I),
and initial observations were obtained from the stationary
distribution.

Table 2 shows some rejection frequencies for the (het-
eroskedasticity robust) two-step and continuously updated
GMM versions of the I test.

Their behaviour is broadly the same, although the con-
tinuously updated test is slightly more conservative.

Size distortion in the experiment under the null is not
negligible, as both tests show a tendency to under-reject.

The rejection frequencies under the alternative are at
least 4 times those under the null, and give an idea of the
power the test can be expected to have for small δ.
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Table 2
Size and Power of the I Tests in the Asset Pricing Example

Rejection Frequencies (%) (df=9)

Nominal Under the null (δ = 0) Under the alternative (δ = .05)
level two-step continuous-updating two-step continuous-updating

10 9.0 8.6 33.1 31.8
5 3.7 3.4 19.9 19.7
1 0.4 0.3 5.1 4.3

Mean 9.1 9.1 12.9 12.7
Variance 14.9 14.4 23.7 22.5
NOTE:10, 000 replications,T = 100,vit ∼ iidN(0, I).



A Translog Share Equation System Consider a four-input
translog cost share equation system. After imposing homo-
geneity in prices and dropping one equation to take care of
the adding-up condition:

y1t = β1p1t + β2p2t + β3p3t + v1t (10)
y2t = β4p1t + β5p2t + β6p3t + v2t
y3t = β7p1t + β8p2t + β9p3t + v3t

yjt=cost share of input j, pjt=log price of input j relative to
the omitted input. We abstract from intercepts and log out-
put terms since they have no effect here. The cost function
implies 3 cross-equation symmetry constraints:

β4 = β2 (11)
β7 = β3
β8 = β6.

Moreover, we assume that prices are endogenous and that r
instruments, denoted zt, are available so that

E(ztv1t) = 0 (12)
E(ztv2t) = 0 (13)
E(ztv3t) = 0. (14)

Without the symmetry restrictions, the order condition
is satisfied if r ≥ 3. With the symmetry restrictions, it ap-
pears the parameters may be just identified with r = 2, for
in that case (12)-(14) is a system of 6 equations with 6 un-
knowns. But the system has reduced rank 5 by construction,
so that the model is underidentified.
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To test for underidentification, we duplicate the origi-
nal moment conditions, introduce suitable normalizations,
and drop redundant moments, obtaining

E[zt(y1t − γ1p2t − γ2p3t)] = 0 (15)
E[zt(p1t − γ3p2t − γ4p3t)] = 0 (16)
E[zt(y2t − λ1p2t − λ2p3t)] = 0 (17)
E[zt(y3t − δ1p2t − δ2p3t)] = 0. (18)

Note that since there are 4r orthogonality conditions
and 8 parameters, with r = 2 the augmented set of mo-
ments does not introduce any overidentifying restrictions.
Indeed, in the absence of symmetry restrictions, the mo-
ments (15)-(18) are satisfied by the original model (which
is not identified). So there is nothing to test in (15)-(18).

In general, (15) and (16) imply that (12) is satisfied for
any β∗1, and for β

∗
2 and β

∗
3 such that

β∗2 = γ1 − β∗1γ3 (19)
β∗3 = γ2 − β∗1γ4.

Similarly, (16) and (17) imply that (13) is satisfied for any
β∗4, and for β

∗
5 and β

∗
6 such that
β∗5 = λ1 − β∗4γ3
β∗6 = λ2 − β∗4γ4.

Finally, (16) and (18) imply that (14) is satisfied for any β∗7,
and for β∗8 and β

∗
9 such that

β∗8 = δ1 − β∗7γ3
β∗9 = δ2 − β∗7γ4.34



However, one restriction must be imposed on the co-
efficients in the augmented model for (15)-(18) to charac-
terize observationally equivalent values of the original pa-
rameters satisfying the symmetry constraints. To see this,
note that, subject to the cross-restrictions, (15)-(18) imply
that (12)-(14) are satisfied as before for any β∗1 (and for β

∗
2

and β∗3 as in (19)), but only for β
∗
4 = β∗2 so that

β∗4 = γ1 − β∗1γ3,
and for β∗5 and β

∗
6 such that

β∗5 = λ1 − (γ1 − β∗1γ3)γ3
β∗6 = λ2 − (γ1 − β∗1γ3)γ4.

Equally, they are satisfied only for β∗7 = β∗3 so that
β∗7 = γ2 − β∗1γ4,

and for β∗8 and β
∗
9 such that
β∗8 = δ1 − (γ2 − β∗1γ4)γ3
β∗9 = δ2 − (γ2 − β∗1γ4)γ4.

Moreover, the restriction β∗8 = β∗6 implies that the ad-
missible values of the coefficients in the augmented model
must satisfy for any β∗1:

δ1 − (γ2 − β∗1γ4)γ3 = λ2 − (γ1 − β∗1γ3)γ4
or

δ1 − λ2 = γ2γ3 − γ1γ4. (20)
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Therefore, the I test for this problem is a test of overi-
dentifying restrictions based on the moments (15)-(18) sub-
ject to (20).

Enforcing (20) reduces the set of observationally equiv-
alent parameters under the null, but this is the right way
to proceed since the existence of other β’s that satisfy the
instrumental-variable conditions but not the symmetry con-
ditions should not be taken as evidence of underidentifica-
tion of the model.

Note that when r = 2, the model’s parameters are not
identified, but it is still possible to test the restriction (20)
as a specification test of the model.
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Sequential Moments: Panel Data AR Models We now
consider systems of equations in which the valid instru-
ments differ for different equations.

A leading example is given by AR models with indi-
vidual effects for short panels. In those cases our approach
provides a straightforward way of testing for underidenti-
fication, which is specially useful since the models have a
nonstandard reduced form.

Consider first an AR(2) model with an individual spe-
cific intercept ηi:

yit−ηi = α1(yi(t−1)−ηi)+α2(yi(t−2)−ηi)+vit (t = 3, ..., T ),
such that T ≥ 4 but small, {yi1, ..., yiT , ηi} is an i.i.d. ran-
dom vector and

E(vit | yi1, ..., yi(t−1)) = 0.
We consider estimation ofα1 andα2 based on a random

sample of sizeN and the unconditionalmoment restrictions:

E[yt−2i (∆yit−α1∆yi(t−1)−α2∆yi(t−2))] = 0 (t = 4, ..., T ).
where ysi = (yi1, ..., yis)0.

Thus, we have a system of T − 3 equations in first-
differences with an expanding set of admissible instruments
but common parameters.
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With T = 4 there is a single equation with 2 instru-
ments so that (α1,α2) are just identified at most.

Testing for underidentification amounts to testing for
overidentification the following 4 moments involving 2 un-
known coefficients:

E

·µ
yi1
yi2

¶
⊗
µ

∆yi4 − γ1∆yi3
∆yi3 − γ2∆yi2

¶¸
= 0. (21)

If (21) holds, the original moments will hold not only
for the true values (α1,α2), but also for any other (α∗1,α∗2)
along the line α∗2 = γ1γ2 − α∗1γ2.

Note that if the AR(2) process contains a unit root so
that α1 + α2 = 1, the moment conditions (21) hold with
γ1 = γ2 = −α2.

With T = 5 a second equation and 3 additional in-
struments become available. Single equation testing for the
second equation would be based on:

E

 yi1yi2
yi3

⊗µ ∆yi5 − γ1∆yi4
∆yi4 − γ2∆yi3

¶ = 0.
However, the moments E[(yi1, yi2)(∆yi4 − γ2∆yi3)] = 0
are clearly redundant given those in (21) implying that γ1 =
γ2.

Moreover, although associated with the second equa-
tion, the restriction E[yi3(∆yi4 − γ2∆yi3)] = 0 can be ac-
tually tested with T = 4.
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For larger values of T we obtain a similar pattern of
redundancies. Namely, all the moments associated with the
second equation in the augmented system, except the last
one, are redundant given those for the earlier periods.

Therefore, for T ≥ 5 a test of underidentification will
be based on the (T − 1)T/2− 1 moments
E
£
yt−1i

¡
∆yit − γ1∆yi(t−1)

¢¤
= 0, (t = 3, ..., T ). (22)

Since there is only one unknown coefficient, an I test sta-
tistic will have an asymptotic χ2 distribution with (T −
1)T/2− 2 degrees of freedom provided (22) holds.

Generalizing the previous argument, an I test for an
AR(p) processwith individual effectswill be a test for overi-
dentification based on

E
£
yt−1i

¡
∆yit − γ1∆yi(t−1)...− γ(p−1)∆yi(t−p+1)

¢¤
= 0

(t = p + 1, ..., T ).

In particular, for an AR(1) process the relevant orthog-
onality conditions are

E
£
yt−1i ∆yit

¤
= 0, (t = 2, ..., T ).
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Empirical Illustration Table 3 shows parameter estimates,
and I and J test statistics for an AR(2) model of employ-
ment using the Arellano & Bond (1991) dataset.

The data consists of an unbalanced panel of 140 quoted
firms from the U.K. for which 7, 8, or 9 continuous annual
observations are available for 1976-1984.

The AR(2) results were reported by Alonso-Borrego &
Arellano (1999), who interpreted the large disparities be-
tween two-step and continuously updated GMM as indi-
cating that the estimates were much less reliable than what
their asymptotic standard errors would suggest. Note that
the J test statistics give no indication of misspecification.

All statistics shown in the table are robust to heteroskedasticity.

The I test statistics are borderline, since the null hy-
pothesis that the relationship is a priori unidentified can be
marginally rejected at the five percent level but not at one
percent.

In any event, the I statistic in this case provides a useful
qualitative indication that the estimates are not very well
identified.
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Table 3
AR(2) Employment Models with Individual Effects

GMM Estimates in First Differences
from a Panel of U.K. Firms

two-step continuous-updating

α1 .320 .092
(.053) (.047)

α2 .022 .218
(.023) (.019)

γ1 .314 .416
(.022) (.022)

I test (df) 51.1 (34) 48.8 (34)
p-value (%) 3.0 4.8
J test (df) 32.8 (25) 31.7 (25)
p-value (%) 13.7 16.6
NOTE: Unbalanced panel of 140 companies with 7, 8, or 9 annual observations.

The sample period is 1976-1984. Time dummies are included in all equations.

Asymptotic standard errors robust to heteroskedasticity shown in parentheses.
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Monte Carlo Simulation We simulated 10,000 balanced
panels of size N = 150 and T = 7 from the AR(2) model
with vit ∼ iidN(0, 1) and a unit root.

Specifically, we set the largest and smallest roots of the
AR(2) polynomial to µ1 = 1 and µ2 = 0.4 respectively
(the latter was chosen to mimic the estimated γ1 from the
empirical data).

To investigate local power we conducted another ex-
periment with µ1 = 0.98, setting individual effects to zero.

Table 4 shows some rejection frequencies for the (het-
eroskedasticity robust) two-step and continuously updated
versions of the test statistic.

Size distortion is small, taking into account that sample
size is not large, although there is some tendency to over-
reject at the 10 percent significance level.

We might expect larger size distortion for larger values
of µ2. Indeed, for µ2 = 1 the AR(2) model would exhibit
a larger degree of underidentification since not only α1 and
α2 but also γ1 would be underidentified. If this were the
relevant null, an I test could be easily constructed for it, but
the I test statistics that assume the uniqueness of γ1 would
not have an asymptotic χ2 distribution.

Rejection frequencies under the chosen alternative are
about twice the size of those obtained under the null, so
power is not very high in our experiment, but it would ob-
viously increase for smaller µ1 and largerN .
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Table 4
Size and Power of the I Tests in the Panel Example

Rejection Frequencies (%) (df=19)

Nominal Under the null (µ1 = 1) Under the alternative (µ1 = .98)
level two-step continuous-updating two-step continuous-updating

10 10.9 10.9 19.4 18.8
5 5.5 5.3 10.2 9.8
1 1.0 0.9 2.3 2.2

Mean 19.8 19.7 21.9 21.8
Variance 36.0 35.5 41.0 40.2
NOTE:10, 000 replications,N = 150,T = 7,vit ∼ iidN(0, 1),ηi ≡ 0.
Smaller root is set toµ2 = 0.4.



7. Conclusions

• We have proposed a method for constructing tests of un-
deridentification based on the structural form of the equa-
tion system.

• We regard underidentification as a set of over-identifying
restrictions imposed on an augmented structural model.
Therefore, our proposal is to test for underidentification
by testing for overidentification in the augmented model
using standard testing methods.

• We show that our approach can be used not only for single
equationmodels, but also for systemswith cross-equation
restrictions, possibly with different valid instruments for
different equations.

• As examples we consider Taylor and Phillips rules, in-
tertemporal asset pricingmodels, and autoregressivemod-
els with individual effects for short panels.

• We provide empirical calculations andMonte Carlo simu-
lations in order to illustrate the use and finite sample prop-
erties of identification tests in those environments.

• A relevant issue which is outside the scope of this talk
is how these procedures could be extended to testing for
underidentification in nonlinear GMM problems.
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