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Topic:

Extending nonlinear models with endogenous regressors to
semi & nonparametric contexts.

The papers are of high quality and extend the literature in
significant ways.

Structural form and reduced form approaches

The structural approach aims at estimating behavioral or
technological relationships. Endogeneity ariseswhen amodel
suggests dependence between explanatory variables and un-
observables. When this occurs, instrumental variables is
the leading method of identification in econometrics.
(Despite the modest record of instances in which there is an
instrument that is convincing a priori and empirically use-
ful.)

Structural parameters are estimated for policy evaluation,
or simply as a way of providing economically interesting
description.



The conventional approach to policy evaluation is to sim-
ulate the (counter-factual) policy of interest using a previ-
ously estimated structural model.

But recognition that certain policy impacts may be identi-
fied under weaker assumptions than structural parameters,
has created renewed interest in reduced form approaches to
estimation of policy impacts (Angrist, 2000, and Ichimura
& Taber, 2000, are recent examples).

Sometimes the identification of policy impacts in reduced
form approaches is also based on instrumental variables.
In this context, instruments have been used in conjunction
with (or instead of) controlled experiments, selection, or
matching techniques.

The papers in this session are, nevertheless, concerned with
the identification and estimation of structural (functional or
finite dimensional) parameters. So for my discussion I will
have in mind structural models rather than reduced forms
for policy impacts.



A) Darolles-Florens-Renault (DFR)

Summary

DFR consider nonparametric estimation of g (x) in a struc-
tural equation of the form

y = g (x) + u

E (u | z) = 0
when x and z are continuous r.v.’s. An earlier treatment of
this problem was provided by Newey and Powell (1989).

The function g (x) satisfies:

E (y | z) =
Z
g (x) dF (x | z) . (1)

If x and z are discrete with finite support, g(x) is of
finite dimension and the inverse of the linear functional op-
erator (1) is continuous inE (y | z). In such case, provided
a rank condition is satisfied (which requires the support of z
to be at least as large as the support of x), g(x) is identified
and consistent estimation is straightforward.

However, if (1) is an infinite dimensional operator, its
inverse is not continuous in general (called an ill-posed in-
verse problem ). Lack of continuity implies that the avail-
ability of consistent estimates of E (y | z) and F (x | z)
does not guarantee consistent estimation of g (x).



Identification

The function g is identified if the solution to the inte-
gral equation (1) is unique.

In turn, this is equivalent to the statistical completeness
of F (x | z) in z.

When x and z have no elements in common (ie. all x
are endogenous), DFR prove that g (x) is identified if and
only if λj > 0 for all j, where {λj} is the sequence of
eigenvalues of the double conditional expectation operator
E{E[g(x) | z] | x}.
Estimation

Replace the original problem (1) with the transformed
double expectation operator

E [E (y | z) | x] = E {E [g (x) | z] | x} . (2)
This is still ill-posed but it has the same argument as g(x).
For this formulation, DFR note that the problem can be
overcome replacing (2) with the approximate problem
(Tikhonov regularization):
E [E (y | z) | x] = E {E [g∗ (x) | z] | x}+ αg∗ (x) . (3)
Asα→ 0 the approximate problem approaches the original
one, but for fixed α (3) is well-posed.



Comments

This is an exciting paper that opens up a new class of
applications by providing a workable theory for nonpara-
metric structural equations.

The paper raises many questions that still have no an-
swer. Some of these issues are listed by the authors in the
conclusions.

A specially relevant issue for applied work is whether
DFR’s asymptotic normality result will lead to a practical
asymptotic inference framework for functionals of the esti-
mator of g(x).

The following comments are just meant to add to the
list of open issues suggested by the paper.

1) Nonlinear implicit structural equations. The literature
on parametric nonlinear structural models (beginning with
the work of Amemiya) considered the more general formu-
lation

f(y, x) ≡ f(w) = u (4)
E (u | z) = 0. (5)

In a structural context, implicit equations seem more
attractive. The model y = g(x)+u is a natural formulation
in a regression context, but for a structural equation it gives
a very uneven treatment of observables and unobservables.



• f(y, x) = umay reflect a direct interest in f . An example
is an Euler equation of the form

U 0(ct+1)rt+1 − U 0(ct) = ut+1. (6)
where U 0(.) denotes the marginal utility of consumption.
Parameters of interest could be the coefficients of relative
risk aversion for different values of c estimated in a non-
parametric way (Gallant and Tauchen, 1989).

In this example there is no left-hand side variable but
themodel imposes a particular structure to the implicit func-
tion: additivity and monotonicity in U 0(.). Structural mod-
els often impose not only IV conditions but also restrictions
on the shape of functions. The analysis of DFR suggests the
interest to explore alternative economically based types of
regularization for specific models.

• Another situation of interest is when the starting point is
an invertible response function

y = H(x, u), (7)
which can be represented as f(y, x) = u, together with the
assumption

E [c(u) | z] = 0
for some function c(.). Identification of f∗(y, x) = c [f(y, x)]
up to scale affords calculation of the following derivative
effects with respect to the structural functionH:

−
µ
∂f(y, x)

∂y

¶−1
∂f(y, x)

∂x
. (8)



• If (w, z) is discrete with finite support the analysis of the
implicit IV model is straightforward. The model specifies

JX
j=1

f(ξj) Pr(w = ξj | z = ζ`) (` = 1, ..., L) (9)

where w ∈ {ξ1, ..., ξJ} and z ∈ {ζ1, ..., ζL}.
In matrix form:

Pθ = 0 (10)
whereP is anL×J matrix of conditional probabilities, and
θ is the J × 1 vector with elements θj = f(ξj). The order
condition for identification of θ up to scale is L ≥ J − 1
and the rank condition is rank(P ) = J − 1.

This is a standard GMMproblem: Letting rj = 1(w =
ξj) andm` = 1(z = ζ`), we can write

E [m` (θ1r1 + ...+ θJrJ)] = 0 (` = 1, ..., L) (11)
which is in the form of a system of L simultaneous equa-
tions with instrumentsm` in equation `.

• Another special case is a model including a subset of z in
f so that f(w, z1) = u, in which the endogenous r.v.’sw are
discrete but z = (z1, z2) are continuous. This is equivalent
to the semi-parametric conditional moment restriction:

E

µXJ

j=1
θj(z1)rj | z

¶
= 0 (12)

where w ∈ {ξ1, ..., ξJ}, θj(z1) = f(ξj, z1), and rj =
1(w = ξj).



2) Testing for overidentification & underidentification. The
IVmodel can be regarded as a restriction on the cdf ofw | zZ

f(w)dF (w | z) = 0.
Sometimes the focus is not in estimating f(w) (or y−g(x))
but in testing the restrictions on F (w | z). From this point
of view f(w) becomes a nuisance parameter function.
• In the discrete case an invariant χ2 test statistic of the
overidentifying restrictions (with L− J + 1 d.f.) is readily
available -but of no use in the continuous case-. This is
given by

min
θ
nbp0(I ⊗ θ)

h
(I ⊗ θ0)bV (I ⊗ θ)

i−1
(I ⊗ θ0)bp

where bp = vec( bP ) denotes a vector of sample frequencies,
and bV is the estimated sampling variance of bp.
• Testing for underidentification in the discrete case is also
straightforward: One would test the null of underidentifica-
tion (rank(P ) < J − 1) against the alternative of identifi-
cation (rank(P ) = J−1). A statistic of this kind provides
a natural diagnostic of the extent to which structural para-
meter estimates are well identified.

Related to this, I wondered if DFR’s identification con-
ditions using the spectral decomposition, and the results on
the asymptotic properties of estimated eigenvalues (Darolles-
Florens-Gourieroux, 1998) could lead to a nonparametric
test for underidentification in the continuous case.



B) Blundell-Powell

Control functions with additive errors

Newey-Powell-Vella (1999) (NPV) considered a nonpara-
metric structural equation with an explicit reduced form:

y = g(x) + u

x = π(z) + v
and the assumptions

E (u | z, v) = E (u | v) (13)
E (v | z) = 0. (14)

These assumptions were chosen for convenience. In effect,
they imply

E (y | x, v) = g(x) +E (u | x, v) (15)
= g(x) +E (u | z, v) = g(x) +E (u | v) = g(x) + h(v).
In this way the problemof nonparametric estimation of g(x)
is assimilated to the problem of estimating the regression
function E (y | x, v) subject to an additive structure.
Discussion of the assumptions. Note that (13)-(14) do not
imply E (u | z) = 0:
E (u | z) = E [E (u | z, v) | z] = E [E (u | v) | z] = E [h(v) | z
A sufficient condition forE [h(v) | z] = 0 is that v is inde-
pendent of z. Mean independence does not guarantee that
E [h(v) | z] = 0 unless h(v) is linear in v.
Alternatively, if we begin with the assumptionsE (u | z) =
0 andE (v | z) = 0, in general (13) or (15) are not satisfied.



The CF assumption can be very useful in applied work,
but one should insist that the IV condition E (u | z) = 0
also holds.
•Having a structural equation inwhich instruments are cor-
relatedwith errors because of a simplifying assumptionmay
jeopardize the interpretability of the structural parameters.
• From the point of view of econometric practice, it is bet-
ter to regard the CF assumption as a specialization of the
IV assumption than to pretend that one is no more, no less
general than the other.
ie. CF as an approach in which estimation of g(x) is helped
by an explicit semiparametricmodelling of the reduced form.
• This will typically require aiming for a reduced form with
errors that are independent of instruments.

As an example, suppose that for scalarx, v is heteroskedas-
tic with σ2(z) = E

¡
v2 | z¢, but v† = σ−1(z)v is indepen-

dent of z. In such case, the assumption
E
¡
u | z, v†¢ = E ¡u | v†¢

is compatible with E (u | z) = 0, but (13) will imply in
general correlation between u and z.

The control v can be generalized further, eg. to include a
Box-Cox-like transformation of x. The idea is that the ap-
proach works well when there is a reduced form equation
for some transformation of x with errors that are indepen-
dent of z.



Control functions in discrete choice models

Blundell-Powell (2000) (BP) is a very nice paper which
shows how the CF approach can be particularly helpful in
models with non-additive errors. BP consider the model

y = 1(xβ + u > 0) (16)
x = π(z) + v (17)
E(v | z) = 0 (18)

together with the assumption
u | x, v ∼ u | v. (19)

In this way
Pr(y = 1 | x, v) = Pr(−u ≤ xβ | x, v) = Pr(−u ≤ xβ | v)
so that

E(y | x, v) = F (xβ, v)
where F (., v) is the conditional cdf of−u given v.

As in the case of NPV the problem of estimating a
structural equation is assimilated to the problem of estimat-
ing the regression function E (y | x, v) subject to restric-
tions.
• In the NPV case it was sufficient to assume that u was
mean independent of x given v, andE (y | x, v) had an ad-
ditive structure.
• In the discrete choice case full independence of x given v
is required, and E (y | x, v) has a multiple index structure.

The difference between the two models is due to the
fact that (16) is not additive or invertible in u.



An interesting feature of the BPmethod is that the mar-
ginal cdf of u evaluated at xβ can be obtained by averaging
F (xβ, v) over v whose cdf is identified:

Pr(−u ≤ xβ) ≡ G(xβ) =
Z
F (xβ, v) dFv.

This is useful because the functionG(xβ) is arguably a pa-
rameter of interest for policy evaluation in this context.

Comments

1) If (u, v) are independent of z then
u | z, v ∼ u | v. (20)

Moreover, in view of (17), u | x, v ∼ u | z, v ∼ u | v.
However, theCF assumptions by themselves do not im-

ply independence or even lack of correlation between u and
z: If (20) holds, in general u will not be independent of z
unless v is independent of z:

F (u | z) =
Z
F (u | z, v)dFv(v | z) =

Z
F (u | v)dFv(v | z)

6=
Z
F (u | v)dFv(v) = F (u).

So, the previous remarks also apply in this context: If
xβ + u represents a latent structural equation, one would
expect to select instruments on a priori grounds that suggest
some form of independence with u.



The conclusion is that the CF approach is best regarded
not as a competing identification strategy to IV assumptions
but as a complementary modelling strategy for the reduced
form of the model.

This strategy is specially useful in discrete choice and
related models, for which IV assumptions by themselves do
not appear to be sufficient to identify parameters of interest.

2) Discrete choice with the IV assumption u | z ∼ u. Ac-
cording to this model:

Pr(y = 1 | z) =
Z
1(xβ + u > 0)dFux(u, x | z)

=

Z
E [1(xβ + u > 0) | z, u] dFu(u)

It would be useful to have a non-identification theorem for
this model in the absence of further assumptions.



3) Relation to Lewbel (1996). Lewbel considered discrete
choice models in which there is a special exogenous con-
tinuous explanatory variable z1 such that

y = 1(γz1 + wδ + u > 0)

E(zu) = 0
u,w | z1, z2 ∼ u,w | z2.

This implies that z1 is excluded from the reduced form ofw.
Under these assumptions (and normalizing γ = 1) Lewbel
showed that

E(z2x
0)δ = E

µ
z2
y − 1(z1 > 0)
f(z1 | z2)

¶
,

and proposed a 2SLS procedure to estimate δ.

As suggested by Lewbel, by combining this approach
with the CF approach it is possible to rely on a less restric-
tive CF assumption when z1 is in the equation. The idea is
to relax the BP CF assumption by considering

u | z1, w, v ∼ u | w, v
where z = (z1, z2), w = π(z) + v, E(v | z) = 0, and sup-
pose for simplicity that all variables in w are endogenous.

Then it turns out that Lewbel’s methodology can be applied
using π(z) as instruments instead of z2, and f(z1 | π(z))
instead of f(z1 | z2), under the assumption thatE[π(z)u] =
0.



4) Two-sample estimation. Suppose we have two indepen-
dent samples on (y, z) and (x, z), respectively, but the joint
distribution of y andx is not observed (as inArellano-Meghir,
1992, or Angrist-Krueger, 1992).

It is interesting to compare IV and CF in this context
to highlight the different data requirements in the two ap-
proaches.

• In the IV approach only the marginal distributions of y
and x given z are needed for identification. So y | z can be
obtained from one sample and x | z from the other.
• In theCF approach, however, (y, x) need to be observed in
the same sample to be able to do a nonparametric regression
of y on x and v.

5) Empirical application. It would be nice to test for het-
eroskedasticity in the log income equation, and if present
to obtain a kernel estimate of V ar(y2 | z) ≡ σ2(z). Then
consider v† = v/σ(z) as an alternative CF, provided v† ⊥ z
is not rejected.


