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Abstract

This paper reviews the existing approaches to deal with panel data
binary choice models with individual effects. Their relative strengths
and weaknesses are discussed. Much theoretical and empirical research
is needed in this area, and the paper points to several aspects that
deserve further investigation. In particular, I illustrate the usefulness
of asymptotic arguments in providing both approximately unbiased
moment conditions, and approximations to sampling distributions for
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1 Introduction

This paper reviews the existing approaches to deal with panel data discrete
choice models with individual effects. Their relative strengths and weaknesses
are discussed. Much theoretical and empirical research is needed in this area,
and the paper points to several aspects that deserve further investigation. In
particular, I illustrate the usefulness of time series asymptotic arguments in
providing both approximately unbiased moment conditions, and approxima-
tions to sampling distributions even for fairly short panels. I will focus on the
static binary case for simplicity and because many results are only available

for this case.

2 Models and Parameters of Interest
I begin by considering the following static binary choice model

where the errors v;; are independently distributed with cdf F' conditional on

n; and x; = (x4, ..., Z,p)’, so that
Pr(yy = 1| @i,m;) = F (23,80 +n;) - (2)
The Linear Model as a Benchmark In a linear model of the form

E(yi | ziym;) = x;‘tﬁo + 145 (3)

B, is identifiable from the regression in first differences or deviations from
means in a cross-sectional population for fixed T', regardless of the form of

the distribution of 7, | z;. That is, we have

p lim % Yo (@i =) [(yu =T — (wa —T) By =0, (4)

N—oo
i=1 t=1



which is uniquely satisfied by the true value 3, provided
is non-singular. So, the value 3 that solves

N T
% Y (@ —m) [(yit ~ 7)) — (20 —T) B =0 (6)
i=1 t=1
(the “within-group” estimator) is a consistent estimator of 3, for large N,
no matter how small is T as long as T' > 2 (see, for example, Hsiao, 1986).
This is of economic interest if one hopes that by conditioning on 7,, 3,
measures a more relevant (causal or structural) effect of x on y. The con-
sistency result matters because one wants to make sure that gets the right
answer when calculating B from a large cross-sectional panel with a small
time series dimension, which is a typical situation in microeconometrics.
The motivation and aim in a binary choice fixed effects model is to get
similar results as in the linear case when the form of the model is given by
(1). In our context, the term “fixed effects” has nothing to do with the nature
of sampling. It just refers to a model for the effect of x on y given x and
7, in which we observe y and x but not 7, and the distribution of n | z is
left unrestricted. Following the usage in the econometric literature, the term
“random effects” will be reserved for models in which some knowledge about

the form of the distribution of 7 | z is assumed.

Parameters of Interest The micropanel data literature has empha-
sized the large- N-short-T" identification of 3, with an unspecified distribution
of n; | z;. However, a natural parameter of interest is the mean effect on the
probability of y;; = 1 of changing x;; from z, to 2, say. A consistent esti-

mator of this is:
T
N Z / [F (2aBo1 + ThitBoz2 + 1) — F (2801 + %5802 + 1) dG (1 | 22i) (7)
i=1
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where G(. | x9;) is the cdf of n; conditional on xs;, and x1;; denotes the first
component of ;. Thus, measuring this effect would require us to specify G,
which is not in the nature of the fixed effects approach.!

The direct information we can get from the ( coefficients only concerns
the relative impacts of explanatory variables on the probabilities. If zq; and

o, are continuous variables we have:

@ _ OProb(yy =1 | l'z'a'fh)/
/601 Oz

3 The Problem

OProb(yy =1 | x;,m;)
O0x1i

. (8)

The log-likelihood function from (1) assuming that the y;; are independent

conditional on z; and 7, is given by

Zgz‘ (B, m;) 9)

where .
G (Bym) =Y {yielog Fie + (1 — ya) log (1 — Fyy)} (10)
=1
and Fy = F (2,8 +n,;). Moreover, the scores are
_ B N~ fa |
dni (B,m;) = o, tz:; Fu(1— Fy) (yir — Fi) (11)
0 (Bm) _ N~ fu
‘ ) = —— = Lt (Ve — F 12
d,@z (57771) aﬁ g Et (1_th)$t(yt ) ( )

where f;; denotes the pdf corresponding to Fj;.
For the logit model F' is the logistic cdf A(r) =¢€"/(1+ ¢e") and we have

fit

L ——
Fy (1= Fa)

! An alternative is to obtain the difference in probabilities for specific values of 1 and
2ot (e.g. their means), but this may only be relevant for a small part of the population
(see Chamberlain, 1984).



so that in this case the scores are simply d,; (3,7n;) = Zthl (yit — Fy) and
dgi (B,m;) = 25:1 Tit (Yir — Fit)-
Let the MLE of n, for given 3 be

7 (8) = axg max; (5,1 (13)

so that 7; () solves

dyi (8,7; (8)) = 0. (14)
Therefore, the MLE of ( is given by the maximizer of the concentrated (or
profile) log-likelihood

N
B = argmax Y (5,7, (5)) (15)
=1

which solves the first order conditions

box(8) = iy 3o (37,9 + d 57, (9) TP |

= S du (8,7,(9)) (16)
TN <

The problem is that bry(3) evaluated at § = [, does not converge to
zero in probability when N — oo for T fixed (although it does converge to
zero when 7' — oc). This situation is known as the incidental parameters
problem since Neyman and Scott (1948). A discussion of this problem for

discrete choice models is in Heckman (1981).

An Example As a classic illustration let us consider a logit model in
which T' = 2, (3 is scalar, and z; is a time dummy such that x;; = 0 and
x;z = 1 (Andersen, 1973). When T' = 2, 7, (/3) solves

A@; (B) + zaB) + AM; (B) + 2:28) = yir + Yia- (17)

Therefore, for observations with ;1 + y;2 = 0 we have 7, (3) — —oo and
Am; (B) + zi18) = A, (B) + x28) = 0. For observations with y;; + y;2 = 2
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we have 7); (6) — oo and A(; (8) + 1 8) = A[@; (6) + z:203) = 1. Finally, for
observations with y;1 + y;2 = 1 7; (0) satisfies

A[®; (B) +zuB) =1 = A[; (B) + z:20),
so that m; (8) + za B = -1, (B) — x40, and
n; (8) = — (zir + x2) B/2. (18)

The implication is that the contributions of observations (0,0) and (1, 1)
to the concentrated log-likelihood are equal to zero, a (0, 1) observation con-
tributes a term of the form 2log A(Az;25/2), and a (1,0) observation con-
tributes with 2log[1 — A(Ax;23/2)]. So the concentrated log-likelihood is
given by

2 Z {dioilog [1 — A(Aw23/2)] + dori log A(Ar3/2)} (19)

i=1
where dyo; = 1(ya = 1,92 = 0) and doi; = 1(yi1 = 0,952 = 1).
Moreover, since Ax;; = 1 for all observations, the MLE of p = A(3/2) is

S dow (20)
Zﬁil Wy +yi2 =1)

]’5 =
so that
- P

Note that pis the sample counterpart of pg = Pr (yi = 0,42 = 1 | yin + yie = 1).
Thus the MLE § satisfies

3 =2log (%) . (21)

plimB:210g<1p° ):250. (22)

The last equality follows from the fact that po = A (5,) where [, is the true
value. Therefore, ML. would be estimating a relative log odds ratio that is
twice as large as its true value. This form of inconsistency for ,/6\’ also holds

for more general two-period logit models with multiple regressors.

)



4 Fixed T Solutions

4.1 Conditional MLE

A sufficient statistic for n;, S; say, is a function of the data such that the
distribution of the data given S; does not depend on 7n,. The idea is to
use the likelihood conditioned on S; to make inference about (3, (Andersen,
1970). This works as long as 3, is identified from the conditional likelihood
of the data, which obviously requires that the conditional likelihood depends
on f,. Unfortunately, this is not the case except for the logit model.

In the logit model Zthl yi+ is a sufficient statistic for n,. Indeed, we have

T
eXp (Zt:l yz‘ﬂét@))

(23)

T
Pr (%17 - YiT | Z%u%’) =
t=1

.....

where B; is the set of all 0 — 1 sequences such that Zthl dy, = ZL y;t. This
result was first obtained by Rasch (1960, 1961) (for surveys see Chamberlain,
1984, or Arellano and Honoré, 2000). For example, with 7' = 2 we have

1 lf (yilain) = (O, 0) or (]_, 1)
Pr(yi, vio | Yir + yiz, i) = < 1 = A(Azl,8,)  if (vir, yi2) = (1,0)
A (Aziyf3) if (yi1,yi2) = (0,1).
(24)

Therefore, the log-likelihood conditioned on ;1 + y;2 is given by?

Lo() =Y {duilog[1 ~ A (Aaty)] + doy log A (AcB))  (25)

and the score takes the form

9L, (B)
op

N
- Z Ao {dor; — A (Azi,0) Wya +yiz = 1)} . (26)
i=1

2The contributions of (0,0) or (1,1) observations is zero.



4.2 Maximum Score Estimation

The previous technique crucially relied on the logit assumption. Manski
(1987) considered a more general model of the form (1) in which the cdf of
—vy | x;,m; was non-parametric and could depend on z; and 7, in a time-

invariant way. Namely, for all ¢ and s
Pr(—vy <r|zi,n;) = Pr(—vis <7v | agm) = F(r|zim),  (27)

so that F (r | x;,n;) does not change with ¢ but is otherwise unrestricted.
This assumption imposes stationarity and strict exogeneity, but allows
for serial dependence in the errors v;. It also allows for a certain kind
of conditional heteroskedasticity, though not a very plausible one, since
Var (v | 25,m;) may depend on x; but v is not allowed to be more sensitive
to z; than to other z’s. Similarly if the expectations E (v; | x;,m;) exist,
they may depend on x; but not their first-differences E (Avy | z;,1n;) = 0.

The time-invariance of F implies that for 7" = 2:3
med (Yia — yir | i, Y + Y2 = 1) = sgn (Azjy5,) . (28)

To see this note that, given y;; + y;2 = 1, the difference y;5 — y;1 can only
equal 1 or —1. So the median will be one or the other depending on whether
Pr(yi2 = 1,50 = 0| 2;) = Pr(yi2 = 0,51 = 1| ;). Thus'

med (Yiz — Vi1 | Ti,Yin + Y2 =1) = sgn[Pr(yo=1,ya =0 2;) — Pr(yio = 0,y:1 = 1| 2;)]
= sgn[Pr(yp=1|z)—Pr(yqa =1]x)].

3The sign function is defined as
sgn(u) =1(u>0)—1(u<0),

ie sgn(u)=—-1ifu<0,sgn(u)=0if u =0 and sgn (u) =1 if u > 0.
4The second equality follows from
Pr(yio=1]z;) = Pr(yio=1y1=0|2;)+Pr(yo=1y1=1]2;)
Pr(yii=1]w) Pr(yio=0,yn=1]2) +Pr(yio =1,yin = 1] ).



Moreover, from the model’s specification, i.e.

Pr(yn =1|xz,mn) = F (a8 +n; | xi,m;)
Pr(yio=1|z5m;) = F (2500 +n; | 0,m;),

and the monotonicity of F', we have that for any n, (the constancy of F' over

time becomes crucial at this point):
_ < _ / < ./
Pr(yp =11 zi,n;) = Pr(yii = 1| zi,m;) & 23,0 = T By-
Therefore, the implication also holds unconditionally relative to n;:
Pr(yn=1|;) S Pr(ya =1|2) & 2By = 2,6

or
sen [Pr(y;e = 1| ;) — Pr(yin = 1| 2;)] = sgn (Azly0,) -

Manski showed that the true value of 3, uniquely maximizes (up to scale)
the expected agreement between the sign of Az,3 and that of Ay, condi-
tioned on y;; + y;2 = 1. This identification result required an unbounded
support for at least one of the explanatory variables with a non-zero co-
efficient. That is, letting x}, = (2, w},) and 3y = (79,a}), the minimal
requirement for identification is that z; has unbounded support and ~, # 0.
Identification fails at v, = 0, so that 7, = 0 is not a testable hypothesis.
Manski’s identification result implies that we can learn about the relative
effects of the variables w;; under the maintained assumption that -, # 0.

Manski then proposed to estimate (3, by selecting the value that matches
the sign of Az}, with that of Ay;s for as many observations as possible in

the subsample with ;1 + ;2 = 1. The suggested estimator is

N
3 = arg mﬂaxz sgn (Az08) (Yiz — yi1) (29)

i=1



subject to the normalization || 3 ||= 1.> This is the maximum score estima-
tor applied to the observations with y;; + y;2 = 1 (notice that the estimation
criterion is unaffected by removing observations having y; = y;2). It is con-
sistent under the assumption that there is at least one unbounded continuous
regressor, but it is not root-/N consistent, and not asymptotically normal.

An alternative form of the score objective function is

N
Sn(B) = {diil (Azlyf < 0) + doyil (Azfp8 > 0)} . (30)

i=1
The score Sy(B) gives the number of correct predictions we would make
if we predicted (yi1,yi2) to be (0,1) whenever Az, > 0. In contrast,
S sgn (AzyB) Ayss gives the number of successes minus the number of
failures. Yet another form of the estimator suggested by the median regres-
sion interpretation is as the minimizer of the number of failures, which is

given by

N
1
5 Z yzl 7é Yi2 ‘Ayﬁ — sgn (A$Z2ﬁ)| (31)

Smoothed Maximum Score It is possible to consider a smoothed
version of the maximum score estimator along the lines of Horowitz (1992),
which does have an asymptotic normal distribution, although the rate of
convergence remains slower than root-N (Charlier, Melenberg and van Soest,
1995, and Kyriazidou, 1997).° The idea is to replace Sy(3) with a smooth
function Sy () whose limit a.s. as N — oo is the same as Sy (). This is of

the form
N

Sn(B) = " {doi [1 = K (AzlyB/vx)] + doni K (AxjoB/7x)} (32)

i=1

5In the logit case the scale normalization is imposed through the variance of the logistic
distribution. More generally, if F' is a known distribution a priori, the scale normalization
is determined by the form of F. Comparisons can be made by considering ratios of
coefficients.

6Chamberlain (1986) showed that there is no root-N consistent estimator of 8 under
the assumptions of Manski for his maximum score method.
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where K(.) is analogous to a cdf and ~yy is a sequence of positive numbers
such that limy_ . vy = 0. Notice the similarity between Sy (5) and the
conditional log likelihood for logit L. (/).

4.3 Random Effects

In general

Pr (yits oo iz | ) = / Pr(yiss oo yir | 20om) dG (s | ) (33)

where G (n; | z;) is the cdf of n;, | x;. The substantive model specifies
Pr (yi1, .-, yir | i,m;), but only Pr (yi1, ..., vir | 2;) has an empirical counter-

part. For example, we may have specified

T T
Pr (yit, ooy | iom;) = [ [ Pr (e | wimy) = [] Fit (1 Fy)tto),
t=1 t=1

In a fixed effects model we seek to make inferences about parameters in
Pr (yi1, ..., yir | i,m;) without restricting the form of G. In a random effects
model G is typically parametric or semiparametric, and the parameters of
interest may or may not be identified with G unrestricted. Thus a fixed
effects model can be regarded as a random effects model that leaves the
distribution of the effects unrestricted.

The choice between fixed and random effects models often involves a
trade-off between robustness in the specification of Pr (y;1, ..., yir | z4,1;) and
robustness in G, in the sense that achieving fixed-T" identification with unre-
stricted G usually requires a more restrictive specification of Pr (y;1, ..., yir | i, 1;)-

Chamberlain (1980, 1984) considered a random effects model in which
the effects are of the form

n = 1 () + & (34)

and ¢; is independent of z;. He also made the normality assumptions
vie | 2,1 ~ N (0, wi) (35)

10



ei |z~ N (0,02), (36)

which imply that

Pr(ys = 1] @) = @ o, (238 + ()] - (37)

where 07 = 07 + wy and @ (.) is the standard normal cdf. In this model the

v;; may be serially dependent and heteroskedastic over time.

Chamberlain assumed a linear specification u (z;) = Ao + ;)\, and Newey
(1994) generalized the model to a non-parametric p (z;). In the linear case,
Bo, Aos A, and the o2 can be estimated subject to the normalization o? = 1
by combining the period-by-period probit likelihood functions (see Bover
and Arellano, 1997, for a discussion of alternative estimators). In the semi-

parametric case, Newey used the fact that
o @ [Pr (g = 1| ;)] — 01 @7 [Pr (yie—1y =1 | 2;)] = AzlyBy  (38)

together with non-parametric estimates of the probabilities Pr (y;; = 1 | ;)
to obtain an estimator of 3, and the relative scales. A further generalization
of the model is to drop the normality assumptions and allow the distribution
of the errors €; + v;; | x; to be unknown. This case has been considered by
Chen (1998).

Another semi-parametric approach has been followed by Lee (1999). Un-
der certain assumptions on the joint distribution of x; and 7,, Lee proposed
a maximum rank correlation-type estimator which is v/ N-consistent and as-

ymptotically normal.

5 Identification Problems with Fixed T

It would be useful to know which models for Pr (v;1, ..., yir | ;,7;) are iden-
tified without placing restrictions in the form of G (n; | z;) (i.e. fized-effects
identification with fived T') and which are not.

11



A model is given by a 27 x 1 vector p (x4, n;, 3,) with elements that specify
the probabilities

Pr((yila ---vyiT) = dj | miani) (j =1, ---aQT) (39)

where d; is a 0 — 1 sequence of order T. Let the true cdf of n, | z; be
Go (n | z). Identification will fail at 3, if for all z in the support of x; there
is a cdf G* (n|x) and 5% # (3, in the parameter space, such that

/ p (@, B0) dGo (| z) = / p(z,n,67)dG" (n | 7). (40)

If this is so, (8, Go) and (5%, G*) give the same conditional distribution for
(yi1, ---, yir) given x;. Therefore, they are observationally equivalent relative
to such distribution.

Chamberlain (1992) studied the identification of a fixed effects binary

choice model with T' = 2. He considered the model
Yir = 1 (280 +m + v > 0) (t=1,2)

together with the assumption that the —v;; are independent of z;, n, and are
i.i.d. over time with a known cdf F. The distribution F is strictly increasing
on the whole line, with a bounded, continuous derivative. Moreover, we have
the partitions =, = (d;, 2},) and 85 = (ao,7;), where d; is a time dummy
such that d; = 0 and dy = 1, and z; is a continuous random vector with
bounded support.

With these assumptions Chamberlain showed that if F is not logistic, then
there is a value of « such that identification fails for all 3, in a neighborhood
of (e, 0). This seems puzzling since Manski (1987) proved identification un-
der less restrictive assumptions. He required, however, the presence of an
explanatory variable with unbounded support. Indeed, the difference be-
tween the identification result of Manski and the underidentification result

of Chamberlain is due to the bounded support for the explanatory variables.
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The line between identification and underidentification in this context
is very subtle. Under Manski’s assumptions identification will fail at 3, =
(v, 0) even if z; has unbounded support, but there will be identification as
long as a component of v, is different from zero. Chamberlain shows that if
2 is bounded (3, is underidentified not only when G = (ay,0), but also for
all B, in a neighborhood of («y,0) for a certain value of ag. So it seems to
be a case of local underidentification at zero versus local underidentification
in a neighborhood around zero.

The lesson from these findings is the fragility of fixed-T identification
results and the special role of the logistic assumption. Chamberlain (1992)
also showed that when the support of z;; is unbounded (so that identification
holds to the exclusion of 7, = 0 from the parameter space) the information
bound for 3, is zero unless F' is logistic. Thus, root-N consistent estimation
is possible only for the logit model.

Chamberlain’s proof can be sketched as follows. In his case p (z,n, 3,) is

(1—F) (1 - F)

p(z,m,6y) = %le_ﬂ 1%)

FiF;

where F| = F (217, +n) and Fy = F (o + 2579 + 7).
Let 5* = (a,0) and define the 4 x 4 matrix

H(:E’,r]l? "'an47ﬂ*) = [p (Qfﬂhyﬁ*) ’ "'ap(£’n47ﬂ*)] .

which does not vary with x when evaluated at (.

The proof proceeds by showing that unless H (x, 7, ...,n4, 3) is singular
for every a and 7y, ...,n,, there will be lack of identification for all 3, in a
neighborhood of some *. Next it is shown that H (x,ny,...,n,4, 37) can only
be singular if F' is logistic.

Suppose that H (z,7y,...,7,4,5") is nonsingular for some « and 7, ..., 7.
Since x is bounded, for §, # 4" in a neighborhood of 8*, H (x, 7y, ..., N4, B¢)
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will also be nonsingular for all admissible values of . We can now choose a
pmf ™ = (7%, ..., 7%), >0, Z?Zl 77 =1 and define

To (£) =H (ZE’ Ty eoer Mg 60)71 H (3:7 M5 -5 Tgs 6*) 7T*7
such that mo; (z) > 0 for all admissible x. Moreover, since J'H = ¢/ where ¢

is a 4 x 1 vector of ones, we also have /H~' = ¢/ and ¢/ (z) = 1. Therefore,

4 4
ZP (z,m;, Bo) o5 (x) = ZP (z,m;,87)

J=1 Jj=1

which implies that 3, cannot be distinguished from 5*.
The singularity of H (z,ny,...,1,, 5") requires that

O [L=F ][ = Fla+n)]+¢[1 - F ] F(a+n)

+sF () [1 = F(a+n)] + ¢, F (n) F(a+n) =0

for all n and some scalars 9, ...,1, that are not all zero. Taking limits as n
tends to £oo gives ¥; = 1, = 0. Thus we are left with

V@ (a+n) +193Q (1) =0

where Q) = F/ (1 — F). For n = 0 we obtain 15/1, = —Q () /Q(0). There-

fore the singularity of H requires that for all a and 1 we have

qla+n)=q(a)+q(n) —q(0).
This can only happen if the log odd ratios ¢ = log () are linear or equivalently

if F'is logistic.

6 Adjusting the Concentrated Likelihood

Cox and Reid (1987) considered the general problem of doing inference for
a parameter of interest in the absence of knowledge about nuisance parame-

ters. They proposed a first-order adjustment to the concentrated likelihood

14



to take account of the estimation of the nuisance parameters (the modified
profile likelihood). Their formulation required information orthogonality be-
tween the two types of parameters. That is, that the expected information
matrix be block diagonal between the parameters of interest and the nuisance
parameters; something that may be achieved by transformation of the latter
(Cox and Reid explained how to construct orthogonal parameters). A dis-
cussion of orthogonality in the context of panel data models and a Bayesian
perspective have been given by Lancaster (1997, 2000). The nature of the
adjustment in a fixed effects model and some examples are also discussed in
Cox and Reid (1992).

6.1 Orthogonalization

Let ¢; (8,7n;) be the log-likelihood for unit 7 (conditional on x; and n,). A
strong form of orthogonality arises when for some parameterization of 7, we

have
i (8,m;) = 1 (B) + Lai (m;) , (41)

for in this case the MLE of 7, for given  does not depend on 3,7, () = 7;.
The implication is that the MLE of 3 is unaffected by lack of knowledge
of n;. In this case 9%¢; (3,n;) /0B0n, = 0 for all i. Unfortunately, such
factorization does not hold for binary choice models. In contrast, information
orthogonality just requires the cross derivatives to be zero on average.

Suppose that a reparameterization is made from (3, 7;) to (3, \;) chosen
so that § and )\; are information orthogonal. Thus 7, = n (5, \;) is chosen
such that the reparameterized log likelihood

G (B A) = 6 (B,m (B, Ai)) (42)

satisfies (at true values):

626: (507 )‘Z) _
E <W | %m) = 0. (43)

15



Since we have

o 9B 9B I (44)
and’
82@ — O 0% On, On; 0%,
E <8ﬁ6)\i ‘ $z’a7h) = a—)\zE (658% | $z‘a77i) + G_)WG_,BE (87]? | xi,'r]i) ,
(45)

following Cox and Reid (1987) and Lancaster (1997), the function n(3, \;)

must satisfy the partial differential equations

o5 = (aﬁam | “) /E (an% 'x“"’“) | (46)

Orthogonal Effects in Binary Choice Let us now consider the form

of information orthogonal fixed effects for model (1)-(2). These have been
obtained by Lancaster (1998, 2000). For binary choice we have

32@@0777@') o
E( 550m; "”"’”") -

82&' s g

M=

h (3,80 +1;) Tit (47)

t=1

h (3,80 + 1;) (48)

M=

t=1

where

f(r)?
M= F L FO

Since in general (47) is different from zero, # and 7, are not information

(49)

orthogonal. In view of (46), an orthogonal transformation of the effects will

satisfy

on; 1 d
8_ﬁ = — T h Z hz‘tl'it (50)

t=1"%t =1
where h;; = h (2,0 +n,).

"Note that there is a term that vanishes: (9%n;/030X\;)E (04;/0n; | xi,n;) = 0.
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Moreover, letting ¢ (r) = b’ (r) and ¢;, = ¢ («},6 + n,), since

32771‘ . an; 1 T on,
m )Y [ZtT_l hiy thl Pit (xz‘t + aﬁ)

and
827% on; . 0 on;
50N an ~ 8308 'mi ’ (51)
it turns out that 5 )
T (52)

O\ Zthl hit.

Hence, Lancaster’s orthogonal reparameterization is

T z, B4n;
A=) / h(r) dr. (53)

t=1 v~
When F(r) is the logistic distribution A(r) coincides with the logistic
density, so that an orthogonal effect for the logit model is

T

A= A8+ ). (54)

t=1

6.2 Modified Profile Likelihood

The modified profile log likelihood function of Cox and Reid (1987) can be

written as

Ly (B) = ZfMi (B)

and
% N 1 * N
fuss (8) = € (8.2 (8)) = 510 | ~di (8.3 (9))] (55)
where ); (8) is the MLE of A; for given 8, and di,; (3, ;) = 92€1 /0%, In-
tuitively, the role of the second term is to penalize values of § for which the

information about the effects is relatively large.
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An individual’s modified score is of the form

1
25, (6, % (9)

dari (B) = dei (6)—

i () )
R

) < i (57 A (5)) + dyaxi (ﬂaxi (ﬂ))

(56
where dg; (3) is the standard score from the concentrated likelihood, d3 5, (8, Ai) =
O30 JONIOB and d,; (B, \i) = O34 JOXS.

The function (55) was derived by Cox and Reid as an approximation to

~—

the conditional likelihood given XZ (8). Their approach was motivated by
the fact that in an exponential family model, it is optimal to condition on
sufficient statistics for the nuisance parameters, and these can be regarded
as the MLE of nuisance parameters chosen in a form to be orthogonal to the
parameters of interest. For more general problems the idea was to derive a
concentrated likelihood for  conditioned on the MLE /):Z (), having ensured
via orthogonality that i (8) changes slowly with 3.

Another motivation for using (55) is that the corresponding expected
score has a bias of a smaller order of magnitude than the standard ML score
(cf. Liang, 1987, McCullagh and Tibshirani, 1990, and Ferguson, Reid, and
Cox, 1991). Seen in this way, the objective of the adjustment is to center
the concentrated score function to achieve consistency up to a certain or-
der of magnitude in 7. Specifically, while the difference between the score
with known ); and the concentrated score is in general of order O, (1), the
corresponding difference with the modified concentrated score is of order
O, (I""'/?) (see Appendix). This leads to a bias of order O (T'""!) in the ex-
pected modified score, as opposed to O (1) in the concentrated score without

modification.

The Adjustment in Terms of the Original Parameterization Cox
and Reid’s motivation for modifying the concentrated likelihood relied on the
orthogonality between common and nuisance parameters. Nevertheless, the

mpl function (55) can be expressed in terms of the original parameterization.
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Firstly, note that because of the invariance of MLE 7, (5) = (8, /):, (6)) and
6 (8(8)) = 4:(8,7,(8) (57)

Next, the term d},; (,B,Xi (,8)) can be calculated as the product of the
Fisher information in the (3, 7;) parameterization and the square of the Ja-
cobian of the transformation from (3,n;) to (3, A;) (Cox and Reid, 1987, p
10). That is, since the second derivatives of ¢ and /¢; are related by the

o2 9% [, 2+ ol; (0%,
oNZ  on? \ o\ On; \ oA} )’

and 0¢;/0n; vanishes at 7); (3), letting d,; (8,n;) = 8°¢;/On? we have

expression

~ R B, 2
B (B39) = B 0) (S b ) - 9
Thus, the mpl can be written as
~ 1 N o\
Cuti (B) = 4 (8,75; (8)) — 5 1og [—duni (8,7; (5))] + log ( an m:m(ﬁ)) - (59)

Finally, in view of (46) and (51), the derivative with respect to 3 of the
Jacobian term (the required term for the modified score) can be expressed

as

0 oN| 0
8_6 log ‘8_771 = a_m%‘ (/67 7]1’) ) (60)
where g; (8,1;) = —Kgni (81;) /fgmi (B,7;) and
1
o o) = B | (o) | 11, (6)
1
Knmi (Bosm;) = E [fdnm' (Bos ;) | 37:‘7771} . (62)

Modified Profile Likelihood for Binary Choice Replacing (52) in
(59) we have

gMz' (ﬁ) = gz (ﬁv/ﬁz (ﬁ)) - %log [_dnni (ﬁu 7]1 + log (Z zt ) (63)

t=1
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where %, (B) = h(z;,8+1;(8)),

T
b (B,m;) = Z {yirlog Fiy + (1 — yie) log (1 — Fiy)}
t=1
and .
i (B m;) = — Z [hit = i (Yir — Fir)] (64)
t=1

where p;, = p (8 +7;) and

f1r) = h()[1—2F()].

S Ol 0) (%)
For logit, the MLE i (B) for given [ solves
R T T
N (B) =Y A8 +7;(0) = Y v (66)

so that it does not vary with (3. Therefore, the likelihood conditioned on
i () coincides with the conditional logit likelihood given a sufficient statistic
for the fixed effect discussed in Section 4.1.

For the logistic distribution p(r) = 0. The modified profile likelihood
(mpl) for logit is therefore

Ui (B) =4 (8,1, (B)) + %log (Z fa (2B +7; (ﬁ))) (67)

where fa (r) = A(r)[1 — A (r)] is the logistic density and ¢y (5) is defined

for observations such that ZL ;¢ is not zero or T'.8

Comparisons for the Two-Period Logit Model The mpl for logit
(67) differs from Andersen’s conditional likelihood, and the estimator ,/6\’ MML

that maximizes the mpl is inconsistent for fixed 7. Pursuing the example in

8If ; (B) — o0, then log (Zthl fa (@8 +7; (ﬁ))) tends to —oo for any 3. So obser-
vations for individuals that never change state are uninformative about .
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Section 3, we compare the large-N biases of ML and MML for T" = 2 and
Az = 1. Thus we are assessing the value of the large-T" adjustment in (67)
when 7' = 2.

When T' = 2, for individuals who change state 7, (3) = —3/2 so that the

second term in (67) becomes

S Tog (7 (~/2) + fa (5/2)]. (68)

Collecting terms and ignoring constants, the modified profile log-likelihood

takes the form

% ZgMZ. (3) = % Z{de log [1 — A(5/2)] + 2dg1;log A(5/2)

i=1

+(dhos + don) 3 (log A(B/2) +log 1 — A(3/2))))

x % Z{(5d10i + doui) log [1 — A(B/2)] + (5do1; + dyoi) log A(B/2)}

x (5—4p)log[1 — A(B/2)] + (49 + 1) log A(5/2)

where dyo; = 1(yi1 = 1,42 = 0), do1i = 1(yi1 = 0,42 = 1) and p is as defined

in (20). This is maximized at

~ (4D +1 dp+1
Therefore,
s dpo + 1 4N (By) + 1
1 =21 =21 — . 1

Figure 1 shows the probability limits of MML for positive values of 3,
together with those of ML (the 23, line) and conditional ML (the 45° line)

for comparisons.” In this example the adjustment produces a surprisingly

9See McCullagh and Tibshirani (1990, pp. 337-8) for a similar exercise using different
adjusted likelihood functions.
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Figure 1: Probability limits for a logit model with T" = 2

good improvement given that we are relying on a large 7' argument with
T = 2. For example, for py = 0.65, we have 3, = 0.62, 3,,;, = 1.24 and
By = 0.81. Since the MML biases are of order O (1/T?), the result
suggests that, although the biases are not negligible for 7' = 2, they may be

so for values of T" as small as 5 or 6.

7 N and T Asymptotics

The panel data literature has probably overemphasized the quest for fixed-T
large- N consistent estimation of non-linear models with fixed effects. We
have already seen the difficulties that arise in trying to obtain a root-N
consistent estimator for a simple static fixed effects probit model. Not sur-
prisingly, the difficulties become even more serious for dynamic binary choice

models. In a sense, insisting on fixed 1" consistency has similarities with (and
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may be as restrictive as) requiring exactly unbiased estimation in non-linear
models. Panels with T' = 2 are more common in theoretical discussions than
in econometric practice. For a micro panel with 7 or 8 time series observa-
tions, whether estimation biases are of order O (1/T) or O (1/T?) may make
all the difference. So it seems useful to consider a wider class of estimation
methods than those providing fixed-7T' consistency, and assess their merits
with regard to alternative N and T' asymptotic plans. There are multiple
possible asymptotic formulations, and it is a matter of judgement to decide
which one provides the best approximation for the sample sizes involved in
a given application.

Here we consider the asymptotic properties of the estimators that maxi-
mize the concentrated likelihood (ML) and the modified concentrated likeli-
hood (MML) when T'/N tends to a constant (related results for autoregressive
models are in Alvarez and Arellano, 1998, and Hahn, 1998).

Consistency The ML estimator of § can be shown to be consistent as
T — oo regardless of NV using the arguments and the consistency theorem in
Amemiya (1985, pp. 270-72). The consistency of MML follows from noting
that the concentrated likelihood and the mpl converge to the same objective
function uniformly in probability as T' — oo.

Letting 7, (8) = p (248 + 7, (8)) and Fy (8) = F (a},3+7, (8)), from
(63) we have

D lgl;o %EMZ (B) = p] lim —€ (8,m; (B)) +p hm —log ( Zh” ) (72)

where the convergence is uniform in 3 in a neighborhood of 3, and the last

two terms vanish.
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Asymptotic Normality When T/N — ¢, 0 < ¢ < oo, both ML and
MML are asymptotically normal but, unlike MML, the ML estimator has
a bias in the asymptotic distribution. An informal calculation of the terms
arising in the asymptotic distributions is given in the Appendix. The results

are as follows:

- 1
(HyrVatHyr) > VNT (,BML — By + ?HN;@Q LNO,1)  (73)

(HeVibilhe) VT (Baas - 50) SN 0.0 (74)

where w5y, = E [T d (Bo, Mo) | @iy Al i3 = E [T 715y, (8o, Mo) | 24, Al

_ 1 i <“EW) (75)
N =\ 2k}

N
1 " " /
Vnr = NT Z dj; (Bos Aio) d; (Bo, Aio) (76)
i=1
N
1 a ~

Hyr = NT Z O_H'dﬂi (507 Ai (ﬁo)) ) (77)

i=1

and T LN

HNT = ﬁ ; a_ﬁ/dMi (ﬂo) . (78)

Thus, the asymptotic distribution of the ML estimator will contain a bias

* —
term unless 1j,,; = 0.

8 Concluding Remarks

In this paper we have considered ML and modified ML estimators, but the
estimation problem can be put more generally in terms of moment conditions
in a GMM framework. Fixed-T consistent estimators rely on exactly unbiased
moment conditions. When 7'/N tends to a constant, a GMM estimator

from moment conditions with a O (1/7") bias will typically exhibit a bias in
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the asymptotic distribution, but not if the estimator is based on moment
conditions with a O (1/7?) bias. Thus, in the context of binary choice and
other non-linear microeconometric models, a search for optimal orthogonality
conditions that are unbiased to order O (1/T?) or greater seems a useful
research agenda.

But do these biases really matter? Heckman (1981) reported a Monte
Carlo experiment for ML estimation of a probit model with strictly exoge-
nous variables and fixed effects, T'= 8 and N = 100. Using a random effects
estimator as a benchmark, he concluded that the MLE of the common pa-
rameters (jointly estimated with the effects) performed well. According to
this, it would seem that even for fairly small panels there is not much to
be gained from the use of fixed-T" unbiased or approximately unbiased or-
thogonality conditions. For models with only strictly exogenous explanatory
variables this may well be the case. But these are models that are found to
be too restrictive in many applications.

When modelling panel data, state dependence, predetermined regressors,
and serial correlation often matter. Heckman (1981) found that when a
lagged dependent variable was included the ML probit estimator performed
badly. This is not surprising since similar problems occur with linear au-
toregressive models. The difference is that while standard tools are available
in the literature that ensure fixed T consistency for linear dynamic models,
very little is known for dynamic binary choice.’” This is therefore a promis-
ing area of application of asymptotic arguments to both the construction of

estimating equations and useful approximations to sampling distributions.

10See Keane (1994), Arellano and Carrasco (1996), Magnac (1997), Hyslop (1999), Hon-
oré and Kyriazidou (2000), Honoré and Lewbel (2000), and Arellano and Honoré (2000)
for a survey and more references.
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Appendix

Expansion for the Score of the Concentrated Likelihood Let us
consider a second order expansion of the score of the concentrated likelihood
around the true value of the orthogonal effect.

The log likelihood is £} (3, \;); its vector of partial derivatives with re-
spect to (3 is dj; (B, \) = 0L; (B,\)/0B; the concentrated likelihood is
rr (ﬁ,xi (ﬁ)) and its score is given by dj (,6, i (ﬁ)) An approximation

at B, around the true value \;o is
dj;i (/607 /):z (/60)) = dj; (Bo; Mo) + dsy; (Bo, Aio) (Xz (By) — )\io) (A1)
1, ~ 2 -
+§dﬁ/\>\i (Bo, Mo) (Ai (Bo) — )\m> + O, (T 1/2)

where dz;)\l (ﬁ, )\z) = 826: (ﬁ, )\z) /858)\1 and d;)\)\i (ﬁo, )\Z()) = 836: (ﬁ, )\z) /856)\22
In general, the first three terms are O, (T%/?), O, (T"/?), and O, (1), but be-
cause of orthogonality dj,; (8o, Aio) is O, (\/T > as opposed to O, (T).!*

Expansion for \; (By) — Mio  Letting d3,; (B, \;) = 0 (B, \;) /ON;, the
estimator \; (B,) solves d; (ﬁo, by (,60)> = 0. Let us also introduce notation

for the terms:

1

o = i (O = B i (o o) 1.

* * 1 *
Koo = kg (Boy Aio) = F {fdﬁ/v\i (Bo, Mio) | @i, Az}
Note that 3,; and £}, ,; are individual specific because they depend on Ay,

but they do not depend on the 3’s.!? Moreover, from the information matrix

identity

1 % ES *
E {? i (Bos Aio) d3; (B, Mio) | f’«“n)\i] = —K-

USince VT [%dz)\i (Bos Aio) — 0} = Oy (1), we have dj; (B, Aio) = Op (\/T)
Ao Ldiy, (B do) = ki (Bodio) + Oy (%) which holds as
VT (Fd55: (Bos Xio) — &3 (Bos Aio)) = Oy (1).
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Expanding T~'/2d3, (ﬁo, py (,60)) in the usual way we obtain

1 - 1 1 - 1
0= ﬁ L (ﬁ()a Ai (50)) = ﬁ L (507 )\i0)+?d§v\i (507 )\iO) \/T (Ai (ﬁo) - )‘iO) +Op <ﬁ>
N 0= —=d (3. M) + KaVT (R (Bg) — M) +0 (i)

= JT xi Doy Aio) T R i \Po i0 P JT)’
Hence, also
- 11, 1
VT (%80 = do) =~ (o do) 40, (=) (42
and
; L (L (1
7 (300~ ) = =g B do 40, (75 = —=+0 (7 )
(A3)
Combining (A1), (A2) and (A3):
~ 1 1 1
B (B0 R (90) = (o) = =i (o) |5 80 ) 40, (7]
1 1] 1 1 1
3o g [0 (7)< ()
1 1 B 1
= dj; (8o Mo) — afdfm (Bo, Aio) d3; (Bos Aio) — g’i—;i‘ + Op <\/_T)
= (o) + 52 40, () (A49)

where we have made use of the facts that due to the orthogonality between

Ai and 8 we have df,; (8o, Mio) = O, (\/T) and!?

]_ * % *
E [fdﬁ,\i (ﬂm )\iO) dy; (50, )\iﬂ)} = —Kgxxi:

BLet f = f (x;8,)\) and write information orthogonality as
0% log f

OBOA
Taking derivatives with respect to A\ we obtain:

0% log f 0?%log f Olog f B
/ 666)\2 fdx + 950N O fdx =0.

fdx =0.
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Finally, given the zero-mean property of the score
E [dzz (Bos Mio) | Ty Ni] =0

the bias of the concentrated score is O (1) and can be written as

B[ (o R (80) [20] =522 +0 (7).

The remainder is O (T') since the O, (T-'/?) terms in the concentrated

score have zero mean (cf. Ferguson et al., 1991, p. 290).

Expansion for the Score of the Modified Concentrated Likeli-
hood The mpf is given by

G (8) = (8,3(8)) — 3 1og [~ (8.3(9))]
and the mpf score
duss (9) = i (0,2 (9)) = 575108 | ~dins (5. 3:(5))].

Let us consider the form of the difference between the modified and ordinary

concentrated scores at 3:

i (B0) = i (8o N (8,)

— _Z%dfw (ﬁlo,xi (,60)> (% i (50,&‘ (50)) + %djw (60,Xi (5O)> 8&8—(;0)) ‘

Since A; (By) = Nio + O, (T~1/2) we have

~ 1 Y 1
dri (Bg) — dZ%@- (507 Ai (ﬁo)) = _Tf\,\' (“E,\M + “iAM#) + Oy (ﬁ)

Thus,

d%log f dlog [\ 03 log f
E( 0BON O\ )“E(agaﬁ)'
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where 13,y = E [T'd}; (Bos Aio) | i, Al
Now, differentiating dj, (ﬁ i (ﬁ)) = 0 we obtain

o\ (B)

BR] =0

din (8% (9)) +dine (8. (8))

or

>)

ox (8) Do (ﬂ, X (ﬂ))
W (BN 0)

Therefore,

ON (By) i ( 1 )
=——4+0,| —= |,
o] Kxi P \/T

but because of orthogonality x%,; = E [T d%,; (B, M) | s, A] = 0, so that
O\ (B,) /08 is O, (T~/?) and

duri (Bo) — th‘ (ﬂoy/):z‘ (50)> = _% +0p (%) )

Kxxi

Finally, combining this result with (A4) we obtain

dari (Bo) = ds (Bos A) + O, (%) . (A5)

Thus, the difference between the concentrated likelihood and the modified
concentrated likelihood depends primarily on the value of £}, ;. If £3,,; = 0

the scores from both functions will have biases of the same order of magnitude
(Cox and Reid, 1992).

Asymptotic Normality of the ML Estimator Let us begin by as-
suming that, as T/N — ¢, 0 < ¢ < 00, a standard central limit theorem
applies to the true score dj,; (8, \i) = 04} (B, \i) /013, so that we have

]\71{/2\/_261,& ﬂO? zO (0 I) (AG)
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where Viyr = (NT) ™' S5 d5,; (Bo, Mo) ds; (Bos o)
Using (A4) we can write

1 = * N 1 N . N N

where by = N71S°N | [k500/ (2650)] av = N71SY | a;, and a; is an O, (1)
term. Therefore,

_1/2{\/_ Z dﬁz (ﬂm 50)> _ \/gb]v} 4, N(0,1). (A7)

Next, from a first order expansion of the concentrated score around the

true value, we obtain

/T (3 30) =~ S (305, (80) 0, (=) (49

i=1

where N
0 ~
Hyr = <o A CRIERE

Combining (A7) and (A8) we can write

V]\?%/QHNTV (5 Bo + HNTbN) =

Vol Z " (gm ) — \/gij} + Oy <\/%> :

and finally,

(HyrVar HNT>1/2 VN (ﬂ Bo + HNTbN) _’N(OJ)-
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Asymptotic Normality of the MML Estimator We now turn to
consider the asymptotic distribution of the modified ML estimator as T'/N —
¢, 0 < ¢ < oo. In view of (A5), given (A6) we have

Vit FZdMZ (Bo) > N (0,1). (A9)

Next, from a first order expansion of the modified score around the true

value, we obtain

HJTVT\/W (EMML - 50) = —\/% Zi_v; di (Bo) + Op (\/%) (A10)

where

N
1 Odysi (By)
T M 0
HNT_NT,E; oF

Finally, combining (A9) and (A10) we can write

V]\?Jl“/2H]TVT VNT <BMML 50) = qu“/2 \/— Z di (Bo) + Op <\/%>
=1

and

(Vi) VT (B~ ) S N (0.1).
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