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INTRODUCTION
DPD98 is a program written in the Gauss matrix programming language to

compute estimates for dynamic models from panel data. A number of estimators
are available, including the generalised method of moments (GMM) techniques
developed in Arellano and Bond (1991) and Arellano and Bover (1995), as well as
more familiar OLS, within-groups and instrumental variables procedures. Stan-
dard errors and test statistics that are robust to the presence of heteroskedasticity
are provided. Tests for serial correlation and instrument validity are automati-
cally computed. Further tests of linear restrictions are available as options, and
the parameter vectors and covariance matrices can be saved as Gauss matrices,
so that tests of non-linear restrictions and Hausman speci…cation tests can be im-
plemented by users familiar with Gauss. Lagged and di¤erenced series are easily
constructed, with many other data transformations available. A particularly at-
tractive feature of DPD98 is that it allows estimates to be computed from panels
that are unbalanced in the sense of having a variable number of time-series obser-
vations per individual unit. In many contexts this allows a much larger sample to
be exploited than would be the case if a balanced panel were required.

DPD98 was developed to use with data on a panel of companies, but is appli-
cable to many other situations in which the number of time-series observations is
small and the number of cross-section observations is large. We concentrate on es-
timators that do not require regressors to be strictly exogenous, and which require
only the cross-section dimension of the data set to become large for consistency.

The main new features of DPD98 compared to earlier versions of DPD (see
Arellano and Bond, 1988) are:

² system GMM estimators, combining moment conditions for equations in
…rst di¤erences with moment conditions for equations in levels, are easily
computed

² batch operation is supported

² lag operator can be used to construct transformed series

² except where the model has been estimated in levels, tests for serial corre-
lation are based on estimates of the residuals in …rst di¤erences

¤DPD was originally developed to use with the IFS company database. We have bene…ted
from the input of many colleagues, but would particularly like to thank Richard Blundell for his
encouragement and many helpful suggestions.

yCEMFI, Casado del Alisal 5, 28014 Madrid, Spain
zInstitute for Fiscal Studies, 7 Ridgmount St, London WC1E 7AE, UK and Nu¢eld College,

Oxford OX1 1NF, UK



² parameter vectors and covariance matrices can be saved as Gauss matrices

Section 1 of this guide describes how DPD98 can be installed and how data
should be organised for use with DPD98. Section 2 contains an account of the
econometric methods employed by DPD98. Section 3 provides detailed instruc-
tions on how to use DPD98, and Section 4 contains an example.

1. INSTALLATION

DPD98 is contained in 3 …les: DPD98.RUN, DPD98.FNS and DPD98.PRG. These
were written using Version 3.2.13 of the Gauss language, but will run with all ver-
sions higher than Gauss386. We have used DPD98 successfully with Gauss for
Windows, but this guide describes the use of DPD98 with the standard (DOS) ver-
sions of Gauss. These can of course be used under Windows95 and WindowsNT.

To install DPD98, simply copy the 3 DPD98 …les onto any subdirectory (folder)
of your hard disk. Provided Gauss is correctly installed on your computer (or
network), there is no need for these …les to be kept in the nGauss subdirectory
(folder). After entering Gauss you can change to any subdirectory (folder) where
your DPD98 …les are located. At the Gauss À prompt, simply type:

dos cd ndnameÃ-
where dname is the name of the subdirectory (folder) where your DPD98 …les are
located, and Ã- represents the return or enter key.

1.1. DATA

The main requirement for running DPD98 is a suitably ordered Gauss data set.
This can be created from a sorted ASCII data …le, using the atog386 utility
(see the Gauss manual for more details), or directly from other packages using a
conversion utility like Stat/Transfer. DPD98 has strict requirements concerning
how your data is ordered. Failure to observe these requirements normally causes
the program to abort, and this is the most common source of problems experienced
by users who are new to DPD98.

Each row of the Gauss data set should contain observations on a set of variables
for some cross-sectional unit and some time period. Each column should contain
observations on the same variable in every row. One column must contain the
year to which the observation refers, and this must be in the format 19xx. Annual
data is the only frequency which DPD98 supports, though other data frequencies
can be used provided the observations are suitably labelled. For example, if
your panel contains 4 monthly observations for April, May, June and July, or
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four observations on decade-averages for the 1950s, 1960s, 1970s and 1980s, these
panels can be used with DPD98 provided the observations are given labels such
as 1991, 1992, 1993 and 1994 in the data set (and coe¢cients on ‘year’ dummies
are interpreted accordingly). If any computers are still running after Jan 1 2000,
the next release of DPD will allow years after 1999 to be used without relabelling.

All the time-series observations for each individual unit must be consecutive,
and these observations must occur sequentially in the data set. Thus if you have 4
observations for 1991, 1992, 1993 and 1994, the …rst 4 rows of the data set should
contain these observations for the …rst individual, the next 4 rows should contain
these observations for the second individual, and so on.

Where the panel is unbalanced, in the sense of having more time-series obser-
vations for some individuals than for others, the individual units on which there
is a common number of time-series observations should be grouped together in
the data set. For example, if you have 4 observations for 100 individuals and 5
observations for 50 individuals, either the …rst 400 rows or the last 400 rows of
the data set should contain the individuals with 4 time-series observations. Notice
that it does not matter here whether an individual has the …rst observation or
the last observation missing. Thus if the 5 observations are for 1991-95, the 4
observations may relate either to the period 1991-94 or to the period 1992-95.1

It is sometimes useful, although not essential, for these groups of cross-sectional
units to appear in ascending (or descending) order of the number of time-series
observations per unit.

In addition to this main Gauss data set, DPD98 requires a secondary or auxil-
iary Gauss data set which describes the structure of the main data. This auxiliary
data set must contain two columns: elements of the …rst column contain the num-
ber of time-series observations per individual unit in the appropriate section of
the main data …le; and elements of the second column contain the number of
individual units which have this number of time-series observations. This struc-
tured description begins from the top of the main data set and moves down it.
Continuing with our previous example, if we order the main data set so that the
100 individuals with 4 observations appear …rst, followed by the 50 individuals
with 5 observations, then the auxiliary data set will take the form:

4 100
5 50

Again this auxiliary Gauss data set can be created from an ASCII text …le using
the atog386 utility. It is used to facilitate the reading of unbalanced data sets.

1If the data available cover only the 5 years 1991-95, then these are the only two possibilities
in this example, given that the annual observations must be consecutive. DPD98 also allows the
use of rotating panels, where the data covers more years than are observed for any particular
individual.
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2. ECONOMETRIC METHODS

The general model that can be estimated with DPD98 is a single equation with
individual e¤ects of the form:

yit =
pX

k=1

®kyi(t¡k) + ¯
0(L)xit + ¸t + ´i + vit

(t = q + 1; :::; Ti; i = 1; :::; N)

where ´i and ¸t are respectively individual and time speci…c e¤ects, xit is a vector
of explanatory variables, ¯(L) is a vector of associated polynomials in the lag
operator and q is the maximum lag length in the model. The number of time
periods available on the ith individual, Ti; is small and the number of individuals,
N , is large. Identi…cation of the model requires restrictions on the serial correla-
tion properties of the error term vit and/or on the properties of the explanatory
variables xit: It is assumed that if the error term was originally autoregressive, the
model has been transformed so that the coe¢cients ®’s and ¯’s satisfy some set
of common factor restrictions. Thus only serially uncorrelated or moving average
errors are explicitly allowed. The vit are assumed to be independently distributed
across individuals with zero mean, but arbitrary forms of heteroskedasticity across
units and time are possible. The xit may or may not be correlated with the in-
dividual e¤ects ´i, and for each of theses cases they may be strictly exogenous,
predetermined or endogenous variables with respect to vit. A case of particular
interest is where the levels xit are correlated with ´i but where ¢xit (and possibly
¢yit) are uncorrelated with ´i; this allows the use of (suitably lagged) ¢xis (and
possibly ¢yis) as instruments for equations in levels.

The (Ti¡q) equations for individual i can be written conveniently in the form:

yi =Wi± + ¶i´i + vi

where ± is a parameter vector including the ®k’s, the ¯’s and the ¸’s, and Wi is a
data matrix containing the time series of the lagged dependent variables, the x’s
and the time dummies. Lastly, ¶i is a (Ti ¡ q)£ 1 vector of ones. DPD98 can be
used to compute various linear GMM estimators of ± with the general form:

b± =
"ÃX

i

W ¤0
i Zi

!
AN

ÃX

i

Z 0iW
¤
i

!#¡1 ÃX

i

W ¤0
i Zi

!
AN

ÃX

i

Z 0iy
¤
i

!

where

AN =

Ã
1

N

X

i

Z 0iHiZi

!¡1
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and W ¤
i and y¤i denote some transformation of Wi and yi (e.g. levels, …rst dif-

ferences, orthogonal deviations, combinations of …rst di¤erences (or orthogonal
deviations) and levels, deviations from individual means). Zi is a matrix of in-
strumental variables which may or may not be entirely internal, and Hi is a
possibly individual speci…c weighting matrix.

If the number of columns of Zi equals that of W ¤
i ; AN becomes irrelevant and

b± reduces to

± =

ÃX

i

Z 0iW
¤
i

!¡1 ÃX

i

Z 0iy
¤
i

!

In particular, if Zi = W ¤
i and the transformed Wi and yi are deviations from in-

dividual means or orthogonal deviations2, then b± is the within groups estimator.
As another example, if the transformation denotes …rst di¤erences, Zi = ITi  x0i
and Hi = bv¤i bv¤0i ; where the bv¤i are some consistent estimates of the …rst di¤erenced
residuals, then b± is the generalised three stage least squares estimator of Cham-
berlain (1984). These two estimators require the xit to be strictly exogenous with
respect to vit for consistency. In addition, the within groups estimator can only
be consistent as N ! 1 for …xed T if W ¤

i does not contain lagged dependent
variables and all the explanatory variables are strictly exogenous.

When estimating dynamic models, we shall therefore typically be concerned
with transformations that allow the use of lagged endogenous (and predetermined)
variables as instruments in the transformed equations. E¢cient GMM estimators
will typically exploit a di¤erent number of instruments in each time period. Esti-
mators of this type are discussed in Arellano (1988), Arellano and Bond (1991),
Arellano and Bover (1995) and Blundell and Bond (1998). DPD98 can be used
to compute a range of linear GMM estimators of this type.

Where there are no instruments available that are uncorrelated with the indi-
vidual e¤ects ´i, the transformation must eliminate this component of the error
term. The …rst di¤erence and orthogonal deviations transformations are two ex-
amples of transformations that eliminate ´i from the transformed error term,
without at the same time introducing all lagged values of the distrubances vit
into the transformed error term.3 Hence these transformations allow the use of

2Orthogonal deviations, as proposed by Arellano (1988) and Arellano and Bover (1995),
express each observation as the deviation from the average of future observations in the sample
for the same individual, and weight each deviation to standardise the variance (i.e.

x¤
it =

µ
xit ¡ xi(t+1) + ::: + xiT

T ¡ t

¶µ
T ¡ t

T ¡ t + 1

¶1=2

for t = 1; :::; T ¡ 1)

If the original errors are serially uncorrelated and homoskedastic, the transformed errors will
also be serially uncorrelated and homoskedastic.

3There are many other transformations which share these properties. See Arellano and Bover
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suitably lagged endogenous (and predetermined) variables as instruments. For
example, if the panel is balanced, p = 1, there are no explanatory variables nor
time e¤ects, the vit are serially uncorrelated, and the initial conditions yi1 are
uncorrelated with vit for t = 2; :::; T , then using …rst di¤erences we have:

Equations Instruments available
¢yi3 = ®¢yi2 +¢vi3 yi1
¢yi4 = ®¢yi3 +¢vi4 yi1; yi2

¢ ¢
¢ ¢

¢yiT = ®¢yi(T¡1) +¢viT yi1; yi2; :::; yi(T¡2)

In this case y¤i = (¢yi3; :::;¢yiT )
0;W ¤

i = (¢yi2; :::;¢yi(T¡1))
0 and

Zi = Z
D
i =

0
BBBBBB@

yi1 0 0 ¢ ¢ ¢ 0 0 ¢ ¢ ¢ 0
0 yi1 yi2 ¢ ¢ ¢ 0 0 ¢ ¢ ¢ 0
¢ ¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ ¢ ¢ ¢
0 0 0 ¢ ¢ ¢ yi1 yi2 ¢ ¢ ¢ yi(T¡2)

1
CCCCCCA

Notice that precisely the same instrument set would be used to estimate the
model in orthogonal deviations. Where the panel is unbalanced, for individuals
with incomplete data the rows of Zi corresponding to the missing equations are
deleted, and missing values in the remaining rows are replaced by zeros.

In DPD98 we call one-step estimates those which use some known matrix as
the choice for Hi: For a …rst-di¤erence procedure, the one-step estimator uses

Hi = H
D
i =

0
BBBBBBBB@

2 ¡1 ¢ ¢ ¢ 0
¡1 2 ¢ ¢ ¢ 0
¢ ¢ ¢
¢ ¢ ¢
¢ ¢ ¡1
0 0 ¢ ¢ ¢ ¡1 2

1
CCCCCCCCA

while for a levels or orthogonal deviations procedure the one-step estimator sets
Hi to an identity matrix. If the vit are heteroskedastic, a two-step estimator which
uses

Hi = bv¤i bv¤0i
(1995) for further discussion.
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where bv¤i are one-step residuals, is more e¢cient (cf. White (1982)). DPD98
produces both one-step and two-step GMM estimators, with asymptotic variance
matrices that are heteroskedasticity-consistent in both cases. Users should note
that, particularly when the vit are heteroskedastic, simulations suggest that the
asymptotic standard errors for the two-step estimators can be a poor guide for
hypothesis testing in typical sample sizes. In these cases, inference based on
asymptotic standard errors for the one-step estimators seems to be more reliable.4

In models with explanatory variables, Zi may consist of sub-matrices with
the block diagonal form illustrated above (exploiting all or part of the moment
restrictions available), concatenated to straightforward one-column instruments.
A judicious choice of the Zi matrix should strike a compromise between prior
knowledge (from economic theory and previous empirical work), the characteris-
tics of the sample and computer limitations (see Arellano and Bond (1991) for an
extended discussion and illustration). For example, if a predetermined regressor
xit correlated with the individual e¤ect, is added to the model discussed above,
i.e.

E(xitvis) = 0 for s ¸ t

6= 0 otherwise

E(xit´i) 6= 0

then the corresponding optimal Zi matrix is given by

Zi =

0
BBBBBB@

yi1 xi1 xi2 0 0 0 0 0 ¢ ¢ ¢ 0 ¢ ¢ ¢ 0 0 ¢ ¢ ¢ 0
0 0 0 yi1 yi2 xi1 xi2 xi3 ¢ ¢ ¢ 0 ¢ ¢ ¢ 0 0 ¢ ¢ ¢ 0
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
0 0 0 0 0 0 0 0 ¢ ¢ ¢ yi1 ¢ ¢ ¢ yi(T¡2) xi1 ¢ ¢ ¢ xi(T¡1)

1
CCCCCCA

Where the number of columns in Zi is very large, computational considerations
may require those columns containing the least informative instruments to be
deleted. Even when computing speed is not an issue, it may be advisable not
to use the whole history of the series as instruments in the later cross-sections.
For a given cross-sectional sample size (N), the use of too many instruments
may result in (small sample) over…tting biases. When over…tting results from the
number of time periods (T ) becoming large relative to the number of individuals
(N), and there are no endogenous regressors present, these GMM estimators are
biased towards within groups, which is not a serious concern since the within
groups estimator is itself consistent for models with predetermined variables as T

4See Arellano and Bond (1991) and Blundell and Bond (1998) for further discussion.
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becomes large.5 However, in models with endogenous regressors, using too many
instruments in the later cross-sections could result in seriously biased estimates.
This possibility can be investigated in practice by comparing the GMM and within
groups estimates.

The assumption of no serial correlation in the vit is essential for the consistency
of estimators such as those considered in the previous examples, which instrument
the lagged dependent variable with further lags of the same variable. Thus DPD98
reports tests for the absence of …rst-order and second-order serial correlation in
the …rst-di¤erenced residuals. If the disturbances vit are not serially correlated,
there should be evidence of signi…cant negative …rst order serial correlation in
di¤erenced residuals (i.e. bvit ¡ bvi;t¡1), and no evidence of second order serial
correlation in the di¤erenced residuals. These tests are based on the standardised
average residual autocovariances which are asymptotically N(0; 1) variables under
the null of no autocorrelation. The tests reported are based on estimates of the
residuals in …rst di¤erences, even when the estimator is obtained using orthogonal
deviations.6 More generally, Sargan tests of overidentifying restrictions are also
reported. That is, if AN has been chosen optimally for any given Zi; the statistic

S =

ÃX

i

bv¤0i Zi
!
AN

ÃX

i

Z 0ibv
¤
i

!

is asymptotically distributed as a chi-square with as many degrees of freedom
as overidentifying restrictions, under the null hypothesis of the validity of the
instruments. Note that only the Sargan test based on the two-step GMM estima-
tor is heteroskedasticity-consistent. Again, Arellano and Bond (1991) provides a
complete discussion of these procedures.

Where there are instruments available that are uncorrelated with the individ-
ual e¤ects ´i, these variables can be used as instruments for the equations in levels.
Typically this will imply a set of moment conditions relating to the equations in
…rst di¤erences (or orthogonal deviations) and a set of moment conditions relat-
ing to the equations in levels, which need to be combined to obtain the e¢cient
GMM estimator.7 For example, if the simple AR(1) model considered earlier is
mean-stationary, then the …rst di¤erences ¢yit will be uncorrelated with ´i, and
this implies that ¢yi(t¡1) can be used as instruments in the levels equations.8 In

5See Alvarez and Arellano (1998).
6Although the validity of orthogonality conditions is not a¤ected, the transformation to

orthogonal deviations can induce serial correlation in the transformed error term if the vit are
serially uncorrelated but heteroskedastic.

7In special cases it may be e¢cient to use only the equations in levels; for example, in a model
with no lagged dependent variables and all regressors strictly exogenous and uncorrelated with
individual e¤ects.

8See Arellano and Bover (1995) and Blundell and Bond (1998) for further discussion.
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addition to the instruments available for the …rst-di¤erenced equations that were
described earlier, we then have:

Equations Instruments available
yi3 = ®yi2 + ´i + vi3 ¢yi2
yi4 = ®yi3 + ´i + vi4 ¢yi3

¢ ¢
¢ ¢

yiT = ®yi(T¡1) + ´i + viT ¢yi(T¡1)

Notice that no instruments are available in this case for the …rst levels equation
(i.e. yi2 = ®yi1+ ´i+ vi2), and that using further lags of ¢yis as instruments here
would be redundant, given the instruments that are being used for the equations
in …rst di¤erences. In a balanced panel, we could use only the last levels equation
(i.e. yiT = ®yi(T¡1) + ´i + viT ), where (¢yi2;¢yi3; :::;¢yi(T¡1)) would all be valid
instruments; however this approach does not extend conveniently to unbalanced
panels.

In this case, we use y¤i = (¢yi3; :::;¢yiT ; yi3; :::; yiT )
0;W ¤

i = (¢yi2; :::;¢yi(T¡1);
yi2; :::; yi(T¡1))

0 and

Zi =

0
BBB@

ZDi 0 ¢ ¢ ¢ 0
0 ¢yi2 ¢ ¢ ¢ 0
¢ ¢ ¢
0 0 ¢ ¢ ¢ ¢yi(T¡1)

1
CCCA

where ZDi is the matrix of instruments for the equations in …rst di¤erences, as
described above. Again Zi would be precisely the same if the transformed equa-
tions in y¤i and W ¤

i were in orthogonal deviations rather than …rst di¤erences. In
models with explanatory variables, it may be that the levels of some variables
are uncorrelated with ´i, in which case suitably lagged levels of these variables
can be used as instruments in the levels equations, and in this case there may be
instruments available for the …rst levels equation.

For the system of equations in …rst di¤erences and levels, the one-step estima-
tor computed in DPD98 uses the weighting matrix

Hi =

Ã
HD
i 0

0 Ii

!

where HD
i is the weighting matrix described above for the …rst di¤erenced esti-

mator, and Ii is an identity matrix with dimension equal to the number of levels
equations observed for individual i. For the system of equations in orthogonal
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deviations and levels, the one-step estimator computed in DPD98 sets Hi to an
identity matrix with dimension equal to the total number of equations in the
system for individual i. In both cases the corresponding two-step estimator uses
Hi = bv¤i bv¤0i . We adopt these particular one-step weighting matrices because they
are equivalent in the following sense: for a balanced panel where all the available
linear moment restrictions are exploited (i.e. no columns of Zi are omitted for
computational or small sample reasons), the associated one-step GMM estimators
are numerically identical, regardless of whether the …rst di¤erence or orthogonal
deviations transformation is used to construct the system. Notice though that the
one-step estimator is asymptotically ine¢cient relative to the two-step estimator
for both of these systems, even if the vit are homoskedastic.9 Again simulations
have suggested that asymptotic inference based on the one-step versions may be
more reliable than asymptotic inference based on the two-step versions, even in
moderately large samples.10

The validity of these extra instruments in the levels equations can be tested
using the Sargan statistic provided by DPD98. Since the set of instruments used
for the equations in …rst di¤erences (or orthogonal deviations) is a strict subset
of that used in the system of …rst-di¤erenced (or orthogonal deviations) and lev-
els equations, a more speci…c test of these additional instruments is a Di¤erence
Sargan test which compares the Sargan statistic for the system estimator and the
Sargan statistic for the corresponding …rst-di¤erenced (or orthogonal deviations)
estimator. Another possibility is to compare these estimates using a Hausman
speci…cation test, which can be computed here by including another set of regres-
sors that take the value zero in the equations in …rst di¤erences (or orthogonal
deviations), and reproduce the levels of the right hand side variables for the equa-
tions in levels.11 The test statistic is then a Wald test of the hypothesis that the
coe¢cients on these additional regressors are jointly zero. Full details of these
test procedures can be found in Arellano and Bond (1991) and Arellano (1993).

9With levels equations included in the system, the optimal weight matrix depends on un-
known parameters (for example, the ratio of var(´i) to var(vit)) even in the homoskedastic
case.

10See Blundell and Bond (1998).
11Thus in the AR(1) case described above we would have

W ¤
i =

µ
0 ::: 0 yi2 ::: yi(T¡1)

¢yi2 ::: ¢yi(T¡1) yi2 ::: yi(T¡1)

¶0

:
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3. USING DPD98

All sample selection and model speci…cation information are input to DPD98 by
editing the DPD98.RUN …le. This can be done using the Gauss editor or any
other compatible editor, and only a very basic knowledge of Gauss is needed
to operate DPD98. Options to include a constant and dummy variables, and
selection from the menu of estimators and output options, can be speci…ed using
the DPD98.RUN …le, or can be chosen interactively when running DPD98.

3.1. USER INPUT INFORMATION: THE DPD98.RUN FILE

The DPD98.RUN …le is organized into several sections, each with a title and
comments to provide ‘on-line’ assistance. These sections are each discussed below.

Data Set Selection
The data to be used in estimation are selected towards the top of DPD98.RUN.

The main data set is speci…ed by typing the name of the Gauss data set in the
open statement, i.e.

open f1=mainname;
where mainname is the name of the main Gauss data set (without any extension).
The auxiliary data set is selected in the same way at the following open statement,
i.e.

open f2=auxname;
where auxname is the name of the auxiliary Gauss data set (without any exten-
sion). If these data sets are not on the same subdirectory (folder) as DPD98.RUN
then their location must also be speci…ed in these statements. It is recommended
that data is read from the hard disk only.

Immediately beneath these open statements, the variables startf2 and stopf2
must be entered. These control where DPD98 begins and ends reading observa-
tions from the main data set, and should always take positive integer values. If
all the data is to be used then startf2 should be set to 1 and stopf2 should be set
to the number of rows in the auxiliary data set (which can be done automatically
by specifying stopf2=rowsf(f2)). However, if the main data set is sorted by some
characteristic of the individual units, this feature will allow estimation on a sub-
sample. For example, if in an unbalanced panel the data are sorted in ascending
order of time series observations per unit, then the balanced sub-panel with data
for all time periods can be selected in this way. This would be obtained by setting
startf2=rowsf(f2) and stopf2=rowsf(f2).
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Other Data Information
The next section sets up several variables that are needed in reading the main

data set and for creating dummy variables. All should take integer values. The
…rst of these is ncomp, which controls how many cross-section units are read and
processed at the same time. DPD98 operates by reading and processing the data
in blocks of ncomp (or less) units. If an ‘insu¢cient workspace’ or ‘read too large’
error message is encountered, the solution is to reduce ncomp. The precise limit
will depend on the number of instruments in the model and (to a lesser extent)
on the maximum number of time-series observations per unit.

The next variable, yearcol, simply indicates the column of the main data set
that contains the year to which each observation refers. One column must contain
this information, and this must be in the format 19xx. The variable year1 should
be set to the earliest year on which there is an observation in the (sub-sample of
the) data being used. Again this must be in the format 19xx. The variable nyears
should be set to the number of years covered by the (sub-sample of the) data being
used. For example, if there are observations between 1984 and 1991, then year1
should be set to 1984 and nyears should be set to 8. Notice that, unlike in the
earlier versions of DPD, it is not necessary for any single cross-section unit to have
observations on all of these time periods.12 However it is not advisable to include
years for which there are very few observations, particularly when period-speci…c
parameters are being estimated.

Cross-section units may also be associated by some time-invariant observed
characteristic, and if such a group indicator is available in the data then DPD98
will create intercept dummies according to this characteristic. With company
data this will often indicate an industry grouping to which the …rm belongs. This
is assumed in what follows, but other types of grouping (e.g. size, location) can
be used in practice. The variable indcol indicates the column of the main data
set that contains the industry code to which each observation is classi…ed. The
variable indmax indicates the number of groups or classes that have been used.
Where this option is used, the industry codes in the data set must be integers
running from one to indmax, with no gaps. Note that this is only an option.
Where such a classi…cation is either not desired or unavailable, indcol may be set
to any arbitrary column number in the data set and indmax may be set to any
arbitrary value. In this case the creation of ‘industry’ dummies (see below) should
not be requested.

Model Information
The parameter lag controls how many equations are used in estimation, and

12For example, it may be that half the sample have observations from 1984-89 and half the
sample have observations from 1986-91.
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how many time-series observations on each unit are reserved to allow the creation
of lagged series. This parameter should be set with reference to the model in
levels, before considering any transformation needed to compute the estimator.
When estimation is in …rst di¤erences (or orthogonal deviations), DPD98 will
automatically reserve one extra observation to allow the transformed series to be
constructed. Users familiar with earlier versions of DPD should note that this is
a change from earlier versions of the program.

The lag parameter will normally be set equal to the maximum lag length in
the model. For example, in the AR(1) model we discussed in section 2,

yit = ®yi(t¡1) + ´i + vit

with vit serially uncorrelated, the lag parameter will normally be set to 1. If the
model was to be estimated using OLS in levels (perhaps for comparison to other
estimators), the …rst levels equation used would be

yi2 = ®yi1 + ´i + vi2

whilst if the same model was to be estimated using GMM in …rst di¤erences, the
…rst di¤erenced equation to be used would be

¢yi3 = ®¢yi2 +¢vi3

Similarly if the model to be estimated was

yit = ®yi(t¡1) + ¯0xit + ¯1xi(t¡1) + ¯2xi(t¡2) + ´i + vit

the lag parameter would normally be set to 2.
There are two reasons why the lag parameter may sometimes be set to higher

values than the maximum lag length in the model. One reason is that the user
may want to estimate the model using a later sub-period of the data. The other
is that there may be no instruments for the earliest equations in the presence of
moving average errors. For example, if in the AR(1) model it is known that the
vit disturbances are MA(1), then instruments dated t ¡ 2 are not valid in the
di¤erenced equations, but instruments dated t ¡ 3 and earlier remain valid. In
this case the …rst di¤erenced equation for which instruments are available is

¢yi4 = ®¢yi3 +¢vi4

where yi1 is a valid instrument. By setting lag to 2, rather than 1, the redundant
di¤erenced equation for period 3 can be omitted.
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Data Transformations
The next section of DPD98.RUN de…nes a Gauss subroutine in which data

transformations and model selection are performed. Whenever this subroutine is
called, all the columns of the main data set for the current block of units will
have been read into a matrix called data. At this point, any operation that is
available in Gauss may be performed on the columns of data in order to e¤ect
data transformations. Suppose for example that the data set contains 6 columns,
and it is desired to use the ratio of the variables in columns 5 and 6 as a regressor
in the model. This can be achieved by typing the following pair of statements in
the subroutine (before the model is selected):

temp = data[.,5]./data[.,6];
data = dataetemp;

The …rst statement here picks out column 5 of data and divides each element by
the corresponding element of column 6. The result is assigned to a vector called
temp. The second statement then attaches this vector to the right hand side of
data (‘horizontal concatenation’). Thus data now has 7 columns, and the new
variable occupies column 7. In this way transformed variables can be used in the
model without being permanently stored in the data set. Any Gauss operations
(e.g. logarithms, powers) can be performed similarly, and the variable names
temp¤ are reserved for this purpose. Note that it is essential that, after performing
data transformations, the modi…ed data matrix continues to have the name data,
since DPD98 will look for this matrix when selecting the model.

DPD98 also has 3 speci…c functions that can be used to construct transformed
series at this stage. The function timdum(19xx) produces a column vector which
takes the value of one for all observations in year 19xx and zero for observations
in all other years. Similarly the function inddum(j) produces a column vector
with ones for all observations for industry j, and zeros elsewhere. A dummy
variable taking the value 1 in years 19xx and 19yy (or in industries j and k)
can be obtained either by adding (i.e. timdum(19xx)+timdum(19yy)), or more
simply by specifying timdum(19xxe19yy) (likewise inddum(jek)). These functions
can be used to obtain year-speci…c or industry-speci…c intercept dummies, in cases
where the complete set of individual year or industry dummies is not desired.13

By interacting these dummy variables with explanatory variables, these functions
also allow the sub-period or sub-sample stability of some or all of the model
coe¢cients to be investigated.

Finally the function back(c,l) allows lags of the basic series to be used in
constructing transformations. Simple lags can be speci…ed more easily at the
model selection stage, but this function allows more complex transformations

13DPD98 will automatically include the complete set of year dummies and/or industry dum-
mies as options (see below).
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to be performed. The function works like a lag operator or backshift operator,
producing the lth lag of the series in column c of data. For example, if instead of
dividing observations in column 5 by the current value of the series in column 6, it
is desired to divide by the …rst lag of the series in column 6, this can be achieved
by the statement:

temp = data[.,5]./back(6,1);
As another example, the growth rate of the series in column 4 can be produced
by the statement:

temp = (data[.,4]-back(4,1))./back(4,1);
Notice that in each of these examples there is no observation available on the
transformed series for the …rst time period in which each individual unit is ob-
served, and the transformed series will contain missing values for these periods.
This should be taken into account when specifying the lag parameter which de-
termines which observations are used in estimation.

Model Selection
The model to be estimated is selected using simple DPD98 functions. As in

the econometric discussion above the dependent variable is y, the regressor matrix
is x and the instrument matrix is z. The variables selected are also given names
that will appear in the output.

a) Dependent variable
The dependent variable is selected with the functions lev(c,l), dif(c,l), dev(c,l),

di‡ev(c,l) or devlev(c,l), which respectively return a series in levels, …rst-di¤erences,
orthogonal deviations, a stacked vector of …rst di¤erences and levels, and a stacked
vector of orthogonal deviations and levels. In all cases the …rst argument c indi-
cates the column of data which contains the basic variable and the second argu-
ment l indicates the lag length to be produced. For example the statement:

y = lev(3,0);
selects the variable in column 3 of data to be the dependent variable, in levels
form. Similarly:

y = dif(4,0);
selects the variable in column 4, and uses it in …rst-di¤erenced form. Typically
the lag length will be zero when selecting the dependent variable, although this
is not essential.

After making y in this way, the selected variable must also be given a name.
This is entered immediately below as the variable namey. The name has a max-
imum length of eight characters and must be enclosed between double inverted
commas (”). Both upper and lower case may be used. For example, any of the
following are acceptable:
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namey = ”v3”;
or namey = ”OUTPUT”;
or namey = ” log N”;

b) Regressors
The same functions lev(c,l), dif(c,l), dev(c,l), di‡ev(c,l) or devlev(c,l) are used

to select the matrix of regressors. Single columns are combined into a matrix
using the horizontal concatenation operator (e) in Gauss. Any lag lengths may
be used, up to the user-speci…ed maximum lag (see above). For example, the
statement:

x = dev(7,0)edev(7,1);
selects a matrix of 2 regressors, both formed from the basic variable in column 7
of data and both in orthogonal deviations form. The …rst regressor is not lagged,
and the second regressor is lagged one period. This requires lag to be set to 1 (or
higher), and a minimum of at least 3 time-series observations to be available on
each unit.

Each of the regressors chosen must again be given a name. Names are also
combined using horizontal concatenation, and each name must be enclosed in
double inverted commas. These are entered as the variable namex. For example,
the statement:

namex = ”Q”e”Q(-1)”;
could correspond to the regressor matrix speci…ed above.

In addition to these basic functions, DPD98 o¤ers two additional functions
which may be used when selecting the matrix of regressors (and instruments).
To combine both levels of some series and …rst di¤erences of other series in the
same regressor matrix, the function lev1(c,l) should be used rather than lev(c,l).
Since one observation is automatically lost when constructing …rst di¤erences,
the function lev1(c,l) returns the level of the series with the …rst available level
omitted. The function zerolev(c,l) returns a stacked vector of the same length
as di‡ev(c,l) (or devlev(c,l)), but with zeros in place of the observations in …rst
di¤erences (or orthogonal deviations). This can be used to construct tests of the
validity of the instruments for the levels equations, as discussed in section 2.

The only regressors that are not chosen in this way are the constant and
intercept dummies. These can be added to the model automatically as described
below, and if they are selected then names are automatically assigned by DPD98.

c) Instruments
We …rst describe how to specify the matrix of instruments when estimation

uses the equations in levels, …rst di¤erences or orthogonal deviations only. We
then explain how this extends to the systems of transformed and levels equations.
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A matrix of instruments may be formed using the basic lev(c,l) and dif(c,l)
functions, in the same way as the matrix of regressors above. In addition DPD98
has a further function, gmm(c,l1,l2), which automatically returns all or part of
the optimal instrument matrix required for the Generalised Method of Moments
estimators discussed in section 2. Again c indicates the column position of the
basic variable in data. Here l1 refers to the lag length of the latest instrument
to be used in each cross section, and l2 refers to the lag length of the earliest
instrument to be used. Thus if observations dated t¡ 2, t¡ 3 and t¡ 4 are to be
used as instruments in each of the cross-section equations, then l1 would be set to
2 and l2 would be set to 4.14 Users familiar with earlier versions of DPD should
note that this is a change from earlier versions of the program. If the number of
cross-section units is large enough that all observations dated t¡2 and earlier are
to be used as instruments, this can be achieved by setting l1 to 2 and l2 to the
default value of 99. Where future values of strictly exogenous variables are used
as instruments, this is achieved by setting l1 to a negative integer. For example,
setting l1 to -2 and l2 to 3 will use the observations dated t + 2, t + 1, t, t ¡ 1,
t¡ 2 and t¡ 3 as instruments. Similarly setting l1 to -99 and l2 to 99 will use all
past, present and future observations on the series as instruments in each of the
cross-section equations.15

Where series have been constructed using the backshift operator, or for other
reasons the …rst m observations on each unit are missing, DPD98 has a corre-
sponding function gmmb(c,l1,l2,m). The …rst 3 arguments work in the same way
as for the basic gmm(c,l1,l2) function. The fourth argument allows columns of
the instrument matrix corresponding to the missing observations to be deleted.16

For example, if the variable is a growth rate constructed using back(c,1), the
parameter m should be set to 1.

Matrices produced by gmm(c,l1,l2) or gmmb(c,l1,l2,m) may be combined with
each other, or with vectors produced by lev(c,l) or dif(c,l), again using horizontal

14If any of these lagged values are not observed in the earlier cross-sections, DPD98 will au-
tomatically delete these columns from the instrument matrix. Unbalanced panel considerations
are dealt with in the way discussed in section 2.

15Note that the same instrument set should be speci…ed when estimating in orthogonal devi-
ations as when estimating in …rst di¤erences. The precise timing of the orthogonal deviations
transformation used by DPD98 is

x¤
it =

µ
xi(t¡1) ¡ xit + ::: + xiT )

T ¡ t + 1

¶µ
T ¡ t + 1

T ¡ t + 2

¶1=2

for t = 2; :::; T

rather than that given in footnote 2. Thus if instruments dated t ¡ s are valid using …rst
di¤erences, they are also valid using orthogonal deviations.

16In unbalanced panels, missing values not removed by these column deletions are replaced
by zeros.
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concatenation. Where year dummies and/or industry dummies are requested,
these are automatically included in the instrument matrix as well as the regressor
matrix. If the total number of instruments (columns of z) speci…ed is less than
the total number of regressors (columns of x), so that the model is not identi…ed,
an error message is returned.

Note that the columns of x are not automatically included in the instrument
matrix. Where some of the x variables are exogenous and are used simply to
instrument themselves, these variables must be included explicitly in the instru-
ment matrix as well as in the regressor matrix. This can be done using the lev(c,l),
dif(c,l) or dev(c,l) functions, or by including a sub-matrix of x in the instrument
matrix.17 When OLS rather than an instrumental variables estimator is required,
this can be achieved either by specifying:

z = x;
or z = ols;

.

When within groups is required, this can be achieved either by specifying y and
x in orthogonal deviations and using OLS, or by specifying y and x in levels,
specifying:

z = wgroups;
and requesting within groups from the menu of estimation options (see below).18

In contrast to x, a name does not have to be speci…ed for each column of
the instrument matrix, z. A list of names which summarises the instrument set
should however be entered as the variable namez. With OLS and within groups
estimators, this selection is quite arbitrary, but some name must be entered.

We close this section with two examples that illustrate the syntax:
z = gmm(7,2,99);
namez = ”Q(2,ALL)”;

or z = gmmb(6,2,4,1)egmm(7,2,3)edif(3,2);
namez =”Y*(2,4)”e”Q(2,3)”e”DN(-2)”;

System Estimators
When using systems of equations in …rst di¤erences (or orthogonal deviations)

and in levels, the instrument matrix is constructed in two parts. First, the instru-
ments for the transformed equations in the system is set up in just the same way
as the instrument matrix would be speci…ed for estimation using …rst di¤erenced
(or orthogonal deviations) equations alone. Second, the additional instruments

17For example, the statement x[.,3 6 7] selects the sub-matrix containing columns 3, 6 and 7
of the x matrix. See the Gauss manual for further details.

18In either case, DPD98 calculates within groups estimates using the equivalence between the
classical within groups estimator and OLS after transforming to orthogonal deviations. This
equivalence is exact for balanced panels, and asymptotic for unbalanced panels. See Arellano
and Bover (1995) for further discussion.
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used in the levels equations must be speci…ed. DPD98 provides two functions
for this purpose: gmmlev(c,l3) uses the level of the series in column c of data,
lagged l3 times, as an instrument in each of the levels equations of the system;
gmmlevd(c,l3) uses the …rst di¤erence of the series in column c, lagged l3 times,
as an instrument in each of the levels equations.19 Typically the lag length l3 will
be equal to the corresponding l1 ¡ 1, since if, for example, xi(t¡2) is uncorrelated
with the …rst-di¤erenced error term ¢vit, then both xi(t¡1) and ¢xi(t¡1) will be
uncorrelated with the time-varying component vit of the error term in levels.

After constructing each part of the instrument matrix separately, the two parts
must be combined to give the block diagonal instrument matrix for the system
described in section 2. This is achieved using the function combine(zd,zl), where
zd is the instrument matrix set up for the …rst-di¤erenced equations, and zl is
the instrument matrix set up for the levels equations in the system. Note that
the order of these two arguments is important. A list of names describing the full
instrument matrix should then be speci…ed as namez.

To illustrate this, suppose we are estimating a simple AR(1) model for the
variable in column 3 of data, using a system of equations in orthogonal deviations
and levels, under the maintained assumption of mean-stationarity. The complete
model speci…cation section of the DPD98.RUN …le would then have the form:

y = devlev(3,0);
namey = ”Y”;

x = devlev(3,1);
namex = ”Y(-1)”;

zd = gmm(3,2,99);
zl = gmmlevd(3,1);

z = combine(zd,zl);
namez = ”Y(2,ALL)”e”+DY(-1)”;

Note that to test the validity of these instruments in the levels equations, we could
replace this matrix of regressors by:

x = devlev(3,1)ezerolev(3,1);
namex = ”Y(-1)”e”ZY(-1)”;

whilst keeping the instrument matrix unchanged.
Note …nally that when some regressors are used simply to instrument them-

selves,20 these should be concatenated to z only after z has been constructed using
the combine(zd,zl) function.

19In each case there is a corresponding function gmmlevb(c,l3,m) and gmmlevdb(c,l3,m) for
series with m missing observations.

20Here this requires that they are uncorrelated with the individual e¤ects ´i, as well as being
uncorrelated with the errors in the transformed equations.
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Pseud’s Corner
In cases where the total number of instruments is large relative to the cross-

section dimension of the panel, there may be di¢culty in inverting the matrix³
1
N

P
iZ

0
ibv¤i bv¤0i Zi

´
which is required to compute the two-step GMM estimator. This

will typically cause the program to abort and return a ‘matrix not invertible’ error
message at the end of the second read through the data.21 When this happens,
the estimator can still be computed by using a Moore-Penrose pseudo-inverse
to evaluate the weight matrix. DPD98 allows this as an option, by setting the
parameter pseud to one in the Gauss options section of the DPD98.RUN …le. This
will occur automatically in cases where the total number of instruments exceeds
the number of cross-section units.

For normal use, we recommend that the parameter pseud is set to zero,
so that pseudo-inverses are not routinely used. Non-singularity of the matrix³
1
N

P
iZ

0
ibv¤i bv¤0i Zi

´
can be taken as a signal that the number of instruments is be-

coming large for the given sample size, and this may be useful information to have
when re-specifying the model.

The User-De…ned Wald Test
When DPD98 is run it will automatically compute a Wald test of joint signi…-

cance for all the variables entered in x (i.e. a test of the null hypothesis that their
estimated coe¢cients are all zero). When intercept dummies are selected, similar
tests of their joint signi…cance are computed. In addition the user may select a
subset of the regressors in x to be separately tested. This can be useful in testing
for sub-sample stability, as well as more general linear restrictions.

This option is turned on by setting the variable waldtest to 1. Otherwise
waldtest should be set to 0. When the option is selected, the columns of x that
are to be tested are speci…ed by entering the column numbers as the variable
testcols. Note that these refer to column positions in x rather than in data, and
they are combined using horizontal concatenation. For example, to test the joint
signi…cance of the variables in the …rst two columns of x, the statement is:

testcols =1e2;
As usual, an arbitrary value should be assigned to testcols when this option is not
being used.

Saving the Output
Output from DPD98 will appear on the screen but should also be directed to

an output …le for subsequent inspection and printing. This is accomplished by
typing a …lename in the output …le statement at the bottom of DPD98.RUN. Any

21If the program aborts with a ‘matrix not invertible’ error message at the end of the …rst
read of the data, this is normally because some of the columns of the instrument matrix are
perfectly collinear. In this case, the model should be re-speci…ed.
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valid DOS …lename may be used here, and a location other than the default drive
may be speci…ed. The output …le produced by DPD98 is an ASCII text …le that
can be edited in all standard text editors, or read directly into word processors.
After the …lename, one of the words on or reset must be included. For example

output …le = c:nmyoutputnresults.txt on;
If on is used, the output from this run will be appended to the bottom of the
output …le. If reset is used, the output …le will be overwritten. Care should be
exercised when using the latter option!

3.2. RUNNING DPD98

Once DPD98.RUN has been edited the program is ready to run. From within
Gauss, DPD98 can be run from command mode with the command:

run DPD98.run
Alternatively DPD98 can be run from the edit mode, which is often convenient.
Enter the Gauss editor with the command:

edit DPD98.run
and use the F2 key from the editor to execute the program.

3.2.1. INTERACTIVE MODE: THE MENU OF OPTIONS

To run DPD98 interactively, the parameters sys and bat in the Gauss options
section at the top of the DPD98.RUN …le should both be set to zero. On running
DPD98, the user is then presented with a series of options which are controlled
by typing answers to prompts on the screen.

The …rst question asks for the form of the model to be entered. Type 0 if the
model is speci…ed in levels (unless within groups is required), 1 if the model is
speci…ed in …rst-di¤erences, 2 if the model is speci…ed in orthogonal deviations,
3 if the model is speci…ed using a system of …rst-di¤erenced and levels equations,
4 if the model is speci…ed using a system of orthogonal deviations and levels
equations, and 5 if the model is speci…ed in levels and the z = wgroups command
has been used. In each case the number entered should be followed by the return
key. This information determines the form of the Hi matrix used to compute
the one-step estimator as discussed in section 2, the error structure assumed for
computing non-robust covariance matrices, and the form of the serial correlation
tests reported.

The second question asks for a choice to be made from the options to include a
constant and various intercept dummies. Type 0 for no constant, 1 for a single set
of year dummies, 2 for indmax sets of year dummies (i.e. separate year dummy
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coe¢cients for …rms in di¤erent industries), 3 for a single constant, 4 for a set of
industry dummies only (with no year dummies), and 5 for additive year dummies
and industry dummies. Where year dummies are speci…ed, DPD98 includes a
constant term and excludes the year dummy for the …rst year available. The
coe¢cient on the constant term estimates the intercept in the …rst period available,
whilst the coe¢cients on the remaining year dummies estimate the di¤erence
between the intercept in these years and the intercept in the …rst period. This
is equivalent to including a full set of year dummies, and when estimation is in
levels this allows the hypothesis that the set of dummies can be replaced by a
single intercept to be easily tested. This is the Wald test produced automatically
when estimation is in levels. When estimation is in …rst di¤erences (or orthogonal
deviations), the same hypothesis implies that there should be no intercept at all
in the …rst di¤erenced (or orthogonal deviations) equations, and this is again the
Wald test that is automatically computed by DPD98.

Where more than one set of year dummies is speci…ed, DPD98 similarly in-
cludes a constant term, a set of year dummies for all industries (with the …rst year
omitted), and then a full set of separate year dummies for each of the industries 2
to indmax. This is equivalent to including a full set of industry-year interactions,
and facilitates testing of the hypothesis that the multiple sets of year dummies
can be replaced by a single set of year dummies (common to all industries). This
is the Wald test automatically produced by DPD98 in this case.

Where industry dummies alone are speci…ed, DPD98 includes a constant term
and excludes the industry dummy for the …rst industry. The Wald test produced
here tests the hypothesis that the set of industry dummies can be replaced by a
single intercept.

Where additive year and industry dummies are speci…ed, DPD98 includes a
constant term and excludes both the …rst year dummy and the …rst industry
dummy available. Separate Wald tests test the hypotheses that the year dummies
can be omitted, the industry dummies can be omitted, and that the additive year
and industry dummies can be replaced by a single intercept (i.e. that both sets
of intercept dummies can be omitted).

The third question asks whether standard errors and test statistics that are
(large N asymptotically) consistent in the presence of general heteroskedasticity
are to be computed. In this and the following questions, type 1 if this option is
desired and 0 otherwise. Where appropriate the two-step instrumental variables
estimator (see above) is also produced when this option is requested. This option
requires the data set to be read a second time and so increases the execution time
of the program. However in our experience heteroskedasticity is often present in
panel data models. In this case the non-robust test statistics may be seriously
misleading, so that this option is strongly recommended. For the system estima-
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tors, DPD98 does not produce non-robust standard errors, so that this option is
automatic and the question is omitted.

The fourth question asks whether basic descriptive statistics should be in-
cluded in the output …le. The descriptive statistics available show the mean,
standard deviation and extreme values of each series in y and x, together with
a matrix of simple correlation coe¢cients. Except where the model is estimated
in …rst-di¤erences, these descriptive statistics are provided for the levels of the
series.

The …fth question asks whether the full covariance matrices for the estimated
parameters should be included in the output …le. When they have been computed,
the heteroskedasticity-consistent covariance matrices for the one-step and two-step
estimators are reported when this option is requested.

The last question asks whether the vectors of coe¢cient estimates and covari-
ance matrices should be saved as Gauss matrices. When this is requested, the
one-step and two-step coe¢cient matrices are saved as beta1.fmt and beta2.fmt,
their heteroskedasticity-consistent covariances matrices are saved as var1.fmt and
var2.fms, and the non-robust covariance matrix for the one-step estimator is saved
as var.fmt. For users familiar with Gauss, these saved matrices can be loaded into
other Gauss programs, for example to compute Wald tests of non-linear restric-
tions and Hausman speci…cation tests.

3.2.2. BATCH MODE

To run DPD98 in batch mode, the parameter bat should be set to one. In this
case, the six questions described in the previous section will be suppressed, and
the desired options must be declared in the DPD98.RUN …le, as the parameters
imod, icon, irob, ides, icov and isav in the section labelled Set Up For Batch
Operation. If the parameter sys is set to zero, the program will return to the
Gauss À prompt when it …nishes executing. If the parameter sys is set to one,
the program will return to DOS when it …nishes executing.

This latter option allows a series of DPD98.RUN …les to be executed sequen-
tially, using a DOS batch …le. The precise details will depend on how Gauss is
installed on your computer (or network). In all cases, …rst prepare a series of
DPD98.RUN …les, each with bat set to one and sys set to one, and saved with
distinct names (for example, DPD98A.RUN, DPD98B.RUN, etc.). Then prepare
a DOS batch …le that will execute a series of programs written in Gauss.

For example, if Gauss is installed locally on your computer and you can enter
Gauss (from DOS, or from a DOS window) simply by typing gaussiÃ-. Then all
that is required is a batch (.bat) …le which contains a series of statements of the
form:
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gaussi/b run DPD98.RUN
The /b option is recommended but not essential; this allows the batch …le to move
on to the next program should one of your jobs abort.

In this case, for example, a simple batch …le rundpd.bat containing the two
lines

gaussi/b run DPD98A.RUN
gaussi/b run DPD98B.RUN

can be used to run these two DPD98.RUN …les sequentially. This is executed
from the DOS prompt, simply by typing rundpdÃ-. Note that this can be run
from a DOS window under Windows95 or WindowsNT.

Where Gauss is run over a network, the form of the batch …le needed may be
more complicated but the principle is the same. Often Gauss will be executed
over the network using a local batch …le (in Windows95 or WindowsNT, the
shortcut to Gauss should reveal the name of this batch …le, which should also
be executable from a DOS window). Within this batch …le, you should …nd
the gaussi statement (probably preceded by a path, e.g. r:nappsngaussngaussi),
which is where the batch …le starts Gauss. Multiple Gauss programs can then be
executed sequentially by replacing this statement by a series of statements of the
form gaussi/b run DPD98.RUN, each preceded by the same path.

3.3. OUTPUT FROM DPD98

The output …le produced by DPD98 is largely self-explanatory. The last column
in the main tables, labelled P-Value, reports the probability of rejecting the null
hypothesis that the coe¢cient is zero, using a two-tailed test. With the basic one-
step estimates the residual sum of squares (RSS) and total sum of squares (TSS)
are reported, along with the estimated variance of the error term. When the
model is estimated in levels, this provides an estimate of the variance of (´i+vit).
When the model is estimated in …rst-di¤erences or orthogonal deviations, this
provides an estimate of the variance of the time-varying component vit only.

The Wald tests reported are asymptotically distributed as Â2 variables, with
the degrees of freedom (df) reported. The Sargan tests of overidentifying re-
strictions are also asymptotically distributed as Â2: The tests for …rst-order and
second-order serial correlation relate to the estimated residuals in …rst-di¤erences,
unless the model has been estimated using only the levels equations. Note that
…rst-di¤erencing will induce MA(1) serial correlation if the time-varying compo-
nent of the error term in levels is a serially uncorrelated disturbance. These tests
are discussed in Arellano and Bond (1991), and are asymptotically distributed as
standard normal variables. For all these test statistics, p-values report the proba-
bility of rejecting the null hypothesis. Where robust test statistics are computed
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and the data is read a second time, the complete serial correlation matrix (based
on the one-step residuals) is also reported.

4. AN EXAMPLE

In this section we describe an example DPD98.RUN …le together with the output
…le that it produces. The example data sets XDATA and AUXDATA are supplied
with DPD98. XDATA has six columns which contain data for the sample of
140 UK quoted companies over the period 1976-1984 used in Arellano and Bond
(1991). The variables in these columns are an industry code, the accounting
year, employment, real wages, gross capital stock and an index of industry output
respectively. The panel is unbalanced, with observations varying between 7 and
9 records per company.

The example DPD98.RUN …le speci…es a log-linear labour demand equation
including 2 lags of the dependent variable, current and lagged real wages, current
capital and current and lagged industry output. Notice that the log series are
constructed internally at the data transformations stage. The model is estimated
in …rst di¤erences. The instrument set exploits all available linear moment re-
strictions involving the dependent variable (assuming no serial correlation in the
time-varying component of the errors in levels), in combination with the remain-
ing regressors in stacked form. A Wald test of the joint signi…cance of the two
real wage variables is computed.

On running DPD98 time dummies were requested, but not industry dummies.
Robust test statistics and two-step estimates were selected. Descriptive statistics
and covariance matrices of the estimates were omitted. This results are contained
in the output …le DPD98.OUT.
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