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Introduction
These are the comments of an outsider!

Barro (1991) originated an explosion of empirical re-
search on the determinants of growth using cross-country
data. Once this became a “mature” literature, people started
to ask what had been learned from it.

1) Some thought that explaining growth rates by differ-
ences in 1nitial levels was not particularly interesting after
all, and sought a shift of focus towards the determinants of
differences in levels of activity across countries (as Hall &
Jones, 1999). Others went in the opposite direction by re-
sorting to panel data, trying to obtain better measures of the
dynamics of growth rates.

2) A more specific issue was raised by Levine & Renelt
(1992). From an extreme-bounds analysis, they concluded
that no variable was robustly correlated with growth. In
contrast, Sala-1-Martin (1997) considered weighted-averages
of OLS coefficients and found that some were fairly stable.



The present paper 1s concerned with the answer to the
question “what can be learned ...” in the second, narrower
context.

The contributions of the paper are:

e 1) Providing a statistical grounding for LR weighted av-
erages of OLS coefficients.

e 2) Generalizing the argument to regressions with different
numbers of coefficients.

e 3) Showing there is a subset of variables strongly related
to growth.

The paper is well written an extremely clear. So I will
not try an alternative description of what the paper does.



Summary of the approach
The paper considers the posterior distribution of 3 as

g(B1y) =2 Pr(M;|y)g(B |y M.

M denotes a model (a list of included variables). Given
g (B | y, M;) is standard in a normal regression with
dlffuse priors (the sampling distribution of OLS).
The odd posterior ratio between two models 1s given
by the odd prior ratio times the likelihood ratio LR :
Pr(M; |y) (Pr <Mj>> ) (f(y | M»)
Pr(M¢|y) \Pr(M) Sy | M)
They consider the Schwarz adjusted LR which is the unad-
justed LR times a correction factor for the difference in the
no. of parameters
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Moreover, they specify the odd prior ratio as
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where k is a prior about the no. of regressors with non-zero
coefficients, and K (= 32) is the total no. of regressors.

So two models with the same no. of parameters have
the same prior probabilities, and any model with k regres-
sors has the largest prior probability, regardless of the nature
of the regressors.




Reported statistics:
1) Posterior mean:

E@ly) =) Pr(M;|y) BB |y, M).

2) Posterior variance:

Var (8, |y) = E[Var (B; | y, M) | y|+Var [E (8; | y, M;) | y

3) Posterior inclusion probability:

Pr(0; 20 y) =2  Pr(M;ly).
4) Sign certainty probability:
Prisgn (8;) = sgnE (B; | y) |y, B; # 0]

5) Posterior means and variances conditional on inclusion.
6) Graphics of g (B; | y,0; # 0) and L —Pr(5; # 0 | y)]

In the normal regression with diffuse priors E (3, | y, M)
coincides with OLS, and Var (3, | y, M;) with the OLS
sampling variance.

Pr (8, # 0| y) is used as a ranking measure of how

much the data favors the inclusion of a variable in the growth
regression. Variables are divided according to whether

Pr(8,#0|y) 2 Pr(6,#0) = [k(( 0.22 with k = 7).
There are 12 variables for which the data provide support
1n this sense. Of those, there are 4 for which
Pr (8, # 0] y) > 0.95.
Finally, a variable is called “robust” if it has a small
posterior standard deviation conditional on inclusion and a
high sign-certainty probability.



Comments in a Bayesian spirit

On the priors. The prior chosen for Pr (M) is not very
meaningful: We assign the same probability to a model as
long as it has the same number of variables, no matter what
they are.

Sometimes we are interested not in single variables,
but in groups of variables. This could be reflected in the
choice of priors by assigning higher probabilities to “co-
herent” specifications.

A Bayesian would be concerned about sensitivity of
results to alternative priors of this kind. We may expect
the stability of individual coefficients to be affected by the
inclusion of related variables.

The choice of priors is a strange one. A variable either
enters or does not enter the regression, but if it enters we
have diffuse priors about it. This is a “classical prior”.

Conditioning on 1initial income seems to be in the na-
ture of the approach. So why not reducing the number of
models by always including initial income?



On the analysis of the posterior distribution.

Even i1f we retain the priors used in the paper, 1t may still
be interesting to analyze joint posterior inclusion probabil-
ities for sets of variables.

Also why focusing on the event 3, # 0 as opposed to
probabilities of the 3, taking values within some economi-
cally meaningful range?

More generally, in a Bayesian spirit it would be nice to
make greater use of the model. For example, by calculating
posterior probability forecasts.

Let ¢(y*) denote some statement about out-of-sample
growth. We could calculate probability forecasts of the form

Pr(p(y) |y, =7) =
> Prie(’) |y, x =T, M) Pr(M; |y, =T)

Pr(o(y") | y,x ==, Mj)
N /Pf(sf?(y*) |y, =7, M;,0)9(B | y,x =7, M;)dp.



Comments in a classical spirit

What parameter 1s being estimated by the posterior mean?
If we regard our 98 countries as a representative sam-

ple of a hypothetical population of countries, the posterior

mean 1s a consistent estimate of a weighted average of par-

tial regression coefficients based on different conditioning

sets:
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Thus a particular partial regression coeflicient receives a
larger weight the smaller a , the smaller £;, and the closer
]{j to ]C .

Similarly, the posterior variance matrix 1s a consistent
estimate of .
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It is unclear whether (3 is the right measure of the mar-
ginal effect of the variable. If there is a “right model”, 3
will not coincide with the parameters in such model. If there
1s a subset of “approximately right” models, the discrep-
ancy of 3 relative to the coefficients in those models will de-
pend on the covariances between the “right” and “wrong”
regressors in ways that are difficult to assess.




Inference

Now let us leave these concerns aside. Let us take for
granted an interest in inference about (.

The posterior mean and variance are consistent esti-
mates of 3 and 23:
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where w; is similar to w, after replacing a? by its sample

~2
counterpart ;.

However, 1f we want a classic confidence interval for
3, or we wish to perform a test of
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23 18 not an appropriate measure of the uncertainty in B as
an estimate of 3.



From the point of view of inferences about /3 there is
no data-mining involved in constructing an average of all

OLS estimates. (3 is just a continuous function 3(f) of

AN

0 = ((/9\1, ...,/(9\21() where (/9\]- = (8?, jOLS>, so that its large
sample variance can be approximated by the delta method
in the standard way
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The difference between V ar (ﬁ > and & 3 arises for two
different reasons:

e Firstly, Var (B) takes into account the sampling cor-

relation between OLS estimates of different regressions
while the posterior variance does not.

AN

e Secondly, Var (ﬁ > does not take into account population
variability in the 3, while ¥4 does.

Variability in the 5, will depend on the degree of corre-
lation among the various regressors (if they are all orthogo-
nal, all the partial regression coefficients will coincide with
the simple regression coefficients).



Comments in a growth empiricist spirit

There 1s always a tension between the use of tacit knowl-
edge and formal algorithmic methods in empirical research,
because there 1s always more knowledge about the problem
than can be processed in an algorithmic way (as pointed out
by Heckman in his 20th Century Retrospective).

This paper belongs to a battle of algorithmic methods.
It presents a method to claim robust effects in growth re-
gressions 1n opposition to another method that claimed lack
of robustness. The enterprise 1s worthwhile. At the very
least, to exhibit the lack of robustness of algorithmic searches
for robustness.

More importantly, the exercise 1s very interesting from
a forecasting point of view, both methodologically and in
terms of the substantive conclusions for forecasts of growth.

But if the objective of growth empirical work i1s to tell
a convincing story combining theory and all forms of evi-
dence, I confess to be more sensitive to 1ssues of

e reverse-causality on some of the explanatory variables
(like years of openness, the war dummy, or even the rate
of population growth),

e confounding convergence rates with unobserved hetero-
genelity,
than to instability of regression coefficients.



Different researchers have different priors about which
variables are important. After all, having a large empirical
literature facilitates tailored made combinations of priors,
regression results, and posterior conclusions.



