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A  Some Auxiliary Lemmas

Throughout this appendix, we will let F' = (F7, ..., F},) denote the collection of (marginal) distribution
functions of z; and F= (Fl, ... Fn), where F denotes the empirical distribution function for the
i-th observation. Define F'(¢) = F' + T (F — F) for € € [O, T_l/Q], and Ay = VT (E — FZ> We
first provide a different version of Lahiri’s (1992) Lemma 5.1, which is stated for bounded zero mean

random variables.

Lemma 1 (Hahn and Kuersteiner, 2004) Assume that {Wy,t =1,2,...} is a stationary, mizing
sequence with E[Wy] =0 and E [|Wt|2r+6] < oo for any positive integer r, some 6 > 0 and all t. Let
A =0 (Wi, W1, Wi_a,...), Be = 0 (Wi, Wigr, Wiga, ...), and

o (m) = sup; SUP ac 4,,BeBss [P(ANB) — P (A) P(B)|. Then, for any m such that 1 <m < C(r)n,

E [(Z?:l I/Vi)QT] <C (T‘) E |:|I/Vi|2r+5} [nerT + n2ra (m)Tﬂ—&]
where C (r) is a constant that depends on r.

Lemma 2 (Hahn and Kuersteiner, 2004) Suppose that, for each i, {&;,t =1,2,...} is a mizing
sequence with E [§;] = 0 for all i,t. Let Al = 0 (& &ir1,&iv—s ) Bt = 0 (&4, Eivs15 Sitgns ), and
a; (m) = sup, SUD g A BeB; |P(ANB) — P(A) P (B)|. Assume that sup; |a; (m)| < Ca™ for some a
such that 0 < a < 1 and some 0 < C < co. We assume that {£;;,t = 1,2,3,...} are independent across
i. We also assume that n = O (T'). Finally, assume that E [|§it|6+6] < oo for some § > 0. We then

have

1
Pr L<l<n Zt 1 &t >77}—0(T )
for every n > 0. Now assume that E [[{it\loqﬂﬂé} < oo for some 6 > 0 and some integer ¢ > 1.
Then,
br |:1<z<n \/_Zt 18| > 17T10 U} =o(T77)

for every n >0 and 0 < v < (100g + 120) "

Lemma 3 (Hahn and Kuersteiner, 2004) Let & (xi,¢) be a function indexed by the parameter
¢ € ® where ® is a convex subset of RP with E [ (x4, )] = 0 for all i,t and ¢ € ®. Assume that
there exists a function M (z;) such that |€ (zi, d1) — & (xit, Pg)| < M (44) |01 — &ol| for all ¢y, Py € P
and supy |€ (i, §)| < M(wy). For each i, let v be a a-mizing process with exponentially decaying
mizing coefficients a; (m) satisfying sup; |a; (m)| < Ca™ for some a such that 0 < a < 1 and some
0 < C < o0. Let g denote a positive integer such that q > p—';l, where p = dim¢. We also assume

that E [|1\/I( )|1Oq+12+6] < o0 for some 6 > 0. Finally, assume that n = O (T). We then have
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Pr [maxi ﬁZlef(xu,qﬁi) >T1_10_“} =o(T1) for0 <w < (100q +120)*. Here, {¢;} is an

arbitrary nonstochastic sequence in .

Lemma 4 (Hahn and Kuersteiner, 2004) Assume that x;; satisfies Assumption 3, and let (x4, ¢)
be a function indexed by the parameter ¢ € int ®, where ® is a conver subset of RP. For any sequence
¢; € int @, assume E [§ (v, ¢;)] = 0. Further assume that supy [|€ (x4, ¢)|| < M (24) for some M (i)
such that E [M (l’it)4:| < oo. Let Xpp = >0 ng with Effp = Var (# 23;1 & (4, ¢Z)> Denote the

smallest eigenvalue of Zf by AzT, and assume that inf; infp )\fT > 0. Then,

1 n T ce
ﬁzzzl (Tit, ¢;) :>N(’f )’ and

where f& =lHmn =t S0 | f5° and £;* =00 B [€ (zi, ¢) & (wie—j 6,)'].

139
EiT —Ji

Lemma 5 Let ki = k (zi:0,7; (0)) and ky = k (zi4;0,5; (0)) where xy satisfies Assumption 3, k
satisfies Assumption 4 and 9, ; are defined in (1). Assume that E[ky] = 0O for i,t. Let ff* =
S FE [ ikl l] and fF* =lim,_oon 122 1fkk Then,

min(7T,T+1)
sup —Z Z wry Y Kk | = 7 = 0p(1),
9 l——m t=max(1,l)

where m, T — oo such that m = o (T2/5).

Proof. The proof is almost identical to a similar result found in Hahn and Kuersteiner (2004).
Let = max(1,!) and ro = min(7T,T + 1) and define K ,,, = % Wy Z:Q:n ikl ;.

We first show that 2 3% | K, — f¥% = 0p(1). This follows if 1 > | E[K; ] — f** = o(1) and
Var (% St Kim) =o(1). Since f5* —n=1 3" | fk* — o(1) by definition, we first consider

| B 5im] - 7

< SR | = 1| 1B (k) + S | ki)

i A L it A 5 > A
= T [ - T B Bkl S 1B ki)

< S (P T ) I Bkl )+ S 1 D] |

< S (5 ) I Bkt [+ Do 12 Pkl )|

< TP a () 10(@) + (08) e o (035) - 0asm T - o



where the last inequality follows from Condition 3 and the fact that

_1 1 s\l
| E [Kit 1 Kit—1,5,]| < 8 (E [|kit,j1|2+6]) a (E [|kit—l,jzl2+5})2+6 (aQi‘S)

for any two elements k; j; and k;;—g j, of ki and k;;—; for some 6 > 0, which can be proved by Corollary
A.2 of Hall and Heyde (1980). Since the bound on || E [Kjm] — f¥*|| is uniform it therefore follows
that 37 | B [K; ] — f* =0(1).

Next we show that

To show this we may assume without loss of generality that k; is scalar. The variance can then be

L —n 1
Var <ﬁ 2i=1 Ki””) H S 3 ey [Var (G ) || = 0 (1) .

evaluated as

Var (Kz,m)

1
= 73 Lilem—m WTH Tl 2}ty (B [RityKit—ty Kita Kita —1] — B [Rity it ] E [Kita Kty 1))

1 m T
= 7 o= WL WT L 2o ey (B [Kity Kito] B [Kit—1y Kity—15] + E [Kity Kity—1,] E [Kito Ki—1,])

1 m T
+ﬁ le Jo=—m w1, WT 15 Ztitgzrl Cum (k’ih kit—ll kitg kitz—lz)

= 0(1)
such that Var (K ,,) is uniformly bounded in 4. It now follows that 2 > | K; ., — f* = 0,(1) by

Markov’s inequality.

Next we turn to showing that

1 1 ~ -
SV S wra i, (Riekly g — Rkl 1) = 0p(1):
We use the decomposition

1 m T NN

T Dl WT D 42y, (kitkét_z - kitkét_z)
1 m 7 o N !
= 7 Dt WTL D (kit - kit) (kiit—z - kit—l)

~

1 roo1 ~
+o Do W Y i Kit (kit—l - kit—l) + 7 Do WT D (kit - kit) Kis_y

~

We first consider the term % > Wy Z:;l (k:it — k:it) kl,. Use a first order Taylor approximation

to
[T kS, (5— 9) + k3, (Vi — io)

where kY = Ok (xit;é,fyi) /00" and k], = Ok (xit;é,fy;) /Oy with é,’yi,é,,% such that Hé - HOH <
a7~ <o

) , etc. by the multivariate version of the mean value theorem. Note
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that each row of 0k (:cit; 0, ’yi) /00’ needs to be evaluated at a different 6 but in slight abuse of notation

we do not make this explicit. Then

E ST wry g2, vee | (e — ki) Ko (34)
= —Zfi_m wry Y 2, ( it— l®k‘n) (A )
[

(3 — 7i0)
+ZTZO Zl——m leZt r VEC k;/tkzt l}

and consider % > Wy ZIQ:TI (kit_l ® k:ft). Without loss of generality assume that (kit_l ® k:ft) is
a scalar. Then by the Cauchy-Schwartz inequality

1
T ity Ktk

IN

T 12 (4 . ) 1/2
< Doi—1 kzt l) (T >t 501,15 (8k (zit50,7) /39') )
< <l ZT M(J} )2> 2 <l ZT M(.CL‘ )2> 12
> T t=1 it—l T t=1 it
1/2

such that F HT 12 Foit— kG|] < (% ZthlE [M (@it—1) D ( Zt 1 { (xit) ]) = O(1) uni-

formly in i. It thus follows from the Markov inequality that

1 1 —~

SN S wry X, (ki @ ) (8- 0) = Oy(m/ ).
We now turn to the second term in (34). Noting that

T/ max 7 = Yiol = 0p (1)

by Lemma (7), we obtain

1

(3' - '0)
i T Xl WP 24, VeC Kk

1 1
< WTWS max [¥; — Yol - n Z?:l Zﬁ—m wr,l Z?:n HVeC [k” kn z] H

< 0 (T_7/5) ' % D it D WT Z:im vece [MitMi/t—l]
o (7)1 (1- S ) -

= op (T 7/5> m)
(

777

= Op



We now turn to

1 m T T N !

T Do WTL Y 42, Vee (kit - kit) (kit—l - kit—z)

1 " — /

= N wre S, (W@ k) vee (0-0) (0-0)

1 . . ~ /

o S wra S, (Mt © K)) (B = i) vee (6 - 0)
1 . - .

+T DL WT Ztim (k‘%_z ® kft) (9 - 9) (Yi — vio)
1 . . ’

+7 S wrg o2 (3 —vio)? vee (kztk;—z>

All the terms on the RHS are o, (m/ T2 5) by similar arguments. m

Lemma 6 Under Assumptions 1, 2, 8, 4, 5, 6, and 7, we have
(i) n™ 3 Ti = T = 0p(1);

AV 00,7 00) = B[V]] | = 0, (1);

350 VE (60,7 (00) — E [V | = 0p (1)

F LU (00,7 (00)) — E[U77] | = 0, (1);
VI (00,71 (00) = B[V = 0, (1),

(7i) max;

(71i) max;

(iv) max;

(v) max;

Proof. We only prove the first result. The rest can be proved using the same argument as in
Hahn and Kuersteiner (2004). Note that

|23 = 2 < sup B (1M l]) (5= 0]+ max 5, = 3l ) +0, 1)

Since

=~ 1 ~€ 1 ~ee (~

Vi = Yaol < Na 17i O) + 57 7i (8)]
with max; T~ 10 175 (0)| = 0p(1) and max; T 75 (€)| = op(1) by Lemma 14, it follows that max; |Z; — Z;|| =
op(1) such that

Lemma 7 (Hahn and Kuersteiner, 2004) Let Assumptions 1, 2, 3, 4 and 5 be satisfied. Then
VT (3; — %0)‘ > Tl/lo_“] =0 (T") for 0 <v < (100g + 120)" %

Pr [maxi

Lemma 8 Let Assumptions 1, 2, 3, 4 and 5 be satisfied. Then Pr [maxi
o (T71) for 0 < v < (100 + 120)".

VT (5; (6o) — %0)‘ > T1/10—U] _



Proof. It can be proved in the same way as in Hahn and Kuersteiner (2004), and is omitted. m

Lemma 9 Let ki = k (xit; 00,7v;9) and Eit = k (zit;00,7; (00)) where x; satisfies Assumption 3, ki
satisfies Assumption 4 and 0, ; are defined in (1). Assume that E[ky] = 0 for i,t. Let ff* =

S E [ ikl l] Then, sup; ||> 2, wT,lngﬁ, [kzztkn l} kkH = o0p(1), where m,T — oo such
that m = o (T2/5).

Proof. For notational simplicity, we may assume without loss of generality that k; is scalar. Let
m = e wr Ekitki—i]. We first consider

[ =12

i
ro —r;+1
> m

PP s = | N kit + S I ]

. 11
< ST (74 o) M Bkl + 5 B i)

m 1 1 s\l & \m & \!
D mcl T—FE || <a2+5) +(a2+5) 2> 1 <a2+6) —0asm, T — oo

IN

IN

where the last inequality follows from Assumption 3 and the fact that, for any two elements k; ;, and

Kit—1j, of ki and ki, it follows from Corollary A.2 of Hall and Heyde (1980) that

1 1 l|
B ki1l <8 (B [l 2]) 7 (B [Iin2]) 7 (a7
»J1 3J2 5J1 »J2
for some 6 > 0. It follows that

sgp HK@m - fzkkH =o0(1).

Now, let
m m
m = Z wT,lf}gﬁ [ itk l Z wT,l/ ztkzt lpztld Tty Lit— l)
l=—m l=—m
where
ky = kit(xiﬁeO:;y\i(eO))
Ditl = Dit (xitaxit—lﬂga;y\i)

Here, p; ¢ (zit, xit—1;0,7;) denotes the joint density of (xi,z4—;). Consider I?Zm — Kim

~

Ki,m sz = Z le/ ztkzt lpzt — kitkir— lpzt) d(xztaxzt l)

l=—m



We use the mean value theorem and write

~

Kk — kaka—ipi = E;Yt~it—lﬁit (7; (60) — v40) + Eitggg_lﬁit (7: (B0) —7i0)
+EitEit—lﬁ?t (5 - 9) + %itgit—l% (¥ — i0)

where Eft =0k (xit; 0, ’Nyi) /00, etc. Note that we may write pf, = uf,p;x and f]t = 09pit. By Assump-

tions 4 and 8, we obtain
[ R = ) <m0 (500152 (60) =0+ [0 = ]| 50 5, =l
7 (2
for some finite constant M, or

i [Ran = K| = 00 (73)

by Lemmas 7 and 8. m

Lemma 10 Let ki = k(zi;00,7;0) and Eit = k(xit;00,7; (60)) where x4 satisfies Assumption 3,
kiv satisfies Assumption 4 and 0%, ~f are such that ||0* — 0| = O, (T_2/5) and sup; [|[vF — vl =
Op (T‘2/5). Then, sup; >, wr Eg 4 [/lgitjc\gt_l] — fkkH = op(1), where m,T — oo such that
m=o (T2/5).

Proof. Similar to the proof of Lemma 9, and omitted. m

Lemma 11 (Hahn and Kuersteiner, 2004) Pr [maxlgign maxy.,._1 [V; (€) —viol = n| =0 (T7)
for every n > 0.

Lemma 12 Suppose that K; (-;00,7; (0o,€)) is equal to
O m24h (wit; 0o, v (o, €))

oy
for some m < 1,....5. Then, for any n > 0, we have
Pr | max lzn: K; (+:00,7; (0 e))dF.(e)—lzn:E[K.(x-e vl > a1l =o (@)
1<t | 2 i\ V0,7 \V0, 7 n 4 i \ Lty V05 Y40
| —="=VT i=1 =1
and
Pr |max max /Kz (+:60,7i (00, €)) dF; (€) — E'[Ki (wit; 0o, 7i0)]| > 77] =o(T7).
v 0<e<—=
I SeSTE
Also,

> CTTlo v

/ K (00, (60, ) dAir

Pr | max max ZO(T—l)
b oO<esp

for some constant C >0 and 0 < v < (100g + 120)_1.
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Proof. Note that we may write

H/Kz (60,7 (0o, Fi (€))) dFi (e /K 00, 7i0) AF;

< H [ K 30,71 00, B ()4 ()~ [ K (560,70 dF (0
H/K 90,720) dF /K 00,%0) dF;
< / M(zi0) (17 (60, s (6)) — vi0l) | (6)

—}—eﬁ

’/Kz (::00,vi0) d (ﬁz - E)

Therefore, we have

1
- Kz(aea 7,(97 ()))dF K 9, % )dF
n;/ 0,7 \Wo / 0,740

n 12 (| = T o\ 1/2
( Z i (Oo, Fi %‘0)2) (n Z (E (M ()] + T ZM(:M)) )
=1

i=1 t=1

11
+ = Z (T ZKZ (z4t; 00, vi0) — E [ K (iUit;HOa%'O)])

1=1 t=1

the RHS of which can be bounded by using Lemmas 2 and 11 in absolute value by some 1 > 0 with
probability 1 — o (T‘l).

Because

' [ 33003400, B 0) 4B (0) = B (00,70

T
< by (B0, 5 (€)) — il (E M ()] + 2 S M <xu>)

. t=1
Z Sl?zt (Slfzt)]

9

’ﬂ |

we can bound

max max
? O<E< 1

/K :00,7; (00, F; (€))) dF; (6) — E [K; (zit;00,7i0)]

in absolute value by some 1 > 0 with probability 1 — o (T _1).

Using Lemmas 3, we can also show that

max
%

/ K (00, 7: (60, F ())) dAsr

can be bounded by in absolute value by C'T 1Y for some constant C' > 0 and v such that 0 <wv< WIO
with probability 1 — o (T‘l). [



B Consistency

Let

N[ =
M'ﬂ

Y (zig; 0,7 Gy (0,7) = EW (zit;0,7)]
t=1

where 7, (0) = argmax,, Z:{:l Y (230, a).

Lemma 13 (Hahn and Kuersteiner, 2004) For all n > 0, it follows that

Pr | max sup ‘G ) — G («9,7)‘ > 17] =0 (T_l)

1<i<n (g )

Recall now that 0 is a solution to (19).

Theorem 11 Pr [

0— 90‘ > 17] =0 (T_l) for every n > 0.

Proof. Let n be given, and let ¢ = inf; [G(i) (00, Yi0) = SUPL(6,7):1(8,7)— (Bo.v:0)>n} Gy (0:7)] > 0.

Because of Condition 1, we have

o:l»—l

‘%Bn (9)‘ <

with probability equal to 1 — o (%) Also, because of Lemma 13, we have

@IH

<
lriliﬁ(sglp‘G (0.7) — G (0, )‘ <

with probability equal to 1 — o (%) It follows that

1
1ZG(Z z T n(e)

|0 00 ‘ >77771 IR ,’Yn

1
< n L G B, (0
T 0)— (Gomo |>n Z T (9)
1
< max n! G e
o |(97’Yz) (607710 |>77 Z 6
1
< nt G 3¢
- |(0”Y7.) (007710 |>77 Z
_ 2
S n 1 ZG(Z) (90,'}/2‘0) — §€
i=1
NN 1 1
< n ZG(i) (6o, 7i0) — TBn (6o) — 3¢
i=1



Because
1

n N 1 n R
-1 2 : . A - > -1 § , ) — —
Oy’gl?i{’m " =1 G(Z) (9’ ’%) TBn (6) =" =1 G(Z) (GO’WZO) T

by definition, we can conclude that Pr HE — 00‘ > 77] =0 (T‘l). ]

Theorem 12 (Hahn and Kuersteiner, 2004) Pr[maxi<i<n [¥; — Yol = 1] =0 (T71)

Theorem 13 Let 0 be such that Pr H@ — 90| > 17] =0 (T_l) for every n > 0. Then,

P | 5 (0) ~ vl 2 1] = o (27)

1<i<n

for every n > 0.
Proof. We first prove that

T Pr Lléliagxnsgp Gy (0,7) — Gy (60,7)| = 7]} =o(1)

for every 7 > 0. Note that

max sup |G (0,7) — Gy (60,7)

1<i<n 5
< max sup |G (0.9) = G (0 7)|+ max sup |Gy (6,7) = Gy (00,)
< max sup ‘é(i) (0.7) — G (0, 7)( + max B[M (zir)] - |0 — 6o .
Therefore,
T Pr Lrg%l sup ‘é(i) (6,7) = G (6o, 'y)( > ?7]
< TPr|max Sup ‘é(i) (0,7) = G (9,7)( > g]

_ U
+TPr [!9 — 60| > 2 (1 + maxy<j<p B [M (%’t)])}

= o(1)

by Lemma 13 and Theorem 11.

We now get back to the proof of Theorem 13. It suffices to prove that

TP | [3: ) ~ 0] 2 1] =0 (1)

(35)

for every n > 0. Let n be given, and let ¢ = inf; [G(i) (005 7i0) = SUP ;=0 [>n} G &) (90,%)] > 0.

Condition on the event

&,

W =

1r£12a§>%s171p ‘CA}'(Z-) (5, ’Y) -G (90/7)‘ <

10



which has a probability equal to 1 — o (%) by (35). We then have

o 1 2 ~ = 1
max Gl 9, ) < max Gz 9, ~+—€<Gi 0, ; __5<Gi 0, i0) — €
max G (6,7:) g max () (0o, 7;) 3 @) (00, %i0) 3 @ (@, 7i0) 3

This is inconsistent with @(i) (@, i (5)) > @(i) (5, %0), and therefore, HZ (5) — %0! < n for every ¢. m
Vi (5> — Yio

Proof. It follows from Theorem 13 above. m

Corollary 1 Pr [maxlgign > 17] =o0 (T‘l).
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C Justification of (26)

We analyze the asymptotic distribution of

n T
S S U (b0, (00) (36)

i=1 t=1
Let F = (Fi,...,F,) denote the collection of (marginal) distribution functions of x;. Let F =
(ﬁl, ... ,ﬁn), where }?’l denotes the empirical distribution function for the observation i. Define

Fle)=F+e/T (F\ — F) for € € [0, T_1/2]. For each fixed 6 and e, let ; (6, F; (¢)) be the solution

to the estimating equation

0= / V(0,7 (6, F ()] dF; (c),

and let u (F (€)) be the solution to the estimating equation

n

0=%" / (U (2 80, (8o, Fi (6))) — 1 (F (6))) dF ().

i=1

Note that u (F (0)) = 0, and

/() = n( (7)) a5 (e (0 (7))

T

_ % D) U (wi; 00,7 (60)) -

=1 t=1

By a Taylor series expansion, we have

1 1/ 1

n(F) =) == ) + 3 <ﬁ) pE0) + ¢ (ﬁ)?’ i @), (37)

where 1€ (€) = du(F (€))/de, p(e) = d?u(F (€))/ de?, ..., and € is somewhere in between 0 and
T~1/2. Tt is shown later in Appendix C.2 that the last term is of order o, (1). We will therefore work

with the expansion

VAT (0 (F) = () = iy (0) + Vil (%)2 4 (0) + 0y (1). (39)

The expansion (26) follows from combining (38) with (44) and (47) below.

C.1 Details of Expansion (37)
C.1.1  u(0)
In order to obtain (44) and (47), we let
hi (-, €) = Ui (5600, 7; (0o, Fi (€))) — p (F (€)) (39)

12



The first order condition may be written as

-1 Z/hi (&) dF; () (40)
i=1

Differentiating repeatedly with respect to €, we obtain

0 = %i / dhid(e"e Z / &) dAir (41)

0 = gZ/dth(z dF; (e) +2— Z/dh dAlT (42)

0 = E;/dhdg dF; (e) + 3— Z/ dAzT (43)

where Ajp = VT (f’l - E)

Equation (41) can be rewritten as
0 = %Z/(Ui% (300,7; (B0, F; (€))% (00, Fi (€)) — p* (F (€))) dF; (e)

433 [ 0300, 2 ) = ()

Evaluating this expression at € = 0, and noting that F [Uz7 Z] = 0, we obtain

1 n
=— Z/UidAiT (44)
i

C.1.2 ~f

In the ith observation, 7, (6o, F; (€)) solves the estimating equation

/ Vi (600, 7; (80, F; (€))) dF; (¢) = 0 (45)

Differentiating the LHS with respect to €, we obtain

0— (/ 8‘/;(;;;9, e)dFi (6)> ;i (Qéer (¢)) +/%(.,9’6) dAsr.

Evaluating the expression at ¢ = 0, we obtain gives

= DulnEO) <E [g_: ] ) . (% iv) | (46)

13



C.1.3 ;i (0)

Equation (42) can be rewritten as

0 = =23 [w(F )R ©
> [ (027 560, (00, P2 (0)) (35 (60,2 () @ 7 (0. F (0))) dFs (0

> [ (U2 (3007 B0, B ()76 (0o, F () dFs 0
i=1

+ Z/ (U7 (00,7 (80, Fi (€))) 75 (B0, Fi (€)) — 1 (F (€))) dir

where U = §2U; / (07y; ® 0;). Evaluating at € = 0, and noting that E [U]"] = 0, we obtain

pe(0) — %ZE U7 (o 979) %2_)( [ U b0 dir) 2 60 0)
e ([ () () ()
25 () (o[22 ()
o = a5ewn (o3 (C15) T[(FEw) o (1)
() (o [2]) (S5

Second order differentiation of (45) yields

0 = ( & éf) 4F, (6)> P40, Fi (<)
+< PVi(0.6) yn (6)> <8% (0. Fi(e) . 07 (0, Fi (e))>

8'}/2 86

which characterizes v§°.

14



C.2 Bounding Remainder Term in (37)

Lemma 14 below allows us to ignore the last term in equation (37).

Lemma 14

Pr |[max max |75 (e)] > CTH | = O(T_l) (48)
i 0<e<—= |
Pr | max |u(e)| > CTH | = o (T_l) (49)
02 _
1 2]
Pr imax max |5 ()] > C(Tl_o_“) = O(T_l) (50)
T 0<e<—L=
VT J
2
Pr| max | (e)| > C (Tl—lo—v) — o(T™) (51)
0<e< =
VT J
1 3_
Pr max max |vs€ (e)] > C (TTO—U) = 0 (T_l) (52)
i 0<<—:<—
—
3
Pr| max |u““(e)| >C (T%O_“) = o(T™)
o<y _

for some constant C' >0 and 0 < v < (100g 4 120) "

Proof. Proof is almost identical to the argument in Hahn ad Kuersteiner (2004), and so only the

last equality is explicitly established here. From (43), we have

- Phi ()
0= EZI/ de? Z/ d62 dAlT

1=

1 " d3h7, €
E;/%dﬂ (€)
_ —%Z / 1 (F (€)) dF; (e)

+% > / U (500, 5; (B0, F (€))) (45 (B0, Fi (€)) ® 5 (00, Fi (€)) @ 7 (B0, F (€))) dF (e)

where

%;/ (U7 (100, ; (00, F; (€))) (45 (B0, Fi (€)) ® ¥ (00, F; (€)))) dF; (e)
+ Z/ (U (00,7, (B0, F: (€))) (74 (B0, F: (€)) 5 (0, s () dF: ()
20 [ 0 3002, o) 00 ) aFi 0

15



and

> i/ Chi(:9 g
- - 19 T

n de?

= ——Z/ ) dAir

+ Z/ (U7 (400, 7; (6o, Fi (€))) (75 (60, F; (€)) @ 75 (0o, Fi (€)))) dAir
2 [ (0075003 00 F30) (5 00 Fy ) @ 0 F () dida

Combining Lemma 12 in Appendix A and (48)-(52), we can bound 1 ) S f 9 AN by C (T 10 ”)3
with probability 1 — o (71). Likewise, using Lemmas 12, and (48)-(52) again, we can conclude that
IS S %dﬂ () is equal to —p“ (F (€)) plus terms that can all be bounded by £ 3™ | [ %dAiT
by C (T% _“)3 with probability 1 — o (T‘l). [
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D Proof of Theorem 3

Without loss of generality, we may write

:__Zlndet< 050+ zlndet( 0.5:.0) (53)

We begin with the first component on the RHS of (53). By Assumption 4, each component of
H; (0,7, (0)) is bounded above by Z:{:l M (z;) such that sup; E [|M(a:it)|10q+12+6} < oo for some
integer ¢ > (dim (0) + dim (7)) /2 + 2 and for some é§ > 0.

Lemma 15 Suppose that A is an n X n matriz. Then
|det (A)] < n!-max (|a;|)"

Proof. By definition, we have

det (A) = Z (—1)¢(j1""’j") H Qij;
i=1

where the summation is taken over all permutations (ji,...,J,) of the set of integers (1,...,n) and
¢ (Ji1,--.,Jn) is the number of transpositions required change (1,...,n) into (j1,...,Jn). Because the
number of all permutations is equal to n!, we obtain the desired conclusion. m

Using Lemma 15, we then obtain that

T
1 1
In det <TH1 0,7; (9))) <lnr!'+rln (T ;:1 M (xzt)>

where r = dim (). It follows that
n T

‘_% > Indet <%H 0.3, (9))) ( Z (2t ) ‘

£ S (0 ) = B (@) > ] =o (17

n

< lnr'—i-rlz

=1

By Lemma 2, we have

Pr [max

1<i<n

from which we obtain!2

(35500 @) = (B | > 2] = o ()

Pr | max |In
1<i<n

It follows that

|1 iz:;lndet (76050

Pr —0 (T—l)

1

>Inr! 4 r— Zln (E[M (z#)]) +n
n 1=1

"2Tn addition to the Condition 4, we need to impose that the minimum of E [M ()] is bounded away from zero to

make this inequality valid.
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from which we conclude that

Pr | L= LS det (L1, (0,5, (0
r T_nzz:;n € T Z(?’y’l,())

> n] =o(T™)

for all n > 0.

We now take care of the second component on the RHS of (53). By Assumption 4, each component
~ . in(T,T+1 .
of Y; (0,7, (0)) is bounded above by > wr; (Zﬁﬁax(lﬁll) M () M (.%‘it_l)>. Using Lemma 15,
we can then conclude that

min(7T,T+1)

1 1
Indet (—Ti (0,79; (9))> <hrl+rin{ =30,
T T t=max(1,l4+1)

M(ib‘zt) M (iUit—l))

Using Lemma 2 again, we have

1 min(T,T+I)
= 2 (M (i) M (i) — E[M (i) M (2it-1)])

Pr
T t=max(1,l4+1)

max
1<i<n

> 77] =o (T

and we obtain

1 min(T,T+1) .
Pr|max |In [ =>" > M (z) M (zi—y) | —In (X7, B [M (23) M (z—1)])| > mn| =0 (T
1<i<n T t=max(1,l+1)

It follows that

Pr —0 (T—l)

1 . 1
In det <TTZ (0,7; (9))) >Inrl + r— i_zlzl__mE [M (i) M (234—1)] + mn

Because F [M (zi) M (x4—1)] < \/E [M (xit)ﬂ E [M (:vit_l)2] =F [M (:Cit)ﬂ, we have

1 ~ 1 < 2 1
Pr |Indet <TTi 0,7, (9))> > lnr!—i—?m'rE;E [M (i) ] +mn| =o(T7")
or
[1 1 N Inr!  2m 21 m _
Pr T In det <TTZ 0,7; (9))) > + Trsng [M (xit) } + TU] =o (T

Therefore, we obtain

Pr % In det <%TZ (0,7; (6))) > n] =o(T™)

for all n > 0.
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E Proof of Theorem 4

We can verify by inspection that 8559(9) can be expressed as a sum of terms, all of which are cross

section averages of some smooth functions of the form

min(g,:T—&—l) o (i,0,7; (0))

T
]. ~ ]- m U ~
f Z Dvw (xita 97 Vi (9)) ) T Zl:—m wr, ® D w (xit—la 97 Vi (9)) )

t=max(1,l4+1) 8’7,
-1 . . . -1
Z 3 ¢ $Zt> /77, (0)) l Zm wry mln(%T—ﬁ—l) 8¢ (xib 9> Vi (9)) 8¢ (xit—b 0’ Vi (9))
T 070 CAT T ey 0y 0y

with |v| < 4. Here, ¢ = (0,7), and D (zy, ) = 0ly (zit, @)/ (097*...007" ), where v = (v1,...,vk)

be a vector of non-negative integers v;, and |v| = Zk vj. By Assumptions 4, 6, and Lemma 5, we

j=1
can see that all these terms are O, (1) uniformly over i and 6.
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F Proof of Theorem 6

Because of the result in the previous section, we only need to consider Y; (6,7; (6)). By Assumption 4,
each component of T; (0,7; ()) is bounded above by > ;" By [M (i) M (x4—;)]. By Assumption

8, we have

sup D=, By

85, [M (zi¢) M (z4—1)] < 2mK

where K = sup g ,)co Sup; Ep [M (24¢) M (x4—1)], and
Indet (1; (0,7, (0))) <Inr!+2rKInm
It follows that
Pr(Indet (1; (6,7; (0))) > Inr!+ 2rKInm +n] = o (T 1)
Therefore, we obtain
1 1 _ .
Pr 7 In det ?Ti 0,9:(0) ) >n| =o(T7)

for all n > 0 as long as B = o (1).
We note that all the above results hold even when the preliminary estimates (9, ‘y\z) are replaced

by some (6%, 7F).
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G Proof of Theorem 8

By differentiating B,,, we obtain that

3@01 8wit—l
[89 << 8y’t> @ ( 2l ))”
~1

i - ;%zl i e 5 ((52) (32)]

awit awzt
m WT 1 i | 0y 0y

l_
We can see that [2] and [3] are identical to the ones in the previous section. Because we have already
established

~

I
N | —
S|
||’M:
]

]

3

g
3

5”

and

n

2418 = =5 D E U vee (B ™) +0, (1)

=1

we will focus on [4) and [5]" here.

Because

0 Oyt (0,7) Oy (0,7)
%<<t3—v, ® taT = (Ug+pVi) @V + Vo (U + Vi)

5 (22} o (2 0)) = vpovii+viovL,

07; (6)
00

and

=—p;i+0p (1)
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we can write

Uzt (60,7; (60)) ® Vie—i (60,7; (60))

11 ¢
4+ B = o= | wnE N A
2n T Vi (00,7, (00)) © U;L_ (0,7 (00))

=1

|

-1
cc ((zzi_m wra By, [Vie (00,7: (00)) Viet (00,7 (60))']) ) +o0p (1)
Using Lemma 9, we obtain
m?X‘Z}Z_m wr By 5 [Vie (00,7 (00)) Vie—1 (00,73; (60))'] = X2 B [VaeViy ‘ZOp(l)

Furthermore, if the conditional likelihood is properly defined, then we should have Vj; serially uncor-

related, which implies that

max |7, wriBy s, [Vie (60.7: (60)) Vie—t (90,7 (60))] = B [VirVi]

= max |7, wrly s, [Vat (60,7 (00)) Vit (00,7 (00))'] + B V]| = 0, (1)

where the first equality is based on the information equality. Therefore, we obtain

+
1y . U (00,35 (00)) ® Vet (00.5: 00)) \] _(promnty 4 o
nglz“‘m s, <+vit<eoﬁi<eo>> ®U;_, (60,7: (60) )] (BW) + o)

Using Lemma 9 again, we obtain
4+ Bl = —5 ZZZ__OO (U3 @ Viey + Vi @ U] vee (BIVT) + 05 (1)

Because we havel3
(U7 @ Vi) vee (BIVITTY) = URBIVI]™ Vi = ~U3 Vi
( i ® Ui’ryf—l) vec (E [Vil]_l) = Uy B [VJ]_I Vie = _U;—zf/it

it follows that
11 ¢ ~
A+ B = 5o YN B UVt + Uy Vie| 40, (1)
i=1
1m0 P
= YV B UV 40, ()
i=1
We note that, because of Lemma 10, all the above results hold even when the preliminary esti-

mates (0\, ‘y\z) are replaced by some (6*,~F) as long as ||6* — 6y|| = O, (T_2/5) and sup; |7 — v0ll =
0, (T-2/5).

3See, e.g., Magnus & Neudecker (1988, p. 31, eq. (3)).
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