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In a simultaneous equations model with general covariance restrictions, the QML estimator that 
imposes the covariance restrictions may be less efficient than the unrestricted QML estimator. A 
sufficient condition on the fourth-order moments is given for the relative inefficiency of the 
restricted QMLE. The relative inefficiencies of both QML estimators are compared with the 
optimal minimum distance (MD) estimator and computationally convenient augmented NLLS 
and QML estimators are proposed that are asymptotically efficient. In the case of separate 
nonlinear restrictions on the structural covariance matrix, separate estimators of slope and 
covariance parameters are proposed that are asymptotically equivalent to the joint optimal MD 
estimator. 

1. Introduction 

Linear models whose specification includes second-moment restrictions in 
addition to restrictions on the first moments appear in a variety of contexts. 
This category includes models that can be represented as a simultaneous 
equations system with general covariance restrictions. An example of this 
situation is a dynamic regression from panel data observed over a fixed 
number of periods [cf. Bhargava and Sargan (1983)] where error components, 
heteroskedasticity over time, and serial correlation introduce possibly nonlin- 
ear restrictions in the serial covariance matrix of the structural errors. In 
addition, some models specify cross-restrictions linking the structural covari- 
antes and the slope parameters, as it is the case in certain expectational and 
errors-in-variables models. In these problems a popular method of estimation 

is normal quasi-maximum likelihood (QML). There are both computational 
and statistical reasons that make QML an attractive choice. It has been shown 
that QML estimators are consistent and asymptotically normal under fairly 
general conditions [e.g. Sargan (1975) Gourieroux, Monfort, and Trognon 
(1984)]. However, this paper argues that when the covariance restrictions are 

*This paper is a revised and shortened version of part of Arellano (1986). I wish to thank J.D. 
Sargan for his help, advice, and encouragement. I am also grateful to an anonymous referee and to 
an Associate Editor for helpful comments. Responsibility for any errors is mine alone. 
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not required for identification, so that the unrestricted QMLE is defined, the 
covariance restricted QMLE and the unrestricted QMLE cannot be ordered 
and hence enforcing covariance restrictions by QML methods may result in an 
efficiency loss. We give explicit conditions on the fourth-order moments which 
are sufficient for the relative inefficiency of the restricted QMLE. 

Since the QMLE is asymptotically equivalent to a nonoptimal minimum 
distance estimator (MDE), our analysis is simplified by conducting it in the 
MD framework [MD estimators have been considered in detail by Rothenberg 
(1973) and Chamberlain (1982)]. The asymptotic covariance matrix of the 
optimal MDE is also given and this provides a lower bound against which the 
relative efficiency of alternative estimators may be ranked. Using an idea 
suggested by Hausman, Newey, and Taylor (1987) (HNT henceforth), we find 
computationally convenient to regard the optimal MDE as a nonlinear least 
squares estimator (NLLS) in an augmented multivariate regression; on the 
same lines, an asymptotically equivalent augmented QMLE is also given 
consideration. Finally, it is shown that in a model where structural covariance 
parameters are unrelated to slope parameters, separate MDE of covariance 
parameters based on unrestricted estimates of the structural covariance matrix 
are efficient. This enables us to obtain an efficient separate estimator of slope 
parameters under nonlinear covariance constraints from an extended 3SLS 
criterion. The relationship between this estimator and the augmented 3SLS 
(A3SLS) estimator of HNT for linear covariance constraints is discussed: 
A3SLS is based on a concentrated GMM criterion while our estimator for 
nonlinear covariance constraints is based on a conditional GMM criterion. 
Proofs and standard results employed in the paper are collected in an 
appendix. 

2. The model and the estimators 

y, is an n x 1 vector of endogenous variables and zi is a k X 1 vector of 
exogenous variables on which N observations are available. We assume that 
the first and second conditional moments of y, are given by 

E(YtlZi) = I-1 + P(‘)Zi. 0) 

E(uiuj]zi) = n(O), (2) 

where 

ui=yi-p-P(8)z;=yi-17z*~, (3) 

and the elements of the n x k matrix P(B) and the n x n matrix 52(O) are 
continuous functions of a q x 1 vector of identified parameters 6; /.L is a 
n X 1 vector of intercepts, fl= (/J i P), and z: = [l z,!]‘. In addition, 
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plim,,, N-'~;=,z+z+'= M+ exists and is nonsingular. The errors ui are 
assumed to be independent and identically distributed with finite moments up 
to the fourth order. Letting m = n (n + 1)/2, we may define 

A3 = E[ u;u; @ u;lz&‘, 

A, = L E( U,U; @ uiu(Iz,)L’, 

where A, and A, are respectively n x m and m x m matrices of third- and 
fourth-order moments, and L is a m X n2 selection matrix that eliminates 
from A 3 and A 4 some of the repeated cross-moments.’ 

When the model has a simultaneous equations representation, then 

P(e) = -B-l(B)T(B), 

62(e) = P(ep(ep-l(e), 

p = -P(e)y, 

(44 

W) 

(4c) 

where B( 0) is a nonsingular n x n matrix, Z(8) is the structural covariance 
matrix, and y is the n x 1 vector of structural constant terms. Similar 
relationships can be written for higher-order moments. The following one, 
relating structural and reduced-form fourth-order moments, will be used 
below. Let w = v(Q), u = Y(Z), and let F be an m X m matrix of the form 

F= F(B) = L(B-‘@B-‘)D, 

so that w = Fu. Then 

A, = FA,F’, @d) 

where A, is the m x m matrix of structural fourth-order moments. 
The unconstrained least squares estimators of II and D are given by 

I?= (p;F) = (Yz+)(z+~z+)-‘, 

a= [YIY- YtZ+(Z+‘Z+)-‘Z+‘Yj/N, 

‘The following conventions are adopted: For any matrix B, vec( B) is obtained by stacking the 
rows of E. For an n x n symmetric matrix A, v(A) is the n(n + 1)/2 column vector obtained 
stacking by rows the lower triangle of A. v(A) and vec( A) can be connected by mean of a 
n2 X n(n + I)/2 duplication matrix D that maps v(A) into vet(A), i.e., Dv(A) = vet(A). Fur- 
thermore, since (D'D) is nonsingular we also have v(A) = L vec( A) with L = (D’D)-‘D’. The 
properties of D and L are extensively studied in Magnus and Neudecker (1980). 



250 

where 
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z+‘z+= ; z’q+‘, Y’z+= ; y*zy Y’Y = 2 y;y;. 
i=l i=l i=l 

Let 7i = vec(fi) and G = V( 8). The estimators of 8 whose properties are 
discussed below are based on these two statistics. The following lemma states 
an asymptotic normality result for 7i and t. 

Lemma. Under the assumptions of our model, fi(7; - TT) and m(G - w) 
have a joint limiting normal distribution with mean zero and covariance matrix 

with partition given by 

V..,,=3@M+-‘, VTw=(Z@dd,)A,, Vww=A4-ow’, 

where 7~ = vec(l7) and d, is a (k + 1) X 1 vector with one in the first position 

and zero elsewhere. 

Proof. See appendix A.1 

Under normality, A, = 0 and 

say.* The expression for V,, in the lemma implies that the slope estimators F 
and fi are asymptotically uncorrelated, and their joint distribution is invariant 
to departures from symmetry. An explicit expression for @ is provided by the 
least squares regression in deviations from sample means 

ii= (YPz)(z~z~)-‘, 

where Z’= [zr z2 . . . zN]Q, Q = I,,, - &l’/N, and 1 is a N X 1 vector of ones. 
Therefore as a corollary of the lemma we can write 

where i = vet(P), VPP = f2 @I M-‘, and M = plim(Z’Z/N). Thus, third-order 
moments are irrelevant in simultaneous equations with covariance restrictions 

*That is, the elements of A, are of the form 

x h,kl = wh,wkl + whkw,/ +  wh/w,k 1 

where ah, is the (h, j) element of 0. 
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except when the structural constant terms are restricted. In this paper, we 
make the simplifying assumption that intercepts are unrestricted3 and concen- 
trate on the analysis of estimators of B based on b and &. Note that in this 
case the joint estimation of p and 8 would produce the same estimators of 8, 
due to the fact that the addition of unrestricted moments does not alter the 
minimum distance estimator [cf. Chamberlain (1982, p. 45)]. 

In order to squeeze estimates of the parameters of interest B from b and & 
we consider minimizing distance functions of the form 

de) = [; -~(@)l'Q,[b -p(e)] + [; - dfl)l'Qz[; - de>] 

+2[b -P@)l’Q,[; - ‘de>]. (5) 

Following a general principle (see appendix A.2), the optimal MD estimator 

&,n uses consistent estimates of y&,’ and V,;’ as the choice for the 

weighting matrices Q, and Q2, respectively, and sets Q, = 0. Jo,,, is asymp- 
totically normal with variance matrix Co,, given by 

c,& = H’V-;‘H + K’V;;K, (6) 

where 

H = (Jp/W) and K = ( dti/M’).4 

A distance function similar to (5) is discussed by Rothenberg (1973, p. 81) for 
the normal case. 

If covariance restrictions are not needed for the identification of 8, one can 
choose to leave 52 unrestricted. The concentrated optimal distance function 
with respect to 52 is just 

mu = [a -ml’v,-,W -ml3 

which defines Malinvaud’s (1970) MD estimator 0,. 0, has asymptotic vari- 
ante matrix (avm) 

c, = ( H~$H)-~, (7) 

and it is well known to be asymptotically equivalent to 3SLS, ti unrestricted 
QML, and other simultaneous equations estimators [cf. Hendry (1976)]. From 

3For example, if the model represents a relationship for panel data over n time periods, this 
implies that time dummies would be included for all periods. 

“All functions of 9 are evaluated at true values unless stated otherwise, except when referring to 
an estimation criterion in which 0 indicates the argument of the function. 
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expression (6) it is clear that Co&, - C; ’ is positive semidefinite so that Jo,,, 
is generally efficient relative to dU. 

A popular alternative to enforce the covariance restrictions is the ti- 
restncted QML estimator, OoQML, that minimizes 

Z(e) = logdet &?((!I) 

+tr 

where Z(e) is (minus) the quasi-log-likelihood concentrated with respect to the 

vector of constant terms. The I&,_ has been shown to be asymptotically 
equivalent to the MD estimator that uses VP,‘, A,;‘, and 0 as the choice for 
Q,, Q,, and Qs, respectively [cf. Chamberlain (1982)].5 The optimal MD 
estimator is asymptotically equivalent to the (quasi) MLE when the errors are 
normal but in general, using again results from the appendix A.2, the avm of 

&ML can be obtained as 

x (c;’ -t- K’A,;‘K) -l. 

LI 

Thus eoMt_ is inefficient relative to Jo,, unless V,, = A,,. More worryingly, 
G-restricted QMLE and O-unrestricted QMLE cannot be ranked in terms of 
asymptotic efficiency, so that it is not clear whether any efficiency gain will 
ensue from enforcing the covariance constraints by minimizing I(e). This can 
be readily seen by rewriting CoML as6 

C QML = c, + C,K’( A,, + KCJ’) -kc, 

+CuK’(A,,+ KC,K’)-lK,(A,,+ KC,K’)-‘KC,, (9) 

5The inverse of A,, is given by 

A;,’ - +D’(B-’ @ Q_‘)D, 

[cf. Richard (1975)]. 

6Eq. (9) is obtained by using the ‘matrix inversion lemma’. We use 

(C;l+K’A;,‘K)-l=Cu-C,,K’(A,,+KCuK’)-’KCu 

and 

A;,K(C;’ + K’A;,‘K)-1 = (A,,+ KC,,K’)-‘KC,,. 
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where K~ is the m X m matrix of fourth-order cumulants given by 

That is, if K~ = 0, as it is the case under normality, then C,, - CoML > 0, but in 
general the direction of this inequality is uncertain as it will depend on the 
relative size of the two last terms on the RHS of (9). We state this result in the 
following proposition. 

Proposition. 6&, is eficient relative to 6” if and only if 

J [(A,, + KC,K’) - K,] J’ > 0, 

where 

J = C,K’( A,, + KC,K’) -l. 

Therefore a suflcient condition is 

A,<4L(&?WY?)L’+ow’+ KC,K’. 

As a simple illustration of the previous discussion let us consider the 
problem of estimating (Y and p from the model 

Y,j = Y + (YY2, + PZl, + %) 

Y2, = PO + Pl’li + P2Z2r + ‘2r 9 

where 2 = (zi z2)Q is a N X 2 nonstochastic matrix in deviations from sample 
means such that M is positive definite in the notation above. Notice that we 
assume the random vectors {( un Use), i = 1,. . . , N } to be independently and 
identically distributed with a possibly nonnormal bivariate distribution, so 
that although Us, and uzi are assumed to be uncorrelated they are not 
necessarily independent. Letting 6 = (a p)’ and X = (y, y2), the QML estima- 
tor of 6 that leaves (u,~) unrestricted is the IV estimator 

s^,, = (27X) -lz’y,, 

while the QML estimator that takes into account the restriction u12 = 0 is the 

I.Econ D 
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OLS estimator 

8ol.s = (X(X)_‘X’y,. 

In general, 8,v and iooLs, although both consistent, cannot be ordered and 
neither of the two is optimal. It can be shown that avm( to,,,) < avm(8,v) if 
and only if’ 

where ml1 is the (1,l) element of M-l. Clearly, in this example fourth-order 
independence of ul, and uZi suffices for the previous condition to hold and 
OLS to be asymptotically efficient. 

As another illustration, the relative efficiency of FIML with respect to 
3SLS when the structural covariance matrix is diagonal was first shown by 
Rothenberg and Leenders (1964). Since 3SLS is asymptotically equivalent to 
the QMLE that leaves fi unrestricted, the proposition delimits the scope of 
this result when the errors are not necessarily normally distributed. 

3. Computing efficient estimators from an augmented multivariate regression 

HNT have suggested to augment the original structural equation system by 
equations involving a linearization of the covariance restrictions around an 
initial consistent estimator of 8, and to estimate the resulting system by joint 
3SLS (augmented 3SLS or A3SLS). This method can be used when there are 
no cross-restrictions linking slope and covariance coefficients in the structural 
form and the structural covariance constraints are linear. A3SLS is particu- 
larly attractive when the covariance restrictions are not required for identifica- 
tion, since in this case any IV estimator can be used to linearize the restrictions 
and the A3SLS can be computed without iteration, provided the restrictions in 
B and r are linear. In section 4, we propose an estimator of the structural 
slope coefficients under nonlinear covariance restrictions which is efficient in 

the absence of constraints linking slopes and covariances, and we also discuss 
the relationship of this estimator to the A3SLS of HNT. In this section, we 
rewrite the ‘reduced form’ model (l)-(3) in the form of an augmented 
multivariate regression with unrestricted covariance matrix, and consider 
conventional (unrestricted covariance) estimators of the augmented system. 
The nonlinear least squares estimator (NLLS) of the augmented system is the 
optimal MD estimator of the previous section and the QML estimator is an 
asymptotically equivalent alternative. It may be useful to regard efficient 

‘For a detailed discussion of this example, see Arellano (1986). 
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estimators as augmented NLLS or QML of multivariate regressions because 
computer packages for estimators of this type are often available. 

Let us consider the augmented multivariate regression 

y, = p + P(Qz, + cl;, 

wi = w(e) + E,, 

where w, = V( u;u;), and the ei are m X 1 vectors of errors such that E( eilzi) = 0 

and 

The unrestricted least squares estimator of o is given by 

G=W’ 5 v(u,u;). 
r=l 

Since 2 is asymptotically equivalent to ~2, the w, canA be replaced by the 
observable variables r?, = V( C;u^:), where 0, =_y, - ii - Pz, with no loss of 
asymptotic information about 19. In efIect, straightforward algebra reveals that 
the optimal MD criterion function of the form given in (5) satisfies 

=;;g,((Y, * - ~(e)~,*p-l(~,* - p(e)z,*) 

+(v[u^py- n(e)])~(~~-;;~)-‘v[~~F:‘-D(e)]/-(n+m), 

04 

where y,*, z,*, and u^: are sample mean deviations of y,, z,, and G,, respec- 
tively, and 

A,=~-‘Lf ( iyiy t c3 I?:;:‘) L'. 
r=l 



256 M. Arelluno, EfJicient estimation of simulianeous equutions 

Therefore Joa,, is the NLLS estimator of 0 in the set of equations 

_y,* = P(8)zF + u*, 

Y(q%I*‘) = w(e) + El*, 

which uses the inverse of diag( fi, A, - i&Z’) as the norm. If we wish to 
estimate efficiently the constant terms together with 8, we can use NLLS in 
(IOa) and (lob) after replacing w, by Gj and using an estimator of 9* as the 
norm. 

On the other hand, we can use the normal log-likelihood as an alternative 

distance function. Letting V’ = (ui . . . uN) and ,!?‘=(.$...EIN) with .?;=Gj- 
w(e), the quasi-log-likelihood function, apart from an irrelevant constant, is 
given by 

I,= -tlogdetO*-+tr[O*-‘(i?F ??)], 

and concentrating P out of I,, we obtain 

where 

( i y =(&-hior)+ [;-o(e)][;-o(e)]‘, (13b) 

i 1 $ =A,+ [fi4qp,e)]rl iz:[+a(e)]‘. (I3c) 
i=l 

A 3 and A, are sample counterparts of A, and A,, respectively, based on 
unrestricted least squares residuals 8;. 

The minimizer of I,*, 6AoM,_, is asymptotically equivalent to 8oM,. Aug- 
mented NLLS and QML estimators can be computed without modification 
when the covariance restrictions are required in order to identify the structural 
parameters, because the reduced form residuals can always be constructed. 
However, in some cases the restrictions in the reduced form may be unneces- 



M. Arellano, Eficient estimaiion of simultaneow equations 251 

sarily complicated if a simpler augmented equation system can be specified in 
terms of the structural form. Some of these cases are discussed in the next 
section. 

4. Separate restrictions on the structural covariance matrix 

For the purpose of the discussion below, it is convenient to represent an 
optimal MD criterion function of the type given in (5) as an extended 3SLS 
criterion function. If the covariance restrictions are not needed for identifica- 
tion, we can obtain consistent estimates of the structural covariance and 
fourth-order moment matrices, 2 and 6,, respectively. Replacing 3 by 
(3 = V( IV/N) and using as our ‘estimates’ of VPP and VUw, 

VPP = B-‘2’B’-‘@ (Z’Z/N)-l, 

where ~2 = v(z), and V, B, and 
new criterion function given by 

F are regarded as functions of 8, we obtain a 

s+(e) = [a -P(e)]‘Pp;-,t[jj -p(e)] + [G - o(e)]‘P:;[~ - w(e>] 

=N-'[v~~(U')]'[F'C~Z(Z'Z)~'Z']~~~(~J') 

+[+- ~)]‘(d,-BB’)-iuj=-~), (14) 

where u’ is the n X N matrix of structural errors in deviations from sample 
means whose ith column is ui = By,* + ITT*. Note that the first term of s’(e) 
is a standard 3SLS criterion. Moreover, note that s’(e) is also an optimal 
generalized method-of-moments (GMM) criterion of the form 

where 

and 

4 = diag( 2 Q Z’Z/N, A, - 66). 
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Let us suppose we have B = B(e,), r = r(0,), and 2 = Z(6),), where (0, 0,) 
is a partition of 8 and the parameter space takes the form 0, x 0,. There are 
several models which conform to this pattern, including the classical simulta- 
neous equations system with zero covariance restrictions and certain models 
for panel data. Interest centers in general on the estimation of the slope 
coefficients 8,, although the testing of the restrictions in E(t9,) may also be of 
importance. We assume that the restrictions in I: are not required for the 
identification of 8,. In these models D still depends on both 8, and f3,, so an 
efficiency gain may be expected by using an optimal joint criterion to estimate 
8,. Let 

s+w, 0,) = 634) + ml, 63, 

where the two terms of the RHS correspond to those in (14) and let e2 be 
q2 X 1. If the restrictions in 2 are linear, so that u = Go, or Sa = 0, where G 
and S are m x q2 and (m - q2) X m matrices of known constants, respec- 
tively, such that SG = 0, 0, can be concentrated out of s+(Br, e,) thus 
obtaining the HNT GMM criterion function 

s++(el) =q(e,) + [s~(u’u/N)]‘[s(~~-~“~~)s~]-~s~(u’u/N). 

(15) 

The A3SLS estimator of Hausman, Newey, and Taylor minimizes a criterion 
similar to St+(&) h w ere Su(U’lJ/N) has been replaced by its first-order 
Taylor expansion about a consistent estimate of 8i. 

On the other hand, in the absence of cross-restrictions linking B and F to 
2, it is possible to define alternative MD estimators of 8, based on unre- 
stricted efficient estimates of 1. This section shows that the estimators of e2 
obtained in this way are asymptotically efficient and therefore can be inserted 
in the joint distance function, thus obtaining a simplified conditional criterion 
for 8, without loss of efficiency, which can still be used with nonlinear 
covariance restrictions. Note that if a consistent but inefficient estimate of 0, 
is inserted in the joint criterion function, the resulting conditional estimate of 
0i will be inefficient, since the joint Hessian matrix is not block-diagonal 
between 8, and 0, (see appendix A.4 for details). 

If X is left unrestricted, f2 is also unrestri$ed, hence the unconstrained MD 
estimator of 1 is just a transformation of 8,, and ti: 

e= B(8;,)SiB'(8;,), (16) 
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where ii, is & in the notation of section 2.8 In appendix A.3 it is shown that 
the avm of a^ = ~(2) is given by 

V,~=A,-~U’+F-‘K,(H;~~~~~)-~K;F’~~, (17) 

and that the avm of the joint optimal MD estimator of 8, and 8, given in (6) 
can be partitioned as 

avmP1(4,0J 

= Hp&‘H, + K;v;;( v,, - K2( K;V,-,‘K,) -k?’ j v;;K, (18a) 
and 

avm -‘( 8Z,o,,) = G’V;‘G, (lgb) 

where 

Hi = (WJ4’), K, = (&~/‘a@,‘), G = (&/H;), j= 1,2. 

The following distance function defines an estimator of 0, based on 2: 

d(8,) = [~-a(e,)]‘Va-,l[~-a(e,)], (19) 

where pa, is a consistent estimator of V,,. Let & be th_e minimizer of d(B,). 

Following the general principle in appendix A.2, avm(8,) turns out to be the 

same as avm(& 2,0MD) and therecore & is asymptotically efficient. This is not 

surprising given the fact that 0, is based on an efficient estimator of the 
structural covariance matrix 2 in the absence of restrictions, and that there 
are no cross-restriction% linking slope and covariance coefficients. Incidentally, 
remark that replacing V,, in (19) by a consistent estimate of 

defines a nonoptimal estimator of 8, that is asymptotically equivalent to the 
QMLE. 

The previous result suggests to consi_der an estimating criterion for 8, of the 

same form as s+(B,, 0,) but in which a, replaces 8,: 

t-(6,) =s:(el) + [v(%- uu/N]‘(B,-oo’)-l~(Z- uu/n:), 

(20) 

*An alternative asymptotically equivalent estimator of B is the unrestricted QMLE 

e QML=A(~~~)(X’X/N)A’(~~,), 

where A( 0) = [ B( 0) i r(O)] and X = (QY i 2). In the discussion below, &+,,_ could be used in 
place of 2. & is also indistinctly the unrestricted MD, 3SLS, or unrestncted QML estimator 
of 8,. 
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where 5 = Z(&). Since & is efficient, the minimizer of r(6),), &i, is asymptoti- 
cally equivalent to &i,,,,. f& is easier to compute than &i,,,, because it does 
not require the simultaneous calculation of estimates for 0,. 

Finally, since z-restricted estimates of 8, are inconsistent when invalid 
covariance constraints are enforced, it is important to test for the validity of 
the restrictions. It is certainly possible to use Hausman specification tests 

based on the difference (e^,, - &i), but since Nd(&) ’ x2(m - q2) [cf. 
Chamberlain (1982)] we can use minimum chi-square tests of the covariance 
constraints without having to calculate &i. This is particularly useful when the 
precise form of the covariance restrictions is uncertain and several sets of 
restrictions should be tested. 

5. Conclusions 

This paper has compared the relative inefficiencies of the QML estimator 
that imposes covariance restrictions in a simultaneous equations model and 
the unrestricted QML estimator, with respect to the optimal minimum dis- 
tance estimator. 

It is found that the QMLE that makes use of the covariance restrictions may 
be less efficient than the unrestricted QMLE. This is the case if the fourth-order 
moments of the errors are large enough relative to the variances and covari- 
antes. A sufficient condition is given for the relative inefficiency of the 
restricted QMLE. Distributions with long tails are common in practice due to 
the presence of extreme observations in the sample, and they lead to large 
standardized fourth-order moments. 

Computationally convenient augmented NLLS and QML estimators are 
proposed which are asymptotically equivalent to the optimal MD estimator. In 
the case of separate nonlinear restrictions on the structural covariance matrix, 
it is shown that there are available separate estimators of slope and covariance 
parameters that are asymptotically equivalent to the joint optimal MD esti- 
mator. 

Appendix 

A.1. Proof of the lemma 

Let Y= Y - Z+II’. Then I? - II = Y’Z+(Z+‘Z+)-’ and 

y + op( N-"2). 
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These expressions can be written as 

&iq7?-7r) = [In@ (Z+‘Z+/N)-1]N-‘~2 : (q@zt:) 
i=l 

and 

m(;-w)=N-“2 f [L(u;@uJ-01 +0,(l). 
1-l 

Letting [t, = ui 8 z,? and t2i = L(u, @ ui) - w, it follows that E([J;,) = D @ 

z,+z+‘, E(&,&,) = (4 @ z+)A,, and E(t2,E&) = A, - ww’. Since 5, = (5ii [;,)’ 
are independently distributed random vectors, the Liapunov central limit 
theorem implies that N- 1/2c~c1[i is asymptotically normal with mean zero 
and covariance matrix given by 

Finally, using the Cramer linear transformation theorem 

where 
N 

m+= plim N-’ C z,+. 
1=1 

M+-‘m+ is in fact a vector with one in the first position and zero elsewhere; 
this can be easily seen noting that M+-‘m+= plim(Z+‘Z+)-‘Z+‘l, where 1 is 
a N X 1 vector of ones. But when Z+= (1: Z,), since (Z+‘Z+))lZ+‘(i : Z,) = 
I k+l, we have (Z+‘Z+)-‘Z+‘b=(lO...O)‘=dl. 

A.2. The limiting distribution of the MD estimator 

Let $ be an unconstrained estimator of the s X 1 coefficient vector p such 
that 

plim j? =p, 
N+CC 

(A.11 

(A-2) 
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Assume that p depends on a set of constraint parameters 6, p = p(6). We 
further assume that p(6*) =p(6) for some S* in the parameter space implies 
that 6* = 6, and that p(6) has continuous second partial derivatives in a 
neighbourhood of 6. It is also assumed that D = 6’p(8)/8 8’ has full column 
rank. 

Let 8 be the minimiser of the distance function 

(A-3) 

where Q is an s x s matrix such that plim Q = Q exists and is positive definite. 
(A.l) and our ide_ntifica_tion assumptions ensure the consistency of 8 for 6. By 
the definition of 8, 13s(i3)/86 = 0 so that using a first-order expansion about 6 
it is straightforward to show that 

@(s” - 6) 5 N(0, v,), 

where 

v, = (D’QD)-‘( D~QV,QD)( D~QD)-‘. (A4 

Clearly, an optimal choice for Q is Vi ‘, in which case the avm of 8 reduces to 

v, = (~rV,-lD)-l. 64.5) 

A.3. The avm of the optimal MDE of slope and covariance parameters under 
separate structural covariance restrictions 

Let us consider a partition in C&o with blocks given by 

Cl’ = H,‘V’;‘H, + K;V;;K,, 

Cl2 = K’V-‘K 
1 low 29 

,5’22 zzz K’V-‘K 
2 ww 2’ 

Using formulae for partitioned inverses 

avm-Vl,Ohm) 

= cl1 _ c12(c22)-1c21 

= H;VP;‘Hl -t K;V;j V,, - K2( K;V;,‘K,)-lK;] V;;K,. (A4 
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Note that K, = FG and V,, = F(A, - oo’)F’. If ,Z is left unrestricted @, = u 

and G = I so that 

~22 = (A, - UU~)-~, 

c21 = (A, - DO’)-~F-~K~, 

and the second term of the RHS of (A.6) vanishes. 
On the other hand. 

avm( 4, OMD n > 
= (p-l + (c22)-1c21(cll _ ~12(c2*)-l~21)-1c12(c22)-l, 

thus 

avm($) = V,, = (A, - uu’) + F-‘K,( H{V,;‘II,)-‘K;F’-‘. 

Finally, since it is also true that 

64.7) 

am-’ e,,om) ( 

= c22 _ c21( cll) -1p2 

= K; [ V,z’ - V;;K,( H;T/,-,‘H, + K;V,-,K,) -lK;V:;] K,, 

using the matrix inversion lemma 

A.4. Eficient criterion functions and two-stage estimation 

Let s,(e), 8 E 0, be an estimator criterion subject to usual regularity and 
identification conditions [i.e., plime-‘s,(8) = s,(e) uniformly in 8, and 
s,(B) attains a global minimum at 8, the true value of 01. We also assume: 

(i) plim,,,( - - N ’82s,(8)/8B8t9’) = A, a positive definite matrix, 

(ii) NM”*&, (#)/de 5 N(0, B). 
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sN( 0) is said to be an efficient criterion if A = B, in which case 

fi(e^- e> 5 N(0, A-‘), 

where e^ is the minimizer of sN(B). 
Let us consider a partition s^ = (6{ 8;)’ and accordingly A = { Aij}, AI1 = 

(A”), i, j_= 1,2. Suppose that an alternative consistent estimator of 8, is 
available, @I say. Then we can consider an alternative criterion for 0, alone 
defined as 

Let &t be the minimizer of cN( 8,). We wish to investigate the conditions under 
which 8, is asymptotically equivalent to 8t. A first-order Taylor expansion of 
JcN( &)/ae, about #t and $, gives 

N1'2(b2 - t$) + o,(l), 

where S,,, = sN( & e,). Also 

A,,fi(&- &) +AIZfi(f&- 6,) =N-“*(dSN/del) + O,(i). 

However, using a similar expansion for Js,(e^)/at$ about 8, we can write 

A,,fi( fil - &) + A12&( e”z - 8,) = A,,m( e, - e,) 

so that 

+A,,m@& - 822) + o,(l), 

&?-(e; -e;) = -A,‘A,,fi(b; - &) + o,(l). 

Therefore if A,, = 0, 8r is asymptotically equivalent to dl for any consiste$ 
estimator 8,. Otherwise, we require that eZ is asymptotically equivalent to (3, 

for plimfi( 6t - e;) = 0 to hold. 
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Note that this result is still valid for nonefficient criteria. That is, when 
A # B. 
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