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Abstract

In this paper we derive the asymptotic properties of within groups (WG),
GMM and LIML estimators for an autoregressive model with random e¤ects
when both T and N tend to in…nity. GMM and LIML are consistent and
asymptotically equivalent to the WG estimator. When T=N ! 0 the …xed
T results for GMM and LIML remain valid, but WG although consistent
has an asymptotic bias in its asymptotic distribution. When T=N tends to
a positive constant, the WG, GMM and LIML estimators exhibit negative
asymptotic biases of order T;N and (2N ¡T ), respectively. In addition, the
crude GMM estimator that neglects the autocorrelation in …rst di¤erenced
errors is inconsistent as T=N ! c > 0, despite being consistent for …xed T .
Finally, we discuss the properties of a random e¤ects MLE with unrestricted
initial conditions when both T and N tend to in…nity.



1 Introduction

In a regression model for panel data containing lags of the dependent vari-

able, the within-groups (WG) estimator can be severely downward biased

when the time series (T ) is short regardless of the cross-sectional size of the

panel (N). This has been a well known fact since the Monte Carlo simula-

tions reported by Nerlove (1967,1971) and the exact calculation of the bias

for the …rst-order autoregressive model derived by Nickell (1981). Moreover,

Anderson and Hsiao (1981) showed the sensitivity of maximum likelihood es-

timators to alternative assumptions about initial conditions and asymptotic

plans. As a result, they proposed to estimate their model in …rst-di¤erences

by instrumental variables using either the dependent variable lagged two pe-

riods or its …rst-di¤erences as instruments. Anderson and Hsiao argued that

the advantage of these estimators was that they were consistent whatever the

form of the initial conditions and whether T or N or both were tending to

in…nity. Inconsistency for …xed T as N tends to in…nity has been regarded

as an undesirable property since in most micro panels T is small while N

is large. Subsequently, Holtz-Eakin, Newey, and Rosen (1988) and Arellano

and Bond (1991) proposed GMM estimators that used all the available lags

at each period as instruments for the equations in …rst di¤erences, hence

relying on a number of orthogonality conditions that grew at the rate of T 2:

These estimates were shown to be consistent for …xed T , and the simula-

tions reported by Arellano and Bond suggested signi…cant e¢ciency gains of

the GMM estimates relative to those of the Anderson-Hsiao type. However,

applied econometricians have tended to use in practice less than the total
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number of instruments available when that number (which depends on T )

was judged to be not su¢ciently small relative to the cross-sectional sample

size. This practice re‡ects a concern with the small sample properties of

GMM estimators, which have been shown not to be free from bias either,

as reported in, for example, Kiviet (1995) or Alonso-Borrego and Arellano

(1999). This concern led Alonso-Borrego and Arellano to consider symmet-

rically normalized GMM estimators of the LIML type, which in simulations

exhibited less bias but more dispersion than conventional GMM.

In this paper we show that further insight into the relative merits of

dynamic panel data estimators can be obtained by allowing both N and T to

tend to in…nity and studying their behaviour for alternative relative rates of

increase for T andN . Our analysis is motivated by the increasing availability

of micropanels in which the value of T is not negligible relative to N (such as

the household incomes panel in the US (PSID), or the balance sheet-based

company panels that are available in many countries). Thus this paper does

not belong to the recent literature on country or regional macropanels (which

has focused on models with unit roots, or models with more general forms

of heterogeneity as, for example, in Pesaran and Smith, 1995, and Canova

and Marcet, 1995), although some of our results may be also relevant in that

context. The importance of the results in this paper is that they lead to a

reassessment of alternative panel data estimators for autoregressive models

existing in the literature.

Speci…cally, we establish the asymptotic properties of WG, GMM and

LIML estimators for a …rst-order autoregressive model with individual ef-

fects when both N and T tend to in…nity. We show that the three estimators
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are consistent when T=N ! c for 0 < c · 2: The basic intuition behind this

result is that, contrary to the structural equation setting where too many

instruments produces over…tting and undesirable closeness to the OLS coef-

…cients (cf. Kunitomo (1980), Morimune (1983) or Bekker (1994) who show

that 2SLS is inconsistent as the number of instruments tends to in…nity),

here a large number of instruments is associated with larger values of T ,

and in such case closeness to OLS (the WG estimator) becomes increasingly

desirable since the ”simultaneity bias” tends to zero as T tends to in…nity.

Nevertheless, WG, GMM and LIML turn out to exhibit a bias term in their

asymptotic distributions, which are of orders T , N and 2N ¡T; respectively.

Provided T < N; the GMM bias is always smaller that the WG bias, and

the LIML bias is smaller than the other two. When T = N the three bi-

ases are all equal. Since the GMM and LIML estimators are only de…ned

for N ¸ T ¡ 1, the asymptotics T=N ! c is a relevant one to consider

here. When T=N ! 0 the …xed T results for GMM and LIML remain valid.

Conversely, the asymptotic bias in the WG estimator only disappears when

N=T ! 0.

Some other results emerge from this setting. The three estimators are

asymptotically normal and have the same asymptotic variance, although the

standard formulae for …xed T estimated variances remain consistent (and

often more reliable) estimates of the asymptotic variances as T tends to

in…nity. Another interesting result is that a crude GMM estimator that

neglects the …rst-di¤erence structure of the errors is inconsistent as T tends

to in…nity, while it would only be asymptotically ine¢cient for …xed T as N

tends to in…nity. The intuition here is again that with an increasingly large
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number of instruments the instrumental variables estimates will approach

the OLS estimates in …rst di¤erences which cannot be consistent as T ! 1:
Finally, we consider a random e¤ects maximum likelihood estimator (RML)

which leaves the mean and variance of initial conditions unrestricted but en-

forces time series homoskedasticity. For …xed T , RML is more e¢cient but

less robust than GMM or LIML, since unlike the latter RML requires ho-

moskedasticity for consistency. However, as both T and N tend to in…nity

RML becomes robust to time series heteroskedasticity, and its asymptotic

variance coincides with those of GMM and LIML. The di¤erence is that un-

like GMM or LIML, RML does not exhibit an asymptotic bias, because it

does not entail incidental parameters in the N or T dimensions.

The paper is organized as follows. Section 2 presents the model and

the estimators. In Section 3 we establish the asymptotic properties of WG,

GMM, and LIML estimators, and provide some discussion of the implications

of the results. We also show the inconsistency of the crude GMM estimator

in …rst-di¤erences, and discuss the properties of the RML estimator in the

large T and N context. Section 4 reports some Monte Carlo simulations

to evaluate the accuracy of the approximations. Finally, Section 5 contains

some concluding remarks and plans for future work.
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2 The model and the estimators

The model We consider an autoregressive process for panel data given

by

yit = ®yit¡1 + ´i + vit; (t = 1; :::; T ; i = 1; :::;N) (1)

where j ® j< 1 and vit has zero mean given ´i; yi0; :::; yit¡1: For notational

convenience we assume that yi0 is also observed. Moreover, for the presen-

tation of the estimators below, it is convenient to introduce the notation

xit = yit¡1 and write model (1) in the form:

yi = ®xi + ´i¶T + vi (2)

where yi = (yi1; :::; yiT )0, xi = (xi1; :::; xiT )0, ¶T is a T £ 1 vector of ones, and

vi = (vi1; :::; viT )
0:

The within-groups estimator The within-groups or covariance esti-

mator is given by

b®WG =

NP
i=1
x0iQTyi

NP
i=1
x0iQTxi

(3)

where QT = IT ¡ ¶T ¶0T=T is the WG operator of order T .

The WG estimator can also be written as OLS in orthogonal deviations

(cf. Arellano and Bover, 1995). The forward orthogonal deviations operator

A is the (T ¡ 1) £ T upper triangular matrix such that A0A = QT and

AA0 = IT¡1. Thus, if V ar(vi) = ¾2IT , the (T ¡ 1) £ 1 vector of errors in

orthogonal deviations v¤i = Avi also has V ar(v¤i ) = ¾2IT¡1.1 Notice that

1The vector v¤
i has elements of the form
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since A¶T = 0, in the equation in orthogonal deviations the individual e¤ects

are di¤erenced out:

y¤i = ®x
¤
i + v

¤
i (4)

and letting x¤ = (x¤
0
1 ; :::; x

¤0
N)

0 and y¤ = (y¤
0
1 ; :::; y

¤0
N)

0 we have

b®WG =
x¤

0
y¤

x¤0x¤
: (5)

The GMM estimator For any value of T;E(x¤itv
¤
it) 6= 0 and as a

consequence b®WG is inconsistent for …xed T as N tends to in…nity. However,

E(zitv
¤
it) = 0 (t = 1; :::; T ¡ 1) (6)

where zit = (xi1; :::; xit)0, and therefore GMM estimators of ® based on such

moment conditions will be consistent for …xed T (cf. Arellano and Bond,1991,

and Arellano and Bover, 1995). In (6) there are q = T (T¡1)=2 orthogonality

conditions which can be written as:

E(Z 0iv
¤
i ) = 0

where Zi is a (T ¡ 1) £ q block diagonal matrix whose t-th block is z0it.

Moreover, provided vit has constant variance ¾2 given ´i; yi0; :::; yit¡1:

E(Z 0iv
¤
i v
¤0
i Zi) = ¾

2E(Z 0iZi); (7)

in which case an asymptotically e¢cient GMM estimator of ® relative to the

moment conditions in (6) is given by

b®GMM =
x¤0Z(Z 0Z)¡1Z 0y¤

x¤0Z(Z 0Z)¡1Z 0x¤
(8)

v¤
it = ct

·
vit ¡ 1

(T ¡ t)
(vit+1 + ::: + viT )

¸
(t = 1; :::; T ¡ 1)

with c2
t = (T ¡ t)=(T ¡ t + 1):
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where Z = (Z 01; :::; Z
0
N )

0. This is the GMM estimator whose properties we

analyze in this paper. A computationally useful alternative expression for

b®GMM is:

b®GMM =

T¡1P
t=1
x¤0t Zt(Z

0
tZt)

¡1Z 0ty
¤
t

T¡1P
t=1
x¤0t Zt(Z

0
tZt)¡1Z

0
tx
¤
t

(9)

where x¤t and y¤t are the N £ 1 vectors whose i-th elements are x¤it and y¤it,

respectively, and Zt is the N £ t matrix whose i-th row is z0it. Notice that

this GMM estimator is only de…ned for N ¸ T ¡ 1. Finally, b®GMM can also

be written using the equations in …rst di¤erences as opposed to orthogonal

deviations (cf. Arellano and Bover, 1995). In such case:

b®GMM =
¢x0Z [Z 0(IN ­H)Z]¡1 Z 0¢y
¢x0Z [Z 0(IN ­H)Z]¡1 Z 0¢x

(10)

where ¢x and ¢y are (T¡1)N£1 vectors of the variables in …rst di¤erences,

and H is a (T ¡ 1) £ (T ¡ 1) matrix whose diagonal elements are equal to

two, the elements in the …rst subdiagonal are equal to minus one, and the

remaining elements are equal to zero.

As shown by Ahn and Schmidt (1995), the orthogonality conditions in

(6 ) are not the only restrictions on the data second-order moments implied

by conditional mean independence and homoskedasticity of vit, but these are

the only ones that remain valid in the absence of homoskedasticity or lack of

correlation between vit and ´i:

The LIML estimator The “limited information maximum likelihood”

(LIML) analogue estimator solves the following problem:

b®LIML =argmin
a

(y¤ ¡ ax¤)0Z(Z 0Z)¡1Z 0(y¤ ¡ ax¤)
(y¤ ¡ ax¤)0(y¤ ¡ ax¤) (11)
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It is a symmetrically normalized estimator of the kind considered by

Alonso-Borrego and Arellano (1999), and it is asymptotically equivalent to

the GMM estimator for …xed T as N ! 1: It can also be regarded as

a “continuously updated” GMM estimator in the terminology of Hansen,

Heaton and Yaron (1996). That is, instead of keeping ¾2 …xed in the weight-

ing matrix of the GMM criterion, it is continuously updated by making it

a function of the argument in the estimating criterion. It does not corre-

spond to any meaningful maximum likelihood estimator; it is only a LIML

analogue estimator in the sense of the instrumental-variable interpretation

given by Sargan (1958) to the original LIML estimator.2

We can write down a simple explicit expression for b®LIML by noticing

that the minimized criterion in (11) is the following minimum eigenvalue:

b̀= min eigenvalue[W ¤0Z(Z 0Z)¡1Z 0W ¤(W ¤0W ¤)¡1] (12)

where W ¤ = (y¤ : x¤): As N ! 1 for …xed T; b̀ p! 0 since the population

projection matrix is singular.

Now the …rst order conditions for (11) are

(1;¡a)[W ¤0Z(Z 0Z)¡1Z 0W ¤ ¡ b̀W ¤0W ¤]

Ã
0

¡1

!
= 0 (13)

from which we obtain:

b®LIML =
x¤0Z(Z 0Z)¡1Z 0y¤ ¡ b̀(x¤0y¤)
x¤0Z(Z 0Z)¡1Z 0x¤ ¡ b̀(x¤0x¤)

(14)

2We nevertheless prefer to keep the LIML label to refer to these estimators, since much
of their motivation draws on the …nite sample literature for LIML in the instrumental
variable context.

8



3 Asymptotic properties of the estimators

Assumptions In this section we derive the asymptotic properties of the

previous estimators when both Tand N tend to in…nity under the following

assumptions:

vit j zit; ´i » iid N(0; ¾2) (t = 1; :::; T ; i = 1; :::;N) (A1)

where zit = (yi0; :::; yit¡1)0:

yi0 j ´i » id N

Ã
´i

1¡ ®;
¾2

1¡ ®2
!

(i = 1; :::;N) (A2)

So that,

ziT+1 j ´i » id N

Ã
´i

1¡ ®¶T+1;
¾2

1¡ ®2V
!

where ¶T+1 is a (T +1)£ 1 vector of ones and V is the autoregressive matrix

whose (t; s) element is given by ®jt¡sj: Finally, we assume

´i » iid N(0; ¾2´) (i = 1; :::; N) (A3)

Taken together, assumptions A1, A2 and A3 imply that the ziT+1 are iid

normal random vectors with

E(ziT+1) =
E(´i)

(1¡ ®)¶T+1 = 0

V ar(ziT+1) = V ar [E (ziT+1 j ´i)]+E [V ar(ziT+1 j ´i)] =
¾2´

(1¡ ®)2 ¶T+1¶
0
T+1+

¾2

(1¡ ®2)V:

While these assumptions will be used in deriving the asymptotic proper-

ties of the estimators, the estimators themselves do not rely on the speci…-

cation of initial conditions or on the distribution of the unobserved hetero-

geneity.
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3.1 The WG estimator

We …rst consider the covariance or WG estimator de…ned in (3) and (5):

b®WG ¡ ® = x¤
0
v¤

x¤0x¤
(15)

The results collected in the following Lemma are useful in establishing

the asymptotic properties of the WG estimator.

Lemma 1 Under assumptions A1, A2 and A3:

E(x¤
0
v¤) = ¡N ¾2

(1¡ ®)

"
1¡ 1

T

Ã
1¡ ®T
1¡ ®

!#
(16)

Moreover, as T ! 1, regardless of whether N is …xed or tends to in…nity:

V ar

Ã
x¤

0
v¤

(NT )1=2

!
! ¾4

(1¡ ®2) (17)

1

NT
(x¤

0
x¤)

p! ¾2

(1¡ ®2) (18)

Proof : See Appendix.

It is well known that b®WG is consistent as T ! 1 regardless of the

asymptotic behaviour of N (cf. Anderson and Hsiao, 1981, or Nickell, 1981).

Indeed, in view of (16) and (17) (x¤
0
v¤)=NT converges to zero in mean square,

which implies that p lim(x¤
0
v¤=NT ) = 0. Together with (18), this implies that

b®WG
p! ® as T ! 1 (19)

We now turn to consider asymptotic normality. The result is contained in

the following theorem.
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Theorem 1 (Asymptotic normality of the WG estimator) Let conditions

A1, A2, and A3 hold. Then, as T ! 1, regardless of whether N is …xed or

tends to in…nity:

(NT )¡1=2[(x¤
0
v¤)¡E(x¤0v¤)] d! N

Ã
0;

¾4

(1¡ ®2)

!
(20)

Moreover, provided N=T 3 ! 0 :

p
NT

·
b®WG ¡

µ
®¡ 1

T
(1 + ®)

¶¸
d! N(0; 1¡ ®2) (21)

Proof:

Let us write

(NT )¡1=2x¤
0
v¤ = (NT )¡1=2

X

i

X

t

vitwit¡1 ¡ (T=N)1=2
X

i

viwi(¡1)

where wit is the pure AR(1) process given by:

wit = yit ¡
´i

(1¡ ®) :

In view of (16) we have

¹NT = E
h
(NT )¡1=2x¤

0
v¤

i
= ¡

µ
N

T

¶1=2 ¾2

(1¡ ®) +
N1=2

T 3=2
¾2(1¡ ®T )
(1¡ ®)2

Subtracting ¹NT from the expression above:

(NT )¡1=2(x¤
0
v¤)¡ ¹NT = (NT )¡1=2

X

i

X

t

vitwit¡1 ¡RNT

where

RNT = (T=N)
1=2

X

i

viwi(¡1) + ¹NT :

We now show that RNT is op(1) as T ! 1. Clearly E(RNT ) = 0: Moreover,

after some algebra we obtain

V ar(RNT ) =
¾4

(1¡ ®)2

2
4 2
T

¡ 2

T 2
(1 + 2®)(1¡ ®T )

(1¡ ®2) +
1

T 3

Ã
1¡ ®T
1¡ ®

!23
5
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so that limT!1 V ar(RNT ) = 0, which su¢ces to establish that RNT is op(1):

Finally, from a standard central limit theorem for autoregressive processes

(cf. T.W. Anderson, 1971, ch. 5, Theorem 5.5.7, and T.W. Anderson, 1978)

we have

(NT )¡1=2
X

i

X

t

vitwit¡1
d! N

Ã
0;

¾4

(1¡ ®2)

!

Since RNT is op(1); also

(NT )¡1=2(x¤
0
v¤)¡ ¹NT d! N

Ã
0;

¾4

(1¡ ®2)

!
;

which establishes the …rst result of the theorem.

Next, in view of (18), by Cramer’s theorem we have

Ã
x¤

0
x¤

NT

!¡1 h
(NT )¡1=2(x¤

0
v¤)¡ ¹NT

i
d! N(0; 1¡ ®2)

or
p
NT (b®WG ¡ ®)¡

Ã
x¤

0
x¤

NT

!¡1
¹NT

d! N(0; 1¡ ®2)

Using similar arguments as in the proof of (20) it can be shown that

p
NT

"
x¤

0
x¤

NT
¡ E

Ã
x¤

0
x¤

NT

!#
= Op(1)

where, in view of (A8),

E

Ã
x¤

0
x¤

NT

!
=

¾2

(1¡ ®2) ¡ 1

T

¾2

(1¡ ®2)

"
(1 + ®)

(1¡ ®) ¡ 1

T

2®(1¡ ®T )
(1¡ ®)2

#

Moreover, a second order expansion of the inverse of the expected value of

(x¤
0
x¤)=NT gives

"
E

Ã
x¤

0
x¤

NT

!#¡1
=
(1¡ ®2)
¾2

"
1 +

1

T

(1 + ®)

(1¡ ®)

#
+O(T¡2)
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Hence, by the delta method, provided N=T 3 ! 0

p
NT

8
<
:

Ã
x¤

0
x¤

NT

!¡1
¡ (1¡ ®2)

¾2

"
1 +

1

T

(1 + ®)

(1¡ ®)

#9
=
; = Op(1)

and therefore
Ã
x¤

0
x¤

NT

!¡1
¹NT =

(1¡ ®2)
¾2

"
1 +

1

T

(1 + ®)

(1¡ ®)

#
¹NT + op(1)

= ¡
µ
N

T

¶1=2
(1 + ®)¡

µ
N

T 3

¶1=2 (1 + ®)(®+ ®T )
(1¡ ®) + op(1)

The second result of the theorem follows from noticing that when N=T 3 ! 0

the second term of the rhs in the expression above is also o(1).

QED.

The implication of Theorem 1 is that even if the covariance estimator is

always consistent provided T ! 1; its asymptotic distribution may contain

an asymptotic bias term when N ! 1, depending on the relative rates of

increase of T and N: If lim(N=T ) = 0 (which includes N …xed) there is no

asymptotic bias:
p
NT (b®WG ¡ ®) d! N(0; 1¡ ®2) (22)

but if lim(N=T ) > 0, the bias term in expression (21) must be kept.

Of these two situations, the second is more relevant here since we wish to

compare WG estimates with GMM and LIML estimates in environments in

which the latter are well de…ned, namely, when N ¸ T ¡ 1, and in datasets

with N ¸ T ¡ 1 the assumption N=T ! 0 is not very realistic. Notice that

(21) has been obtained under the assumption that N=T 3 ! 0. The asymp-

totic bias will contain additional terms for lower relative rates of increase of

T . For example, if lim(N=T 3) 6= 0 but N=T 5 ! 0, the bias will include a T 2

term as the one shown in the proof to Theorem 1.
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The result in Theorem 1 has been independently found by Hahn (1998)

under slightly more general conditions. Hahn’s paper has a di¤erent focus

since he is concerned with the development of an e¢cient estimator when

both N and T are large.

3.2 The GMM estimator

We now turn to consider the GMM estimator de…ned in (8), (9) or (10):

b®GMM ¡ ® = x¤
0
Mv¤

x¤0Mx¤
(23)

where M = Z(Z 0Z)¡1Z 0. As before, some preliminary results are collected

in a Lemma.

Lemma 2 Under assumptions A1, A2 and A3:

E(x¤
0
Mv¤) = ¡T ¾2

(1¡ ®)

"
1¡ 1

T (1¡ ®)
TX

t=1

(1¡ ®t)
t

#
(24)

Moreover, as both N and T tend to in…nity, provided (log T )=N ! 0

V ar

Ã
x¤

0
Mv¤

(NT )1=2

!
=
1

T
¾2

T¡1X

t=1

E(x¤itz
0
it)[E(zitz

0
it)]

¡1E(zitx
¤
it) + o(1) ! ¾4

(1¡ ®2)
(25)

Cov

Ã
x¤

0
v¤

(NT )1=2
;
x¤

0
Mv¤

(NT )1=2

!
! ¾4

(1¡ ®2) (26)

1

NT
(x¤

0
Mx¤)

p! ¾2

1¡ ®2 (27)

and provided T=N ! c; 0 · c <1

1

NT
(v¤

0
Mv¤)

p! ¾2
c

2
(28)
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Proof : See Appendix.

The condition (log T )=N ! 0 provides a limit on how slow N can tend to

in…nity relative to T . Since the GMM estimator is only de…ned for N ¸ T¡1
this is not an unreasonable assumption. It would be certainly satis…ed if

T=N ! c for 0 · c <1. Given these results, we can consider the consistency

and asymptotic normality of b®GMM in the following Theorem.

Theorem 2 (Consistency and asymptotic normality of the GMM estima-

tor). Let conditions A1, A2, and A3 hold. Then as both N and T tend to

in…nity, provided (log T )=N ! 0; b®GMM is consistent for ®:

b®GMM
p! ® (29)

Moreover, provided T=N ! c; 0 · c < 1
p
NT

·
b®GMM ¡

µ
®¡ 1

N
(1 + ®)

¶¸
d! N(0; 1¡ ®2) (30)

Proof : Consistency follows directly from Lemma 2: From (24) and (25)

(x¤
0
Mv¤)=NT converges to zero in mean square, and therefore also in prob-

ability, whereas from (27) (x¤
0
Mx¤)=NT is bounded in probability.

Turning to asymptotic normality, using (24) let us de…ne

¹+NT = E
h
(NT )¡1=2x¤

0
Mv¤

i
= ¡

µ
T

N

¶1=2 ¾2

(1¡ ®)+(NT )
¡1=2 ¾2

(1¡ ®)2
TX

t=1

(1¡ ®t)
t

We shall rely on the identity

(NT )¡1=2x¤
0
Mv¤ ¡ ¹+NT = (NT )¡1=2x¤

0
v¤ ¡ ¹NT ¡R+NT

where

R+NT = (NT )
¡1=2x¤

0
(I ¡M)v¤ ¡ (¹NT ¡ ¹+NT )
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By construction, E(R+NT ) = 0: Moreover, in view of Lemmae 1 and 2:

V ar(R+NT ) = V ar

Ã
x¤

0
v¤

(NT )1=2

!
+V ar

Ã
x¤

0
Mv¤

(NT )1=2

!
¡2Cov

Ã
x¤

0
v¤

(NT )1=2
;
x¤

0
Mv¤

(NT )1=2

!
= o(1)

Therefore, R+NT = op(1) and from result (20) in Theorem 1 we have

(NT )¡1=2x¤
0
Mv¤ ¡ ¹+NT d! N

Ã
0;

¾4

(1¡ ®2)

!

and in view of (27), by Cramer’s theorem:

Ã
x¤

0
Mx¤

NT

!¡1 h
(NT )¡1=2x¤

0
Mv¤ ¡ ¹+NT

i
d! N(0; 1¡ ®2)

or
p
NT (b®GMM ¡ ®)¡

Ã
x¤

0
Mx¤

NT

!¡1
¹+NT

d! N(0; 1¡ ®2)

The result follows from noticing that since ¹+NT = O(1)

Ã
x¤

0
Mx¤

NT

!¡1
¹+NT =

(1¡ ®2)
¾2

¹+NT + op(1) = ¡
µ
T

N

¶1=2
(1 + ®) + op(1)

QED.

When T ! 1, the number of the GMM orthogonality conditions q =

T (T ¡ 1)=2 also tends to in…nity. In spite of this fact, the theorem shows

that b®GMM remains consistent. This is in contrast to the situation in the

structural equation setting where the two-stage least squares estimator has

been shown to be inconsistent when both the number of instruments and

the sample size tend to in…nity, while their ratio tends to a positive constant

(cf. Kunitomo, 1980, Morimune, 1983, and Bekker, 1994). The intuition

for the consistency of b®GMM is that in our context as T tends to in…nity

the “simultaneity bias” tends to zero, and so closeness of b®GMM to b®WG for

larger values of T becomes a desirable property of the GMM estimator.
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The theorem also shows that as T ! 1, b®GMM is asymptotically normal

but unless lim(T=N) = 0, it exhibits a bias term in its asymptotic distribu-

tion. When 0 < lim(T=N) < 1, theorems 1 and 2 provide a clean compari-

son between the GMM and WG estimators. Namely, they are asymptotically

equivalent and have a similar expression for their (negative) asymptotic bi-

ases, which nevertheless di¤er in their orders of magnitude: (1 + ®)=N for

GMM and (1 + ®)=T for WG. Therefore, provided T < N , the GMM bias

will always be smaller than the WG bias, and when T = N the two biases

will coincide.

Finally, notice that in view of (25) the standard formulae for …xed T

estimated variances of b®GMM remain consistent estimates of the asymptotic

variances as T ! 1. This is important because, unlike the limiting distri-

bution, the exact distribution of b®GMM does depend on the variance of the

individual e¤ect. Therefore, for some parameter values there may be sub-

stantial di¤erences between the …xed T and the large T approximations to

the variance of the GMM estimator. This situation is in contrast with that

for the WG estimator, whose exact distribution is invariant to ¾2´.

For a more general class of problems, Koenker and Machado (1996) found

that q3=N ! 0 was a su¢cient condition for the validity of conventional as-

ymptotic inference about GMM estimators, where q is the number of moment

conditions. It is interesting to notice that in our case if T=N ! 0 as N ! 1
the …xed T conventional asymptotic inferences about b®GMM are valid. Since

here q = T (T ¡1)=2; we have found a much tighter condition for the validity

of standard …xed T inferences in the dynamic panel data context.
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3.3 The LIML estimator

The LIML estimator de…ned in (14) can be written as:

b®LIML ¡ ® = x¤
0
Mv¤ ¡ b̀(x¤0v¤)

x¤0Mx¤ ¡ b̀(x¤0x¤)
(31)

The limit in probability of b̀ is given in the following lemma.

Lemma 3 Under assumptions A1, A2, and A3 as both N and T tend to

in…nity, and T=N ! c; 0 · c · 2

b̀ p! c

2
(32)

Proof : Using the results in Lemmae 1 and 2, simple algebra reveals that

1

NT
(W ¤0W ¤)

p! ¾2

(1¡ ®2)

Ã
1 ®
® 1

!

1

NT
(W ¤0MW ¤)

p! ¾2

(1¡ ®2)

Ã
®2 + c

2
(1¡ ®2) ®
® 1

!

Since b̀= min eigenvalue[W ¤0MW ¤(W ¤0W ¤)]¡1, due to the continuity of the

min eigenvalue function, b̀ converges in probability to the smallest root of

the equation

det

"Ã
®2 + c

2
(1¡ ®2) ®
® 1

!
¡ `

Ã
1 ®
® 1

!#
= 0

or equivalently

(1¡ ®2)(1¡ `)( c
2

¡ `) = 0

Thus, the roots are 1 and (c=2); with the latter being the smallest provided

c · 2. QED.
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An implication of this result is that c · 2 is a necessary condition for

the consistency of the LIML estimator. In e¤ect, for a given d, under the

assumptions of Lemma 3

(y¤ ¡ dx¤)0M(y¤ ¡ dx¤)
(y¤ ¡ dx¤)0(y¤ ¡ dx¤)

p! (d¡ ®)2 + (1¡ ®2)c=2
(d¡ ®)2 + (1¡ ®2) (33)

Provided c · 2, the limiting criterion is minimized at d = ®, taking the value

c=2. If on the contrary c > 2, the limiting criterion can be reduced for any

d > ®, tending to one as d ! §1. However, the condition lim(T=N) · 2

should not be regarded as a restrictive assumption since the LIML estimator

is only well de…ned for (T ¡ 1)=N · 1. The following theorem considers

consistency and asymptotic normality of b®LIML.

Theorem 3 (Consistency and asymptotic normality of the LIML estima-

tor). Let conditions A1, A2 and A3 hold. Then as both N and T tend to

in…nity, provided T=N ! c; 0 · c · 2; b®LIML is consistent for ®:

b®LIML
p! ® (34)

Moreover,

p
NT

"
b®LIML ¡

Ã
®¡ 1

(2N ¡ T )(1 + ®)
!#

d! N(0; 1¡ ®2) (35)

Proof: From Lemmae 1, 2 and 3

(NT )¡1(x¤
0
Mv¤ ¡ b̀x¤0v¤) p! 0

and

(NT )¡1(x¤
0
Mx¤ ¡ b̀x¤0x¤) p! (1¡ c

2
)
¾2

1¡ ®2
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from which consistency of b®LIML follows.

Turning to asymptotic normality, in view of Lemma 3

(NT )¡1=2(x¤
0
Mv¤ ¡ b̀x¤0v¤)¡ (¹+NT ¡ b̀¹NT )

= [(NT )¡1=2x¤
0
Mv¤ ¡ ¹+NT ]¡

c

2
[(NT )¡1=2x¤

0
v¤ ¡ ¹NT ] + op(1)

Moreover, due to Theorem 2, the expression above satis…es

(1¡ c

2
)[(NT )¡1=2x¤

0
v¤ ¡ ¹NT ] + op(1) d! N

Ã
0; (1¡ c

2
)2

¾4

(1¡ ®2)

!

Now, by Cramer’s theorem:

Ã
x¤

0
Mx¤ ¡ b̀x¤0x¤

NT

!¡1
[(NT )¡1=2(x¤

0
Mv¤¡ b̀x¤0v¤)¡(¹+NT¡ b̀¹NT )])

d! N(0; 1¡®2)

or

p
NT (b®LIML ¡ ®)¡

Ã
x¤

0
Mx¤ ¡ b̀x¤0x¤

NT

!¡1
(¹+NT ¡ b̀¹NT )

d! N(0; 1¡ ®2)

For 0 < c · 2; the result follows from noticing that

Ã
x¤

0
Mx¤ ¡ b̀x¤0x¤

NT

!¡1
(¹+NT ¡ b̀¹NT ) = [(1¡ T

2N
)
¾2

1¡ ®2 ]
¡1(¹+NT ¡ T

2N
¹NT ) + op(1)

= (NT )1=2
(1 + ®)

(2N ¡ T ) + op(1)

For c = 0, we have ¹+NT = o(1),
b̀= op(1) and ¹NT = O[(N=T )

1=2]: Neverthe-

less, it is still the case that b̀¹NT = op(1), which ensures that the asymptotic

bias vanishes when c = 0. We prove the latter assertion by showing that

when c = 0 µ
N

T

¶1=2
b̀ p! 0:
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Since b̀ is the minimum of the criterion given in (11), we have

b̀· v¤
0
Mv¤

v¤0v¤
:

From the proof of (28) in Lemma 2 it is easy to see that the result
µ
N

T

¶1=2 Ã
v¤

0
Mv¤

NT

!
p! ¾2

c1=2

2

also holds for c = 0. Moreover, since from Lemma 1

v¤
0
v¤

NT

p! ¾2

with c = 0, we have µ
N

T

¶1=2 Ã
v¤

0
Mv¤

v¤0v¤

!
p! 0

which given the inequality above implies that (N=T )1=2 b̀= op(1):

QED

The theorem shows that like GMM, the LIML estimator is consistent

despite T ! 1 and T=N ! c: Also, b®LIML is asymptotically normal with the

same asymptotic variance as the GMM and WG estimates. Unless T=N ! 0,

it has a (negative) asymptotic bias with a similar expression as the asymptotic

biases of WG and GMM, but again di¤ering in its order of magnitude: (1 +

®)=T for WG, (1+®)=N for GMM, and (1+®)=(2N¡T ) for LIML. Therefore,

provided T < N , the LIML bias is the smallest of the three, and when T = N

the three biases are equal.

3.4 The crude GMM estimator in …rst di¤erences

We noticed in equation (10) that the asymptotically e¢cient GMM estimator

could also be written using the moment conditions in …rst di¤erences as op-

posed to orthogonal deviations. In such case, however, the optimal weighting
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matrix becomes [Z
0
(IN ­ H)Z]¡1 instead of (Z

0
Z)¡1 in order to take into

account the serial correlation in the errors in …rst-di¤erences. In this section

we consider the crude IV or GMM estimator in …rst di¤erences that uses

(Z
0
Z)¡1 as the weighting matrix

b®CIV =
¢x

0
Z(Z

0
Z)¡1Z

0
¢y

¢x0Z(Z 0Z)¡1Z 0¢x
(36)

For …xed T as N tends to in…nity, this estimator is asymptotically ine¢-

cient relative to b®GMM , but it is still consistent and asymptotically normal,

and as such it may be regarded as a computationally simpler alternative to

b®GMM (for example, Holtz-Eakin, Newey and Rosen (1988) use CIV estima-

tors as their one-step GMM estimates). However, the results in the previous

sections suggest that, since the “simultaneity bias” in …rst di¤erences does

not tend to zero as T ! 1, there may be more fundamental di¤erences

between b®CIV and b®GMM when both T and N tend to in…nity. We address

this issue in the following theorem.

Theorem 4 (Inconsistency of the crude GMM estimator in …rst di¤erences)

Let conditions A1, A2 and A3 hold. Then as both N and T tend to in…nity,

provided T=N ! c, 0 · c < 1

1

NT
(¢x

0
M¢v)

p! ¡¾2 c
2

(37)

1

NT
(¢x

0
M¢x)

p! ¾2
µ
c

2
+
1¡ ®
1 + ®

¶
(38)

and

b®CIV
p! ®¡ (1 + ®)

2

Ã
c

2¡ (1 + ®)(2¡ c)=2

!
(39)
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Proof : See Appendix.

The crude GMM estimator is therefore inconsistent when T ! 1 unless

c = 0. Moreover, the bias may be qualitatively relevant. In a squared

panel (c = 1) the biases will be enormous, but even in a panel whose cross-

sectional size is ten times the time series dimension (c = 0:1) the biases

are substantial (some numerical calculations of the bias are reported in the

next section). Notice that at c = 2, the bias of b®CIV coincides with that

of the OLS regression in …rst di¤erences. This result further illustrates the

shortcomings of large N; …xed T asymptotics in evaluating the relative merits

of the estimators. In e¤ect, according to the …xed T approximations, in the

comparison between b®GMM and b®CIV there is only a second order di¤erence

in precision, whereas when T=N ! c > 0; b®GMM is still consistent but b®CIV

is not.

3.5 The random e¤ects ML estimator

In this section we discuss the random e¤ects ML estimator b®RML based on

assumptions A1, A3 and

yi0 j ´i » id N(±´i; !
2
oo) (i = 1; :::; N) (A2’)

Note that in A2 we have ± = 1=(1¡®) and !2oo = ¾
2=(1¡®2), but here ±

and !oo are free parameters. Thus b®RML is also the conditional MLE given

yi0. As a result, it will be robust to alternative initial conditions when T

is small, and yet the likelihood in this case does not depend on parameters

whose number grows with T or N , so that no asymptotic biases will occur

when both N and T tend to in…nity. From the point of view of the large
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N , …xed T asymptotics, RML is more e¢cient but less robust than GMM or

LIML, since contrary to the latter RML requires time series homoskedasticity

for consistency. However, as both T and N tend to in…nity RML turns out to

be robust to heteroskedasticity, but unlike GMM or LIML it does not exhibit

an asymptotic bias. This is, therefore, another instance, in which the N and

T asymptotics suggests a reassessment of the relative merits of competing

estimators.3

As shown in the Appendix, under A1, A2’ and A3 the log density of

(yi1; :::; yiT ) given yi0 can be written as

ln f(yi1; :::; yiT j yi0) = ¡(T ¡ 1)
2

ln ¾2 ¡ 1

2¾2
(y¤i ¡ ®x¤i )0(y¤i ¡ ®x¤i )

¡1
2
ln!2 ¡ 1

2!2
(yi ¡ ®xi ¡ 'yi0)2: (40)

where yi = T
¡1 PT

t=1 yit, xi = T
¡1 PT

t=1 xit, and ('; !2) are a reparameteriza-

tion of (±; ¾2´) given by ' = ±¾2´=V ar(yi0), and !2 = ¾2´¡'2V ar(yi0)+¾2=T .

Hence, by concentrating ', !2, and ¾2 out of the log likelihood, the RML

estimator can be expressed as

b®RML =argmin
a

fln [(y¤ ¡ ax¤)0(y¤ ¡ ax¤)]+ 1

(T ¡ 1) ln [(y ¡ ax)0S0(y ¡ ax)]g
(41)

where S0 = IN ¡ y0y00=(y00y0), y0 = (y10; :::; yN0)0, y = (y1; :::; yN)0, and x =

(x1; :::; xN)
0.4 Consistency and asymptotic normality of b®RML is considered

in the following Theorem.
3We thank Gary Chamberlain for suggesting us to consider the RML estimator in this

context.
4The estimator in (41) does not restrict ¾2

´ to be non-negative. Parameterizing the
joint log likelihood in terms of ±; !2

oo;®; ¾2 and ¸ = ¾2
´=¾2, we may obtain ML estimates

of ® that enforce ¸ ¸ 0, from a concentrated likelihood which is only a function of ® and
¸ (see Appendix). In such case, a boundary solution at ¸ = 0 may occur. This problem
was discussed by Maddala (1971).
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Theorem 5 (Consistency and asymptotic normality of the RML estimator)

Let conditions A1, A2 and A3 hold. Then as both N and T tend to in…nity,

b®RML is consistent for ®:

b®RML
p! ® (42)

Moreover, provided 0 · lim(N=T ) < 1,

p
NT (b®RML ¡ ®) d! N(0; 1¡ ®2) (43)

Proof: See Appendix.

Obviously, the RML estimator is also consistent and asymptotically nor-

mal for …xed T as N ! 1 under the stated conditions, but in such case the

asymptotic variance will take a di¤erent expression.

This estimator and a generalized least squares estimator of the same

model were considered by Blundell and Smith (1991) and have been discussed

further by Blundell and Bond (1998) (in their formulation the model is not

transformed into orthogonal deviations together with an average equation as

we do).5

4 Monte Carlo evidence

In this section we report some Monte Carlo simulations of the estimators

discussed above for various combinations of values of N and T: We wish to

assess the accuracy of the asymptotic approximations derived in Section 3.

5The problem with the GLS estimates of ® and ' based on preliminary estimates of
!2 and ¾2 is that they are only consistent if based on consistent estimates of !2 and ¾2,
and they are only asymptotically equivalent to ML if based on asymptotically e¢cient
estimates of !2 and ¾2.
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Various simulation exercises for dynamic panel data estimators have already

been conducted in other work, but since the existing results typically concen-

trate on small values of T; they do not provide the type of evidence required

here (an exception is the recent Monte Carlo analysis in Judson and Owen,

1997).

In Table 1 we report medians, interquartile ranges, and median absolute

errors of the WG, GMM, LIML, CIV and RML estimators for ® = 0:2, 0:5

and 0:8, and for N = 100 with T o = 10; 25 and 50; where T o = T + 1 (the

actual number of time series observations in the data). Similar experiments

with N = 50 are reported in Table 2. For all cases we conducted 1000

replications from the model speci…ed in sections 2 and 3 with ¾2 = 1 and

¾2´ = 0: While the exact distribution of the WG estimator is invariant to

both ¾2´ and ¾2; the distributions of the other estimators are only invariant

to (¾2´/¾
2): Their dependence on ¾2´; however, vanishes as T tends to in…nity,

and for the values of T that we consider here, the e¤ect of changing ¾2´ on

the results turned out to be small (as can be seen from Tables A1-A4 in the

Appendix, which contain the results for ¾2´ = 0:2 and 1).

In Table 3 we calculate and subtract from the value of ® the asymptotic

biases of the estimates, using the theoretical results in Section 3 (RML is not

reported because it has no asymptotic bias). A comparison of those …gures

with the Monte Carlo medians in Tables 1 and 2, reveals that the asymptotic

biases provide a very accurate approximation to the …nite sample median

biases of all the estimators in our experiments. It is interesting to notice

that the bias of the GMM estimator is always smaller than the WG bias

(even in a squared panel with T o = 50 and N = 50); and that the bias of
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LIML is in turn smaller than the GMM bias. It is also noticeable that the

GMM bias changes with N , and the LIML bias changes with both N and T o

as expected. The tables also provide an assessment of the CIV bias. Notice

that even with T o = 10 the biases of the CIV estimator are substantial. In

fact, except for ® = 0:2 and 0:5 with T o = 10 and N = 100, they are always

larger than the WG bias! Finally, as expected, RML is virtually median

unbiased in all experiments.

Turning to dispersion, LIML always has a larger interquartile range than

GMM, but the di¤erence between the two is very small (although less so

with ® = 0:8 and N = 50). WG has the smallest interquartile range. The

di¤erences with GMM, LIML and RML are noticeable when T o = 10, but

become small with T o = 25 or 50. The large T asymptotic interquartile

range (that is, 1:349[(1¡ ®2)=NT ]1=2) does not approximate well the GMM

or LIML interquartile ranges for T o = 10, but becomes a reasonable approxi-

mation when T o = 25 or 50, specially for the smaller values of ®: Concerning

CIV, this estimator always has the largest dispersion, which suggests that

in addition to biases there are substantial e¢ciency loses in using the crude

GMM estimator.

Finally, concerning median absolute errors, RML is the estimator that

performs best in all the experiments. Among the others, LIML is always the

estimator with the smallest median absolute error in the experiments with

¾2´ = 0 (Tables 1 and 2), followed by GMM, WG and CIV, except for three

cases in which the mae of CIV is smaller than that of WG. Nevertheless,

the ranking is less obvious in the experiments with ¾2´ > 0: When N = 100;

GMM outperforms LIML in terms of mae on three occasions (Tables A1 and
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A2), and with N = 50; T 0 = 50; ¾2´ = 1; WG has the smallest mae followed

by GMM, LIML and CIV (Table A4).

5 Conclusions

In this paper we show that in autoregressive panel data models, the GMM

and LIML estimators that use all the available lags at each period as in-

struments are consistent and asymptotically e¢cient when both N and T

tend to in…nity. They are asymptotically e¢cient in the sense of attaining

the same asymptotic variance as the covariance estimator as T ! 1: In

addition, we establish that when T=N tends to a positive constant the WG,

GMM and LIML estimators are asymptotically biased with negative asymp-

totic biases of order T;N , and (2N ¡ T ), respectively. When T=N ! 0 the

…xed T results for GMM and LIML remain valid. Conversely, the asymptotic

bias in the WG estimator only disappears when N=T ! 0. We also show

that the crude GMM estimator that neglects the autocorrelation in the …rst

di¤erenced errors is inconsistent as T=N ! c > 0, despite being consistent

for …xed T . Finally, we consider a random e¤ects MLE which leaves the

mean and variance of initial conditions unrestricted but enforces time series

homoskedasticity; this estimator has no asymptotic bias because it does not

entail incidental parameters in the N or T dimensions, and it becomes ro-

bust to heteroskedasticity as T tends to in…nity. The results of some Monte

Carlo simulations for data with T o = 10; 25; 50 and N = 50; 100 suggest

that the asymptotic approximations are a reliable guidance for the sampling

distributions of the estimators.

Our results highlight the importance of understanding the properties of
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panel data estimators as the time series information accumulates even for

micropanels with moderate values of T : In a …xed T framework, GMM and

LIML are asymptotically equivalent, but as T increases LIML exhibits a

smaller asymptotic bias than GMM. Moreover, for …xed T the IV estimators

in orthogonal-deviations and …rst-di¤erences are both consistent, whereas as

T increases the former remains consistent but the latter is inconsistent.

In future work we plan to extend the current results in three directions.

Firstly, we would like to relax the normality and homoskedasticity assump-

tions. A second natural extension is to study the properties of “two-step”

GMM estimators. These estimators use weighting matrices that remain con-

sistent estimates of the covariance of the moments under heteroskedasticity.

Finally, we plan to consider the properties of estimators that allow for time

dummies when T is not …xed.
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A Appendix

Lemma 1

Proof of (16): Firstly, note that

E(x¤
0
v¤) = E(

NX

i=1

x
0
iQTvi) = NE(x

0
iQTvi): (A1)

Next, since E(x
0
ivi) = TE(yit¡1vit) = 0, we have

E(x
0
iQTvi) = E(x

0
ivi)¡

1

T
¶
0
TE(vix

0
i)¶T = ¡¾

2

T
¶
0
TCT ¶T (A2)

where E(vix
0
i) = ¾

2CT . Notice that the (t; s)-th element of CT is ¾2®(s¡t¡1)

for t < s, and zero otherwise. Adding up the elements of this matrix the

results follows.

Proof of (17): Due to cross-sectional independence

V ar

Ã
x¤

0
v¤

(NT )1=2

!
=
1

T
V ar(x

0
iQTvi): (A3)

Moreover, due to joint normality of xi and vi

V ar(x
0
iQTvi) = tr[QTE(xix

0
i)QTE(viv

0
i)] + tr[QTE(xiv

0
i)QTE(xiv

0
i)]; (A4)

but since E(viv
0
i) = ¾

2IT , the …rst term simpli…es and we have

V ar(x
0
iQTvi) = ¾

2E(x
0
iQTxi) + ¾

4tr(QTCTQTCT ): (A5)

As for the second term, it equals

tr(QTCTQTCT ) = tr(CTCT )¡
2

T
¶
0
T (CTCT )¶T +

1

T 2
(¶
0
TCT ¶T )

2 (A6)

Noticing that tr(CTCT ) = 0 and adding up the elements of CTCT , the

second term turns out to be o(T ). Therefore, we are only left with the …rst
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term, which can be written as

E(x
0
iQTxi) = E(w

0
iwi)¡

1

T
¶
0
TE(wiw

0
i)¶T (A7)

where wi is a pure AR process with elements wit = yit ¡ ´i=(1¡ ®): Thus

E(x
0
iQTxi) = T

¾2

(1¡ ®2) ¡ 1

T

¾2

(1¡ ®2)¶
0
TVT ¶T : (A8)

Since ¶
0
TVT ¶T=T ! (1 + ®)=(1¡ ®), it follows that

1

T
V ar(x

0
iQTvi) =

¾2

T
E(x

0
iQTxi) + o(1) ! ¾4

(1¡ ®2) : (A9)

Proof of (18): Notice that we have already established that

E

Ã
x¤

0
x¤

NT

!
=
1

T
E(x

0
iQTxi)! ¾2

(1¡ ®2) (A10)

We now establish convergence in probability by proving that the variance of

x¤
0
x¤=(NT ) tends to zero as T ! 1.

We have that

V ar

Ã
x¤

0
x¤

NT

!
=

1

NT 2
V ar(x

0
iQTxi) (A11)

and due to normality of xi

V ar(x
0
iQTxi) = 2tr[QTE(wiw

0
i)QTE(wiw

0
i)] =

2¾4

(1¡ ®2)2 tr(QTVTQTVT )

=
2¾4

(1¡ ®2)2 [tr(VTVT )¡
2

T
¶
0
T (VTVT )¶T +

1

T 2
(¶
0
TVT ¶T )

2]

(A12)

Direct evaluation shows that these terms are o(T 2). For example, we have

tr(VTVT ) = T
(1 + ®2)

(1¡ ®2) ¡ 2®2(1¡ ®2T )
(1¡ ®2)2 (A13)
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Therefore, as T ! 1 regardless of whether N is …xed or not

1

T 2
V ar(x

0
iQTxi)! 0 (A14)

Lemma 2

Proof of (24): Letting Mt = Zt(Z
0
tZt)

¡1Z
0
t we have

E(x¤
0
Mv¤) =

T¡1X

t=1

E(x¤
0
t Mtv

¤
t ) =

T¡1X

t=1

E
n
tr[MtEt(v

¤
t x
¤0
t )]

o
(A15)

where Et(:) denotes an expectation conditional on Zt. Since Et(v¤t ) = 0,

Et(v
¤
t x
¤0
t ) is the conditional covariance between v¤t and x¤t ; which due to joint

normality of v¤t , x
¤
t ; and Zt does not depend on Zt: Therefore, Et(v¤t x

¤0
t ) =

E(v¤t x
¤0
t ): Moreover, by cross-sectional independence

E(v¤t x
¤0
t ) = E(v

¤
itx

¤
it)IN : (A16)

Hence, using the fact that tr(Mt) = t, we have

E(x¤
0
Mv¤) =

T¡1X

t=1

tE(v¤itx
¤
it) =

T¡1X

t=1

t a
0
tE(vix

0
i)at = tr

"
E(vix

0
i)
T¡1X

t=1

t ata
0
t

#

(A17)

where at is the t-th row of the (T ¡ 1) £ T orthogonal deviations operator

A. By direct calculation it can be shown that

T¡1X

t=1

t ata
0
t =

TX

s=2

HsQsH
0
s (A18)

where Hs is a selection matrix of order T £ s given by Hs = (0 : Is)
0
: Using

this result we have

E(x¤
0
Mv¤) =

TX

t=2

E(x
0
iHtQtH

0
tvi) (A19)
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Notice that H
0
tvi = (vi(T¡t+1); :::; viT )

0
: Thus, using (16) and (A1) it turns out

that

E(x
0
iHtQtH

0
tvi) = ¡ ¾2

(1¡ ®)

"
1¡ 1

t

Ã
1¡ ®t
1¡ ®

!#
(A20)

Therefore,

E(x¤
0
Mv¤) = ¡ ¾2

(1¡ ®)
TX

t=2

"
1¡ 1

t

Ã
1¡ ®t
1¡ ®

!#
= ¡T ¾2

(1¡ ®)

"
1¡ 1

T (1¡ ®)
TX

t=1

(1¡ ®t)
t

#
:

(A21)

Proof of (25): We have

V ar

Ã
x¤

0
Mv¤

(NT )1=2

!
=

1

NT

T¡1X

t=1

V ar(x¤
0
t Mtv

¤
t ) +

1

NT

X

t6=s
Cov(x¤

0
t Mtv

¤
t ; x

¤
sMsv

¤
s)

(A22)

We …rst consider a variance term. Given the variance decomposition

V ar(x¤tMtv
¤
t ) = V ar[Et(x

¤0
t Mtv

¤
t )] + E[V art(x

¤0
t Mtv

¤
t )]; (A23)

from the proof of (24) Et(x¤
0
t Mtv

¤
t ) does not depend on Zt and therefore the

…rst term on the rhs of (A23) vanishes.

Next, since conditional on Zt; x¤t and v¤t are jointly normal, Et(v¤t ) = 0;

and Mt can be held constant given Zt

V art(x
¤0
t Mtv

¤
t ) = tr[MtEt(x

¤
tx
¤0
t )MtEt(v

¤
t v
¤0
t )] + tr[MtEt(x

¤
tv
¤0
t )MtEt(x

¤
t v
¤0
t )]

(A24)

From the proof of (24), Et(x¤tv
¤0
t ) = E(x

¤
itv

¤
it)IN; and also Et(v¤t v

¤0
t ) = ¾

2IN :

Therefore

V art(x
¤0
t Mtv

¤
t ) = ¾

2tr[MtEt(x
¤
tx
¤0
t )] + [E(x

¤
itv

¤
it)]

2t (A25)

Let us now consider the linear projections

x¤t = Zt¼t + "t (t = 1; :::; T ¡ 1) (A26)
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Due to joint normality of x¤t and Zt

Et(x
¤
tx
¤0
t ) = Zt¼t¼

0
tZ

0
t + ¾

2
"tIN (A27)

where

¾2"t = E(x
¤2
it )¡ E(x¤itz

0
it)[E(zitz

0
it)]

¡1E(zitx
¤
it) (A28)

Therefore,

V art(x
¤0
t Mtv

¤
t ) = ¾

2¼
0
t(Z

0
tZt)¼t + ¾

2¾2"tt+ [E(x
¤
itv

¤
it)]

2t (A29)

and

V ar(x¤
0
t Mtv

¤
t ) = N¾

2E(x¤itz
0
it)[E(zitz

0
it)]

¡1E(zitx
¤
it) + ¾

2¾2"tt+ [E(x
¤
itv

¤
it)]

2t:

(A30)

We turn to consider a covariance term. Assuming that t > s and given the

variance decomposition

Cov(x¤
0
t Mtv

¤
t ; x

0
sMsv

¤
s) = Cov[Et(x

¤0
t Mtv

¤
t ); Et(x

¤0
s Msv

¤
s)] +

E[Covt(x
¤0
t Mtv

¤
t ; x

¤0
s Msv

¤
s)] (A31)

As before, since Et(x¤
0
t Mtv

¤
t ) does not depend on Zt, the …rst term on the rhs

vanishes.

Moreover, due to conditional normality and the fact that Et(v¤t ) = 0

Covt(x
¤0
t Mtv

¤
t ; x

¤0
s Msv

¤
s) = tr[MtEt(x

¤
tx
¤0
s )MsEt(v

¤
sv
¤0
t )] +

tr[MtEt(x
¤
t v
¤0
s )MsEt(x

¤
sv
¤0
t )] (A32)

Since Et(v¤sv
¤0
t ) = E(v

¤
isv

¤
it)IN = 0, the …rst of the two terms vanishes. More-

over, Et(x¤sv
¤0
t ) = E(x

¤
isv

¤
it)IN , so we obtain

E
h
Covt(x

¤0
t Mtv

¤
t ; x

¤0
s Msv

¤
s)

i
= E(x¤isv

¤
it)E

n
tr

h
MtEt(x

¤
tv
¤0
s )Ms

io
(A33)

= E(x¤isv
¤
it)E

n
tr

h
Et(Zt¼tv

¤0
s Ms)

i
+ tr

h
Et("tv

¤0
s )MsMt

io
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Finally,

Cov(x¤
0
t Mtv

¤
t ; x

¤0
s Msv

¤
s) = sE(x

¤
isv

¤
it)E(x

¤
itv

¤
is) (A34)

given that tr(MsMt) = s; Et("tv
0
s) = E("itvis)IN ; andEs(Zt¼tv¤

0
s ) = E(z

0
it¼tv

¤
is)IN :

Substituting (A30) and (A34) into (A22) we obtain

V ar

Ã
x¤

0
Mv¤

(NT )1=2

!
=
¾2

T

T¡1X

t=1

E(x¤itz
0
it)[E(zitz

0
it)]

¡1E(zitx
¤
it) +R

o
t (A35)

where

Rot =
¾2

NT

T¡1X

t=1

t¾2"t +
1

NT

T¡1X

t=1

tr
h
K

0
tE(x

¤
i v
¤0
i )KtK

0
tE(x

¤
i v
¤0
i )Kt

i
(A36)

where Kt is a selection matrix of order (T ¡ 1)£ t given by Kt = (0 : It)
0
.

After some messy algebra we …nd that

T¡1X

t=1

t¾2"t = O(T log T ) (A37)

and therefore the …rst term of Rot is o(1) provided (logT )=N ! 0. The

second term of Rot can be written as

1

NT

TX

t=2

tr
h
(HtQtH

0
t)E(xiv

0
i)(HtQtH

0
t)E(xiv

0
i)

i
(A38)

taking into account that in fact A
0
KtK

0
tA = Ht+1Qt+1H

0
t+1: Hence this term

contains a sum of terms of the type given in (A6) above which also turns out

to be o(1). Therefore, Rot = o(1), what establishes the …rst part of (25).

Concerning the leading term of (A35), after some algebra it can be seen

to take the following expression:

¾2

T

T¡1X

t=1

E(x¤itz
0
it)

h
E(zitz

0
it)

i¡1
E(zitx

¤
it) =

¾4

(1¡ ®2)
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+
1

T

¾4

(1¡ ®2)

"µ
®

1¡ ®
¶2 Ã

TX

t=2

(1¡ ®t¡1)2
t(t¡ 1)

!
¡

Ã
TX

t=1

1

t

!
¡ 2®

(1¡ ®)

Ã
TX

t=2

(1¡ ®t¡1)
t

!#

¡ 1
T

¾4

(1¡ ®2)¸
TX

t=2

Ã"
t¡ 1 +

µ
®

1¡ ®
¶2 (1¡ ®t¡1)2

(t¡ 1) ¡ 2®(1¡ ®t¡2)
1¡ ®

#

(1 + ®)

t(1¡ ®+ ¸[2®+ (T ¡ t+ 1)(1¡ ®)])

!
(A39)

where ¸ = ¾2´=¾
2: Since the last two terms are o(1) the proof to the second

part follows.

Proof of (26): We have

Cov

Ã
x¤

0
v¤

(NT )1=2
;
x¤

0
Mv¤

(NT )1=2

!
=

1

NT

T¡1X

t=1

T¡1X

s=1

E(x¤
0
t v

¤
t x
¤0
s Msv

¤
s)¡

1

NT
E(x¤

0
v¤)E(x¤

0
Mv¤)

(A40)

Conditional on Zs; due to conditional normality and the fact thatEs(v¤s) =

0 we have

Es(x
¤0
t v

¤
t x
¤0
sMsv

¤
s) = tr[Es(x

¤
t v
¤0
t )]tr[Es(x

¤
sv
¤0
s )Ms]

+tr[Es(x
¤
sx
¤0
t )Es(v

¤
t v
¤0
s )Ms] + tr[Es(x

¤
sv
¤0
t )Es(x

¤
t v
¤0
s )Ms] (A41)

Note that the expected value of the …rst term is:

Eftr[Es(x¤t v¤
0
t )]tr[Es(x

¤
sv
¤0
s )Ms]g = sE(x¤isv¤is)E(x¤itv¤it) (A42)

which will cancel with the last term in (A40).

Since for t 6= s Es(v¤t v
¤0
s ) = E(v

¤
itv

¤
is)IN ; the second term vanishes except

when t = s in which case its expected value is given by

¾2¾2"tt+N¾
2E(x¤itz

0
it)[E(zitz

0
it)]

¡1E(zitx
¤
it)

For the third term we obtain:

Eftr[Es(x¤sv¤
0
t )Es(x

¤
t v
¤0
s )Ms]g =

(
sE(x¤itv

¤
is)E(x

¤
isv

¤
it) if t ¸ s

sE(x¤itv
¤
is)E(v

¤
it"is) +NE(x

¤
itv

¤
is)E(¼

0
szisv

¤
it) if t < s

(A43)
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Therefore, collecting terms, the covariance is given by:

Cov

Ã
x¤

0
v¤

(NT )1=2
;
x¤

0
Mv¤

(NT )1=2

!
=
¾2

T

T¡1X

t=1

E(x¤itz
0
it)[E(zitz

0
it)]

¡1E(zitx
¤
it)

+
¾2

NT

T¡1X

t=1

¾2"tt+
1

NT

T¡1X

t=1

T¡1X

s=1

sE(x¤itv
¤
is)E(x

¤
isv

¤
it) +

1

NT

T¡2X

t=1

T¡1X

s=t+1

(N ¡ s)E(x¤itv¤is)E(¼
0
szisv

¤
it) (A44)

An expression for the leading term of (A44) is given in (A39), and it is

seen to converge to ¾4=(1 ¡ ®2): Moreover, according to (A37), the second

term is o(1). Thus, it remains to show that the other two terms in (A44)

tend to zero as N and T tend to in…nity. We begin by considering the third

term in (A44)

1

NT

T¡1X

t=1

T¡1X

s=1

sE(x¤itv
¤
is)E(x

¤
isv

¤
it) =

1

NT

T¡1X

t=1

T¡1X

s=1

s a
0
tE(xiv

0
i)asa

0
sE(xiv

0
i)at

=
1

NT
tr

"Ã
T¡1X

t=1

ata
0
t

!
E(xiv

0
i)

Ã
T¡1X

s=1

s asa
0
s

!
E(xiv

0
i)

#

=
1

NT

TX

s=2

tr[QE(xiv
0
i)HsQsH

0
sE(xiv

0
i)]; (A45)

since Q =
T¡1P
t=1
ata

0
t and, in view of (A18),

T¡1P
s=1
s asa

0
s =

TP
s=2
HsQsH

0
s:

Now letting vi[s] = H
0
svi and xi[s] = H

0
sxi, we have

1

NT

TX

s=2

tr[QE(xiv
0
i)HsQsH

0
sE(xiv

0
i)] =

1

NT

TX

s=2

tr[E(xiv
0
i[s])E(xi[s]v

0
i)]

¡ 1

NT

TX

s=2

1

T
¶
0
TE(xiv

0
i[s])E(xi[s]v

0
i)¶T ¡ 1

NT

TX

s=2

1

s
¶
0
sE(xi[s]v

0
i)E(xiv

0
i[s])¶s

+
1

NT

TX

s=2

1

sT
[¶
0
TE(xiv

0
i[s])¶T ][¶

0
sE(xi[s]v

0
i)¶T ] (A46)
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Notice that tr[E(xiv
0
i[s])E(xi[s]v

0
i)] = 0. Moreover, direct calculation of

the remaining three terms reveals that they are o(1).

We turn to consider the fourth term to the right of (A44). Taking into

account that E(¼
0
szisv

¤
it) = 0 for s · t, after some manipulations, we obtain:

1

NT

T¡1X

t=1

T¡1X

s=1

(N¡s)E(x¤itv¤is)E(¼0szisv¤it) =
1

NT

T¡1X

s=1

(N¡s)tr[QE(xiv¤is)E(¼0szisv0i)] =

1

NT

T¡1X

s=1

(N ¡ s)E(¼0szisv0i)E(xiv¤is)¡
1

NT 2

T¡1X

s=1

(N ¡ s)¶0TE(xiv¤is)E(¼0szisv0i)¶T
(A47)

Direct evaluation shows that the …rst term to the right of (A47) is zero.

On the other hand, after some algebra, the second term of (A47) can be seen

to take the following expression :

1

NT 2

T¡1X

s=1

(N ¡ s)¶0TE(xiv¤is)E(¼0szisv0i)¶T =

¾4

NT 2

T¡1X

s=1

(N ¡ s)
µ

T ¡ s
T ¡ s+ 1

¶ Ã
1¡ ®(1¡ ®T¡s)

(1¡ ®)(T ¡ s)

!

"Ã
1¡ ®T¡s

(1¡ ®)2(T ¡ s)

!
¡

Ã
®T¡s

1¡ ®

!# "Ã
1¡ ®s¡1
1¡ ®

!
¡

Ã
¸(s¡ 1)

(1¡ ®) + ¸ (2®+ s (1¡ ®))

!#

(A48)

This expression involves products of terms which tend to zero as N and

T tend to in…nity from which the proof of (26) follows.

Proof of (27): We shall rely on the identity:

1

NT
(x¤

0
Mx¤) =

1

NT
(x¤

0
x¤)¡R1NT (A49)
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where

R1NT =
1

NT

T¡1X

t=1

x¤
0
t Ptx

¤
t =

1

NT

T¡1X

t=1

"0tPt"t

and Pt denotes the matrix (I ¡Mt). Notice that the second equality results

from substituting the linear projections given by (A26).

We know from (18) that the probability limit of the …rst term on the rhs

of (A49) is ¾2=(1¡ ®2). We now show that R1NT is op(1). Firstly, we have

E(R1NT ) =
1

NT

T¡1X

t=1

E ftr[PtEt("t"0t)]g (A50)

Since Et("t) = 0; Et("t"
0
t) is the conditional variance of "t, which due to the

joint normality of "t and Zt does not depend on Zt. Moreover, by cross-

sectional independence Et("t"
0
t) = ¾2"tIN and using the fact that tr(Pt) =

N ¡ t, we obtain

E(R1NT ) =
1

T

T¡1X

t=1

¾2"t ¡
1

NT

T¡1X

t=1

¾2"tt (A51)

We know from the proof of (25) that each term to the right of (A50) converges

to zero as N and T tend to in…nity provided that (log T )=N ! 0. Next, we

consider the variance of R1NT

V ar(R1NT ) =
1

N2T 2

T¡1X

t=1

V ar("0tPt"t) +
1

N2T 2
X

t6=s
Cov("0tPt"t; "

0
sPs"s) (A52)

We …rst consider a variance term. Using the variance decomposition

V ar("0tPt"t) = V ar[Et("
0
tPt"t)] + E[V art("

0
tPt"t)] (A53)

since Et("0tPt"t) does not depend on Zt, the …rst term on the rhs vanishes.

Next, since conditional on Zt, "t is normal, Et("t) = 0, and Pt can be held

constant given Zt

V art("
0
tPt"t) = 2tr[PtEt("t"

0
t)PtEt("t"

0
t)] = 2¾

4
"t(N ¡ t) (A54)
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Therefore,
1

N2T 2

T¡1X

t=1

V ar("
0
tPt"t) =

2

N2T 2

T¡1X

t=1

¾4"t(N ¡ t) (A55)

We turn to consider a covariance term. Assuming t > s and given the

variance decomposition

Cov("0tPt"t; "
0
sPs"s) = Cov[Et("

0
tPt"t); Et("

0
sPs"s)] + E[Covt("

0
tPt"t; "

0
sPs"s)];

(A56)

as before, since Et("0tPt"t) does not depend on Zt, the …rst term on the rhs

vanishes. Moreover, due to conditional normality and the fact that Et("t) = 0

Covt("
0
tPt"t; "

0
sPs"s) = 2tr[PtEt("t"

0
s)PsEt("t"

0
s)] (A57)

Since Et("t"0s) = E("it"is)IN and given that tr(PtPs) = N ¡ t, we obtain

Covt("
0
tPt"t; "

0
sPs"s) = 2E

2("it"is)(N ¡ t), for t > s (A58)

Therefore,

1

N2T 2
X

t 6=s
Cov("0tPt"t; "

0
sPs"s) =

4

N2T 2

T¡2X

s=1

T¡1X

t=s+1

E2("it"is)(N ¡ t) (A59)

and

V ar(R1NT ) =
2

N2T 2

T¡1X

t=1

¾4"t(N ¡ t)+ 4

N2T 2

T¡2X

s=1

T¡1X

t=s+1

E2("it"is)(N ¡ t) (A60)

After some tedious algebra it can be found that the two terms in (A60) are

O[N2T 2=(N ¡T )] and OfN2T 2=[(N ¡T ) log T ]g, respectively, and therefore

both converge to zero as N and T tend to in…nity. Hence, R1NT converges to

zero in probability and the result follows.

Proof of (28): We have

E(v¤
0
Mv¤) =

T¡1X

t=1

E(v¤
0
t Mtv

¤
t ) =

T¡1X

t=1

Eftr[MtEt(v
¤
t v
¤0
t )]g (A61)
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SinceEt(v¤t ) = 0, Et(v
¤
t v
¤0
t ) is the conditional variance, which due to joint nor-

mality of v¤t and Zt does not depend on Zt. Therefore, Et(v¤t v
¤0
t ) = E(v

¤
t v
¤0
t ) =

¾2IN . Hence, using the fact that tr(Mt) = t, we obtain

E

Ã
v¤

0
Mv¤

NT

!
=
¾2

NT

T¡1X

t=1

t (A62)

Notice that this term converges to c=2 as N and T tend to in…nity and

T=N ! c, where 0 · c < 1. Next, we establish convergence in probability

by proving that the variance of (v¤
0
Mv¤)=NT converges to zero. We have

that

V ar

Ã
v¤

0
Mv¤

NT

!
=

1

N2T 2

T¡1X

t=1

V ar(v¤
0
t Mtv

¤
t )+

1

N2T 2
X

t6=s
Cov(v¤

0
t Mtv

¤
t ; v

¤0
s Msv

¤
s)

(A63)

We …rst consider a variance term. Given the variance decomposition

V ar(v¤
0
t Mtv

¤
t ) = V ar[Et(v

¤0
t Mtv

¤
t )] + E[V art(v

¤0
t Mtv

¤
t )];

since Et(v¤
0
t Mtv

¤
t ) does not depend on Zt, the …rst term vanishes. Next, since

conditional on Zt, v¤t is normal with zero mean, we have

V art(v
¤0
t Mtv

¤
t ) = 2tr[MtEt(v

¤
t v
¤0
t )MtEt(v

¤
t v
¤0
t )] = 2¾

4t (A64)

Therefore,
1

N2T 2

T¡1X

t=1

V ar(v¤
0
t Mtv

¤
t ) =

2¾4

N2T 2

T¡1X

t=1

t (A65)

We turn to consider a covariance term. Assuming that t > s and given the

covariance decomposition

Cov(v¤
0
t Mtv

¤
t ; v

¤0
s Msv

¤
s) = Cov[Et(v

¤0
t Mtv

¤
t ); Et(v

¤0
s Msv

¤
s)]+

E[Covt(v
¤0
t Mtv

¤
t ; v

¤0
s Msv

¤
s)]; (A66)
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as before, since Et(v¤
0
t Mtv

¤
t ) does not depend on Zt, the …rst term on the rhs

vanishes. Moreover, due to conditional normality and the fact thatEt(v¤t ) = 0

Cov(v¤
0
t Mtv

¤
t ; v

¤0
s Msv

¤
s) = 2tr[MtEt(v

¤
t v
¤0
s )MsEt(v

¤
sv
¤0
t )] (A67)

Since Et(v¤t v
¤0
s ) = E(v

¤
t v
¤0
s ) = 0 for t 6= s, this term is equal to zero. Thus,

we obtain

V ar

Ã
v¤

0
Mv¤

NT

!
=

2¾4

N2T 2

T¡1X

t=1

t (A68)

This term converges to zero as N and T tend to in…nity and T=N ! c, where

0 · c < 1, from which the result follows.

Theorem 4

Proof of (37): We have

E(¢x
0
M¢v) =

T¡1X

t=1

E(¢x
0
t+1Mt¢vt+1) =

T¡1X

t=1

E
n
tr[MtEt(¢vt+1¢x

0
t+1)]

o

(A69)

where ¢xt+1 ´ ¢yt and ¢vt+1 are (N £ 1) vectors whose i¡ th elements are

¢yit and ¢vit+1 respectively.

Since Et(¢vt+1) = 0, Et(¢vt+1¢x
0
t+1) is the conditional covariance be-

tween ¢vt+1 and ¢xt+1, which due to joint normality of ¢vt+1; ¢xt+1, and

Zt does not depend on Zt. Moreover, by cross-sectional independence and

using the fact that tr(Mt) = t, we have

E

Ã
¢x

0
M¢v

NT

!
=

1

NT

T¡1X

t=1

E(¢vit+1¢yit)t =
¡¾2
NT

T¡1X

t=1

t (A70)

Therefore, this term converges to ¡¾2(c=2) as N and T tend to in…nity,

provided that T=N ! c, where 0 · c < 1. We now establish convergence
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in probability by proving that the variance of (¢x
0
M¢v)=NT tends to zero

given our asymptotics. Thus, we have

V ar

Ã
¢x

0
M¢v

NT

!
=

1

N2T 2

T¡1X

t=1

V ar(¢x
0
t+1Mt¢vt+1)+

1

N2T 2
X

t6=s
Cov(¢x

0
t+1Mt¢vt+1;¢x

0
s+1Ms¢vs+1) (A71)

We …rst consider a variance term. Given the variance decomposition

V ar(¢x
0
t+1Mt¢vt+1) = V ar[Et(¢x

0
t+1Mt¢vt+1)] + E[V art(¢x

0
t+1Mt¢vt+1)]

(A72)

Since Et(¢x
0
t+1Mt¢vt+1) does not depend on Zt, the …rst term on the rhs

of (A72) vanishes. Moreover, since conditional on Zt, ¢xt+1 and ¢vt+1 are

jointly normal, Et(¢vt+1) = 0, and Mt can be held constant given Zt

V art(¢x
0
t+1Mt¢vt+1) = tr[MtEt(¢xt+1¢v

0
t+1)MtEt(¢xt+1¢v

0
t+1)]+

tr[MtEt(¢xt+1¢x
0
t+1)MtEt(¢vt+1¢v

0
t+1)] (A73)

By cross-sectional independenceEt(¢xt+1¢v
0
t+1) = ¡¾2IN andEt(¢vt+1¢v

0
t+1) =

2¾2IN , so that

V art(¢x
0
t+1Mt¢vt+1) = ¾

4t+ 2¾2tr[MtEt(¢xt+1¢x
0
t+1)] (A74)

Let us now consider the linear projections

¢xt+1 = Zt¼dt + »t (t = 1; :::; T ¡ 1) (A75)

Due to joint normality of ¢xt+1 and Zt

Et(¢xt+1¢x
0
t+1) = Zt¼dt¼

0
dtZ

0
t + ¾

2
»tIN (A76)
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where

¾2»t = E[(¢xit+1)
2]¡E(¢xit+1z

0
it)[E(zitz

0
it)]

¡1E(¢xit+1zit) (A77)

Hence, by inserting (A76) into (A74), we have

V art(¢x
0
t+1Mt¢vt+1) = ¾

4t+ 2¾2¾2»tt+ 2¾
2¼

0
dtZtZ

0
t¼dt (A78)

and

V ar(¢x
0
t+1Mt¢vt+1) = ¾

4t+2¾2¾2»tt+2¾
2NE(¢xit+1z

0
it)[E(zitz

0
it)]

¡1E(¢xit+1zit)

(A79)

We turn to consider a covariance term. Assuming that s > t and given the

variance decomposition

Cov(¢x
0
t+1Mt¢vt+1;¢x

0
s+1Ms¢vs+1) = Cov[Es(¢x

0
t+1Mt¢vt+1); Es(¢x

0
s+1Ms¢vs+1)]+

E[Covs(¢x
0
t+1Mt¢vt+1;¢x

0
s+1Ms¢vs+1)]; (A80)

as before, since Es(¢x
0
s+1Ms¢vs+1) does not depend on Zs, the …rst term on

the rhs vanishes. Moreover, due to conditional normality and the fact that

Es(¢vs+1) = 0

Covs(¢x
0
t+1Mt¢vt+1;¢x

0
s+1Ms¢vs+1) = tr[MtEs(¢xt+1¢x

0
s+1)MsEs(¢vs+1¢v

0
t+1)]+

tr[MtEs(¢xt+1¢v
0
s+1)MsEs(¢xs+1¢v

0
t+1)] (A81)

Firstly, Es(¢vs+1¢v
0
t+1) = E(¢vis+1¢vit+1)IN by cross-sectional indepen-

dence, and E(¢vis+1¢vit+1) = ¡¾2 if s = t+1 and zero otherwise. Moreover,

Es(¢xt+1v
0
s+1) = E(¢yit¢vis+1)IN = 0. Therefore, the covariance terms are
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equal to zero unless s = t+1. In this case, by inserting the linear projections

of ¢xt+1 and ¢xt+2 into (A81) and after some manipulations, we have

Cov(¢x
0
t+1Mt¢vt+1;¢x

0
t+2Mt+1¢vt+1) = ¡¾2[N¼0dtE(zitz

0
it+1)¼dt+1+tE(»itz

0
it+1¼dt+1)]

(A82)

By collecting the terms in (A79) and (A82) we obtain the following expression

V ar

Ã
¢x

0
M¢v

NT

!
=

¾4

N2T 2

T¡1X

t=1

t+
2¾2

N2T 2

T¡1X

t=1

¾2»tt+

2¾2

NT 2

T¡1X

t=1

E(¢xit+1z
0
it)[E(zitz

0
it)]

¡1E(¢xit+1zit)¡
2¾2

NT 2

T¡2X

t=1

E(¢xit+1z
0
it+1¼dt+1)

¡ 2¾2

N2T 2

T¡2X

t=1

(t¡N)E(»itz
0
it+1¼dt+1) (A83)

Clearly, the …rst term converges to zero as N and T tend to in…nity. More-

over, it can be shown that

2¾2

N2T 2

T¡1X

t=1

¾2»tt =
2¾4

N2T 2

T¡1X

t=1

(
t+

¸(1¡ ®)t
(1¡ ®) + ¸[2®+ t(1¡ ®)]

)
(A84)

2¾2

N2T 2

T¡1X

t=1

E(¢xit+1z
0
it)[E(zitz

0
it)]

¡1E(¢xit+1zit) =
2¾4

N2T 2

µ
1¡ ®
1 + ®

¶
T ¡ 1
N2T 2

¡

2¾4

N2T 2

T¡1X

t=1

¸(1¡ ®)
1¡ ®+ ¸[2®+ t(1¡ ®)] (A85)

¡ 2¾2

NT 2

T¡2X

t=1

E(¢xit+1z
0
it+1¼dt+1) =

2¾4

NT 2

µ
1¡ ®
1 + ®

¶
(T ¡ 2) (A86)

Notice that the second, the third and the fourth terms on the rhs of (A83)

are o(1). Finally, the last term on the rhs of (A83) turns out to be

¡ 2¾2

N2T 2

T¡2X

t=1

(t¡N)E(»itz
0
it+1¼dt+1) =

2¾4(1¡ ®)
N2T 2

"
(T ¡ 2)(T ¡ 1)

2
¡N

#
+
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2¾4(1¡ ®)2
N2T 2

T¡2X

t=1

¸(t¡N)
1¡ ®+ ¸[2®+ t(1¡ ®)]¡

2¾4(1¡ ®)
N2T 2

T¡2X

t=1

¸(t¡N)
1¡ ®+ ¸[2®+ (t+ 1)(1¡ ®)]

Ã
1 + ®¡ ®2
1 + ®

!
¡

2¾4(1¡ ®)2
N2T 2

T¡2X

t=1

(
¸(t¡N)

1¡ ®+ ¸[2®+ (t+ 1)(1¡ ®)]

) (
¸

1¡ ®+ ¸[2®+ t(1¡ ®)]

)

(A87)

Hence, this term contains a sum of terms which are o(1). Therefore, the

variance converges to zero as N and T tend to in…nity, from which the result

follows.

Proof of (38): We shall rely on the identity

1

NT
(¢x

0
M¢x) =

1

NT
(¢x

0
¢x)¡R2NT (A88)

where

R2NT =
1

NT

T¡1X

t=1

¢x0t+1Pt¢xt+1 =
1

NT

T¡1X

t=1

»0tPt»t (A89)

and Pt denotes the matrix (I ¡Mt). Notice that the second equality follows

from substituting the linear projections given by (A75). We now derive the

probability limits of each term on the rhs of (A89). Firstly, we have

E

Ã
T¡1X

t=1

¢x
0
t+1¢xt+1
NT

!
=
1

T
E(¢x

0
i¢xi) (A90)

where ¢xi is the (T ¡1)£1 vector whose t¡th element is ¢xit+1. Therefore,

E

Ã
T¡1X

t=1

¢x
0
t+1¢xt+1
NT

!
=
1

T

T¡1X

t=1

E[(¢xit+1)
2] =

2¾2(T ¡ 1)
(1 + ®)T

(A91)

This term converges to 2¾2=(1 + ®) as N and T tend to in…nity. Due to

cross-sectional independence

V ar

Ã
T¡1X

t=1

¢x
0
t+1¢xt+1
NT

!
=
V ar(¢x

0
i¢xi)

NT 2
(A92)
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Moreover, due to joint normality of ¢xi

V ar(¢x
0
i¢xi) = 2tr[E(¢xi¢x

0
i)E(¢xi¢x

0
i)] (A93)

After some algebra, we …nd that

V ar

Ã
T¡1X

t=1

¢x
0
t+1¢xt+1
NT

!
=

1

NT

4¾2(3 + ®)

(1 + ®)3
¡ 1

NT 2
16¾4

(1 + ®)3

¡ 1

NT 2
4¾4®2(1¡ ®2T¡4)

(1 + ®)4
(A94)

Notice that the variance converges to zero as N and T tend to in…nity.

Therefore, the probabiliy limit of the …rst term on the rhs of (A87) is 2¾2=(1+

®).

We now consider the second term on the rhs of (A88). Firstly, we have

E(R2NT ) =
1

NT

T¡1X

t=1

E ftr[PtEt(»t»0t)]g ; (A95)

since Et(»t) = 0, Et(»t»
0
t) is the conditional variance, which due to joint

normality of »t and Zt does not depend on Zt. Hence, using the fact that

tr(Pt) = N ¡ t;

E(R2NT ) =
1

NT

T¡1X

t=1

¾2»t(N¡t) = ¾2

NT

T¡1X

t=1

(
(N ¡ t) + ¸(1¡ ®)(N ¡ t)

(1¡ ®) + ¸[2®+ t(1¡ ®)]

)

(A96)

Therefore, this term converges to ¾2(1¡ c
2
) as N and T tend to in…nity and

the ratio T=N ! c, where 0 · c < 1. On the other hand, we have

V ar(R1NT ) = V ar

Ã
T¡1X

t=1

»0tPt»t
NT

!
=

1

N2T 2

T¡1X

t=1

V ar(»
0
tPt»t)+

1

N2T 2
X

t6=s
Cov(»

0
tPt»t; »

0
sPs»s) (A97)
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We …rst consider a variance term. Given the variance decomposition

V ar(»
0
tPt»t) = V ar[Et(»

0
tPt»t)] + E[V art(»

0
tPt»t)] (A98)

since Et(»
0
tPt»t) does not depend on Zt, the …rst term on the rhs vanishes.

Moreover, since conditional on Zt, »t is normal, Et(»t) = 0, and Pt can be

held constant given Zt

V art(»
0
tPt»t) = 2tr[PtEt(»t»

0
t)PtEt(»t»

0
t)] = 2¾

4
»t(N ¡ t) (A99)

Therefore,
1

N2T 2

T¡1X

t=1

V ar(»
0
tPt»t) =

2

N2T 2

T¡1X

t=1

¾4»t(N ¡ t) (A100)

We turn to consider a covariance term. Assuming that t > s and given the

variance decomposition

Cov(»
0
tPt»t; »

0
sPs»s) = Cov[Et(»

0
tPt»t); Et(»

0
sPs»s)] + E[Covt(»

0
tPt»t; »

0
sPs»s)]

(A101)

as before, since Et(»
0
tPt»t) does not depend on Zt, the …rst term on the rhs of

(A101) vanishes. Moreover, due to conditional normality and the fact that

Et(»t) = 0

Covt(»
0
tPt»t; »

0
sPs»s) = 2tr[PtEt(»t»

0
s)PsEt(»s»

0
t)] = 0 (A102)

To see this, note that Et(»t»
0
s) = E(»it»is)IN and E(»it»is) is zero for t < s

due to Et(»t) = 0 and the fact that »s is a function of Zt. Therefore,

V ar(R2NT ) = V ar

Ã
T¡1X

t=1

»0tPt»t
NT

!
=

2

N2T 2

T¡1X

t=1

¾4»t(N¡ t) = 2¾4

N2T 2

T¡1X

t=1

(N ¡ t)+

2¾4(1¡ ®)2
N2T 2

T¡1X

t=1

¸2(N ¡ t)
f(1¡ ®) + ¸[2®+ t(1¡ ®)]g2+
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4¾4(1¡ ®)
N2T 2

T¡1X

t=1

(N ¡ t)
(1¡ ®) + ¸[2®+ t(1¡ ®)] (A103)

Hence, this term contains a sum of terms which are o(1) and R2NT converges

in probability to ¾2(1¡ c
2
). Given the probability limit of the leading term

on the rhs of (A88) derived above, the result follows.

Proof of (39): The result follows immediately from (37) and (38).

Random e¤ects maximum likelihood

Expression for log density (40): The model can be written as:

Byi = ®yi0di + ui (A104)

where B is a T £ T matrix given by

B =

0
BBBB@

1 0 ::: 0 0
¡® 1 ::: 0 0
...

...
...

...
0 0 ::: ¡® 1

1
CCCCA

and yi = (yi1; :::; yiT )0, di = (1; 0; :::; 0)0, uit = ´i + vit, and ui = (ui1; :::; uiT )0.

The conditional density of yi given yi0 can be written as

f(yi j yi0) = f(ui j yi0) det(B) (A105)

but det(B) = 1, since B is triangular. Moreover,

f(ui j yi0) = f(ui; u¤i j yi0) det(H) (A106)

where H = (¶T=T;A
0)0 is the triangular transformation matrix that produces

Hui = (ui; u
¤0
i )
0. Therefore, also det(H) = 1.

From conditions A1 and A3, ui » N (0; ¾2(IT + ¸¶T ¶
0
T )) where ¸ = ¾2´=¾

2.

Hence,

Hui » N

"
0; ¾2

Ã
1
T
+ ¸ 0

0 IT¡1

!#
: (A107)
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From A2’ and A3, ´i j yi0 is also normally distributed with E(´i j yi0) =
'yi0 and V ar(´i j yi0) = ¾2´ ¡ '2V ar(yi0), where ' = ±¾2´=V ar(yi0), and

V ar(yi0) = (±
2¾2´ + !

2
oo). Then, the result in (40) follows from noting that

we have:

Hui j yi0 » N

"Ã
'yi0
0

!
;

Ã
!2 0
0 ¾2IT¡1

!#
(A108)

That is, E(ui j yi0) = 'yi0, E(u¤i j yi0) = 0, and !2 = V ar(ui j yi0) =
[¾2´ ¡ '2V ar(yi0)] + ¾2=T .

The zero-mean property of the scoreE[@ ln f(yi1; :::; yiT j yi0)=@(®; '; ¾2; !2)] =
0 can be written as the following “GLS type” orthogonality conditions:

E (x¤0i (y
¤
i ¡ ®x¤i )) = ¡¾

2

!2
E (xi(yi ¡ ®xi ¡ 'yi0)) (A109)

1

!2
E (yi0(yi ¡ ®xi ¡ 'yi0)) = 0 (A110)

E
³
(y¤i ¡ ®x¤i )0(y¤i ¡ ®x¤i )¡ ¾2

´
= 0 (A111)

E
³
(yi ¡ ®xi ¡ 'yi0)2 ¡ !2

´
= 0 (A112)

Note that under assumption A2, (A109) multiplied by N corresponds to

expression (16).

The concentrated joint likelihood as a function of ® and ¸: Under

A1, A2’ and A3, zi(T+1) » N(0;­¤) where

­¤ =

Ã
(±2¾2´ + !

2
oo) ±¾2´¶

0
T

±¾2´¶T ¾2(IT + ¸¶T ¶
0
T )

!
:

Thus, the joint log likelihood of zi(T+1) = (yi0; yi1; :::; yiT )0 is given by:

L(®; ¸; ¾2; ±; !2oo) = ¡N
2
log det(­¤)¡ 1

2

NX

i=1

z0i(T+1)­
¤¡1zi(T+1):
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Concentrating ¾2, ±, and !2oo out of L(®; ¸; ¾2; ±; !2oo), we obtain

L(®; ¸) = ¡NT
2
ln

"
NX

i=1

u0i

Ã
IT ¡ ¸

(1 + ¸T )
¶T ¶

0
T

!
ui

#
¡ N

2
ln(1 + ¸T )

¡N
2
ln(u0S0u) +

N

2
ln(u0u):

This criterion can be used to obtain ML estimates of ® that enforce

¸ ¸ 0. If L(®; ¸) is concentrated further using the MLE of ¸ in the absence

of the inequality constraint, we obtain the estimation criterion (41) which

only depends on ®.

Consistency of the RML: From (41) b®RML is the minimizer of

ln
·
1

NT
(y¤ ¡ ax¤)0(y¤ ¡ ax¤)

¸
+

1

(T ¡ 1) ln
·
1

N
(y ¡ ax)0S0(y ¡ ax)

¸
(A113)

As T ! 1 regardless of the asymptotic behaviour of N , the second

term in (A113) vanishes so that the limiting criterion is the same as the

log limiting criterion for within-groups. Consistency of RML then follows

from the consistency of WG as T ! 1. However, unlike WG, RML is also

consistent when T is …xed and N ! 1 provided conditions (A109)-(A112)

hold (including time series homoskedasticity).

Asymptotic Normality of the RML: The …rst and second derivatives at

a = ® of the concentrated log likelihood:

L(a) = ¡N(T ¡ 1) ln [(y¤ ¡ ax¤)0(y¤ ¡ ax¤)]¡N ln [(y ¡ ax)0S0(y ¡ ax)]
(A114)

are given by

@L(®)

@a
=

Ã
v¤0v¤

N(T ¡ 1)

!¡1
(x¤0v¤) +

Ã
u0S0u

N

!¡1
(x0S0u) (A115)
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Hessian: We show that as both N and T tend to in…nity, regardless of the

relative rate of increase:

1

NT

@2L(®)

@a2
p! ¡ 1

(1¡ ®2) : (A117)

To verify (A117), …rst note that from Lemmae 1 and 3 as T ! 1,

regardless of whether N is …xed or tends to in…nity:

1

NT
(x¤

0
v¤)

p! 0

1

NT
(x¤

0
x¤)

p! ¾2

(1¡ ®2)
v¤0v¤

NT

p! ¾2

Moreover, as both N and T tend to in…nity:

p lim

Ã
u0S0u

N

!
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Ã
u0u
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!
¡
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N

!¡1 Ã
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= ¾2´ ¡
³
E(y2i0)

´¡1 ³
±¾2´
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This is so becauseE(u0u=N) = E(u2i ) = ¾
2
´+(¾

2=T ) ! ¾2´, and V ar(u0u=N) =

N¡1V ar(u2i ) ! 0, since due to normality V ar(u2i ) = 2 [E(u2i )]
2. Similarly,

E(u0y0=N) = E(uiyi0) = E(´iyi0) = ±¾
2
´, and V ar(u0y0=N) = N¡1V ar(uiyi0) !

0, since due to normality V ar(uiyi0) = E(u2i )E(y
2
i0) + [E(uiyi0)]

2.

Using similar arguments we obtain:
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and

p lim

Ã
x0S0u

N

!
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Score: Now the scaled score can be written as

(NT )¡1=2
@L(®)

@a
=
1

¾2
(NT )¡1=2[x¤0v¤ ¡ E(x¤0v¤)] + ¨NT + op(1) (A118)

where

¨NT =

Ã
u0S0u

N

!¡1
(NT )¡1=2(x0S0u) +

1

¾2
(NT )¡1=2E(x¤0v¤): (A119)

Moreover, from (A109) and the fact that ' = E(u0y0)=E(y00y0) we have

1

¾2
E(x¤0v¤) = ¡ 1

!2
[E(x0u)¡ 'E(x0y0)] = ¡ 1

!2
[E(x0u)¡ E(x0y0)E(u0y0)=E(y00y0)] :

(A120)

Hence,

¨NT =
µ
N

T

¶1=2 2
4

Ã
u0S0u

N

!¡1 Ã
x0S0u

N

!
¡ 1

!2

Ã
E(x0u)¡E(x0y0)E(u0y0)=E(y00y0)

N

!3
5 :

(A121)

Note also that (u0S0u=N) ¡ !2 p! 0 as N and T tend to in…nity. Thus,

if N and T tend to in…nity, provided 0 · lim(N=T ) < 1, ¨NT = op(1) and

from result (20) in Theorem 1

(NT )¡1=2
@L(®)

@a
d! N

Ã
0;

1

(1¡ ®2)

!
(A122)

Given (A117) and (A122), the asymptotic normality result

p
NT (b®RML ¡ ®) d! N(0; 1¡ ®2)

follows from Theorem 4.1.3 in Amemiya (1985).
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Table 1
Medians, interquartile ranges, and median absolute errors of the estimators (N = 100)

® = 0:2 ® = 0:5 ® = 0:8
WG GMM LIML CIV RML WG GMM LIML CIV RML WG GMM LIML CIV RML

T o = 10

median 0.065 0.188 0.196 0.139 0.202 0.318 0.481 0.493 0.384 0.500 0.554 0.763 0.792 0.514 0.799
iqr 0.047 0.056 0.057 0.074 0.056 0.048 0.060 0.061 0.083 0.058 0.044 0.069 0.074 0.124 0.073
mae 0.135 0.030 0.029 0.062 0.028 0.182 0.032 0.031 0.116 0.029 0.246 0.046 0.037 0.286 0.036

T o = 25

median 0.149 0.187 0.193 0.048 0.199 0.434 0.483 0.492 0.235 0.500 0.714 0.774 0.790 0.281 0.799
iqr 0.026 0.028 0.029 0.040 0.028 0.025 0.028 0.029 0.045 0.028 0.021 0.027 0.029 0.061 0.024
mae 0.051 0.017 0.015 0.152 0.014 0.065 0.019 0.015 0.265 0.014 0.086 0.025 0.015 0.519 0.012

T o = 50

median 0.175 0.188 0.192 -0.068 0.199 0.468 0.485 0.491 0.077 0.499 0.760 0.779 0.789 0.112 0.799
iqr 0.019 0.019 0.020 0.026 0.019 0.017 0.018 0.019 0.029 0.018 0.014 0.015 0.017 0.036 0.014
mae 0.025 0.014 0.011 0.268 0.009 0.032 0.015 0.012 0.423 0.009 0.040 0.020 0.012 0.688 0.007
¾2´ = 0; ¾

2 = 1; 1000 replications, iqr is the 75th-25th interquantile range;
mae denotes the median absolute error.



Table 2
Medians, interquartile ranges, and median absolute errors of the estimators (N = 50)

® = 0:2 ® = 0:5 ® = 0:8
WG GMM LIML CIV RML WG GMM LIML CIV RML WG GMM LIML CIV RML

T o = 10

median 0.063 0.176 0.191 0.084 0.201 0.317 0.462 0.486 0.292 0.499 0.556 0.729 0.781 0.358 0.793
iqr 0.068 0.079 0.081 0.101 0.078 0.067 0.083 0.086 0.119 0.082 0.060 0.096 0.111 0.157 0.093
mae 0.136 0.042 0.041 0.116 0.039 0.183 0.049 0.044 0.207 0.041 0.244 0.074 0.058 0.442 0.048

T o = 25

median 0.149 0.178 0.187 -0.065 0.200 0.436 0.470 0.484 0.081 0.502 0.714 0.756 0.780 0.117 0.800
iqr 0.039 0.041 0.043 0.049 0.042 0.038 0.040 0.044 0.058 0.041 0.029 0.037 0.043 0.070 0.034
mae 0.050 0.027 0.023 0.265 0.021 0.064 0.031 0.024 0.419 0.020 0.086 0.044 0.025 0.683 0.017

T o = 50

median 0.176 0.178 0.180 -0.222 0.200 0.468 0.471 0.475 -0.093 0.500 0.760 0.764 0.770 -0.015 0.799
iqr 0.027 0.027 0.029 0.028 0.027 0.024 0.025 0.028 0.033 0.025 0.019 0.021 0.026 0.037 0.020
mae 0.025 0.023 0.021 0.422 0.014 0.031 0.029 0.025 0.593 0.012 0.040 0.036 0.030 0.815 0.010
¾2´ = 0; ¾

2 = 1; 1000 replications, iqr is the 75th-25th interquantile range;
mae denotes the median absolute error.



Table 3
Asymptotic biases of the estimates

® = 0:2 ® = 0:5 ® = 0:8
WG GMM LIML CIV WG GMM LIML CIV WG GMM LIML CIV

N = 100

T o = 10 0.067 0.188 0.194 0.137 0.333 0.485 0.492 0.381 0.600 0.782 0.791 0.512
T o = 25 0.150 0.188 0.193 0.047 0.437 0.485 0.491 0.235 0.725 0.782 0.790 0.281
T o = 50 0.175 0.188 0.192 -0.069 0.469 0.485 0.490 0.076 0.763 0.782 0.788 0.112

N = 50

T o = 10 0.067 0.176 0.187 0.081 0.333 0.470 0.483 0.287 0.600 0.764 0.780 0.352
T o = 25 0.150 0.176 0.184 -0.065 0.437 0.470 0.480 0.081 0.725 0.764 0.776 0.116
T o = 50 0.175 0.176 0.176 -0.224 0.469 0.470 0.471 -0.095 0.763 0.764 0.765 -0.015

For WG the …gures show ®¡ (1 + ®)=T: For GMM, ®¡ (1 + ®)=N .

For LIML, ®¡ (1 + ®)=(2N ¡ T ); and for CIV, ®¡ (1+®)
2

³
c

2¡(1+®)(2¡c)=2

´
; where c = T=N:



Table A1
Medians, interquartile ranges, and median absolute errors of the estimators (N = 100)

® = 0:2 ® = 0:5 ® = 0:8
WG GMM LIML CIV RML WG GMM LIML CIV RML WG GMM LIML CIV RML

T o = 10

median 0.065 0.186 0.196 0.127 0.202 0.318 0.474 0.492 0.348 0.499 0.554 0.724 0.784 0.353 0.796
iqr 0.047 0.067 0.069 0.077 0.055 0.048 0.080 0.084 0.098 0.058 0.044 0.109 0.133 0.153 0.078
mae 0.135 0.033 0.034 0.073 0.027 0.182 0.040 0.041 0.152 0.029 0.246 0.078 0.067 0.447 0.039

T o = 25

median 0.149 0.187 0.194 0.036 0.200 0.435 0.480 0.490 0.199 0.500 0.714 0.761 0.783 0.175 0.799
iqr 0.026 0.031 0.032 0.041 0.027 0.025 0.032 0.034 0.051 0.027 0.021 0.034 0.043 0.069 0.025
mae 0.051 0.018 0.017 0.164 0.014 0.065 0.021 0.018 0.301 0.014 0.086 0.039 0.024 0.625 0.012

T o = 50

median 0.175 0.187 0.192 -0.080 0.199 0.468 0.483 0.490 0.050 0.499 0.760 0.774 0.784 0.058 0.799
iqr 0.019 0.020 0.021 0.027 0.019 0.017 0.019 0.021 0.029 0.018 0.014 0.017 0.022 0.037 0.015
mae 0.025 0.014 0.012 0.280 0.010 0.032 0.017 0.012 0.450 0.009 0.040 0.026 0.017 0.742 0.007
¾2´ = 0:2; ¾

2 = 1; 1000 replications, iqr is the 75th-25th interquantile range;
mae denotes the median absolute error.



Table A2
Medians, interquartile ranges, and median absolute errors of the estimators (N = 100)

® = 0:2 ® = 0:5 ® = 0:8
WG GMM LIML CIV RML WG GMM LIML CIV RML WG GMM LIML CIV RML

T o = 10

median 0.065 0.182 0.194 0.115 0.201 0.318 0.465 0.489 0.312 0.499 0.554 0.680 0.767 0.257 0.796
iqr 0.047 0.074 0.077 0.084 0.055 0.048 0.091 0.098 0.109 0.058 0.044 0.130 0.205 0.168 0.077
mae 0.135 0.037 0.038 0.085 0.028 0.182 0.050 0.049 0.188 0.029 0.246 0.120 0.104 0.543 0.039

T o = 25

median 0.149 0.186 0.193 0.026 0.200 0.435 0.479 0.490 0.178 0.500 0.714 0.754 0.778 0.142 0.799
iqr 0.026 0.031 0.033 0.042 0.027 0.025 0.033 0.036 0.052 0.027 0.021 0.039 0.051 0.071 0.025
mae 0.051 0.019 0.017 0.174 0.014 0.065 0.023 0.020 0.322 0.013 0.086 0.046 0.028 0.658 0.012

T o = 50

median 0.175 0.187 0.192 -0.087 0.199 0.468 0.483 0.490 0.039 0.499 0.760 0.772 0.782 0.047 0.799
iqr 0.019 0.020 0.022 0.027 0.019 0.017 0.020 0.023 0.030 0.018 0.014 0.018 0.024 0.037 0.015
mae 0.025 0.014 0.012 0.287 0.010 0.032 0.017 0.013 0.461 0.009 0.040 0.028 0.018 0.753 0.007
¾2´ = 1; ¾

2 = 1; 1000 replications, iqr is the 75th-25th interquantile range;
mae denotes the median absolute error.



Table A3
Medians, interquartile ranges, and median absolute errors of the estimators (N = 50)

® = 0:2 ® = 0:5 ® = 0:8
WG GMM LIML CIV RML WG GMM LIML CIV RML WG GMM LIML CIV RML

T o = 10

median 0.063 0.171 0.189 0.068 0.200 0.317 0.450 0.484 0.242 0.499 0.556 0.674 0.764 0.197 0.795
iqr 0.068 0.091 0.097 0.102 0.079 0.067 0.103 0.115 0.130 0.084 0.060 0.140 0.212 0.186 0.110
mae 0.136 0.049 0.047 0.132 0.039 0.183 0.060 0.058 0.258 0.042 0.244 0.129 0.108 0.602 0.055

T o = 25

median 0.149 0.175 0.185 -0.082 0.200 0.436 0.463 0.478 0.041 0.501 0.714 0.735 0.760 0.042 0.800
iqr 0.039 0.044 0.049 0.052 0.041 0.038 0.044 0.051 0.065 0.040 0.029 0.048 0.078 0.078 0.034
mae 0.050 0.030 0.027 0.282 0.021 0.064 0.037 0.030 0.459 0.020 0.086 0.065 0.045 0.758 0.017

T o = 50

median 0.176 0.176 0.178 -0.234 0.200 0.468 0.468 0.468 -0.114 0.500 0.760 0.756 0.748 -0.043 0.800
iqr 0.027 0.028 0.031 0.029 0.028 0.024 0.025 0.033 0.033 0.025 0.019 0.023 0.048 0.037 0.019
mae 0.025 0.024 0.023 0.435 0.014 0.031 0.032 0.032 0.614 0.012 0.040 0.044 0.052 0.843 0.010
¾2´ = 0:2; ¾

2 = 1; 1000 replications; iqr is the 75th-25th interquantile range;
mae denotes the median absolute error.



Table A4
Medians, interquartile ranges, and median absolute errors of the estimators (N = 50)

® = 0:2 ® = 0:5 ® = 0:8
WG GMM LIML CIV RML WG GMM LIML CIV RML WG GMM LIML CIV RML

T o = 10

median 0.063 0.165 0.185 0.047 0.200 0.317 0.436 0.474 0.193 0.499 0.556 0.622 0.714 0.123 0.796
iqr 0.068 0.102 0.112 0.114 0.079 0.067 0.121 0.143 0.148 0.084 0.060 0.168 0.373 0.196 0.112
mae 0.136 0.055 0.055 0.153 0.040 0.183 0.074 0.074 0.307 0.041 0.244 0.178 0.194 0.676 0.056

T o = 25

median 0.149 0.172 0.182 -0.095 0.200 0.436 0.460 0.474 0.020 0.501 0.714 0.727 0.745 0.021 0.800
iqr 0.039 0.045 0.051 0.054 0.041 0.038 0.045 0.056 0.065 0.040 0.029 0.051 0.103 0.078 0.034
mae 0.050 0.032 0.029 0.295 0.021 0.064 0.042 0.033 0.480 0.020 0.086 0.073 0.059 0.779 0.017

T o = 50

median 0.176 0.176 0.176 -0.242 0.200 0.468 0.467 0.466 -0.124 0.500 0.760 0.753 0.737 -0.050 0.800
iqr 0.027 0.029 0.033 0.030 0.028 0.024 0.026 0.037 0.033 0.025 0.019 0.024 0.060 0.037 0.019
mae 0.025 0.025 0.026 0.442 0.014 0.031 0.033 0.034 0.624 0.013 0.040 0.047 0.062 0.850 0.010
¾2´ = 1; ¾

2 = 1; 1000 replications; iqr is the 75th-25th interquantile range;
mae denotes the median absolute error.


