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Abstract

We discuss the estimation of linear panel data models with sequential mo-
ment restrictions using symmetrically normalized GMM estimators (SNM) and
LIML analogues. These estimators are asymptotically equivalent to standard
GMM but are invariant to normalization and tend to have a smaller finite sam-
ple bias, specially when the instruments are poor. We study their properties in
relation to ordinary GMM and minimum distance estimators for AR(1) models
with individual effects by mean of simulations. Finally, as empirical illustra-
tions, we estimate by SNM and LIML employment and wage equations using
panels of UK and Spanish firms.
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1 Introduction

This work is motivated by a concern with the finite sample biases of panel data IV esti-
mators when the instruments are poor. A linear panel data model with predetermined
variables (like vector autoregressions or linear Euler equations) is typically estimated
by IV techniques in first differences using all the available lags of the predetermined
variables as instruments. The specification of the equation error in first-differences
reflects the fact that the analysis is conditional on an unobservable individual ef-
fect. Since the number of instruments increases with the time series dimension (T°),
the model generates many overidentifying restrictions even for moderate values of T'.
However, often the quality of the instruments is poor given that it is usually difficult
to predict variables in first differences on the basis of past values of other variables.
The weaker the correlation of the instruments with the endogenous variables, the
smaller the amount of information on the structural parameters for a given sample
size. However, as it is well documented in the literature on the finite sample proper-
ties of simultaneous equations estimators, the way in which this situation is reflected
in the distributions of 2SLS and LIML differs substantially, despite the fact that both
estimators have the same asymptotic distribution. While the distribution of LIML is
centred at the parameter value, 2SLS is biased towards OLS, and in the completely
unidentified case converges to a random variable with the OLS probability limit as
its central value. On the other hand, LIML has no finite moments regardless of the
sample size, and as a consequence its distribution has thicker tails than that of 25LS
and a higher probability of extreme values (see Phillips 1983, for a good survey of the
literature). As a result of numerical comparisons of the two distributions involving
median-bias, interquartile ranges and rates of approach to normality, Anderson, Ku-
nitomo and Sawa (1982) concluded that LIML was to be strongly preferred to 2SLS,
particularly if the number of instruments is large. Similar conclusions emerge from

the results of asymptotic approximations based on an increasing number of instru-



ments as the sample size tends to infinity; under these sequences, LIML is a consistent
estimator but 2SLS is inconsistent (cf. Kunitomo 1980, Morimune 1983, and, more
recently, Bekker 1994). (In our context, these approximations would amount to al-
lowing T' to increase to infinity at a chosen rate as opposed to the standard fixed 7',
large N asymptotics.)

Despite this favourable evidence, LIML has not been used as much in applications
as instrumental variables estimators. In the past, LIML was at a disadvantage relative
to 2SLS on computational grounds. More fundamentally, applied econometricians
have often regarded 2SLS as a more “flexible” choice than LIML from the point
of view of the restrictions they were willing to impose on their models. In effect,
the IV techniques used for a panel data model with predetermined instruments are
not standard 2SLS estimators, since the model gives rise to a system of equations
(one for each time period) with a different number of instruments available for each
equation. Moreover, concern with heteroskedasticity has led to consider alternative
(“two step”) GMM estimators that use as weighting matrix more robust estimators
of the variances and covariances of the orthogonality conditions (following the work
of Chamberlain 1982, Hansen 1982, and White 1982).

In a recent paper, Hillier (1990) shows that the alternative normalization rules
adopted by LIML and 2SLS are at the root of their different sampling behaviour. In-
deed, Hillier shows that the symmetrically normalized 2SLS estimator has essentially
similar properties to those of the LIML estimator. This result, which motivates our
focus on symmetrically normalized estimation, is interesting because the symmetri-
cally normalized 2SLS, unlike LIML, is a GMM estimator based on structural form
orthogonality conditions and therefore it can be readily extended to two-step weight-
ing matrices and the nonstandard IV situations that are of interest in dynamic panel
data models, while relying on standard GMM asymptotic theory. Specifically, in this
paper we discuss both non-robust and robust LIML analogues, and symmetrically

normalized GMM estimates in the panel data context.



To illustrate the situation, let us consider a simple structural equation with a

single endogenous explanatory variable and a matrix of instruments Z:
y = Bo7 +u (1)
Letting 9 and Z be the OLS fitted values from the reduced form equations

Yy = LT,+ v (2)

T = ZY,+ v

and Cou(, ) = &', etc., the 2SLS estimator of 3 is given by

== — = — 3
Pasts Var(z) Cov(Z, x) (3)

which is not invariant to normalization except in the just-identified case. That is, it

differs from the indirect 2SLS estimator:

Var(s) _ Couls.y)
Cov(g,2) Cov(y,x)

B I25LS =

(4)

On the other hand, the symmetrically normalized 2SLS estimator is given by the
orthogonal regression of § on &, which is invariant to normalization:

y) _ Var(y) -

. Cals
Pon = A(@) = Gouls, @)

(5)

The statistic ) is the minimum eigenvalue of the sample covariance matrix (9 : Z)'(7 :
z) (cf. Malinvaud 1970, and Anderson 1976).
The three estimators have the same first-order asymptotic distribution, but satisfy

the inequality
lﬂzsw‘ < lﬁszvl < ’ﬁIQSLSI (6)
Moreover, 3 gn can be written as

. Cov( + Bayi,v)
Cov(Z + /BSN@> )




Therefore, 2SLS, 12SLS and SN can all be interpreted as simple IV estimators that
use as instruments 2,4 and (& + Bgy 9), respectively.

Symmetrically normalized 2SLS can also be given a straightforward interpretation
as a GMM or minimum distance estimator, which highlights its relation to LIML.
Indeed, both symmetrically normalized 2SLS and LIML are least-squares estimators

of the reduced form (2) imposing the over-identifying restrictions © = (v. Let us

define

~ _ ) —-—-Z / _
oo (12 o (2)
- argrﬁl%n(iyr:zﬁ) (V_1®ZIZ><§:15> ©)

Concentrating v out of the LS criterion we obtain

(y — Ba)Z(Z'2)"" Z'(y — Ba)
(17 _ﬁ/> 4 (17 ‘ﬂ/)l

It turns out that LIML is BV with V equal to the reduced form residual covariance

By = argmin (10)

matrix while symmetrically normalized 2SLS is Bv with V equal to an identity matrix
(cf. Malinvaud 1970, Goldberger and Olkin 1971, and Keller 1975), so that both
LIML and symmetrically normalized 2SLS solve minimum eigenvalue problems. In
particular, symmetrically normalized 2SLS is a GMM estimator based on the unit-
length orthogonality conditions
I [Zz‘(yz' - 250901)} _0
(1+8,)'7

Notice that in spite of V being a matrix scaling factor, the asymptotic distribution

(11)

of ﬁv does not depend on the choice of V. This is so because optimal MD estimators
of B based on (& — 73,4 —~) and on (7 — ~vf3) are asymptotically equivalent, due to
the fact that the limiting distribution of optimal MD is invariant to transformations
and to the addition of unrestricted moments.

The paper is organized as follows. Section 2 begins with a formulation of the one-

step symmetrically normalized GMM (SNM) estimator and the non-robust LIML
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analogue in the context of a linear equation for panel data with sequential moment
restrictions. We also present two-step SNM estimators and test statistics of over-
identifying restrictions, and compare them with robust LIML analogues. The latter
are the “continuously updated GMM” estimators considered by Hansen, Heaton and
Yaron (1995). Section 3 studies the finite sample properties of SNM and LIML es-
timates in relation to ordinary GMM and minimum distance estimators for various
versions of the first-order autoregressive model with individual effects. The objective
is not to assess the value of enforcing particular restrictions in the model, but rather to
evaluate the effects in small samples, by mean of simulations, of using alternative as-
ymptotically equivalent estimators for fixed T" and large N. Section 4 re-estimates the
employment equations for a sample of UK firms reported by Arellano and Bond (1991)
using symmetrically normalized, LIML, and indirect GMM estimators. This section
further illustrates the techniques by presenting symmetrically normalized estimates
and bootstrap confidence intervals of employment and wage vector autoregressions
from a larger panel of Spanish firms. Finally, Section 5 contains the conclusions of

the paper.

2 Symmetrically Normalized Instrumental Variable
Estimation

Let us consider a model with individual effects for panel data given by
yit:x;téo—}—u“ (tzl,,T,’Lzl,,N) (12)

Uit = T, + Vit (13)

The model specifies sequential moment conditions of the form

E(vi|z;) =0 (14)

!

where 2! = (2, ...2,)

is a vector of instrumental variables, which may include cur-

rent or lagged values of y;; and z;;. Thus, this setting is sufficiently general to cover
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models with strictly exogenous, predetermined, and endogenous explanatory vari-
ables. Observations across individuals are assumed to be independent and identically
distributed.

Estimation will be based on a sequence of orthogonality conditions of the form
B[y~ 23/8)] =0 (¢=1,...,T—1) (15)

where starred variables denote forward orthogonal deviations of the original variables
(cf. Arellano and Bover 1995).

It is convenient to rewrite the transformed model in the form
yi = X6 +u; (16)

where y; = (41 .. - Yir_y))', ete.

The k x 1 parameter vector ¢, is usually estimated by GMM leading to estima-
tors of the form (see Holtz-Eakin, Newey and Rosen 1988, Arellano and Bond 1991,
Chamberlain 1992, Arellano and Bover 1995, and Ahn and Schmidt 1995, amongst
others):

bamm = (XY ZANZ' X)X Z Ay Z'y* (17)

where y* = (v ...y, X* = (X ... X),and Z = (Z,' ... Zy'"). Ziisa (T—1)xq
block diagonal matrix whose t-th block is 2!, and an optimal choice of Ay is such
that it is a consistent estimate of the inverse of E(Zufu}'Z;). Under “classical” errors

27 7

(that is, when E(v2 | 2f) = 0% and FE(vyvii44) | 2f) = 0 for j > 0 and all t),

E(Zuiul Z;) = o*E(Z, Z:) (18)

77t 7

and hence the “one-step” non-robust choice Ay = (62Z'Z)™! is optimal (5%, which
denotes the residual variance, is irrelevant for estimation but it is kept here for nota-

tional convenience). Alternatively, the standard “two-step” robust choice is

Ay = (X, zwarz) (19)



where 4 is a vector of residuals evaluated using some preliminary consistent estimate
of 6,. Given identification, 8G wm s 18 consistent and asymptotically normal as N — oo
for fixed T'. In addition, for either choice of Ay, provided the conditions under
which they are optimal choices are satisfied, a consistent estimator of the asymptotic

variance of dgaras is given by
Var(baum) = (X ZANZ' X*) 7} (20)
Moreover, the Sargan or GMM statistic of overidentifying restrictions is given by
S=a"ZAnZ'0 % ¥, (21)

where 4% = y* — X*SGMM.

Turning to symmetrically normalized GMM (SNM) estimators of 6,, let us con-
sider a partition of X* = (X7, X3) and a corresponding partition of 6, = (6., 6,,)" dis-
tinguishing between non-exogenous and exogenous variables, such that the ks columns
of X} are linear combinations of those of Z while the k; columns of X are not.

SNM is the GMM estimator of ¢, based on the orthogonality conditions

(1+60600)12 ]

B o) =5 | 22)

Since E[,(8,)05(6,)] = E(Zuiul'Z)/(1 + 6,,6,1), a consistent estimate of the in-

% (2N e

verse of E(Zuu}Z;) remains an optimal weighting matrix for the SNM estimator.

777 T

Therefore,
(y* = X*0) M(y* — X*6)
(1+6,61)

where M = ZAyxZ'. Minimizing the criterion with respect to 6, we obtain a concen-

(23)

Osnm = arg méin

trated criterion that only depends on §;. This gives us

& W (M = My)Wid

bisNm = arg n}in id; (24)
= [X7'(M - My) X} — M7 XY (M — M)y
oswyr = (XFMXDT'XYM(y* — X 615vm) (25)



where Wr = (y*, X7), dy = (1,=6)), My = MXH(XyMX3)"LX3'M, and X =
min eigen [W' (M — Ms)Wy]. Notice that also

X = min(y* — X*6) M(y* — X*6)/(1+6,61). (26)

Equivalently,
Sswvur = (X¥MX* — AA) X My* (27)
with A = ( ékl 8 ) (if no columns of X* are perfectly predictable from Z, or

if the entire vector of coefficients is normalized to unity, then A = [ and A =
min eigen (W*MW?), with W* = (y*, X*)). In the just identified case A =0,
with the result that GMM and SNM coincide.

Since SGMM and SSN m are asymptotically equivalent, VET(SGMM) is also a con-
sistent estimate of the asymptotic variance of 5 sny- However, an alternative natural

estimator of Var(SSN M), suggested by the expression above, is
Var(dsnm) = (X" MX* = AA)™ (28)

Moreover, since A is a minimized optimal GMM criterion it can be used as an

alternative test statistic of overidentifying restrictions. We have the result
At ~ ~ d
(L +d15na015NMm)A = xi_k (29)

which is asymptotically equivalent to the Sargan test.
Let us now turn to consider LIML analogues or “continuously updated GMM”
estimators in the terminology of Hansen et al. (1996). The non-robust LIML analogue

5 L1 minimizes a criterion of the form
208) = (y* — X*8)Z An(8)Z'(y" — X76) (30)

with
(Z' 7)1

A0 = XS = x)

(31)



The resulting estimator is
Spivrs = [ X*2(2' 2) " Z X = IX* X*| XY 2(Z 2) 2yt - IXYy ] (32)

where, letting d = (1, —6'Y,

[ dW*Z2(Z ) Z'W*d
= mi d’W*/W*d
= mineigen {W*'Z(Z'Z)_IZ'W*(W*/W*)'l} (33)

On the other hand, the robust LIML analogue 8 7o minimizes a criterion of the

same form as (30) with

Ax(s) = (i Z;uz‘(é)u:w)’zi)_l (34)

where u}(§) = yf — X}6. Therefore, LIML2, unlike LIML1 or the SNM estima-
tors, does not solve a simple minimum eigenvalue problem, and requires the use of
numerical optimization methods.

Both the SNM and the LIML analogues are invariant to normalization while the
ordinary GMM estimator is not. That is, if the equation is solved for an endoge-
nous variable other than y;, contrary to the case with ordinary GMM, the indirect
estimates obtained from SNM or LIML analogues coincide with the direct SNM or
LIML estimates, respectively. (Notice that empirical likelihood estimators of the type
considered by Qin and Lawless (1994) and Imbens (1997) will also be invariant to
normalization due to the invariance property of ML estimators.)

Symmetrically normalized estimators are potentially attractive alternatives to or-
dinary GMM on at least two grounds (aside from the desirability of invariance to
normalization in its own right). Firstly, they tend to have a smaller finite sample
bias than the GMM estimators. Hillier (1990) shows that for the normal case in
a standard linear structural equation with two endogenous variables, symmetrically
normalized 2SLS and LIML are “spherically unbiased” in finite samples (meaning

that the density of @ = dy /(d}dy)"/? defined on the unit circle is symmetric about the
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true points 4a = 4d; /(d)d;)/? having modes at +a). However, 25LS does not have
this property.

Secondly, the concentration of the densities of the symmetrically normalized es-
timators depends on the quality of the instruments. In the completely unidentified
case, as shown by Hillier, these estimators have a uniform distribution on the unit
circle. This is in contrast with 2SLS, which converges to the same limit as OLS and
whose distribution is determined exclusively by the normalization adopted. When
the instruments are poor, as well as when the number of instruments is large relative
to the sample size, 2SLS tends to provide results that are biased in the direction
of OLS and also large discrepancies between “direct” and “indirect” 2SLS when us-
ing different normalizations. This situation has been stressed in a number of recent
papers (Bekker 1994, Bound, Jaeger and Baker 1995, Staiger and Stock 1997, and
Angrist and Krueger 1995, amongst others). In contrast, with poor instruments the
distributions of LIML and symmetrically normalized 2SLS accurately reproduce the
fact that the information on the structural parameters is very small.

Although the LIML analogues and the SNM estimators are asymptotically equiv-
alent (and in the Hillier setting exhibit similar finite sample properties as well), SNM
has some disadvantages relative to the other estimators. The main one is that in gen-
eral the results are not independent of the units in which the variables are measured,
so that a sensible choice of the units of scale may be of some importance. In contrast,
ordinary GMM is invariant to units but not to normalization, and LIML is invariant
both to units and to normalization. This problem does not arise in the autoregressive
panel data models discussed below, since in that case the SNM estimator is invariant
to units and to normalization (just because in the autoregressive case a change in the
units of the right-hand side variable, leads trivially to a similar change in the units
of the left-hand side variable). Another disadvantage of SNM is that the distinction
between exogenous and non-exogenous variables is relevant for the specification of

the estimator. This is so because in the case of SNM only the length of the coeffi-
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cient vector for the non-exogenous variables is normalized to unity, and, contrary to
LIML, this differs from normalizing to unity the entire coeflicient vector. However,
SNM does have a computational advantage over LIML when we consider two-step
or robust estimators. Indeed, LIML2 or continuously updated GMM no longer solve
a minimum eigenvalue problem, whereas two-step SNM only involves simple calcu-
lations that are similar to those performed for two-step ordinary GMM. Of course,
SNM is limited to linear models, but in such context it is of interest to see if SNM,
which is considerably faster and simpler than LIML2, can provide the benefits of the
more complicated estimators, and perhaps avoid problems of non-convergence in the
case of LIML2.

It is nevertheless possible to consider modified asymptotically efficient two-step
SNM estimators that are also invariant to units and yet can be obtained by solving a
minimum eigenvalue problem. One such estimator minimizes a criterion of the form

(y* = X*6) M(y* — X*6)
(y* — X*6) (y* — X*6)

(35)

for a two-step choice of M (notice that with the one-step choice this is just the LIML1

criterion).

3 Experimental Comparisons with Alternative Es-

timators for First Order Autoregressions with
Random Effects

The purpose of this section is to study the finite sample properties of the symmet-
rically normalized estimators considered above in relation to ordinary GMM for a
first-order autoregressive model with individual effects. The IV restrictions implied
by various versions of the model can be represented as simple structures on the co-
variance matrix of the data, and so we can also make comparisons with minimum
distance estimators of these covariance structures. The emphasis is not in assessing

the value of enforcing particular restrictions in the model, as done for example by
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Ahn and Schmidt (1995), Arellano and Bover (1995), and Blundell and Bond (1998).
Rather, we wish to evaluate the effects in small samples of using alternative estimat-
ing criteria that produce asymptotically equivalent estimators for fixed 7" and large
N. We concentrate on a random effects AR(1) model because of its simplicity and

the fact that it is a case that has received a great deal of attention in the literature.

3.1 Models and Estimators

Let us consider a random sample of individual time-series of size T, yZ = (ys1, .. ., Yir)’
(i =1,...,N) with second-order moment matrix E(y]y]’) = Q = {w;,}. We assume

that the joint distribution of ¢ and the unobservable time-invariant effect n, satisfies

the following assumption:

Assumption A

Yit = QYit—1) + 1; + Vit (t=2,..,T) (36)
E(valyi™) =0 (37)
where E(n,) = v, E(v}) = 0, and Var(n,) = 0.
Notice that the dependence between 7, and vy is not restricted by Assumption A,
nor it is ruled out the possibility of conditional heteroskedasticity, since FE(v2|yi™")

need not coincide with o7.
Following Arellano and Bond (1991), Assumption A implies (7" — 2)(T — 1)/2

linear moment restrictions of the form

Elyi Ay — alyyi-1))] =0 (38)

These restrictions can also be represented as constraints on the elements of (2.

Multiplying (36) by y;s for s < ¢, and taking expectations gives:

Wis = QW(4—1)s T Cs (t=2,..T;s=1,...,t=1) (39)
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where ¢, = E(y;sn;). This means that, given Assumption A, the T'(T"+1)/2 different

elements of Q can be written as functions of the 27" x 1 parameter vector
6 = (CE,Cl,...,CT_l,wll,...,WTT)l (40)

We call this moment structure Model 1. Since it is a special case of the model in
the previous section, all the estimators discussed in Section 2 can be particularized
to the present case. Here, however, we express the IV restrictions using errors in
first-differences as opposed to orthogonal deviations to simplify the mapping with
covariance structures. Notice that with T' = 3 the parameters («, ¢y, c2) are just-
identified as functions of the elements of €.

The orthogonality conditions (38) are the only restrictions implied by Assumption
A on the second-order moments of the data. However, they are not the only restric-
tions available since (37) also implies that nonlinear functions of 4~ are uncorrelated
with Av;. The semiparametric efficiency bound for this model can be obtained from
the results in Chamberlain (1992). One reason why estimators based on (38) may
not be fully efficient asymptotically is that the dependence between 7, and y! may
be nonlinear. Another reason would be unaccounted conditional heteroskedasticity.

Model 1 is attractive because it is based on minimal assumptions. However, we
may be willing to impose additional structure if this conforms to a priori beliefs. One
possibility is to assume that the errors vy are mean independent of the individual

effect n; given 3/, This situation gives rise to Assumption A’.

Assumption A’

E(valy; ™ m;) =0 (41)

Note that Assumption A’ is more restrictive than Assumption A. When T" > 4,

Assumption A’ implies the following additional 7' — 3 moment restrictions

E[(yn — ayi(t—l))(Ayi(t—l) — OéAyz'(t_Q))] = () (t = 4, PR ,T) (42)
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In effect, we can write E[(yiy — ayie—1) — 1) (A1) — alyi-2y)] = 0 and since
E(n;Avyg—1y) = 0 the result follows.

GMM estimators of « that exploit these restrictions in addition to those in (38)
have been considered by Ahn and Schmidt (1995), but since the additional restrictions
are nonlinear we do not simulate them here. An alternative representation of the
restrictions in (42) is in terms of a recursion of the coefficients ¢; introduced in (39).

Multiplying (36) by 7, and taking expectations gives:
Ct:OZCtM1+Q5 (t:2,,T) (43)

where ¢ = v* + 02 = E(n?), so that ¢;...cr_1 can be written in terms of ¢; and
¢. This gives rise to a covariance structure in which € depends on the (T'+ 3) x 1
parameter vector 6 = (a, @, ¢, w1, . .. ,wrr). Notice that with 7" = 3 Assumption A’
does not imply further restrictions in §2, with the result that o remains just identified
relative to the second-order moments.

Other forms of additional structure that can be imposed are various versions of
mean or variance stationarity conditions. Assumption B, which requires the change
in y;; to be mean independent of the individual effect 7),, is a particularly useful mean

stationarity condition.

Assumption B

E(yit — Yig-1|n:) =0 t=2,...,T) (44)

Notice that given Assumption A, Assumption B implies that E(y;) = v/(1 — a).
Relative to Assumption A and Model 1, Assumption B adds the following (7" — 2)

moment restrictions on {2
E[(ys — oyie-1)) Atig—1)] = 0 (t=3,....,7) (45)

which were proposed by Arellano and Bover (1995), who developed a linear GMM

estimator of o on the basis of (38) and (45). However, relative to Assumption A’,
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Assumption B only adds one moment restriction which can be written as E[(yi;s —
ayio) Ayie] = 0.

In terms of the parameters ¢;, the implication of Assumption B is that ¢; =

. = ¢p_y if we move from Assumption A, or that ¢; = ¢/(1 — «a) if we move from

Assumption A’. This gives rise to Model 2, in which 2 depends on the (1" +2) x 1

parameter vector
6 = (Od, ¢a Wity - .- :WTT)I (46)

Notice that with T' = 3, « is overidentified under Assumption B.

The basic specification can be restricted further in various ways. For example,
we could consider time series homoskedasticity of the form E(v3) = o* for ¢t =
2,...,T and stationarity of the variance of the initial conditions. The combination
of these assumptions with the previous ones would give rise to additional models,
some of which have been discussed in detail by Ahn and Schmidt (1995). However,
in the simulations we concentrate in Models 1 and 2 because they embody linear IV
restrictions that have been found most useful in applications. While for Model 1 we
shall simulate the robust and non-robust estimators discussed in Section 2, for Model
2 we shall only report robust estimates; that is, the Arellano and Bover (1995) GMM
estimator and its symmetrically normalized and continuously updated counterparts.
We do so because the combined set of moments in (38) and (45) lack a sequential
structure, with the result that there is no simple optimal one-step estimator under
“classical” errors.

The coeflicient « together with the other free parameters in the covariance struc-
ture representations of the previous models can be jointly estimated by minimum
distance (MD) on the basis of the matrix of sample second-order moments Q =
N-1N Tyl Such estimates have the same asymptotic distribution as the corre-
sponding GMM estimators, but may be cumbersome in more general conditional mod-
els since they need to solve a nonlinear optimization problem over a larger parameter

space. It is of some interest, however, to compare their finite sample performance
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with the SNM and LIML estimates of the random effects AR(1) model.

Optimal MD estimators minimize a criterion of the form
ca(d) = [© —w(O)]'Vi'[o — w(0)] (47)

where

Ve =N w0 (48)

& = vech () denotes the T(T + 1)/2 vector containing the elements in the upper
triangle of ), and similarly @(6) = wvech [Q(0)] and w; = vech (yFyl ™).

3.2 Monte Carlo Results

We are particularly interested to analyze the behaviour of the estimators in relation
with the quality of the instruments. In Model 1 the quality of the instruments basi-
cally depends on the values of o« and r = 0727 /%, To illustrate the situation, notice

that under stationarity the correlation between Ay,_; and ;s is given by

p=—(1-a)21l —a+(1+ a)r)]_l/2 (49)

which is small when o and r are relatively high. For this reason, we exclude from
the simulations models with small values of «, which can be expected to perform
relatively well. We consider cases with a = 0.5, 0.8, 07 = 0, 0.2, 1, T = 4,7 and
N = 100. The variance of the random error o2 is kept equal to unity for all cases.

For each experiment we generated 1000 samples of N independent observations of

(yi1, - - -, yer) from the process
ya = (1= a) 'y, + (1 — a®) vy (50)
Yt = -1y + 10 v E=2,...,T) (51)

with v; = (vi1, ..., vir)' ~ N(0,I) and 7; ~ N(0, 07) independent of v;.
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Tables 1A and 1B report sample medians, percentage biases, interquantile ranges
and median absolute errors (mae) for GMM, SNM and LIML estimators for Model 1
(means and standard deviations are not reported since the symmetrically normalized
estimators can be expected to have infinite moments). Table 1A contains the results
for the non-robust estimators and Table 1B for the robust ones. Table 1B also reports
the results for the minimum distance estimator, which is also a robust estimator.
However, whereas LIM2 and MDE are one-step estimators, GMM2 and SNM2 are
calculated in two steps. The weighting matrices of GMM2 and SNM2 are based on
GMM1 residuals. SNM1 and LIM1 always have a smaller bias and a larger dispersion
than GMM1. When o2 = 0 all estimators perform well, but when o2 =02 or 1, the

differences in the distributions of GMM1 and the symmetrically normalized estimators

2

become apparent: the higher oy

or «, the larger the negative bias of GMM1 for a
given T, whereas SNM1 remains essentially median unbiased. The behaviour of LIM1
is similar to that of SNMI1, although in some cases it shows somewhat larger biases
and dispersion. SNM1 and LIM1 have a larger interquartile range than GMMI,
but the differences are small except in the almost unidentified cases (with o = 0.8
and T' = 4). The median absolute errors of the three estimators are of a similar
magnitude, although those for GMM1 tend to be smaller than those for SNM1 or
LIM1 with T = 4 and larger with T' = 7.

Turning to Table 1B, GMM2 and SNM2 exhibit a very similar behaviour to GMM1
and SNM1, respectively. LIM2, which is the robust continuously updated GMM
estimator, is virtually median unbiased in all the experiments, although it tends to
have a larger mae than SNM2. LIM2 was calculated by numerical optimization and
we found some instances of nonconvergence. Out of 1000 replications we found 86
cases of nonconvergence for the experiment with o = 0.8, Uf) =landT =4, and 7
cases in each of the experiments with o = 0.8, U% =0.2,T =4, and a = 0.8, 0127 =1,
T="T.

The MDE estimator has a smaller interquartile range than GMM2, SNM2 or
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LIM2, a difference which is specially noticeable for T' = 4 (with 0727 =0 and a = 0.8
the interquartile range of MDE is about three times smaller that that of the other
estimators). As far as median bias is concerned, MDE is practically unbiased when

2 is not zero and o = 0.8. However,

a = 0.5, but exhibits some larger biases when o,

in common with LIM2, we also found a number of cases of non-convergence for
MDE, with all the cases arising almost exclusively in the experiments with a = 0.8.
Specifically, with a = 0.8 and T" = 4, we encountered 36, 46, and 86 cases of non-
convergence for 0727 =0, 0.2, and 1, respectively, whereas with 7' = 7 the number of
cases, given in the same order, were 22, 35, and 118.

With T = 7, Tables 1A-1B clearly indicate that when N = 100 there is information
in the data to estimate o with sufficient precision but that, contrary to SNM or LIML,
GMM estimates may still be substantially biased.

The evidence from Tables 1A-1B suggests that Hillier’s basic results for ordinary
and symmetrically normalized 2SLS estimators may have a wider applicability. In
effect, GMM2 and SNM2, unlike 2SLS, are not only functions of the second moments
of the data but also of the fourth order moments that enter the weighting matrix of
the moment conditions.

Model 1 is the leading case from the point of view that instrumental-variable
estimators of structural equations with predetermined instruments tend to rely on
orthogonality conditions that are similar to those in Model 1.

Table 2 presents the results for Model 2 which makes use of the restrictions derived
from Assumptions A and B. This model incorporates the quadratic orthogonality
conditions given in (42). However, by adding the stationarity restrictions the entire
list of moment conditions admits a linear representation (cf. Ahn and Schmidt 1995),
so that GMM2 in Table 2 is a linear IV estimator (as proposed by Arellano and Bover
1995). All the estimators in this Table exhibit small median biases and dispersions,
although, when there is a difference in mae it favours the MDE. The differences

between GMM2, SNM2 and LIM2 are small in most cases without a clear pattern in
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the relation, except for the fact that LIM2 tended to have a smaller bias and it was
the estimator with the highest dispersion in all the experiments.

Both GMM2 and SNM2 are two-step estimators based on one-step GMM resid-
uals that use all the orthogonality conditions from Model 2, and the inverse of the
second moments of the instruments as the weighting matrix. Notice that this one-step
estimator is not asymptotically efficient, not even under classical errors. From cal-
culations based on alternative residuals (not reported), we found that the results for
GMM?2 and SNM?2 were sensitive to the choice of one-step residuals, an issue which
does not arise for LIM2 or MDE, as they are calculated in one-step. (We obtained
results for GMM?2 and SNM2 estimates based on GMM1 residuals from Model 1, and
one-step residuals from Model 2, but using an identity as the weighting matrix. As
expected, the impact of using Model 1 residuals was more important when Model 1
estimates were highly imprecise.)

Finally, it is possible to make comparisons across tables. The interquartile ranges
become smaller if we move from Tables 1A-1B to Table 2. Indeed, the efficiency gains
from enforcing stationarity restrictions are always substantial for all the estimators,
but they are particularly important in the cases with o = 0.8 and 0727 =02or 1.

We also investigated the finite sample distributions of the standardized one- and

two-step GMM, SNM and LIML “¢ statistics” for Model 1 of the form
t =974 - a) (52)

where @ is an estimator and 7 is the corresponding estimated asymptotic variance.
The t statistics are asymptotically N(0,1). Since the usual tests of hypotheses and
confidence intervals rely on this approximation, it is useful to check the accuracy of
the approximation for the sample sizes and parameter values considered above.
Tables 3A and 3B report finite sample quantiles of the ¢ statistics based on 10,000
replications for non-robust and robust estimates, respectively. We use a larger number
of replications because in this case the 0.90 and 0.95 quantiles in the upper tail of the

distribution are of special interest. The median shows that the distributions of the
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GMM t statistics are shifted to the left, with the absolute value of the shift increasing
with «, 0727 and T. In contrast, the distributions of the SNM and LIML ¢ statistics are
centred at values that are most of the time very close to zero. Turning to the 0.90 and
0.95 quantiles, when T' = 4 the differences with the corresponding N(0,1) quantiles
are always smaller for the SNM and LIML ¢ statistics than for the GMM, sometimes
by a wide margin. This is true for both non-robust and robust ¢ ratios, although the
latter show higher interquantile ranges. When T = 7 the contrast between robust and
non-robust ¢ ratios becomes more marked. While the normal approximation works
reasonably well for SNM1 and LIM1, the distributions of SNM2 and LIM2 exhibit
thick tails. The distributions of the GMM ¢ ratios with T' = 7 remain skewed, but
whereas the 0.95 quantiles are very low for GMM1, those for GMM2 tend to be closer
to the normal values than those from SNM2 or LIM2.

4 Empirical Illustrations

Our first illustration of the previous methods proceeds by re-estimating the employ-
ment equations presented by Arellano and Bond (1991) using symmetrically normal-
ized and indirect GMM estimators.

The Arellano-Bond dataset consists on an unbalanced panel of 140 quoted com-
panies from the UK, whose main activity is manufacturing and for which seven, eight
or nine continuous annual observations are available for the period 1976 — 1984.

The models are all log-linear relationships between the number of employees, the
average real wage, the stock of capital, a measure of industry output, lagged values of
the previous variables, time dummies and company effects. The reader is referred to
the Arellano and Bond article for a detailed description of the models and the data.

Table 4A contains the results for two different models estimated in first differences
using instrumental variables. Model A includes contemporaneous wage and capital
variables, which are treated as endogenous along with the first lag of employment. In

this model lagged sales and stocks are used as outside instruments in addition to lags
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of the endogenous variables included in the equation. Model B only includes lagged
values of wages and capital and it could be interpreted as an approximated Fuler
equation for employment with quadratic adjustment costs. Columns labeled GMM2
reproduce some of the results obtained by Arellano and Bond. The SNM2 and LIM2
estimates are calculated as described in Section 2, and for Model A there is an addi-
tional column containing indirect GMM2 estimates that were obtained by normalizing
to unity the coefficient of contemporaneous wages. Finally, Table 4B presents GMM2,
SNM2, and LIM2 estimates of some simple second-order autoregressive models for
employment with and without the inclusion of lagged wages.

As Tables 4A-4B show, SNM2, LIM2 and indirect GMM2 estimates are mostly
far apart from the direct GMM2 estimates. These results uncover the fact that the
GMM2 estimates from the dataset of UK firms are probably much less reliable than
what their estimated asymptotic standard errors would suggest. Interestingly, the
SNM2 estimates of Model B are more compatible with the Fuler equation interpre-
tation than the GMM2 or the LIM2 estimates. For example, in the Euler equation
discussed by Arellano and Bond the coefficient on n;_; is given by (2 + r) where r is
the real discount rate.

Our second empirical illustration is based on a similar but larger balanced panel
of 738 Spanish manufacturing companies, for which there are available annual obser-
vations for the period 1983 — 1990 (see the Appendix for a description of these data).
We consider a bivariate VAR model for the logarithms of employment and wages.
The employment equation contains both lagged employment and lagged wages, while
the wage equation only includes its own lags. This model can be regarded as the
reduced form of an intertemporal model of employment determination under ratio-
nal expectations (see Sargent 1978). To obtain the reduced form, an AR(2) process
for log wages is assumed, and the Euler equation in the log of employment for the
optimum contingency plans is solved.

Table 5 presents GMM2, SNM2, and LIM2 estimates of the two equations, using

21



only lagged variables in levels as instruments for equations in first-differences (the
basic set of moment conditions that we called “Model 1), and Table 6 contains the
estimates that add lagged variables in first-differences as instruments for equations in
levels (that is, including the stationarity restrictions of “Model 2”). We also report
estimates of a univariate AR(2) process for employment for the two models (non-
robust estimates are not reported, but are available upon request).

In addition to asymptotic confidence intervals, for GMM2 and SNM2 we calculated
95 percent semiparametric bootstrap confidence intervals based on 1000 replications
from the empirical distribution function of the data subject to the moment restric-
tions (cf. Back and Brown 1993). Following Brown and Newey (1992) we drew the
bootstrap samples from the mass-point distribution that estimated the probability of

the 7-th observation as

pi=1/[1+ " (ys, 6)|N (53)

where

. I .
fo = argmin N Z¢:1 log[1 + w1 (ys, 6)]? (54)

-~

and 1 (y;, 6) is the vector of orthogonality conditions for observation i evaluated at the
appropriate parameter estimates. (We were unable to obtain bootstrap confidence
intervals for LIM2 due to computing limitations, as each evaluation of LIM2 required
numerical optimization over a larger parameter space including time dummies.)
Table 5 contains some interesting results. GMM2 estimates of Model 1 are still
different from SNM2 and LIM2 estimates but by a smaller margin than the corre-
sponding estimates for the UK panel. The differences become even smaller for the
univariate employment estimates that are based on half the number of moments used
for the estimates in the first three columns. On the other hand, the estimates of
Model 2 in Table 6 appear to be more precise, presumably because the additional

orthogonality conditions are highly informative. In this case, GMM2 and SNM2 es-
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timates provide very similar results. However, the Sargan statistics indicate a clear
rejection of the stationarity restrictions in both the employment and the wage equa-
tions. It is also noticeable that although bootstrap confidence intervals are always
larger than the asymptotic confidence intervals, the differences between the two are
generally small. As for the LIM2 parameter estimates and Sargan statistics, they are
similar to GMM2 and SNM2 for the wage equation, but somewhat different for the
employment equation. In particular, the first lagged employment coefficient estimate
is higher and the Sargan statistic turns out to be much smaller than those for the
other estimators.

We re-estimated Model 1 with a random subsample of 200 firms, which is similar
to the size of the UK sample. Interestingly, some of the results (reported in Table
7) are closer to the UK results for similar specifications than those based on the
full Spanish sample. In particular, the SNM2 estimates of the AR(2) model for
employment are remarkably stable over the three datasets while standard GMM2
estimates would be seriously downward biased in the smaller samples. Moreover, the
discrepancies between asymptotic and bootstrap confidence intervals in the random
subsample were greater than in the full sample. (Bootstrap standard errors for the
UK unbalanced panel were not calculated, since they would depend on a nontrivial
specification of the empirical distribution function for the unbalanced observations.)
In contrast, perhaps as a result of a higher probability of outliers in small samples,
the LIM2 estimate of the leading coefficient in the AR(2) model for employment was
a very small number in the UK sample, and a very large one in the Spanish subsample
of 200 firms, whereas it was similar to SNM2 for the full Spanish sample.

Finally, we simulated data as close as possible to the AR(2) employment equation,
to see if the findings that we obtained with the subsample of 200 companies were
substantiated in the Monte Carlo simulations. Random errors and individual effects
were generated from independent normal distributions with variances equal to the

values estimated from the SNM2 residuals of the full Spanish sample. Since the
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estimated time effects showed very little variability, the constant was set to a common
value for all periods given by the average estimated time effect in levels, although the
estimates in the simulations included time dummies. As a consequence the model
was stationary, and we generated (and discarded) 100 preliminary observations for
each individual to minimize the impact of initial conditions. The results for GMM?2
and SNM2 are reported in Table 8, and confirm the impression conveyed by the real
data (unfortunately, we were unable to simulate LIM2 due to computing limitations).
The SNM2 estimates are almost median unbiased, but GMM2 shows large downward
biases, specially when N = 200. A comparison in terms of median absolute errors
also favours SNM2 for both sample sizes and parameter estimates. Lastly, looking
at the quantiles of the ¢ ratios shown in the lower panel of Table 8, it appears that
the N(0,1) approximation is reasonable for the SNM ¢ ratios but not for the GMM

t ratios.

5 Conclusions

It has long been established that the lack of finite sample bias is an important advan-
tage of LIML estimators of structural equations over 2SLS, which by contrast have
thinner tails than LIML. The bias of 2SLS towards OLS can be specially worrying
when the instruments are “poor” and/or the degree of overidentification is large. In
practice, this means that while LIML is invariant to normalization, often a 2SLS
regression of y on z provides results that are fairly different from those of the (in-
verted) 2SLS regression of z on y, despite being asymptotically equivalent estimators.
However, LIML has not been used much in applications. The reasons for this include
a computational disadvantage over 2SLS, concerns with outliers, and the fact that
2SLS can be more easily accommodated into the GMM framework.

There has recently been a renewed interest in the finite sample properties of GMM
estimators in various time series and cross-sectional contexts. Several papers have

emphasized the role of estimated weighting matrices for the properties of the esti-
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mators in small samples, and a number of alternative methods have been considered
(e.g. Altonji and Segal 1996, Hansen et al. 1996, Angrist and Krueger 1995, Angrist,
Imbens and Krueger 1995, or Imbens 1997). In contrast, in this paper we have focused
on the role of normalization rules for the finite sample properties of GMM estimators
that make use of standard two-step weighting matrices. Our work is motivated by the
results in Hillier (1990), who argued that the alternative normalization rules adopted
by LIML and 2SLS are at the basis of their different sampling behaviour. Hillier
showed that a symmetrically normalized 2SLS has similar finite sample properties
to those of LIML. This result is interesting because, unlike LIML, the symmetrically
normalized 2SLS is a GMM estimator based on structural form moment conditions
and therefore it can be easily extended to distribution free environments and robust
statistics.

In particular, symmetrically normalized 2SLS is well suited for application to the
nonstandard IV situations that arise in linear panel data models with predetermined
variables, which are the models of interest in this paper. These models are typ-
ically estimated in orthogonal deviations or first-differences using all the available
lags as instruments. Usually, there is a large number of instruments available, but of
poor quality since they tend to be only weakly correlated with the first-differenced
endogenous variables that appear in the equation.

In this paper we have presented symmetrically normalized GMM (SNM) estima-
tors for dynamic panel data models that are asymptotically equivalent to ordinary
optimal GMM estimators. A byproduct of the estimation is a test statistic of overi-
dentifying restrictions, based on a minimum eigenvalue calculation. We have also
discussed the relation between robust and non-robust SNM estimators and the LIML
analogues. In our context, a non-robust LIML analogue in orthogonal deviations is
algebraically equivalent to an ordinary LIML estimator that solves a minimum eigen-
value problem. The robust LIML analogue, however, is the continuously updated

GMM estimator proposed by Hansen et al. (1996), which no longer involves a simple
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minimum eigenvalue calculation.

We have reported Monte Carlo evidence on the performance of non-robust and
robust GMM, SNM, and LIML analogue estimates for a first-order autoregressive
model with individual effects. For this model we have considered two alternative sets
of moment conditions as discussed by Arellano and Bond (1991), and Arellano and
Bover (1995). Since for these models the IV restrictions can be expressed as straight-
forward structures on the data covariance matrix, using these representations we have
also calculated minimum distance estimates for comparisons with the IV estimates.
Our findings suggest that Hillier’s basic results may have a wider applicability. In
most cases, the differences in the behaviour of SNM and LIML were small, and both
had a smaller median bias, and a larger interquartile range than GMM. However,
the differences in dispersion with ordinary GMM were small except in the almost
unidentified cases.

Finally, as an empirical illustration, we have reported estimates of employment
and wage equations from UK and Spanish firm panels. The results show that GMM
estimates from the (smaller) UK panel can be very unreliable when the degree of
overidentification is large. The results from the (larger) Spanish panel produce a
closer agreement between ordinary and symmetrically normalized GMM estimates,
although there is evidence that there can still be serious biases in GMM estimates.
Some of these results are confirmed by simulating data as close as possible to the
empirical data. Moment restricted bootstrap confidence intervals show that asymp-
totic confidence intervals are often over-optimistic, and Sargan tests tend to reject

the restrictions implied by the stationarity of initial conditions.
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Appendix: Data Description

The Spanish dataset is a balanced panel of 738 manufacturing companies recorded
in the database of the Bank of Spain’s Central Balance Sheet Office from 1983 to 1990.
This survey contains information on firm’s balance sheets and other complementary
information, including data on employment and total wage bill. This survey started in
1982 with the collection of data from large companies with a tendency in subsequent
years towards the addition of smaller companies. The database includes both quoted
and non quoted firms. The manufacturing firms included in this data set represent
more than 40% of the Spanish value added in manufacturing in 1985.

We selected firms reporting information during the whole period 1983 — 1990
that fulfilled several coherency conditions. All companies with negative values for
net worth, capital stock, accumulated depreciation, accounting depreciation, labour
costs, employment, sales, output or those whose book value of capital stock jumped
by a factor greater than 3 from one year to the next, were dropped from the sample.
Finally, we concentrated on non-energy, manufacturing companies with a public share
lower than 50 percent.

Variable construction
Employment

Number of employees is dissagregated into permanent employees (those with long-
term contracts) and temporary employees (those with short-term contracts). Total
employment is calculated as the number of permanent employees, plus the average
annual number of temporary employees (number of temporary employees during the

year times the average number of weeks worked by temporary employees divided by
52).

Real wage

The measure of the firm’s annual average labour costs per employee is computed
as the ratio of total wages and salaries (in million Spanish pesetas) to total number
of employees. This measure was deflated using Retail Price Indices for each of the
subsectors of the manufacturing industry. (Source: Spain’s Institute of National
Statistics.)

Descriptive statistics
Mean Median Std. deviation Minimum Maximum
Employment 310.4 124.0 702.4 10.0 11004.0
Real wage 1.86 1.75 0.67 0.32 6.66
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Table 1A
Model 1: Non-robust estimates

a=0.5 a=10.8
GMM1 SNM1 LIM1 GMM1 SNM1 LIM1
T=4

0727 =0
median 0.49 0.50  0.50 0.76 0.80 0.80
% bias 2.5 0.3 0.6 5.6 0.1 0.1
igr 0.18 0.19  0.19 0.28 0.29 0.29
iq80 0.35 0.36  0.36 0.56 0.61 0.61
mae 0.09 0.09 0.09 0.15 0.15 0.15

0727 =0.2

median 0.47 0.49 049 0.66 077 077
% bias 6.9 1.7 1.7 17.8 3.7 4.1
iqr 0.23 0.25 0.24 0.45 0.57  0.58
ig80 0.44 0.47 047 0.93 1.26 1.29
mae 0.12 0.12  0.12 0.25 0.28 0.29

072] =1
median 0.43 0.48  0.48 0.44 0.65 0.61
% bias 14.8 3.8 3.1 44.7 19.0 23.8
iqr 0.33 0.36  0.36 0.67 0.95 1.02
ig80 0.68 0.77 077 1.39 2.81 2.89
mae 0.18 0.18 0.18 0.44 0.50 0.53

T=7

0727 =0
median 0.47 0.50  0.49 0.75 0.80 0.79
% bias 5.0 0.7 2.0 6.0 0.3 1.1
iqr 0.09 0.09  0.09 0.11 0.12 0.12
ig80 0.16 0.17  0.17 0.22 0.23 0.24
mae 0.05 0.04 0.04 0.07 0.06 0.06

02 =02

median 0.47 0.50 0.49 0.70 0.81 0.78
% bias 6.7 0.8 1.8 13.0 1.2 2.7
igr 0.11 0.11 0.11 0.18 0.18 0.21
ig80 0.20 0.21 0.21 0.34 0.39 0.45
mae 0.06 0.06 0.06 0.12 0.09 0.11

0727 =1
median 0.45 0.50  0.48 0.61 0.82 0.74
% bias 10.4 1.0 3.3 24.0 3.0 8.1
iqr 0.13 0.14 0.14 0.23 0.26 0.38
iq80 0.24 0.26  0.27 0.45 0.54  0.86
mae 0.07 0.07  0.07 0.20 0.13 0.19




Table 1B
Model 1: Robust estimates

a=10.5 a=0.8
GMM2 SNM2 LIM2 MDE GMM?2 SNM2 LIM2 MDE
T=4

0727 =0
median 0.49 0.50 0.51 0.51 0.76 0.80 0.81 0.80
% bias 2.1 0.2 1.6 2.1 4.9 0.3 1.7 0.0
iqr 0.19 0.19  0.19 0.12 0.29 0.30 0.31  0.10
ig80 0.36 0.38 0.38  0.23 0.58 0.62 0.63 0.21
mae 0.09 0.09 0.09 0.06 0.15 0.15 0.16 0.05

0727 ={.2

median 0.47 049 050 0.51 0.65 0.76 0.84 0.71
% bias 6.5 1.8 0.3 1.3 19.0 4.6 5.1 11.3
iqr 0.24 0.25 0.25 0.20 0.47 0.55 0.56  0.28
iq80 0.47 0.50 0.51  0.39 0.97 1.33 1.23  0.58
mae 0.12 0.13 0.13  0.10 0.27 0.28 0.28 0.11

(7727 =1
median 0.44 0.47 050 049 0.45 0.64 0.82 0.65
% bias 12.8 5.4 0.5 2.2 43.6 19.5 2.9 19.1
iqr 0.35 0.38  0.38  0.32 0.70 1.03 0.94 048
ig80 0.75 0.80 0.80 0.56 1.53 2.82 2.22 094
mae 0.18 0.19 0.19 0.16 0.46 0.54 0.47 0.18

T=7

0727 =0
median 0.48 0.50  0.50 0.51 0.75 0.79 0.80 0.81
% bias 4.3 0.4 0.6 2.0 5.7 0.8 0.1 1.4
iqr 0.10 0.10  0.10  0.09 0.13 0.13 0.14  0.10
ig80 0.18 0.19 021 0.17 0.24 0.25 0.28  0.17
mae 0.05 0.05 0.05  0.04 0.07 0.07 0.07 0.05

0727 =0.2

median 0.47 0.50 0.50 0.50 0.69 0.79 0.81 0.74
% bias 6.2 0.5 0.4 0.1 13.7 1.7 0.9 7.8
igr 0.12 0.12 0.13 0.12 0.20 0.20 0.24 0.17
iq80 0.23 0.23 026 0.23 0.39 0.41 0.561 0.34
mae 0.06 0.06 0.06 0.06 0.13 0.10 0.12  0.09

0727 =1
median 0.45 049 050 0.50 0.59 077 0.80 0.71
% bias 9.8 1.5 0.0 0.2 26.0 3.9 0.1 11.1
iqr 0.14 0.15 0.16  0.15 0.27 0.28 0.36  0.22
iq80 0.28 0.30 0.33 0.29 0.53 0.59 0.80 046
mae 0.08 0.07  0.08 0.08 0.22 0.15 0.18 0.11

Notes to Tables 1A and 1B:

1,000 replications. N = 100, 012) =1.

% bias gives the percentage median bias for all the estimates; iqr is the 75th-25th interquar-
tile range; iq80 is the 90th-10th interquantile range; mae denotes the median absolute error.



Table 2
Model 2: Robust estimates

a=0.5 a=0.8
GMM2 SNM2 LIM2 MDE GMM2 SNM2 LIM2 MDE
T=4

0727 =0
median 0.50 0.51 0.51 0.51 0.79 0.81 0.81 0.81
% bias 0.8 2.0 1.9 1.2 0.9 1.5 1.7 0.7
igr 0.15 0.15 0.15  0.07 0.17 0.17 0.17  0.05
ig80 0.28 0.28 0.29 0.14 0.32 0.31 0.33 0.09
mae 0.07 0.07 0.08 0.03 0.08 0.08 0.09  0.02

0727 =0.2

median 0.50 0.51 0.51  0.51 0.79 0.82 0.81 0.81
% bias 0.9 2.5 1.9 1.8 0.7 2.7 1.5 1.3
igr 0.17 0.17  0.19 0.19 0.20 0.19 0.22 0.21
iq80 0.31 0.32 0.33 0.33 0.37 0.36 0.40 0.36
mae 0.09 0.09 0.09  0.09 0.10 0.10 0.11 0.10

0727 =1
median 0.52 0.54 0.51 0.51 0.85 0.87 0.81 0.82
% bias 3.1 8.4 1.93 2.3 5.7 9.2 1.0 2.1
iqr 0.19 0.20 0.21 0.21 0.19 0.18 0.25 0.22
iq80 0.36 037 039 0.39 0.38 0.37 0.43  0.40
mae 0.09 0.10 0.11  0.11 0.11 0.11 0.12  0.10

T=7

0727 =0
median 0.49 0.50 0.50 0.51 0.78 0.80 0.80  0.80
% bias 2.9 0.1 0.6 1.2 3.0 0.5 0.6 0.4
iqr 0.08 0.08 0.09 0.06 0.09 0.08 0.09 0.04
ig80 0.15 0.16 0.17  0.11 0.17 0.16 0.18  0.08
mae 0.04 0.04 0.04 0.03 0.05 0.04 0.05 0.02

0?‘7 =0.2

median 0.49 0.50 0.50  0.50 0.78 0.80 0.81 0.81
% bias 2.6 0.9 0.6 0.6 2.4 0.5 1.1 1.1
iqr 0.09 0.09 0.10  0.10 0.11 0.10 0.12  0.12
iq80 0.18 0.18 0.20 0.20 0.20 0.19 0.22  0.22
mae 0.05 0.05 0.06  0.05 0.05 0.05 0.06 0.06

0727 =1
median 0.50 0.51 0.50  0.50 0.83 0.85 0.81 0.81
% bias 0.7 2.9 0.2 0.4 3.5 5.7 0.7 1.8
igr 0.10 0.11 0.11 0.11 0.12 0.11 0.14 0.13
ig80 0.19 0.20 0.22 0.22 0.22 0.21 0.25 0.25
mae 0.05 0.05 0.05 0.05 0.07 0.07 0.07 0.07

See Notes to Tables 1A and 1B.



Table 3A

Model 1: Non-robust estimates
Quantiles of the ¢ statistics

T=4 T=17
a=0.5 a=038 a=0.5 a=038
GMM1 SNM1 LIM1 GMM1 SNM1 LIM1 GMM1 SNM1 LIM1 GMM1 SNM1 LIMI
ol =
! 0.05 -1.97 -1.84 -187 -2.16 -1.90 -2.03 -2.04 -1.66 -1.84 -2.26 -1.62 -1.95
0.10 -1.54 -142 -1.44 -1.74 -146 -1.66 -1.65 -1.27 -146 -1.87 -1.25 -1.51
0.256 -0.8 -0.74 -0.75 -0.98 -0.73 -0.78 -1.01 -0.64 -0.79 -1.23 -0.61 -0.82
0.50 -0.13 -0.02 -0.01 -0.25 0.00 -0.01 -0.32 0.04 -0.08 -0.53 0.06 -0.07
0.75 053 062 064 041 059 064 037 0.74 064 017 073 0.68
0.90 1.08 117 122 093 1.06 115 098 133 126 075 129 130
0.95 141 148 153 1.20 1.30 1.41 1.33 170 1.65 1.10 1.61 1.67
0727 = (.2
0.06 -2.05 -1.89 -1.95 -2.39 -2.00 -2.38 -2.12 -1.656 -1.92 -2.51 -1.57 -2.35
0.10 -1.63 -1.47 -1.52 -195 -155 -1.88 -1.74 -1.27 -151 -213 -1.19 -1.86
0.25 -0.91 -0.77 -0.79 -1.22 -0.79 -0.99 -1.08 -0.63 -0.82 -1.51 -0.56 -1.02
0.50 -0.18 -0.04 -0.03 -044 -0.03 -0.06 -0.39 0.06 -0.10 -0.81 0.09 -0.13
0.75 048 061 064 025 047 0.64 030 073 062 -012 069 071
0.90 1.03 113 119 071 082 107 090 133 127 048 119 143
0.95 1.33 142 150 092 099 127 124 165 161 080 147 179
ol =1
! 0.05 -2.20 -198 -2.13 -2.68 -2.16 -2.83 -2.19 -1.62 -2.03 -2.74 -147 -3.18
0.10 -1.74 -1.52 -1.64 -2.20 -1.64 -230 -1.83 -1.25 -1.62 -240 -1.11 -2.66
0.25 -1.04 -081 -0.88 -152 -0.89 -146 -1.18 -0.61 -091 -1.79 -0.51 -1.52
0.50 -0.27 -0.05 -0.05 -0.74 -0.12 -0.39 -049 0.07 -0.13 -1.10 0.12 -0.28
0.75 0.40 0.57 066 -0.01 027 055 020 073 062 -040 0.65 085
0.90 091 100 116 046 056 095 079 129 127 020 105 1.69
0.95 1.17 123 141 065 071 117 111 161 163 049 127 210




Table 3B

Model 1: Robust estimates
Quantiles of the ¢ statistics

T=4 T=7
a = 0.5 a=0.8 a=0.5 a =028

GMM2 SNM2 LIM2 GMM2 SNM2 LIM2 GMM2 SNM2 LIM2 GMM2 SNM2 LIM2

o2 =0
! 0.05 -2.04 -1.97 -191 -2.25 -2.12 -2.07 -249 -224 -234 -2.74 -2.24 -2.45
0.10 -161 -154 -147 -1.80 -1.62 -1.55 -2.01 -1.73 -1.82 -2.28 -1.79 -1.90
0.25 -0.87 -0.78 -0.73 -1.00 -0.80 -0.7v5 -1.22 -0.91 -0.92 -147 -0.94 -0.92
0.50 -0.11 0.01 0.06 -022 0.02 005 -0.33 0.00 0.08 -057 -0.03 0.09
0.75 0.58 0.71 0.76 0.45 0.72 0.73 0.56 091 1.05 0.28 0.85 1.06
0.90 1.18 132 1.35 1.00 1.28 1.26 1.30  1.67 1.89 1.03 1.62 1.89
0.95 1.54 169 1.71 1.30 1.61 1.55 1.76 212 242 146 2.05 237

02 =0.2

0.05 -2.15 -2.08 -2.00 -2.68 -2.71 -2.48 -2.62 -231 -242 -3.28 -2.53 -2.98
010 -1.71 -162 -1.55 -2.15 -2.02 -1.84 -2.11 -1.79 -1.86 -2.73 -1.97 -2.22
0.25 -093 -083 -0.76 -1.28 -1.01 -0.88 -1.30 -0.93 -0.95 -1.88 -1.056 -1.11
0.50 -0.17 002 005 -043 -0.05 0.04 -041 -0.02 0.06 -0.97 -0.11 0.05
0.75 0.564 071 077 029 07 0.73 0.45 087 104 -0.05 081 1.15
0.90 1.13 131 1.34 077 132 115 1.24 1.68 1.90 0.70  1.60 2.01
0.95 144 165 1.66 098 1.76 1.37 1.69 213 2.44 1.13  2.06 2.46

o2 =1
! 0.05 -2.36 -2.35 -2.26 -3.17 -4.44 -3.01 -2.76 -2.41 -255 -3.82 -3.10 -3.72
0.10 -1.83 -1.78 -1.67 -2.58 -3.22 -2.26 -2.27 -1.88 -1.96 -3.26 -2.37 -2.77
0.25 -1.09 -0.95 -0.82 -1.68 -1.67 -1.14 -1.44 -098 -1.01 -2.35 -1.31 -1.39
0.50 -0.25 -0.05 0.03 -0.78 -0.33 0.00 -0.56 -0.0b 0.03 -1.37 -0.19 0.0
0.75 0.46 073 077 001 070 0.70 0.32 0.87 1.07 -043 082 1.26
0.90 0.98 1.31 1.30 0.50 151 1.11 1.09 166 1.94 035 168 214
0.95 1.28 1.63 1.56 0.70 2.52 140 1.51 211 2.46 0.76 2.14 2.59

Notes to Tables 3A and 3B:

10,000 replications. N = 100, 02 = 1.
The 5th, 10th, 25th, 50th, 75th, 90th, and 95th quantiles for the standard normal distribution are,

respectively, -1.64, -1.28, -0.67, 0, 0.67, 1.28 and 1.64.



Table 4A
Employment equations
Robust estimates from the UK sample

Dependent
variable: Ang Sample period: 1979 — 1984 (140 companies)
Model A Model B
Independent Indirect
variables GMM2  SNM2 LIM2  GMM2! GMM2  SNM2 LIM2
Ani_1y 0.800 1.596 1.900 1.214 0.825 2.186 0.836
(0.048)  (0.105)  (0.173) (0.056)  (0.216)  (0.060)
Any—g) -0.116 -0.384 0.105 -0.282 -0.074 -0.455 0.344
(0.021)  (0.045)  (0.053) (0.020)  (0.077)  (0.038)
Awg; -0.640 -1.897 0.507 -4.638
(0.054)  (0.160)  (0.224)
Aw;_y) 0.564 2.138 0.487 1.567 0.431 2.841 0.615
(0.066)  (0.142)  (0.222) (0.076)  (0.312)  (0.080)
Ak 0.219 0.238 -1.353 0.604
(0.051)  (0.089)  (0.198)
Akie-1) -0.077 -0.787 -0.235
(0.045)  (0.126)  (0.049)
Aysy 0.890 1.747 0.674 3.105
(0.098)  (0.204) (0.228)
Aysi—1y -0.874 -2.897 -0.006 -4.101 -0.115 -2.438 -0.427
(0.105)  (0.229)  (0.312) (0.100)  (0.358)  (0.112)
Aysii_) 0.095 1.511 0.126

(0.091)  (0.266)  (0.101)

Sargan test (df) 63.0 (50) 67.1 (50) 44.5 (50) 62.8 (50) 68.3 (51) 66.5 (51) 57.8 (51)
R? ’s for IVs:

Ani(t—l) 0.271 0.269
Awyy 0.193
Awig—1) 0.309 0.289
Aky 0.108
Ak 1) 0.158

1Dependent variable is Awg;.



Table 4B
Employment equations
Robust estimates from the UK sample

Dependent
variable: Ang Sample period: 1979 — 1984 (140 companies)
AR(2) Models
Independent
variables GMM2 SNM2 LIM2 GMM2 SNM2 LIM2
Anig_) 0.691 1.635 1.412 0.320 0.827 0.092
(0.051) (0.074) (0.067) (0.053) (0.065) (0.047)
Ani_s) -0.114 -0.439 -0.348 0.022 -0.094 0.218
(0.026) (0.039) (0.025) (0.022) (0.032) (0.019)
Awy(p—1) 0.598 1.958 0.297
(0.070) (0.095) (0.073)
Aw;_g) 0.013 -0.075 -0.163

(0.036)  (0.053)  (0.041)

Sargan test (df) 65.9 (50) 71.3 (50) 48.8 (50) 32.8 (25) 31.3 (25) 31.7 (25)
R%s for IVs:
An@-(t__l) 0.216 0.152

Notes to Tables 4A and 4B:

(1) Time dummies are included in all equations.

(ii) Asymptotic standard errors robust to heteroskedasticity are reported in parentheses.

(iit) Model A treats Ang_1y, Aw;e, Awg;_1y, and Ak;; as endogenous. Model B treats Angp_1y,
Awg;_1y, and Ak;;_1y as endogenous.

(iv) The instrument set for Models A and B includes lags of employment dated (¢ — 2) and
earlier, lags of wages and capital dated (¢t —2) and (¢t — 3) and the levels and first differences of firm
real sales and firm real stocks dated (¢t — 2). The instrument set for all the AR(2) models includes
lags of employment dated (¢t — 2) and earlier, and for those in the first three columns also lags of
wages dated (t — 2) and earlier.

(v) The R?’s for the IVs denote the partial R? between the instruments and each endogenous
explanatory variable once the exogenous variables included in the equation have been partialled out.



Table 5
VAR estimates for employment and wage equations
from the Spanish sample
Sample period: 1983 — 1990 (738 companies)

“Model 1” restrictions

Independent
variables GMM2 SNM2 LIM2 GMM2 SNM2 LIM2
Ang Fquation
Ani(t_l) 0.842 1.087 1.004 0.748 0.813 0.832
(0.669;1.015)  (0.894;1.280)  (0.830;1.178)  (0.575;0.921)  (0.636;0.988)  (0.661;1.002)
[0.712;1.209] [0.959;1.485] [0.505;0.976]  [0.629;1.092]
Ani(t_g) -0.003 -0.074 -0.049 0.038 0.030 0.027
(-0.060;0.054)  (-0.140;-0.008)  (-0.110;0.012)  (-0.005;0.081)  (-0.015;0.075)  (-0.018;0.072)
[-0.146;0.028]  [-0.244;-0.039] [-0.027;0.084]  [-0.046;0.073]
Aw(e—1) 0.078 0.222 0.177
(-0.086;0.242)  (0.046;0.398)  (0.016;0.338)
[0.006;0.412]  [0.124;0.624]
Aw;(s—o) -0.053 -0.074 -0.068
(-0.102;-0.004)  (-0.127;-0.021)  (-0.121;-0.015)
[-0.116;-0.002)  [-0.138;-0.020]
Sargan test (df)  36.9 (36) 37.2 (36) 35.5 (36) 14.4 (18) 13.5 (18) 13.0 (18)
R%s for IVs:
Angy_) 0.033 0.022
Aw;_1) 0.031
Awg Equation
Awi(t_l) 0.178 0.228 0.063 0.178 0.228 0.063
(-0.042;0.398)  (-0.008;0.464)  (-0.176;0.302)  (-0.042;0.398)  (-0.008;0.464)  (-0.176;0.302)
[-0.075;0.405]  [-0.100;0.482] [-0.144;0.429]  [-0.232;0.519)
Aw;(y—9) -0.012 -0.002 -0.039 -0.012 -0.002 -0.039
(-0.081;0.049)  (-0.066;0.062)  (-0.102;0.024)  (-0.081;0.049)  (-0.066;0.062)  (-0.102;0.024)
[-0.076;0.042]  [-0.077;0.052] [-0.089;0.045]  [-0.100;0.060}
Sargan test (df)  12.7 (18) 12.9 (18) 12.2 (18) 12.7 (18) 12.9 (18) 12.2 (18)
R%s for IVs:
Awi(t—l) 0019

Notes to Table 5:
(i) Time dummies are included in all equations.

(ii) The instrument set for all the employment equations includes lags of employment dated
(t —2) and earlier, and for those in the first three columns also lags of wages dated (t — 2) and
earlier. The instrument set for the wage equation includes lags of wages dated (¢t — 2) and earlier.

(iii) The R*’s for the IVs denote the partial R? between the instruments and each endogenous
explanatory variable once the exogenous variables included in the equation have been partialled out.

(iv) 95% asymptotic confidence intervals based on heteroskedasticity-robust standard errors

in parentheses; 95% moment-restricted bootstrap confidence intervals in brackets. The bootstrap
confidence intervals for the equations in the first three columns are based on a distribution that
satisfies a larger set of moment conditions than those in the last three columns. The reason is that
the former include lagged wages as instruments for the employment equation, which are absent from

the latter.



Table 6
VAR estimates for employment and wage equations
from the Spanish sample
Sample period: 1983 — 1990 (738 companies)

“Model 27 restrictions

Independent
variables GMM2 SNM2 LIM2
Angy Equation
Any_1) 1.163 1.208 1.624
(1.112;1.214) (1.137;1.279) (1.424;1.824)
[1.132;1.218] [1.143;1.229)
Anp_g) -0.135 -0.142 -0.160
(-0.172;-0.098) (-0.185;-0.099)  (-0.231;-0.089)
[-0.197;-0.108) [-6.206;-0.117)
Awig_1 0.121 0.116 0.058
(0.086;0.156) (0.077;0.155) (-0.001;0.117)
(0.091;0.161) [0.094;0.164)
Awg;_g) -0.132 -0.151 -0.242
(-0.171;-0.093) (-0.194;-0.108)  (-0.313;-0.171)
[-0.173;-0.101) [-6.177;-0.101]
Sargan test (df) 80.1 (48) 69.1 (48) 50.3 (48)
Awy; Equation
Awyy 0.854 0.873 0.869
(0.815;0.893) (0.834;0.912) (0.828;0.911)
[0.825;0.902) [0.828;0.903]
Awy_g) 0.152 0.138 0.141
(0.105;0.199) (0.089;0.187) (0.090;0.192)
[0.099;0.186] [0.094;0.183
Sargan test (df) 71.4 (24) 72.2 (24) 71.4 (24)

Notes to Table 6:
(i) Time dummies are included in all equations.

(ii) The instrument set for the employment equations includes lags of employment and wages
dated (t — 2) and earlier for errors in first differences, and lags of employment and wages in first
differences dated (¢ — 1) for errors in levels. The instrument set for the wage equations is similar,
but excludes lagged employment in levels and first differences.

(iil) GMM2 and SNM2 are two-step estimates based on one-step GMM residuals that use all the

orthogonality restrictions from Model 2, and the inverse of the second moments of the instruments
as the weighting matrix.

(iv) 95% asymptotic confidence intervals based on heteroskedasticity-robust standard errors in
parentheses; 95% moment-restricted bootstrap confidence intervals in brackets.



Table 7
VAR estimates for employment and wage equations
from the Spanish sample
Random sample containing 200 companies
Sample period: 1983 — 1990

Independent
variables GMM2 SNM2 LIM2 GMM2 SNM2 LIM2
Ang Equation
Ani(tﬁl) 0.788 1.160 1.002 0.441 0.815 1.517
(0.610;0.966)  (0.888;1.432)  (0.777;1.227)  (0.167;0.715)  (0.509;1.121)  (1.081;1.952)
[0.528;1.248] [0.932;1.903] [0.217;0.983] [0.424;1.214]
Ang.o) -0.042 -0.206 -0.181 0.063 0.003 -0.170
(-0.109;0.025)  (-0.306;-0.106)  (-0.271;-0.091)  (0.002;0.124)  (-0.062;0.069)  (-0.268;-0.072)
[-0.265;-0.008]  [-0.567;-0.120] [-0.060;0.120]  [-0.138;0.090]
Aw;s_1) 0.337 0.650 0.675
(0.151;0.523)  (0.371;0.929)  (0.452;0.898)
[0.099;0.680] [0.300;1.048]
Awi(t_g) 0.001 -0.040 -0.018
(-0.065;0.067)  (-0.120;0.040)  (-0.098;0.062)
[-0.150;0.059]  [-0.261;0.006)
Sargan test (df)  30.2 (36) 23.0 (36) 24.8 (36) 23.3 (18) 24.3 (18) 16.5 (18)
R? ’s for IVs:
Ani(t_l) 0.064 0.040
Aw;_1) 0.080
Awy Equation
Aw(p-1) -0.612 -1.198 -1.246 -0.612 -1.198 -1.246
(-0.984;-0.240)  (-1.442;-0.953)  (-1.509;-0.983)  (-0.984;-0.240)  (-1.442;-0.953)  (-1.509;-0.983)
[-0.962;0.350]  [-3.512;2.492] [0.954;0.402]  [-4.893;4.932]
Awi(t_g) -0.120 -0.270 -0.231 -0.120 -0.270 -0.231

(-0.231:-0.009)
[-0.232;0.102]

(-0.349;-0.191)
[-0.627;0.348]

(-0.319;-0.143)

(-0.231;-0.009)
[-0.239;0.183]

(-0.349;-0.191)

[-1.202;0.993]

(-0.319;-0.143)

Sargan test (df)
R? ’s for IVs:

Awi(t—l)

17.3 (18)

0.023

11.0 (18)

9.3 (18)

17.3 (18)

11.0 (18)

9.3 (18)

See Notes to Table 5.



Table 8
Monte Carlo simulations for the AR(2) model for employment
arp = 0.813, ag = 0.030, v = 0.777,
o2 =0.038, o2 = 0.01

N =738 N =200
GMM2 SNM2 GMM2 SNM2
Summary of
estimates
851
median 0.72 0.82 0.55 0.82
% bias 12.0 0.3 32.2 0.8
iqr 0.14 0.15 0.27 0.28
iq80 0.28 0.29 0.56 0.61
mae 0.11 0.08 0.26 0.14
6%)]
median 0.01 0.03 -0.02 0.02
% bias 64.6 7.0 163.3 35.4
igr 0.04 0.04 0.06 0.08
1q80 0.07 0.07 0.11 0.14
mae 0.02 0.02 0.05 0.04
Quantiles of
the ¢ statistics
851
0.10 244 -1.37 -3.61  -1.62
0.25 175 -0.74 2,77 -0.82
0.50 -1.01 0.02 -1.84 0.04
0.75 -0.25 0.77 -0.97 0.81
0.90 0.41 1.33 -0.21 1.42
&%)
0.10 -2.22  -1.55 -2.93 -1.92
0.25 -1.48  -0.82 -2.16  -1.05
0.50 -0.78  -0.08 -1.26 -0.24
0.75 -0.01 0.60 -0.45 0.60
0.90 0.62 1.19 0.17 1.08

1,000 replications.

% bias gives the percentage median bias for all estimates; iqr is the 7hth-25th interquartile range;
ig80 is the 90th-10th interquantile range; mae denotes the median absolute error. The 10th, 25th,
8 éc?, 7%th %Igld 90th quantiles for the standard normal distribution are, respectively, -1.28, -0.67, 0,

.67 and 1.28.





