1 Means and predictors

Given some data \(\{y_1, ..., y_n\} \) we could calculate a mean \(\bar{y} = (1/n) \sum_{i=1}^{n} y_i \) as a single quantity that summarizes the \(n \) data points. \(\bar{y} \) is an optimal predictor that minimizes mean squared error:

\[
\bar{y} = \arg \min_{a} \sum_{i=1}^{n} (y_i - a)^2.
\]

Now if we have data on two variables for the same units \(\{y_i, x_i\}_{i=1}^{n} \), we can get a better predictor of \(y \) using the additional information in \(x \) calculating the regression line \(\hat{y}_i = \hat{a} + \hat{b} x_i \) where

\[
\begin{pmatrix} \hat{a} \\ \hat{b} \end{pmatrix} = \arg \min_{a,b} \sum_{i=1}^{n} (y_i - a - bx_i)^2.
\]

More generally, if \(x_i \) is a vector \(x_i = (1, x_{2i}, ..., x_{ki})' \), we calculate the linear predictor \(\hat{y}_i = x_i' \hat{\beta} \) where

\[
\hat{\beta} = \arg \min_{\beta} \sum_{i=1}^{n} (y_i - x_i' \beta)^2.
\]

The algebra of linear predictors

First order conditions of (1) are

\[
\sum_{i=1}^{n} x_i \left(y_i - x_i' \hat{\beta} \right) = 0.
\]

(2)

If \(\sum_{i=1}^{n} x_i x_i' \) is full rank (which requires \(n \geq k \)) there is a unique solution:

\[
\hat{\beta} = \left(\sum_{i=1}^{n} x_i x_i' \right)^{-1} \sum_{i=1}^{n} x_i y_i.
\]

(3)

We may use the compact notation \(X'X = \sum_{i=1}^{n} x_i x_i' \) and \(X'y = \sum_{i=1}^{n} x_i y_i \) where \(y = (y_1, ..., y_n)' \) and \(X = (x_1, ..., x_n)' \).

Denoting residuals as \(\hat{u}_i = y_i - x_i' \hat{\beta} \), from the first order conditions (2) we can immediately say that as long as a constant term is included in \(x_i \):

\[
\frac{1}{n} \sum_{i=1}^{n} \hat{u}_i = 0, \quad \frac{1}{n} \sum_{i=1}^{n} x_{ji} \hat{u}_i = 0 \text{ for } j = 2, ..., k.
\]

Therefore, the mean of the residuals is zero and the covariance between the residuals and each of the \(x \) variables is also zero. Moreover, since \(\hat{y}_i \) is a linear combination of \(x_i \), the covariance between \(\hat{u}_i \) and \(\hat{y}_i \) is also zero. We conclude that a linear regression decomposes \(y_i \) into two orthogonal components:

\[
y_i = \hat{y}_i + \hat{u}_i,
\]

so that \(\text{Var}(y_i) = \text{Var}(\hat{y}_i) + \text{Var}(\hat{u}_i) \). An \(R^2 \) measures the fraction of the variance of \(y_i \) that is accounted by \(\hat{y}_i \):

\[
R^2 = \frac{\text{Var}(\hat{y}_i)}{\text{Var}(y_i)}.
\]
2 Consistency and asymptotic normality of linear predictors

If our data \(\{y_i, x_i\}_{i=1}^n \) are a random sample from some population we can study the properties of \(\hat{\beta} \) as an estimator of the corresponding population quantity:

\[
\beta = \left[E \left(x_i \right) \right]^{-1} E (x_i y_i),
\]

where we require that \(E (x_i x'_i) \) has full rank.

Letting the population linear predictor error be \(u_i = (y_i - x'_i \beta) \), the estimation error is

\[
\hat{\beta} - \beta = \left(\frac{1}{n} \sum_{i=1}^n x_i x'_i \right)^{-1} \frac{1}{n} \sum_{i=1}^n x_i u_i.
\]

Clearly, \(E (x_i u_i) = 0 \), since \(\beta \) solves the first-order conditions \(E [x_i (y_i - x'_i \beta)] = 0 \). By Slutsky’s theorem and the law of large numbers:

\[
\text{plim}_{n \to \infty} \left(\hat{\beta} - \beta \right) = \left(\text{plim}_{n \to \infty} \frac{1}{n} \sum_{i=1}^n x_i x'_i \right)^{-1} \frac{1}{n} \sum_{i=1}^n x_i u_i = \left[E (x_i x'_i) \right]^{-1} E (x_i u_i) = 0.
\]

Therefore, \(\hat{\beta} \) is a consistent estimator of \(\beta \).

Moreover, because of the central limit theorem

\[
\frac{1}{\sqrt{n}} \sum_{i=1}^n x_i u_i \xrightarrow{d} \mathcal{N} (0, V)
\]

where \(V = E (u_i^2 x_i x'_i) \). In addition, using Cramér’s theorem we can assert that

\[
\sqrt{n} \left(\hat{\beta} - \beta \right) \xrightarrow{d} \mathcal{N} (0, W)
\]

where

\[
W = \left[E (x_i x'_i) \right]^{-1} E (u_i^2 x_i x'_i) \left[E (x_i x'_i) \right]^{-1},
\]

and also for individual coefficients:

\[
\sqrt{n} \left(\hat{\beta}_j - \beta_j \right) \xrightarrow{d} \mathcal{N} (0, w_{jj})
\]

where \(w_{jj} \) is the \(j \)-th diagonal element of \(W \).

Asymptotic standard errors and confidence intervals A consistent estimator of \(W \) is:

\[
\hat{W} = \left(\frac{1}{n} \sum_{i=1}^n x_i x'_i \right)^{-1} \left(\frac{1}{n} \sum_{i=1}^n u_i^2 x_i x'_i \right) \left(\frac{1}{n} \sum_{i=1}^n x_i x'_i \right)^{-1}.
\]

The quantity \(\sqrt{w_{jj}/n} \) is called an asymptotic standard error of \(\hat{\beta}_j \), or simply a standard error. It is an approximate standard deviation of \(\hat{\beta}_j \) in a large sample, and it is used as a measure of the precision of an estimate.
Due to Cramér’s theorem:

\[
\frac{\hat{\beta}_j - \beta_j}{\sqrt{\hat{w}_{jj}/n}} \xrightarrow{d} N(0, 1).
\] (10)

The use of this statement is in calculating approximate confidence intervals. A 95% large sample confidence interval is:

\[
\left(\hat{\beta}_j - 1.96\sqrt{\hat{w}_{jj}/n}, \; \hat{\beta}_j + 1.96\sqrt{\hat{w}_{jj}/n}\right).
\] (11)

3 Classical regression model

A linear predictor is the best linear approximation to the conditional mean of \(y \) given \(x \) in the sense:

\[
\beta = \arg \min_b E \left\{ \left[E(y_i | x_i) - x_i' b \right]^2 \right\}.
\] (12)

That is, \(x_i' \beta \) minimizes the mean squared approximation errors where the mean is taken with respect to the distribution of \(x \). Therefore, changing the distribution of \(x \) will change the linear predictor unless the conditional mean is linear, in which case \(E(y_i | x_i) = x_i' \beta \).

If \(E \left\{ \left[E(y_i | x_i) - x_i' \beta \right]^2 \right\} \) is not zero or close to zero, \(x_i' \beta \) will not be a very informative summary of the dependence in mean between \(y \) and \(x \). In general, the use of a linear predictor is hard to motivate if the conditional mean is notoriously nonlinear.

The classical regression model is a linear model that makes the following two assumptions:

\[
E(y | X) = X\beta \quad \text{(A1)}
\]

\[
Var(y | X) = \sigma^2 I_n. \quad \text{(A2)}
\]

The first assumption (A1) asserts that \(E(y_i | x_1, ..., x_n) = x_i' \beta \) for all \(i \). This assumption contains two parts. The first one is that \(E(y_i | x_1, ..., x_n) = E(y_i | x_i) \); this part of the assumption will always hold if \(\{y_i, x_i\}_{i=1}^n \) is a random sample and is sometimes called strict exogeneity. The second part is the linearity assumption \(E(y_i | x_i) = x_i' \beta \). Under A1 \(\hat{\beta} \) is an unbiased estimator:

\[
E(\hat{\beta} | X) = (X'X)^{-1} X' E(y | X) = \beta
\] (13)

and therefore also \(E(\beta) = \beta \) by the law of iterated expectations.

The second assumption (A2) says that \(Var(y_i | x_1, ..., x_n) = \sigma^2 \) and \(Cov(y_i, y_j | x_1, ..., x_n) = 0 \) for all \(i \) and \(j \). Under random sampling \(Var(y_i | x_1, ..., x_n) = Var(y_i | x_i) \) and \(Cov(y_i, y_j | x_1, ..., x_n) = 0 \) always hold. Assumption A2 also requires that \(Var(y_i | x_i) \) is constant for all \(x_i \) and this situation is called homoskedasticity. The alternative situation when \(Var(y_i | x_i) \) may vary with \(x_i \) is called heteroskedasticity. When the data are time series the zero covariance condition \(Cov(y_i, y_j | x_1, ..., x_n) = 0 \) is called lack of autocorrelation.
Under A2 the variance matrix of $\hat{\beta}$ given X is

$$Var \left(\hat{\beta} \mid X \right) = \sigma^2 \left(X'X \right)^{-1}. \quad (14)$$

Moreover, under A2 since $E \left(u_i^2 x_i x_i' \right) = \sigma^2 E \left(x_i x_i' \right)$ the sandwich formula (7) becomes

$$W = \sigma^2 \left[E \left(x_i x_i' \right) \right]^{-1}. \quad (15)$$

To obtain an unbiased estimator of σ^2 note that under A2, letting $M = I_n - X \left(X'X \right)^{-1} X'$, we have

$$E \left(\hat{u}' \hat{u} \right) = E \left[E \left(u'Mu \mid X \right) \right] = E \left(tr \left[ME \left(uu' \mid X \right) \right] \right) = \sigma^2 tr \left(M \right) = \sigma^2 \left(n - k \right), \quad (16)$$

so that an unbiased estimator of σ^2 is given by the degrees of freedom corrected residual variance:

$$\hat{\sigma}^2 = \frac{\hat{u}' \hat{u}}{n - k}. \quad (17)$$

Sampling distributions under conditional normality Consider as a third assumption:

$$y \mid X \sim N \left(X\beta, \sigma^2 I_n \right). \quad (A3)$$

Under A3:

$$\hat{\beta} \mid X \sim N \left(\beta, \sigma^2 \left(X'X \right)^{-1} \right), \quad (18)$$

so that also

$$\hat{\beta}_j \mid X \sim N \left(\beta_j, \sigma^2 a_{jj} \right) \quad (19)$$

where a_{jj} is the j-th diagonal element of $(X'X)^{-1}$. Moreover, conditionally and unconditionally we have

$$z_j = \frac{\hat{\beta}_j - \beta_j}{\sqrt{\sigma^2 a_{jj}}} \sim N \left(0, 1 \right). \quad (20)$$

This result, which holds exactly for the normal classical regression model, also holds under homoskedasticity as a large-sample approximation for linear predictors and non-normal populations, in light of (8), (15), and Cramér’s theorem.

Heteroskedasticity-consistent standard errors Note that the validity of the large sample results in (9), (10) and (11) does not require homoskedasticity. This is why the asymptotic standard errors $\sqrt{w_{jj}/n}$ calculated from (9) are usually called heteroskedasticity-consistent or White standard errors, after the work of Halbert White.
Other distributional results The other key exact distributional results in this context are
\[
\frac{\hat{u}'\hat{u}}{\sigma^2} \sim \chi^2_{n-k} \text{ independent of } z_j
\] (21)
and
\[
\frac{\hat{\beta}_j - \beta_j}{\sqrt{\sigma^2 a_{jj}}} \sim t_{n-k}.
\] (22)
In addition, letting now \(\hat{\beta}_j \) denote a subset of \(r \) coefficients and \(A_{jj} \) the corresponding submatrix of \((X'X)^{-1}\), we have
\[
\frac{(\hat{\beta}_j - \beta_j)' A_{jj}^{-1} (\hat{\beta}_j - \beta_j)}{\sigma^2} \sim \chi^2_r
\] (23)
and
\[
\frac{(\hat{\beta}_j - \beta_j)' A_{jj}^{-1} (\hat{\beta}_j - \beta_j) / r}{\sigma^2} \sim F_{r,(n-k)}.\] (24)

4 Weighted least squares

The ordinary least squares (OLS) statistic \(\hat{\beta} \) is a function of simple means of \(x_i x_i' \) and \(x_i y_i \). Under heteroskedasticity it may make sense to consider weighted means in which observations with a smaller variance receive a larger weight. Let us consider estimators of the form
\[
\tilde{\beta} = \left(\sum_{i=1}^n w_i x_i x_i' \right)^{-1} \sum_{i=1}^n w_i x_i y_i \tag{25}
\]
where \(w_i \) are some weights. OLS is the special case in which \(w_i = 1 \) for all \(i \).

Under appropriate regularity conditions
\[
\text{plim} \left(\tilde{\beta} - \beta \right) = \left[E \left(w_i x_i x_i' \right) \right]^{-1} E \left(w_i x_i u_i \right).
\] (26)

Thus, in general to ensure consistency of \(\tilde{\beta} \) we need that \(E(w_i x_i u_i) = 0 \). This result will hold if \(E(u_i \mid x_i) = 0 \) and \(w_i = w(x_i) \) is a function of \(x_i \) only:
\[
E \left(w_i x_i u_i \right) = E \left(w_i x_i E \left(u_i \mid x_i \right) \right) = 0,
\]
but more generally \(\tilde{\beta} \) is not a consistent estimator of the population linear projection coefficient \(\beta \) when \(E(y_i \mid x_i) \neq x_i' \beta \).\(^1\)

Subject to consistency, the asymptotic normality result is
\[
\sqrt{n} \left(\tilde{\beta} - \beta \right) \xrightarrow{d} N \left(0, \left[E \left(w_i x_i x_i' \right) \right]^{-1} E \left(w_i^2 x_i^2 x_i x_i' \right) \left[E \left(w_i x_i x_i' \right) \right]^{-1} \right).
\] (27)
\(^1\) Actually, if \(x_i \) has density \(f(x) \), \(\tilde{\beta} \) is consistent for the optimal linear predictor under an alternative probability distribution of \(x_i \) given by \(g(x) \propto f(x) w(x) \).
Asymptotic efficiency When weights are chosen to be proportional to the reciprocal of $\sigma_i^2 = E(u_i^2 \mid x_i)$, the asymptotic variance in (27) becomes

$$\left[E \left(\frac{x_i x_i'}{\sigma_i^2} \right) \right]^{-1}. \quad \text{(28)}$$

Moreover, it can be shown that for any (conformable) vector q:

$$q' [E(w_i x_i x_i')^{-1} E(\sigma_i^2 w_i^2 x_i x_i')]^{-1} q \geq q' \left[E \left(\frac{x_i x_i'}{\sigma_i^2} \right) \right]^{-1} q. \quad \text{(29)}$$

Statement (29) says that the asymptotic variance of any linear combination of weighted LS estimates $q' \tilde{\beta}$ is the smallest when the weights are $w_i \propto 1/\sigma_i^2$. To prove (29) note that

$$E \left(\frac{x_i x_i'}{\sigma_i^2} \right) - E(w_i x_i x_i') \left[E(\sigma_i^2 w_i^2 x_i x_i')]^{-1} E(w_i x_i x_i') \right] = H E(m_i m_i') H \quad \text{(30)}$$

where

$$H = \begin{pmatrix} I \\ - E(\sigma_i^2 w_i^2 x_i x_i')^{-1} E(w_i x_i x_i') \end{pmatrix}, \quad m_i = \begin{pmatrix} x_i \\ \sigma_i w_i x_i \end{pmatrix}. \quad \text{Also note that for any } q \text{ we have } q' [H'E(m_i m_i') H] q \geq 0.$$

Generalized least squares In view of (29) we can say that the estimator

$$\tilde{\beta}_{GLS} = \left(\sum_{i=1}^n \frac{x_i x_i'}{\sigma_i^2} \right)^{-1} \sum_{i=1}^n \frac{x_i y_i}{\sigma_i^2} \quad \text{(31)}$$

is asymptotically efficient in the sense of having the smallest asymptotic variance among the class of consistent weighted least squares estimators. $\tilde{\beta}_{GLS}$ is a generalized least squares estimator (GLS).

In matrix notation:

$$\tilde{\beta}_{GLS} = (X' \Omega^{-1} X)^{-1} X' \Omega^{-1} y \quad \text{(32)}$$

where $\Omega = \text{diag}(\sigma_1^2, \ldots, \sigma_n^2)$.

In a generalized classical regression model we have $E(y \mid X) = X \beta$ and $Var(y \mid X) = \Omega$.

The asymptotic normality result is

$$\sqrt{n} \left(\tilde{\beta}_{GLS} - \beta \right) \overset{d}{\to} N \left(0, \left[E \left(\frac{x_i x_i'}{\sigma_i^2} \right) \right]^{-1} \right). \quad \text{(33)}$$

Usually $\tilde{\beta}_{GLS}$ is an infeasible estimator because σ_i^2 is an unknown function of x_i. In a feasible GLS estimation σ_i^2 is replaced by a (parametric or nonparametric) estimated quantity. The large-sample properties of the resulting estimator may or may not coincide with those of the infeasible GLS.

2 We are using the fact that if A and B are positive definite matrices, then $A - B$ is positive definite if and only if $B^{-1} - A^{-1}$ is positive definite.
5 Cluster-robust standard errors

Suppose the sample \(\{y_i,x_i\}_{i=1}^n \) consists of \(H \) groups or clusters of \(M_h \) observations each \((n = M_1 + ... + M_H) \), such that observations are independent across groups but dependent within groups, \(H \) is large and \(M_h \) is small (fixed) for all \(h \). For convenience let us order observations by groups and use a double-index notation \((y_{hm}, x_{hm})\) for \(h = 1, ..., H \)(group index) and \(m = 1, ..., M_h \) (within group index).

The compact notation for linear regression was \(y = X\beta + u \). A similar notation for the observations in cluster \(h \) is

\[
y_h = X_h\beta + u_h
\]

where \(y_h = (y_{h1}, ..., y_{hM_h})' \), etc. Using this notation the OLS estimator is

\[
\hat{\beta} = (X'X)^{-1} X'y = \left(\sum_{h=1}^{H} X_h'X_h \right)^{-1} \sum_{h=1}^{H} X_h'y_h.
\]

Note that in terms of individual observations we can write \(X'y = \sum_{h=1}^{H} \sum_{m=1}^{M_h} x_{hm}y_{hm} \), etc.

The scaled estimation error is

\[
\sqrt{H} (\hat{\beta} - \beta) = \left(\frac{X'X}{H} \right)^{-1} \frac{1}{\sqrt{H}} \sum_{h=1}^{H} X_h'u_h.
\]

Applying the central limit theorem at cluster level, a consistent estimate of the variance of \(\sqrt{H} (\hat{\beta} - \beta) \) is given by

\[
\left(\frac{X'X}{H} \right)^{-1} \left(\frac{1}{H} \sum_{h=1}^{H} X_h'\hat{u}_h\hat{u}_h'X_h \right) \left(\frac{X'X}{H} \right)^{-1},
\]

so that cluster-robust standard errors can be obtained as the square roots of the diagonal elements of the covariance matrix

\[
\text{Var} \left(\hat{\beta} \right) = (X'X)^{-1} \left(\sum_{h=1}^{H} X_h'\hat{u}_h\hat{u}_h'X_h \right) (X'X)^{-1}.
\]

This is the sandwich formula associated with clustering. Its rationale is as a large \(H \) approximation. There are many applications of this tool, both with actual cluster survey designs and with other data sets with potential group-level dependence.