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1. Introduction

Time series econometricians have long recognized the distinction between strictly
exogenous variables and predetermined variables as a fundamental one in the
specification of empirical models. This concern has not been so prominent in the
analysis of micro panel data where a sizeable part of the existing work has con-
centrated on models with just strictly exogenous variables. This situation partly
reflects the way in which the literature developed. One strand of this literature
found its original motivation in the desire of exploiting panel data for control-
ling unobserved time-invariant heterogeneity in cross-sectional models. Another
strand was interested in panel data as a way to disentangle components of vari-
ance and to estimate transition probabilities among states. Papers in either of
these two veins have produced various linear and nonlinear "fixed effects” and
"random effects” models in which feedback from dependent variables to explana-
tory variables is typically absent.

Hausman and Taylor (1981) and Amemiya and MaCurdy (1986) among oth-
ers discussed linear models of this kind. Bhargava and Sargan (1983) consid-
ered a linear model which included a lagged dependent variable but required a
strictly exogenous variable for identification. Strict exogeneity is also required
in the multiplicative models considered by Wooldridge (1990) and Chamberlain
(1992a), and in the discrete choice models presented by Chamberlain (1980),
Manski (1987) and Newey (1994). Honoré (1992) deals with Tobit and truncated
models under strict exogeneity, and while Honoré (1990) extends the model to
include a lagged dependent variable, he also requires a strictly exogenous regres-
sor.

A third strand of the literature has studied autoregressive models with in-

dividual effects, and, more generally, models with lagged dependent variables.



The work in this area has originated some of the techniques that are customarily
applied in panel data models with predetermined variables. These methods are
applicable to linear models with additive effects, and have more recently been
extended to multiplicative models, which are a generalisation of the exponen-
tial regressions used with Poisson-like count data. However, much fewer results
are available on dynamic discrete choice models and other non-linear models of
interest in microeconometrics.

Autoregressive linear models or models with predetermined variables have
been considered by Anderson and Hsiao (1982), Holtz-Eakin, Newey and Rosen
(1988), Arellano and Bond (1991), Arellano and Bover (1995), Ahn and Schmidt
(1995), and Keane and Runkle (1992). Multiplicative models without strictly
exogenous variables are treated by Chamberlain (1992b, 1993) and Wooldridge
(1991). Discrete choice models with state dependence and heterogeneity have
been considered by Heckman (1981a, 1981b), Card and Sullivan (1988), Naren-
dranathan and Elias (1990), and Moon and Stotsky (1993), among others. Cen-
sored autoregressive models are studied by Arellano, Bover and Labeaga (1992).

The interaction between unobserved heterogeneity and dynamics in short pan-
els poses new and difficult problems that are absent from time series models.
These issues are of importance since with micro data one is typically more in-
terested in the identification and estimation of individual agent’s structural re-
sponses than in forecasting exercises.

The purpose of this paper is twofold. The first aim is to review recent work
on linear and multiplicative panel data models with predetermined variables.
The second objective is to show the applicability of some of the insights from
this literature for developing useful nonlinear discrete choice models without the
strict exogeneity assumption. Throughout, most of the discussion is conducted
using simple first-order autoregressive models with individual effects. Although
this particular model is not necessarily an interesting one in applied work, it

illustrates in a simple setting most of the issues concerning identification and
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inference that appear in the present context.
According to the definition of Sims (1972), a variable z is strictly exogenous
relative to y if
E*(ys | xT) = E*(y, | 2")
where E* denotes a best linear predictor and z* = (21..2¢)’. This is well known

to be equivalent to the statement that y does not Granger-cause z (cf. Granger

(1969)) in the sense that!

E* (2141 | fct»yt) = E*($t+1 | $t>

With panel data we can define strict exogeneity conditional on an unobserved

individual effect 7:

E*(yi | IT,U) = E*(yt ‘ wtﬂ?) (11)

The Sims’ equivalence result based on linear predictors extends to this defini-

tion?. However, unlike the linear predictors definition, a conditional independence

Hf linear projections are replaced by conditional distributions the equivalence does not hold
and it turns out that the definition of Sims is weaker than Granger’s definition. As shown
by Chamberlain (1982), conditional Granger non-causality is equivalent to the stronger Sims’

condition given by:

Flye |27,y =Y = flye | 2%,y

2Namely, letting 2+ DT = (2441, .., z7)" if we have

E*(ye | 2T, n) = Biat + 82T 4 y,p

and

E*(ze41 | 2 y',n) = e’ + $lyi + G
it turns out that the restrictions § = 0 and ¢; = 0 are equivalent. This result is due to

Chamberlain (1984), and it motivated the analysis in Holtz-Eakin, Newey and Rosen (1988)
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definition of strict exogeneity given an individual effect is not restrictive, in the
sense that there always exists a random variable n such that the condition is
satisfied (cf. Chamberlain (1984)). This lack of identification result implies that
a test of strict exogeneity given an individual effect will necessarily be a joint test
involving a (semi) parametric specification of the conditional distribution.

Lack of control of individual heterogeneity could result in a spurious rejection
of strict exogeneity, and so a definition of strict exogeneity based on (1.1) is a
useful extension of the standard concept to panel data. It also provides a richer
framework for the empirical analysis of the time series properties of large micro
panels. However, there are many instances in which for theoretical or empirical
reasons one is concerned with models exhibiting true lack of strict exogeneity
after controlling for individual heterogeneity.

This paper considers three types of models with such property. Firstly, linear
panel data models for N individuals observed T' consecutive time periods of the

form

yit:ﬁxit—i—m—{—v“ (’Lzl,,N, tzl,...,T) (12)

Secondly, multiplicative models exemplified by the exponential regression

yir = exp(Bx;, + 1) + vit (1.3)

and thirdly, binary choice models specified as

yie = 1(Bxis + i + vie > 0) (1.4)

where 1(.) denotes the indicator function. An assumption in common to the
three models is that the error term v;; is mean independent of z! but not of

future values of z:

who were concerned with the estimation of the coefficients ¢, ¢; and (; ,and the testing of the

restrictions ¢; = 0.



E(vi | 27) =0 (1.5)

This assumption allows for unspecified dynamic feedback from y to a, which

would be ruled out by the more restrictive strict exogeneity condition
B(v | #T) = 0

Examples of the previous models include Euler equations for household con-
sumption (cf. Zeldes (1989) and Runkle (1991)) or for company investment (cf.
Bond and Meghir (1994)), in which variables in the agents’ information sets
are uncorrelated with current and future idiosyncratic shocks but not with past
shocks.

Another example is the effect of children in female labour force participation
decisions. In this context, assuming that children are strictly exogenous is much
stronger than the assumption of predeterminedness, since it would require us to
maintain that labour supply plans have no effect on fertility decisions at any point
in the life cycle (see Browning (1992, p. 1462)). This is a particularly difficult
case since participation equations are usually non-linear discrete choice models.

Finally, a last example that is associated with the use of multiplicative models,
concerns the relationship between number of patents by a firm in a given year and
R&D expenditures (eg. Hausman, Hall and Griliches (1984), Montalvo (1993)
and Blundell, Griffith and van Reenen (1993)). It is quite plausible for company
decisions on R&D expenditures to depend on the number of patents awarded in
previous years.

In all these cases feedback effects from lagged dependent variables (or lagged
errors) to current and future values of the explanatory variables cannot be ruled
out. The result is that the identification arrangements and the estimation tech-
niques that are useful with strictly exogenous variables break down. In linear

models, regressions in first differences or in deviations from means are no more



free of bias and could induce larger biases than the regressions in levels (cf. Nick-
ell (1981)). In nonlinear models identification becomes more difficult (see for
example the nonidentification results of Chamberlain (1993) for multiplicative
models with more than one unobserved effect).

The paper is organized as follows. Section 2 reviews some of the results on
linear panel data models and related estimation problems. Section 3.1 presents a
similar background discussion for multiplicative models, while Section 3.2 sketches
an application of such models to a conditional variance specification with unob-
served effects. Section 4 develops semiparametric binary choice models with pre-
determined variables. Both identification and estimation issues are considered.
Special attention is paid to a simple first-order probit autoregressive model with
semiparametric individual effects. Finally, Section 5 contains the conclusions of

the paper.

2. Linear Models

2.1. Autoregressive Models

Suppose that a random sample of individual time-series of size T' {yf,71 =1, .., N}
is available. We have in mind a typical microeconometric panel where T'is small
and Nis large, so that we shall rely on cross-sectional large sample approximations
of estimators and test statistics keeping T fixed.”

Let the second-order moment matrix of y7 be E(ylyl") = Q = {wi,}. We

assume that the joint distribution of y! and the unobservable time-invariant effect

n; satisfies the following assumption:

3This Section follows a similar discussion in Alonso-Borrego and Arellano (1994)



Assumption A

Yit =7 + QYi—1) + Ni + Vit (t=2,.,T) (2.1)

E(vit | yi™) =0 (2.2)

where E (n;) =0, E (v}) = o} and E (n}) = o’.

n

Notice that since equation (2.1) includes a constant term, it is not restrictive
to assume that 7n; has zero mean. However, in general E(n; | yI') will be a
function of y¥. Moreover, the dependence between 7; and vy is not restricted by
the Assumption. Another remark is that Assumption A does not rule out the
possibility of conditional heteroskedasticity, since E(v2 | yi™") need not coincide
with o?.

Mean independence of vy with respect to y!~' implies that Awv; is mean
independent of y/~2. This is the basic insight here since Av;; does not depend on
n;. Following Arellano and Bond (1991), Assumption A implies (7' —2)(T —1)/2

linear moment restrictions of the form

B[y (Ayi — oAyseony)| =0 (t=3,.,7) (2.3)

This just says that errors in first differences are uncorrelated with variables
lagged two periods or more, which therefore are valid instruments in the estima-
tion of a provided their correlation with Ay;;—; does not vanish.*

The restrictions above can also be represented as constraints on the elements

of . Multiplying (2.1) by y;, for s <, and taking expectations gives:

wis = aw-nys + ¢ (t=2,..,T; s=1,.,t—1) (2.4)

4Notice that autocorrelation in the v;; is not ruled out since E(v“vi(t_l)) = —F(vi1m;) need

not be zero. It is nevertheless the case that E(Avy | Avia...Avji_)) =0



where ¢, = F [y;s (7 + 7:)]. This means that, given Assumption A, the T'(7'4+1)/2

different elements of €2 can be written as functions of the 27'x1 parameter vector

i
0 = (a,cl,..,CT_l,wu,..,wTT) .

We call this moment structure Model 1. Since the moment restrictions in (2.3)
are linear in «, they can be used as the basis for a linear GMM estimator of the
type discussed by Arellano and Bond (1991). ®

The orthogonality conditions (2.3) are the only restrictions implied by As-
sumption A on the second-order moments of the data. However, they are not the
only restrictions available since (2.2) also implies that nonlinear functions of /™2
are uncorrelated with Av;. The semiparametric efficiency bound for this model
can be obtained from the more general results in Chamberlain (1994). Estimators
whose asymptotic variance attain the bound can be developed using nonparamet-
ric estimates of the optimal instruments along the lines of Newey (1990). One
reason why estimators based on (2.3) may not be fully efficient asymptotically is
that the dependence between n; and ¥ may be nonlinear. Another reason would
be unaccounted conditional heteroskedasticity.

Notice that with 7' = 3 the parameters (o, ¢1, ¢2) are just-identified as func-

tions of the elements of O:

a=(wy —win) ™ (wa1 — wn) (2.5)
€] = Wy — QW11 (2.6)
Cy = W39 — W99 (27)

5The discussion has ignored the intercept coefficient 4. Notice the moment conditions vy =

E(yi) — oF (yi(t_l)) which can be used to determine 7.



With T" > 4 there will be over-identifying restrictions that can be enforced and
tested by minimum distance, pseudo maximum likelihood, or GMM methods.

Assumption A specified a first-order autoregressive process with an individual
specific level (v + 7;) and a common autoregressive coefficient . An alternative
model would specify a homogeneous intercept and heterogeneity in the autore-
gressive behaviour:

Yio =7 + (o + i) Yie—1) + vie (2.8)

This is a potentially useful model if one is interested in allowing for agent
specific adjustment cost functions, as for example in labour demand models (eg.
see the analysis in Pesaran and Smith (1995)). The average autoregressive coef-
ficient o and the intercept v can be determined in a way similar to the previous
t—1

case since the mean independence of v;; relative to y;

7

implies
-1 t—1Y\ __ -1
E<yityi(t—l) |y ) = Wig—ny T+ m (2.9)

However, a model with heterogeneity in both intercept and slope coefficients in
general would not be identified with fixed 7' (cf. Chamberlain (1993)).

Another remark on Assumption A concerns the nature of the shocks. The
errors v;; are idiosyncratic shocks that are assumed to have conditional and un-
conditional cross-sectional zero mean at each point in time. However, if v;; con-
tains aggregate shocks (eg. the inflation rate) its cross-sectional mean will not
be zero in general. This suggests an extension of the basic specification in which

the intercept v is allowed to vary over time:

Yit = V¢ + OYie—1) + N + Vit (2.10)

Nevertheless, this extension does not essentially alter the discussion in this section
and so it will not be pursued further.
Model 1 is attractive because it is based on minimal assumptions. The au-

toregressive coefficient « is exclusively identified through the basic mechanism
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that it is supposed to capture. However, we may be willing to impose additional
structure in the problem if this conforms to a priori beliefs. One possibility is
to assume that the errors v; are mean independent of the individual effect »;

given y!~'. This will often be a reasonable assumption if, for example, the vy
are interpreted as innovations that are independent of variables in the agents’
information set. In such case, even if 7; is not observable to the econometrician,
being time-invariant it is likely to be known to the individual . This situation

motivates Assumption B:

Assumption B

B (vi |y~ m) =0 (2.11)

Note that Assumption B is more restrictive than Assumption A. When 7" > 4,

Assumption B implies the following additional 7' — 3 moment restrictions

E [(yit — ayi(t_1)> (Ayi(t_l) — aAyi(t_z))} =0 (t=4,..,1) (2.12)

In effect, we can write

B [(vi =7 = owieny = 1e) (Dicen) = @By | = 0

and since £ [(7 + ;) Avi(t_l)] = 0 the result follows. GMM estimators of o that
exploit these restrictions in addition to those in (2.3) have been considered by Ahn
and Schmidt (1995). An alternative representation of the restrictions in (2.12) is
in terms of a recursion of the coefficients ¢; introduced in (2.4). Multiplying (2.1)

by (v + n:) and taking expectations gives:

Ct = QCt—1 + ¢ (t - 2, ,T) (213)
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where ¢ = ~% + ag =F {(7 + m)ﬂ, so that ¢;...cy—; can be written in terms of ¢;
and ¢. This gives rise to Model 2 in which 2 depends on the (7" 4 3)x1 parameter

vector

0= (O.’, ¢7 C1,W11, "7wTT)I .

Notice that with T" = 3 Assumption B does not imply further restrictions
in 2 with the result that o remains just identified relative to the second-order

moments. One can solve for ¢ in terms of a, ¢; and ¢y:

qb: (W32—WQ1)—CY(W22—W11). (214)
Other forms of additional structure than can be imposed are various versions

of mean or variance stationarity conditions. Assumption C specifies a particularly

useful mean stationarity condition.

Assumption C

E <yn — Yi(t-1) | 772') =0 (t=2,.,T) (2.15)

This assumption requires the change in y; to be mean independent of the
individual effect n;.

Notice that in combination with Assumption B, Assumption C implies

E (yie | 1) = v+ aE(yig—1) | n:) +m (2.16)
so that if £ (y; | n:) is constant it would be the case that
E(yi | ni) =(v+mn)/(1—c) (2.17)

and E(yi) = /(1 - a).
Relative to Assumption A and Model 1, Assumption C adds the following

(7' — 2) moment restrictions on
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E [(yit — = ayi(t_l)) Ayi(t_l)] =0 (t=3,.,7T) (2.18)
which were proposed by Arellano and Bover (1995), who developed a linear GMM
estimator of a on the basis of (2.3) and (2.18). However, relative to Assumption

B and Model 2, Assumption C only adds one moment restriction which can be

written as

E{(yis — ayiz) Ayia] = 0 (2.19)

In terms of the parameters ¢;, since

ct—c1 =L [(’7 + 771') (yit - yi(t—l))] (2-20)

the implication of Assumption C is that ¢; = ... = e¢p—y if we move from Model
1, or that ¢; = ¢/ (1 — ) if we move from Model 2. This gives rise to Model 3

in which Q depends on the (7' 4 2)x1 parameter vector

0= (a,cl,wn,..,wTT)/.

Notice that with 7' = 3 « is overidentified under Assumption C. Now « will

also satisfy

a = (wy — (.dzl)—l (w32 — ws1) (2.21)

In the presence of aggregate shocks the condition in Assumption C would be

replaced by

B (yit — Yi(e-1) | 774) = e = -1 (2.22)
where E(y;;) = p;. The orthogonality conditions in (2.18 ) remain valid in this
case with the addition of a time-varying intercept.

The basic specification can be restricted further in various ways. For exam-

ple, we could consider time series homoskedasticity of the form £ (v}) = o? for
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(t =2,..,T) and stationarity of the variance of the initial conditions. The com-
bination of these assumptions with Models 2 or 3 would give rise to additional
models, some of which have been discussed in detail in the paper by Ahn and
Schmidt (1995). We illustrate the identification content of homoskedasticity by

considering the following second-order moment stationarity assumption.

Assumption D

E(yzt) = w11 (t =1, 7T) (223)

Notice that given Assumption A
E (Ayi(t+1)Ayn) = - (1 - Oé) (wtt - aw(t—l)(t—l)) + (Ct - act—-l) (2-24)

2
E [(yit - yi(t-—l)) ] = wy + (1 — 2a) W(t—1)(t=1) — 2Ct—1 (2.25)

In addition, under Assumptions C and D it follows that

E (Ayi(tﬂ)Ayit) _ (1—«)
E [(Ayit)2] 2

(2.26)

This is a well known expression for the bias of the least squares regression in first-
differences under homoskedasticity, which can be expressed as the orthogonality

conditions
E {Ayit [(2yi(t+1) = Yit — yi(t_l)) — aAyit]} =0 (t=2,..,T—1) (2.27)
With T' = 3 this implies that a would also satisfy

a = (w2 +wi1 — 2(—021)_1 [2 (wag — wa1) + w1 — wag] (2.28)
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2.2. Estimation

We discuss estimation issues in the context of a more general linear specification

of the form
yir = Bz + ni + vig (2.29)

E(vi | 25)=0 (2.30)

where z;; is a kx1 vector of possibly endogenous explanatory variables and z;; is

a px1 vector of instrumental variables. The previous model is a special case with

Tip = Zig = (1,%(14_1))/-

The model implies orthogonality conditions of the form

B[ Ay — BA)| =0 (1=2,..,T) (2.31)

on which estimation of 3 is usually based. A GMM estimator of 3 based on (2.31)

is given by

Bomm = (AX'ZANZ'AX) TV AX'ZAnZ' Ay (2.32)

where Ay = (Ay,. . Ayy) ,AX = (AX].AXY) ,Z = (Z!.7%), and Ay; =
(Ayi. Ayir) ,AX; = (Azip..Az,p) , Z; = diag (zllzZT‘l)l The weighting ma-
trix Ay is a consistent estimate of the inverse of the covariance matrix of the

orthogonality conditions given by

VO =F (Z{AUZAU;Z,) (233)

where Avi — Ayi — ﬁ/AXi.
In the remainder of this section we discuss some alternative estimators of 3,

which are asymptotically equivalent to the GMM estimator but might exhibit
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better properties in finite samples. These issues are of importance because ordi-
nary instrumental variable estimators can be largely biased towards OLS when
the instruments are poorly correlated with the endogenous variables (see Bound,
Jaeger and Baker (1993)). Moreover, the correlation between estimated weight
matrices Ax and orthogonality conditions can also be responsible for biases in the
estimation by GMM of coefficients (eg. Altonji and Segal (1993)) and of standard
errors (eg. Arellano and Bond (1991)). We nevertheless wish to draw a careful
distinction between the choice of models and the choice of estimation methods.
Section 1.1. dealt with alternative autoregressive models that are all amenable of
estimation by asymptotically equivalent pseudo-maximum likelihood, minimum
distance and GMM methods. This Section deals with alternative estimatos of

the same generic model represented by (2.31).

Poor Instruments and Symmetrically Normalized FEstimators
Under standard regularity conditions, for sufficiently large N and fixed T the
distribution of BGMM is approximately multivariate normal with mean § and a

covariance matrix than can be consistently estimated as
Var(Bamm) = (AX'ZANZ'AX)™! (2.34)

However, as documented in the literature on the finite sample properties of
instrumental variables estimators (see Phillips (1983)), this approximation may
be very inaccurate even for very large samples when the instruments are poor.
Specifically, the two-stage least squares (2SLS) estimator is biased towards the
ordinary least squares (OLS) estimator and in the completely unidentified case it
converges to the same probability limit as OLS. On the other hand, the limited-
information maximum likelihood (LIML) estimator is centred at the parameter
value, although its distribution has thicker tails than the distribution of 25LS.

Since the number of instruments increases with T, the model in (2.29) and

(2.30) generates many overidentifying restrictions even for moderate values of
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T. However, often the quality of the instruments is poor given that it is usu-
ally difficult to predict variables in first differences on the basis of past values of
other variables. Motivated by this concern, Alonso-Borrego and Arellano (1994)
considered symmetrically normalized GMM estimators which are invariant to nor-
malization and can be expected to have smaller finite sample biases than ordinary
GMM estimators. The basis for this conjecture is the result by Hillier (1990) who
showed that the alternative normalization rules adopted by LIML and 2SLS are
at the root of their different sampling behaviour. Hillier proved that the symmet-
rically normalized 2SLS estimator has essentially similar finite sample properties
to those of the LIML estimator. Symmetrically normalized 2SLS estimators are
of interest because, unlike LIML, they are GMM estimators based on structural
form orthogonality conditions and therefore they can be readily extended to the
nonstandard IV situations that are of interest in panel data models with prede-
termined variables, while relying on standard GMM asymptotic theory.

When all the variables Ax;; are endogenous, a symmetrically normalized

GMM estimator of 4 is given by
Bsym = (AX'ZANZ'AX — X)T'AX'ZANZ' Ay (2.35)

where A = mineigen(W'ZAnNZ'W), with W = (Ay,AX). The two estima-
tors BGMM and ESNM are asymptotically equivalent but their finite sample be-
haviour can be very different. Indeed, the Monte Carlo results of Alonso-Borrego
and Arellano for first-order autoregressive models show that GMM estimates
can exhibit large biases when the instruments are poor, while the symmetrically
normalized estimators remain essentially unbiased. However, the symmetrically
normalized estimators always have a larger standard deviation than the ordinary
estimators, although the differences are small except in the almost unidentified

casSes.
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Avoiding Estimated Weight Matrices: Mazimum Empirical Likelihood Estimators

An undesirable feature of GMM estimators is that the optimal weighting
matrix Ay needs to be estimated from preliminary estimators of the sample
orthogonality conditions using the same data that are employed in the calculation
of the estimator. This fact can be responsible for distortions in the finite sample
properties of the GMM estimators and in the estimators of their asymptotic
variances.

An alternative method that does not require weight matrix estimates and yet
achieves the same asymptotic efficiency as optimal GMM estimators is provided
by maximum empirical likelihood estimation (cf. Back and Brown (1993),Qin
and Lawless (1994) and Imbens (1993)).

The maximum empirical likelihood estimator BM pr, Maximizes a multinomial
pseudo likelihood function subject to the orthogonality conditions. The procedure
works because the multinomial pseudo likelihood (or empirical likelihood) is not
restrictive. The estimator BMEL is given by

N T
BuEL = arg min » _ log [1 + > 6(8) 2 Ay — B Axy) (2.36)
i=1 t=1
where the 6;(8) are implicit functions obtained as the solution to the following

system of equations for a given value of f:

N T -1
Z 1 + 26225_1(1&%7: . /Bleit):\ Zf_l(Ayit _ 61A$it> e 0 (237)
=1 t=1

A test of overidentifying restrictions is provided by the pseudo likelihood ratio

statistic

N T
w = QZlog [1 + Z(S;zf»_l(Ay“ — BurLAzi) (2.38)

=1 t=1

which is asymptotically distributed as x? with as many degrees of freedom as the

number of overidentifying restrictions.
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3. Multiplicative Models

3.1. Exponential Regression for Count Data

In this section we consider models with multiplicative as opposed to additive
individual effects. An example of this situation is the model with heterogeneous
autoregressive coefficient of the previous Section.

Another exampleis a life-cycle model of consumption with a household specific
rate of time preference ¢; (see Zeldes (1989) and Examples 5.1 in Wooldridge
(1991)). Let the utility of household consumption c;; at time t be given by

____e-ruﬁ-l-m‘ (3.1)

u(en) = 77—

where z;; denotes a vector of family composition variables and 7; is an unobserved

effect. In the absence of liquidity constraints the Euler equation is

E

Cit—1

( it >_a (L+7i) | zf“l} = (1 + &)eseiel (3.2)

where the family information set z!~! includes Az;; and lagged values of ¢ and r.
However, a leading case which derives its motivation from the literature on

Poisson models is an exponential regression for count data of the form

E(yit | zi,ni) = exp(B'zi + n;) (3-3)

The exponential specification is chosen to ensure that the conditional mean is
always non negative. With count data a log-linear regression is not a feasible
alternative since a fraction of the observations of y;; will be zeroes.

Clearly, in such cases first-differencing does not eliminate the unobservable
effects, but since the effects are multiplicative there are simple alternative trans-
formations that can be used to construct orthogonality conditions. Generalizing

the previous specification:

yie = 9i(25, B)ni + vie (3.4)
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E(vi | Zf) (3.5)

where ¢;; = ¢:(2}, 3) is a function of predetermined variables and unknown pa-

rameters. Diving by ¢;; and first differencing the resulting equation, we obtain

Yi(t—1) — yitgi—tlgi(t—l) = v}, (3-6)

and
BE(v; | 27') =0 (3.7)

Any function of /=" will be uncorrelated with v} and therefore can be used
as an instrument in the estimation of the parameters in g[tlgi(t_l). This kind
of transformation has been suggested by Chamberlain (1992b) and Wooldridge
(1991). Notice that the use of this transformation does not require us to condition
on n;. However, it does require g; to be a function of predetermined variables as
opposed to endogenous variables.

If the analysis is conditional on n;, that is, if (3.5) is replaced by
E(vit | z,mi) =0

then the model admits an alternative representation in terms of a multiplicative

error:

Yit = git(Zf,ﬁ)mSn (3-8)

Elei | zi,mi) =1 (3.9)

Sometimes, the error €;; may have a more straightforward interpretation than v;,.

Asymptotically efficient estimation of 3 on the basis of (3.6) is not straight-
forward since arbitrary choices of instruments will be suboptimal in general (see
Chamberlain (1993) for a thorough discussion of this problem and derivation of
semiparametric efficiency bounds). Here we illustrate the problem by means of

a simple autoregressive model with T=3. Models with T>3 are more difficult to
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analyse because the correlation between equations needs to be taken into account

(cf. Chamberlain (1993)). Let the model be:
yir = exp(y + ayig—1) +m) Fvie (6 =1,2,3) (3.10)

The transformed equation (3.6) in this case reduces to:
Elyir — yizexp(—alyiz) [ ya] = 0 (3.11)
If y;; has a finite support consisting of r different known values ¢;...¢,, the
conditional moment restriction (3.11) is equivalent to the r unconditional moment
restrictions:

E [dij(yig - yige_“AW)] =0 (j=1,.,r) (3.12)
where d;; = 1(yi1 = ¢;). The conditions in (3.12) could be used to obtain asymp-
totically efficient two-step GMM or maximum empirical likelihood estimates of
.

More generally, the efficient non-feasible instrumental variable for this prob-

lem is given by
*2 -1 —alAvyp
Zi = [E(Um | yil)] E(yisAyie | yi1) (3.13)
in the sense that a method of moments estimator of a based on
E [Zi(yﬂ - yige“Ay”)] =0 (3.14)

would achieve the semiparametric efficiency bound. Obviously, since z; is un-
known, any feasible estimator of this kind would have to rely on an unrestricted
estimate of z; taking into account the discrete nature of the data.®

Here we have assumed that interest concentrates on the conditional mean of
an integer-valued random variable. If the analysis were also concerned with the
estimation of conditional probabilities, likelihood models would be required. For
example, Brannas (1994) discusses a useful first-order autoregressive generalized

Poisson model.

6The asymptotic properties of estimators of nonparametric regressions containing discrete

regressors have been recently discussed by Delgado and Mora (1995).
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3.2. Conditional Variance with Individual Effects

We now consider a linear autoregressive process of the type discussed in Section
2 but assuming that not only the conditional mean but also the conditional
variance is of interest. An example is an intertemporal model of savings in which
the conditional variance of household income plays a role due to precautionary
motives (cf. Blundell and Stoker (1994)).

In the analysis of conditional variances with data on individuals it is important
to take into account unobserved heterogeneity since failure to do so could result
in spurious dynamics in the second moments.

Let us consider a linear conditional mean and a multiplicative conditional

variance given by:

By |y ni) = v+ ayiq—1) + 0 (3.15)

Var(ya |y mi) = E(vly |y ) = of(yi™", 0)n} (3.16)

where vy = yi—7—ay;-1)—n:- Let us also define the error u; = yi—v—ay;-1)-

Notice that since we are conditioning on 7; and E(u; | yi™',n:) = n; we have:

B Ly~ m) = B(ul, [y~ ni) — 0! (3.17)

Therefore
Blu |y~ m) = L+ o2, 0)] o} (3.18)
In view of the discussion in the previous sections, the model implies the fol-
lowing conditional moment restrictions in terms of observable variables and pa-

rameters:

E(Ayi — aAyii-y) | yi7?) =0 (3.19)

E (u?(t—l) - “?t(l + U?t)_l(l + ‘72'2(75_1)) | yf“Z) =0 (3.20)
where oy, = oy (y!™h, 0).

3
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A possible specification for o2 of the ARCH type is given by
2 _ 2
O = 00 + Hlui(t_l) (321)

Alternatively, we could consider an exponential ARCH specification with

asymmetric response of the form:
oy = exp (90 + 01y + HQU?(t_l)) (3.22)

For a particular parameterizarion of ¢2, joint GMM estimates of a and 6
can be obtained using orthogonality conditions derived from (3.19) and (3.20).
Another possibility is to obtain estimates of § conditional on a previous estimate
of a from which residuals 4% could be constructed.

A number of hypothesis can be tested within this framework. A test for con-
ditional homoskedasticity allowing for unobserved cross-sectional heterogeneity
is a test for the constancy of the ratio (1 +0f,_;))/(1+¢%). On the other hand,
a test for the absence of individual effects in variances could be based on testing

the validity of orthogonality conditions of the form:

7

By (ud = 1= o2(y™,0))] = 0 (3.23)
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4. Binary Choice Models

4.1. Autoregressive Probit with Individual Effects

Suppose that y;; is a 0-1 variable. Let us consider the following model
yir = 1y + awig—r) i+ 0 > 0) (£ =2,.,T) (4.1)

The basic motivation for this model is to facilitate the distinction between
unobserved heterogeneity and state dependence in the analysis of binary-state
discrete-time processes. One example is the analysis of sequences of employment
and unemployment states, where a substantive question is whether or not unem-
ployment causes future unemployment (cf. Heckman (1981c¢), Card and Sullivan
(1988), and Narendranathan and Elias (1990); Card and Sullivan use these models
for measuring the effect of training programs on employment and unemployment
probabilities). Another example is the analysis of a housing quality indicator over
time as in the work by Moon and Stotsky (1993). Moon and Stotsky consider
the effect of rent control on a two state housing condition variable (sound and
unsound) allowing for state dependence and unobserved heterogeneity.

Treating the sample values of n; as parameters to be estimated (fixed-effects)
when N is large but T is fixed in general produces inconsistent estimates of «
and 7, , due to the problem of incidental parameters (cf. Chamberlain (1980) and
Heckman (1981a, 1981b)). So, the point of departure for a number of studies in

the literature has been the following conditional independence assumption

PT(—Uz’t < § | yf_lam) = Pl“(‘%‘t < f) = Ft(f) (4-2)
together with a parametric specification of F;(¢). Thus,
Pr(yic = 1 yi™mi) = Fulre + ayie—ry + 0:) = Felyie—y,m:) (4.3)
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When F; is the logistic distribution and the model only includes strictly ex-
ogenous regressors, the sample mean of y;; provides a sufficient statistic for 7, .
Therefore, the likelihood function conditional on 3y, does not depend on n;,
thus providing a basis for consistent inferences on the parameters of interest (see
Chamberlain (1980)). However, the conditional likelihood approach cannot be
extended to the logit model with state dependence. Indeed, as shown by Card
and Sullivan (1988, Appendix), in the presence of state dependence the minimal
sufficient statistic for n; is in general the entire data vector for individual ¢.

We are thus led to consider a specification of the distributions of ; | y;1 = 1

and n; | yi1 = 0. Notice the following relationships:

Pr{(yir...yir) = (¢1...07)] = Pr(ya = ¢1) Pr[(yiz-.yi1) = (d2...07) | yar = ¢1]
= Pr(ya = ¢1) / Pr((yiz-..yir) = (¢2---07) | yar = d1, 0] dG(ni | yir = 1)

(1"yit)

T
= Pr(ya = ¢1) / H Ft(yi(t—l)am)y” [1 - Ft(yi(t—l)ani)] dG(n: |y = ¢1)
= (4.4)
where (G is the conditional distribution of n; given y;1 = ¢1, and ¢, € {0,1}, (¢t =
L,...,T).
Note that by specifying the conditional distributions of n; given y;; as opposed
to the marginal distribution of 7;, we allow for dependence between y;; and 7,
while leaving the initial conditions of the process unrestricted.
Moon and Stotsky (1993), following related work by Heckman and Singer
(1984) for semiparametric duration models, specified ¢ as an unrestricted discrete
distribution with finite support, given by m mass points ey, ..., e,,. In this case

expression (4.4) becomes

m T
(1-yit)
r(yi = ¢1) ZHFt Yi(t-1) ser)¥ [1 - Ft(yz(t 1) 61)] ! Pr(n: = e | ya = ¢1)
[=1t=2
(4.5)
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For a given value of m, and a logistic specification for F}, Moon and Stot-
sky obtained maximum likelihood estimates of the parameters of interest in their
housing quality model together with the mass points e, .., e, and their condi-

tional probabilities Pr(n; = ¢; | yi1 = ¢1).

An Alternative Random Effects Model with Unrestricted Conditional Means

Let us consider equation (4.1) together with the assumption:

ni+oi |y~ N (B |y, 07) (4.6)

The sequence of conditional means {E(n; | y$),s = 1,.., 7 — 1} is left unrestricted

except for the fact that they are linked by the law of iterated expectations:

E(ni |yi™) =B (B | 9) [yi™") (4.7)

The conditional probabilities specified by the model are

Pr (yﬁ ey y?“l) _ % (% + ayi-1) + E (m \ yf—l)) (4.8)

0

where ®@(.)is the standard normal cdf. Obviously, the assumption of normality is
unessential and could be replaced by any other parametric assumption like the
logistic distribution.

Pr(y;; = 1) is left unrestricted and just adds one parameter to the full like-
lihood function of the data. The other parameters are ;, @ and the collection
of E(n; | yi~') that, as will be seen below, are identified up to scale with T>3,
together with the relative scales.

Note that contrary to the fixed effects model, there is no incidental parameters
problem here since we are estimating F(n; | y!~') as opposed to the n; themselves.
Indeed, the motivation here is to develop a framework that, while avoiding the

problem of initial conditions and the incidental parameters problem when 7" is
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small and fixed, can be easily extended to more general binary choice models
with predetermined variables (see below).
It is useful to relate the present model to a model in which (4.6) is replaced

by the assumption of a mass point distribution for 7; | y;; together with
vie |yt me ~ N(0,07) (4.9)

so that

Pr(ya=1]y!""n) =0 <% T oYy t m) (4.10)

Wi
In the latter model it is possible to argue that the distribution of n; | v,
could be approximated arbitrarily well if we allow m to increase as N increases,
although the model assumes that 7; is conditionally independent of v;; given y!~*.
On the other hand, model (4.1)-(4.6) leaves E(n; | y!™") unrestricted but it may
implicitly restrict other features of the distribution of n; | /™' by assuming that
t-1

the distribution of n; + vy | y;

;7 is parametric. However, in model (4.1)-(4.6) n;

and v;; are not required to be conditionally independent.
It is of some interest to compare this situation with the linear case discussed

in Section 2 where the model

E (yit | yf‘l, 77i) =Vt T QY1) +n;

was a specialization of the less restrictive specification

K (yz‘t | ?Jf_1> =Y+ ayie-1y) + B (m | ?/f_1>
Note that if for some t

nilyi "~ N (E (771‘ | ?Jf_1> »@i) (4.11)

it can be easily shown that this assumption together with (4.9) implies an expres-
sion identical to (4.8) with of = o2, +w?. It would thus appear that assumptions

(4.6) and (4.9) are connected through (4.11). However, if n; | y/~" is normal, since
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y!~! is a sequence of binary variables, it follows that 5; | /= cannot be normal
unless Pr(y;jg_1) = 1| yi~?) is one or zero. In fact, the distribution of 5; | y!™2
would be a normal mixture and therefore an expression of the form of (4.8) could
not hold for Pr(y;u—1) =1 |y/™?).

The tx1 random vector y! has a multivariate Bernouilli distribution, and takes
2 different values ¢ (j =1,..,2"). Similarly, y/~' takes on 2(t=1) different values
<7)§_1(j =1,..,2'7"). As a matter of notational convenience we order the ¢% such

that for t>1:

E1) if 5 =1,...,200
(¢071,0) if j=20"141,.,2

Let us denote

Pt =Pr(ya =11y =g ) = h(e) (G =1,.,207) (4.13)

and
=B (g [yt =6 (G =1,.,207) (4.14)
Therefore we have 1] oy
pi;l =0 (m + O@jai Y ) (4.15)

where qﬁgt_l] denotes the last element of the vector qﬁ?“l. By the law of iterated

expectations we also have
¢;§—1 _—_1/;§p§;1 —|—z/)§(t_1)+j(1 —pij_l) (j = 1,..,2(t_1);t: 2,.,T—1) (4.16)

Moreover, since the model includes a constant term, it is not restrictive to

assume that E(n;) = 0. Therefore:

Em)=EMmi|ya=1)Pr(ya=1)+En | yir=0)Pr(ysa =0) =0

or

iy + ¥y (1 —p1) =0 (4.17)
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where pi = Pr(yi = 1) (The notation is ¢} = E(n; | yn = 6}), (j = 1,2) with
1 =1 and ¢} =0).

The number of reduced form parameters pj; ' is (24224 ...+ 27-1), and with
the addition of p; gives a total number of cell probabilities of E?:&Qj (eg. with
T' = 6 there would be 63 coefficients).

The coefficients can be estimated up to scale. Using o, as the scale, we can
estimate v; /o2, /o, ‘(/);_1/02 and the relative scales oy/0y. We shall use o3 = 1
as the normalization restriction.

The structural parameters are a, ~,...y7, 03...07 and the @b;"l. The number of
P! parameters is (28 +22+...42771), although they are subject to restrictions.”

In conclusion, the total number of orthogonality conditions is
r=2%1722 42" 41 (4.18)
while the number of parameters to be estimated is
k=2(T—-1)+% 52 (4.19)
Hence the number of overidentifying restrictions is
r—k=%1_72-2T+3 (4.20)

Identification of a up to scale requires that at least 7' > 4. With T' = 3, «
would only be identified under homoskedasticity. Indeed, setting oo = 03 =1

and ~; constant, a straightforward calculation reveals that

o O~ (m) —m® () o -
_ e O~ (10) (4.21)

where

T = Pr(yiz =1 |yi1 = 1)

“We could alternatively say that the required free parameters are

W= By |y =0T (G=1,.,277)

since the remaining w;_l are functions of those.

29



1 =Pr(ys =1|ya =Ly =1)

To=Pr(ys =1|ya = 1,92 =0)

Minimum Distance and Mazimum Likelthood Estimation

Let us define the variables
di; = 1(y; = ¢}) (4.22)
Then the unrestricted maximum likelihood estimator of p{; " is given by

. 1 . _
Pt = S o yedst (t=2,.,T; j=1,..,2071) (4.23)
=1

Similarly, for p; we have
N 1

P = v (4.24)

We can form the vector

Yip1 + 31— pr)
PR (zwmﬁ“”w;—l)
J 247

/I»Z)t - ;Aij ! '(/);(t—l)_J{_j(l ﬁtsj 1)

9(p,0) = (4.25)

The vector of functions ¢(p, ) includes the terms for all j and ¢. The vector
p contains the pj7'and py, while f contains all the parameters to be estimated.

A minimum distance (MD) estimator of  solves

~

0 = argming(p,0)' Ang(p, ) (4.26)

where Ay is a consistent estimate of the inverse of the covariance matrix of g(p, 0).

As an alternative to the MD procedure, the model can be estimated by maxi-
mum likelihood. The log-likelihood is maximized as a function of 6 subject to the
restrictions (4.16). The difference in this case is that in (4.16), the pj;' represent
the probabilities (4.15) implied by the model, as opposed to being substituted by

their unrestricted estimates.

30



GMM Estimation

The following simpler method avoids the joint estimation of the parameters
of interest with the nuisance coefficients 1/)§"1.

By inverting equation (4.8) we obtain
th)_l[ht@f—l)] = Yt + aYi-1) T E(n; | yf“l) (4.27)

First-differencing this equation we have:

@ h(yih)] — o1 @ R (Yl ?)] — Ay — alAyipo1) = € (4.28)
where
i =Li lyi™") — E(ni | yi™?) (4.29)
Therefore
Eei |y =0 (4.30)

Notice that
2(t—-l)

ho(yi™") = > piitdi! (4.31)

7=1
Moreover, the conditional moment restriction (4.30) is equivalent to the fol-

lowing unconditional moments (see Chamberlain (1987, p. 308)):

E(di?ey) =0 (j=1,..,27%) (4.32)
or:
o(t—1) o(t—2)
ol (5 ) - oo (5 sictaes?) - ot -
Jj=1 7=1
(4.33)

The orthogonality conditions corresponding to the pi; " are

Bl (g —pi)l =0 (=1,.,207Y) (4.34)

E[dzj_l(yi(t—l) - pft——Ql)])] =0 (] = 17 "'72(t—2)) (435)



The complete set of moment conditions can be used to obtain joint estimates of
the pij_l and the coeflicients of interest. However, since the former are unrestricted
moments there is no efficiency loss (as far as the estimation of the parameters

of interest is concerned) in replacing in the first set of orthogonality conditions

(4.33) unrestricted estimates of the pi;' and the p’ét‘_zl)j.
Letting
R 2(t=1)
h(yi ™) = > pij i, (4.36)
J=1

a two-step GMM method can be based on the sample orthogonality conditions:

1 X - -
i Y diH @  hu(y )] = o @ Ry )] = Ay — aAyie-yy)  (4.37)
=1

yielding asymptotically efficient estimates of o, Av; and o, subject to the nor-
malization restriction o = 1. Since y! has a finite support the model is fully
parametric and the asymptotic distribution of the estimators can be obtained
using standard GMM asymptotic theory.

4.2. Probit Model with Continuous Predetermined Variables

We now consider a model of the form
yir = 1(B'zs + 10 4+ vie 2> 0) (4.38)

i+ vy | 2f ~ N(E(ni | 2}),07) (4.39)

where z;; is a vector of continuous predetermined random variables.®

Therefore

Pr(yi =1 | xf) = ht(l"z») — (ﬁ’xit + E(n; | l’:))

O

(4.40)

81n fact, some of the z’s could be discrete (for example, if z;; includes 1 i(t—1) or other dummy

variables). The implications of such situation will be discussed below.

32



We can proceed as in the previous subsection to obtain
O'tq)_l[ht(il?f)] - O't_lq)—l[ht_l(wﬁ_l)] — 6/Ax1't = &t (441)

where
eir = E(ni | zf) — B(ni | 2i™")

so that
E(ey |27 =0 (4.42)

The transformation (4.41) is similar to the one employed by Newey (1994a)
for a probit model with strictly exogenous variables. In the strictly exogenous
case, the error term ¢;; does not appear since there is no sequential updating of
the conditional expectations of the individual effects.

Contrary to the purely autoregressive case we now rely on nonparametric
kernel estimators hy(z2), ..., hr(2T), in order to construct orthogonality conditions

for B up to scale and the relative standard deviations.

Let define
Pir(0) = 270107 [ho(2)] — 001 @ Ry (2171 — B'Azi} (4.43)
where § = (', 03, ...,0r) and we are using 0, = 1 as the normalizing restriction.

Let the sample orthogonality conditions be given by

1 ~

b (0) = Nﬁﬁl(@z(@', o i (0)) (4.44)

A semiparametric two-step GMM estimator of § solves
0 = arg min by (0) Anby(0) (4.45)

where Ay is a weight matrix.

Under appropriate regularity conditions (see Newey (1994a) and Newey &
McFadden (1995)):

VNN (0)EN(0, Vy) (4.46)
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with

= Bl(:(0) + ai)(¥i(0) + a:)'] (4.47)
where 1;(0) = (¥i2(0)...00;7(0)"), :(0) = 217 ¢4, and a; is an adjustment term
that takes into account the fact that the h;(z!) have been replaced by nonpara-
metric estimates.

Following Newey (1994b), V4 can be consistently estimated by mean of

~ 1 PN
V= szv (i + @) (s + @) (4.48)
where
~ i T N ad)] s
= s (52 il -2 (1.49)

and K(.) is the kernel used in the estimation of the h,(z}).

Finally, a consistent estimate of the asymptotic variance matrix of 0 is given

by

(D'AND) ™' D' ANV AND(D' AND) ™ (4.50)
where
0
_ N 9vi
D= ~21 190 (4.51)

If model (4.38) is augmented to include y;;_1):

yi = (ayig—1y + B’z 4+ 1 + vy > 0) (4.52)
i+ vw | by~ N(E(ni | 2f,y.71),07) (4.53)
we have
2(1‘ 1)
he(zlyy!i™") = Pr(ys = 1| af,y{™! Z he(zt,d1)d! (4.54)

where di;' is defined in (4.22). Thus, in this case, instead of one t + (& — 1)
dimensional nonparametric function, we have 2¢=1 functions of dimension ¢,
each of which would be estimated by kernel methods. A similar procedure would

also apply to other discrete predetermined variables with finite support.
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Another extension is a model where individual effects are interacted with time

effects given by
yir = 1(B'zi + 1ibs + vie 2 0) (4.55)
and

nibe + vie | # ~ N(E(ni | 2})64,07) (4.56)

In this model, estimation can be based on the transformation

o @ [hy(2h)] — rioy 1O Ry (271 = Blai — rtﬂ':ri(t_l) + €7, (4.57)

where ry = 6,/8;-1) and E(e}, | zi~") = 0.

An example of this situation is provided by the study of macroeconomic ef-
fects on dividends policy (see for example the paper by Gertler and Hubbard
(1993), who test the hypothesis that equity provides firms with a cushion against
aggregate fluctuations). Suppose that y;; = 1 if the change in dividends between
periods t and (¢ — 1) is positive, and y;; = 0 otherwise. The variables z;; would
represent the changes in predetermined firm variables like earnings per share, and
8; would represent macro and tax shocks that are allowed to have firm-specific

effects measured by n;.
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