MICROECONOMETRICS

Manuel Arellano

CEMFI, 2009-2010

 

 

Lectures: Mon. 12:00-13:30, Wed. 10:00-11:30.

Exercise classes: Wed. 12:00-13:30. Conducted by Laura Crespo (crespo@cemfi.es)

Workshop (Almuerzos): 13:30-15:30 on weeks 5 (Wed.), 7 (Wed.), and 9 (Wed.).

 

Grades will be based on class exercises (10%), presentation (20%), and final exam (70%).

 

Problem Sets: GMM, Panel Data, Nonlinear Models

 

Textbooks

 

M. Arellano, Panel Data Econometrics, Oxford University Press, 2003.

C. Cameron and P. Trivedi, Microeconometrics, Cambridge University Press, 2005.

C. Cameron and P. Trivedi, Microeconometrics Using Stata, Stata Press, 2009.

J. Wooldridge, Econometric Analysis of Cross Section and Panel Data, MIT Press, 2002.

 

 

Course outline and readings (pdf file)

 

A) Estimation theory

 

1. Generalized method of moments

 

1.1       Conditional expectations, linear predictors, and instrumental variables.

1.2       Generalized method of moments: General formulation.

1.3       Examples: Simultaneous equations and covariance structures.

1.4       Tests of overidentifying restrictions.

1.5       GMM with nonsmooth moments.

 

2. Optimal instruments in conditional models

 

2.1       Introduction: Linear regression.

2.2       Nonlinear regression.

2.3       Nonlinear structural equation.

2.4       Multivariate regression.

2.5       Nonlinear simultaneous equations.

 

Arellano, Appendices A and B.

Cameron and Trivedi, Chapters 4, 5, 6.

Wooldridge, Chapter 14.

 

Hansen, L. P. (1982): “Large Sample Properties of Generalized Method of Moments Estimators”, Econometrica, 49, 1029-1054.

 

Newey, W. and D. McFadden (1995): “Large Sample Estimation and Hypothesis Testing”, in R. Engle and D. McFadden (eds.), Handbook of Econometrics, Vol. 4, Elsevier.

 

Sargan, J. D. (1958): “The Estimation of Economic Relationships Using Instrumental Variables”, Econometrica, 26, 393-415.

 

 

B) Panel data

 

3. Static models

 

3.1       Unobserved heterogeneity: within-group estimation.

3.2       Error components.

3.3       Specification tests.

3.4       Error in variables.

 

4. Dynamic models

 

4.1       Covariance structures with error components.

4.2       Autoregressive models with individual effects.

4.3       Strict exogeneity and predetermined variables.

4.4       Partial adjustment models.

 

Arellano, Chapters 2-4 (static models) and 5-8 (dynamic models).

 

Arellano, M. and S. Bond (1991): “Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations”, Review of Economic Studies, 58, 277-297.

 

Arellano, M. and O. Bover (1995): “Another Look at the Instrumental-Variable Estimation of Error-Components Models”, Journal of Econometrics, 68, 29-51.

 

Chamberlain, G. (1984): “Panel Data”, in Z. Griliches and M. D. Intriligator (eds.), Handbook of Econometrics, Vol. 2, Elsevier Science.

 

Griliches, Z. and J. A. Hausman (1986): “Error in Variables in Panel Data”, Journal of Econometrics, 31, 93-118.

 

Hausman, J. A. and W. E. Taylor (1981): “Panel Data and Unobservable Individual Effects”, Econometrica, 49, 1377-1398.

 

Hsiao, C. (2003): Analysis of Panel Data, Cambridge University Press, Second Edition.

 

 

C) Nonlinear models

 

5. Discrete choice

 

5.1       Binary models.

5.2            Multinomial models.

5.3            Endogenous explanatory variables.

5.4       Binary models for panel data.

 

Cameron and Trivedi, Chapters 14, 15.

Wooldridge, Chapter 15.

 

Amemiya, T. (1985): Advanced Econometrics, Blackwell, Chapter 9.

 

Arellano, M. and B. Honoré (2001): “Panel Data Models. Some Recent Developments”, in J. Heckman and E. Leamer (eds.), Handbook of Econometrics, Vol. 5, Ch. 53.

 

Blundell, R. and J. L. Powell, (2004): “Endogeneity in Semiparametric Binary Response Models”, Review of Economic Studies, 71, 655-679.

 

Chamberlain, G. (1980): “Analysis of Covariance with Qualitative Data”, Review of Economic Studies, 47, 225-238.

 

McFadden, D. (1981): “Econometric Models of Probabilistic Choice”, in C. Manski and D. McFadden (eds), Structural Analysis of Discrete Data with Econometric Applications, MIT Press, Ch. 5.

 

 

6. Duration models

 

8.1       The hazard function. Proportional hazard models.

8.2       Unobserved heterogeneity versus state dependence.

8.3       Discrete time duration models.

8.4       Illustration: Unemployment duration.

 

Cameron and Trivedi, Chapters 17, 18, 19.

Wooldridge, Chapter 19.

 

Bover, O., M. Arellano and S. Bentolila (2002): “Unemployment Duration, Benefit Duration, and the Business Cycle”, The Economic Journal, 112, 223-265.

 

Lancaster, T. (1979): “Econometric Models for the Duration of Unemployment”, Econometrica, 47, 939-956.

 

Lancaster, T. (1990): The Econometric Analysis of Transition Data, Cambridge.

 

Meyer, B. (1990): “Unemployment Insurance and Unemployment Spells”, Econometrica, 58, 757-782.

 

Van den Berg, G. (2001): “Duration Models: Specification, Identification and Multiple Durations”, in Heckman and Leamer (eds.), Handbook of Econometrics, Vol. 5, Ch. 55.

 

 

7. Quantile methods

 

7.1       Medians, quantiles and optimal predictors.

7.2       Quantile regression.

7.3       Asymptotic results.

7.4       Endogenous quantile methods.

 

Amemiya, T. (1985): Advanced Econometrics, Blackwell, 4.6.

 

Chamberlain, G. (1994): “Quantile Regression, Censoring, and the Structure of Wages”, in C.A. Sims (ed.), Advances in Econometrics, Sixth World Congress, vol. 1, Cambridge.

 

Chernozhukov V. and C. Hansen (2006): “Instrumental Quantile Regression Inference for Structural and Treatment Effect Models,” Journal of Econometrics, 132, 491-525.

 

Koenker, R. and G. Basset (1978): “Regression Quantiles”, Econometrica, 46, 33-50.

 

Koenker, R. (2005): Quantile Regression, Cambridge University Press.

 

 

8. Models with censored variables

 

6.1       Tobit and truncated models.

6.2       Censored quantile regression.

6.3       Generalized selectivity models.

 

Wooldridge, Chapter 16.

 

Amemiya, T. (1985): Advanced Econometrics, Blackwell, Chapter 10.

 

Das, M., W. K. Newey, and F. Vella (2003): “Nonparametric Estimation of Sample Selection Models”, Review of Economic Studies, 70, 33-58.

 

Heckman, J. (1979): “Sample Selection Bias as a Specification Error”, Econometrica, 47, 153-161.

 

Maddala, G. S. (1983): Limited-dependent and Qualitative Variables in Econometrics, Cambridge University Press.

 

Powell, J. L. (1986): “Censored Regression Quantiles”, Journal of Econometrics, 32, 143-155.

 

 

9. Endogenous selection and treatment effects

 

7.1       Switching regression models.

7.2       Selection bias and identification.

7.3       Estimation methods.

 

Wooldridge, Chapter 18.

 

Angrist, J. and A. B. Krueger (1999): “Empirical Strategies in Labor Economics” in O. Ashenfelter, and D. Card (eds.), Handbook of Labor Economics, Vol. 3, Elsevier Science.

 

Heckman, J. (1990): “Varieties of Selection Bias”, American Economic Review Papers and Proceedings, 80, 313-323.

 

Heckman, J. and E. Vytlacil (2005): “Structural Equations, Treatment Effects, and Econometric Policy Evaluation”, Econometrica, 73, 669-738.

 

Imbens, G. W. and J. Angrist (1994): “Identification and Estimation of Local Average Treatment Effects”, Econometrica, 62, 467-475.