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1 Likelihood models

Given some data {w1, ..., wn}, a likelihood model is a family of density functions fn (w1, ..., wn; θ),

θ ∈ Θ ⊂ Rp, that is specified as a probability model for the observed data. If the data are a

random sample from some population with density function g (wi) then fn (w1, ..., wn; θ) is a model for∏n
i=1 g (wi). If the model is correctly specified fn (w1, ..., wn; θ) =

∏n
i=1 f (wi, θ) and g (wi) = f (wi, θ0)

for some value θ0 in Θ. The function f may be a conditional or an unconditional density. It may be

flexible enough to be unrestricted or it may place restrictions in the form of the population density.1

In the likelihood function L (θ) =
∏n
i=1 f (wi, θ), the data are given and θ is the argument. Usually

we work with the log likelihood function:

L (θ) =
∑n

i=1 ln f (wi, θ) . (1)

L (θ) measures the ability of different densities within the pre-specified class to generate the data. The

maximum likelihood estimator (MLE) is the value of θ associated with the largest likelihood:

θ̂ = arg max
θ∈Θ

L (θ) . (2)

Example 1: Linear regression under normality The model is y | X ∼ N
(
Xβ0, σ

2
0In
)
so

that

fn (y1, ..., yn | x1, ..., xn; θ) =
∏n

i=1
f (yi | xi; θ)

where θ =
(
β′, σ2

)′, θ0 =
(
β′0, σ

2
0

)′ and
f (yi | xi; θ) =

1√
2σ2π

exp

[
− 1

2σ2

(
yi − x′iβ

)2] (3)

L (θ) = −n
2

ln (2π)− n

2
lnσ2 − 1

2σ2

∑n
i=1

(
yi − x′iβ

)2 (4)

The MLE θ̂ =
(
β̂
′
, σ̂2
)′
consists of the OLS estimator β̂ and the residual variance σ̂2 without degrees

of freedom adjustment. Letting û = y −Xβ̂ we have:

β̂ =
(
X ′X

)−1
X ′y σ̂2 =

û′û

n
. (5)

1This note follows the practice of using the term density both for continuous random variables and for the probability

function of discrete random variables; as for example in David Cox, Principles of Statistical Inference, 2006.
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Example 2: Logit regression There is a binary dependent variable yi that takes only two

values, 0 and 1. Therefore, in this case f (yi | xi) = pyii (1− pi)(1−yi) where pi = Pr (yi = 1 | xi).
In the logit model the log odds ratio depends linearly on xi:

ln

(
pi

1− pi

)
= x′iθ,

so that pi = Λ (x′iθ) where Λ is the logistic cdf Λ (r) = 1/ (1 + exp (−r)).
Assuming that fn (y1, ..., yn | x1, ..., xn; θ) =

∏n
i=1 f (yi | xi; θ), the log likelihood function is

L (θ) =
∑n

i=1

{
yi ln Λ

(
x′iθ
)

+ (1− yi) ln
[
1− Λ

(
x′iθ
)]}

.

The first and second partial derivatives of L (θ) are:

∂L (θ)

∂θ
=
∑n

i=1 xi
[
yi − Λ

(
x′iθ
)]

∂2L (θ)

∂θ∂θ′
= −

∑n
i=1 xix

′
iΛi (1− Λi) .

Since the Hessian matrix is negative semidefinite, as long as it is nonsingular, there exists a single

maximum to the likelihood function.2 The first order conditions ∂L (θ) /∂θ = 0 are nonlinear but we

can find their root θ̂ using the Newton-Raphson method of successive approximations. Namely, we

begin by finding the root θ1 to a linear approximation of ∂L (θ) /∂θ around some initial value θ0 and

iterate the procedure until convergence:

θj+1 = θj −
(
∂2L (θj)

∂θ∂θ′

)−1
∂L (θj)

∂θ
(j = 0, 1, 2, ...) .

Example 3: Duration data In the analysis of a duration variable Y it is common to study its

hazard rate, which is given by h (y) = f (y) /Pr (Y ≥ y). If Y is discrete h (y) = Pr (Y = y | Y ≥ y),

whereas if Y is continuous h (y) = lim∆y→0 Pr (y ≤ Y < y + ∆y | Y > y) /∆y = f (y) / [1− F (y)].3

A simple model is to assume that the hazard function is constant: h (y) = λ with λ > 0, which

for a continuous Y gives rise to the exponential distribution with pdf f (y) = λ exp (−λy) and cdf

F (y) = 1−exp (−λy). A popular conditional model is the proportional hazard specification: h (y, x) =

λ (y)ϕ (x). A special case is an exponential model in which the log hazard depends linearly on xi:

lnh (yi, xi) = x′iθ.

Here the log likelihood of a sample of conditionally independent complete and incomplete durations is

L (θ) =
∑

complete

(
x′iθ − yiex

′
iθ
)

+
∑

incomplete

(
−yiex

′
iθ
)

=
∑n

i=1

[
(1− ci)

(
x′iθ − yiex

′
iθ
)
− ci

(
yie

x′iθ
)]

where ci = 0 if a duration is complete and ci = 1 if not. The contribution to the log likelihood of a

complete duration is ln f (yi), whereas the contribution of an incomplete duration is ln Pr (Y > yi).
2To see that the Hessian is negative semidefinite, note that using the decomposition κ′iκi = Λi (1− Λi) with κ′i =[

(1− Λi) Λ
1/2
i ,Λi (1− Λi)

1/2
]
, the Hessian can be written as ∂2L (θ) /∂θ∂θ′ = −

∑n
i=1 xiκ

′
iκix

′
i.

3The hazard rate fully characterizes the distribution of Y . To recover F (y) from h (y) note that ln [1− F (y)] =∑y
s=1 ln [1− h (s)] in the discrete case, and ln [1− F (y)] =

∫ y
0

[−h (s)] ds in the continuous one.
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What does θ̂ estimate? The population counterpart of the sample calculation (2) is

θ0 = arg max
θ∈Θ

E [ln f (W, θ)] (6)

where W is a random variable with density g (w) so that E [ln f (W, θ)] =
∫

ln f (w, θ) g (w) dw.

If the population density g (w) belongs to the f (w, θ) family, then θ0 as defined in (6) is the true

parameter value. In effect, due to Jensen’s inequality:∫
ln f (w, θ) f (w, θ0) dw −

∫
ln f (w, θ0) f (w, θ0) dw

=

∫
ln

(
f (w, θ)

f (w, θ0)

)
f (w, θ0) dw ≤ ln

∫ (
f (w, θ)

f (w, θ0)

)
f (w, θ0) dw = ln

∫
f (w, θ) dw = ln 1 = 0.

Thus, when g (w) = f (w, θ0) we have

E [ln f (W, θ)]− E [ln f (W, θ0)] ≤ 0 for all θ.

The value θ0 can be interpreted more generally as follows:4

θ0 = arg min
θ∈Θ

E

[
ln

g (W )

f (W, θ)

]
. (7)

The quantity E
[
ln g(W )

f(W,θ)

]
≡
∫

ln
(

g(w)
f(w,θ)

)
g (w) dw is the Kullback-Leibler divergence (KLD) from

f (w, θ) to g (w). The KLD is the expected log difference between g (w) and f (w, θ) when the expec-

tation is taken using g (w). Thus, f (w, θ0) can be regarded as the best approximation to g (w) in the

class f (w, θ) when the approximation is understood in the KLD sense.

If g (w) = f (w, θ0) then θ0 is called the “true value”. If g (w) does not belong to the f (w, θ) class

and f (w, θ0) is just the best approximation to g (w) in the KLD sense, then θ0 is called a “pseudo-true

value”.

The extent to which a pseudo-true value remains an interesting quantity is model specific. For

example, (3) is a restrictive model of the conditional distribution of yi given xi, first because it assumes

that the dependence of yi on xi occurs exclusively through the conditional mean E (yi | xi) and secondly
because this conditional mean is assumed to be a linear function of xi. However, if yi depends on

xi in other ways, for example through the conditional variance, the parameter values θ0 =
(
β′0, σ

2
0

)′
remain interpretable quantities: β0 as ∂E (yi | xi) /∂xi and σ2

0 as the unconditional variance of the

errors ui = yi − x′iβ0. If E (yi | xi) is a nonlinear function, β0 and σ
2
0 can only be characterized as the

linear projection regression coeffi cient vector and the linear projection error variance, respectively.

Pseudo maximum likelihood estimation The statistic θ̂ is the maximum likelihood estimator

under the assumption that g (w) belongs to the f (w, θ) class. In the absence of this assumption, θ̂ is

a pseudo-maximum likelihood estimator (PML) based on the f (w, θ) family of densities. Sometimes

θ̂ is called a quasi-maximum likelihood estimator.

4Since E
[
ln g(W )

f(W,θ)

]
= E [ln g (W )]− [ln f (W, θ)] and E [ln g (W )] does not depend on θ, the arg min in (7) is the same

as the arg max in (6).
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2 Consistency and asymptotic normality of PML estimators

Under regularity and identification conditions a PML estimator θ̂ is a consistent estimator of the

(pseudo) true value θ0. Since θ̂ may not have a closed form expression we need a method for establishing

the consistency of an estimator that maximizes an objective function. The following theorem taken

from Newey and McFadden (1994) provides such a method. The requirements are boundedness of

the parameter space, uniform convergence of the objective function to some nonstochastic continuous

limit, and that the limiting objective function is uniquely maximized at the truth (identification).

Consistency Theorem Suppose that θ̂ maximizes the objective function Sn (θ) in the parameter

space Θ. Assume the following:

(a) Θ is a compact set.

(b) The function Sn (θ) converges uniformly in probability to S0 (θ).

(c) S0 (θ) is continuous.

(d) S0 (θ) is uniquely maximized at θ0.

Then θ̂
p→ θ0.

In the PML context Sn (θ) = (1/n)
∑n

i=1 ln f (wi, θ) and S0 (θ) = E [ln f (W, θ)]. In particular, in

the regression example, by the law of large numbers:5

S0 (θ) = −1

2
ln (2π)− 1

2
lnσ2 − 1

2σ2
E
[(
yi − x′iβ

)2] (8)

and, noting that yi − x′iβ ≡ ui − x′i (β − β0), also

S0 (θ) = −1

2
ln (2π)− 1

2
lnσ2 − 1

2σ2

[
σ2

0 + (β − β0)′E
(
xix
′
i

)
(β − β0)

]
. (9)

In this example, S0 (θ) is uniquely maximized at θ0 as long as E (xix
′
i) has full rank.

Asymptotic normality To discuss asymptotic normality, in addition to the conditions required

for consistency, we assume that f (wi, θ) has first and second derivatives in a neighborhood of θ0, and θ0

is an interior point of Θ.6 For simplicity, use the notation `i (θ) = ln f (wi, θ) and qi (θ) = ∂`i (θ) /∂θ.

Note that if the data are iid the score qi (θ0) is also iid with zero mean vector and covariance matrix

V = E

(
∂`i (θ0)

∂θ

∂`i (θ0)

∂θ′

)
. (10)

5Given the equivalence in this case between pointwise and uniform convergence.
6We can proceed as if θ̂ were an interior point of Θ since consistency of θ̂ for θ0 and the assumption that θ0 is interior

to Θ implies that the probability that θ̂ is not interior goes to zero as n→∞.
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Next, because of the central limit theorem we have

1√
n

∂L (θ0)

∂θ
≡ 1√

n

n∑
i=1

∂`i (θ0)

∂θ

d→ N (0, V ) . (11)

As for the Hessian matrix, its convergence follows from the law of large numbers:

1

n

∂2L (θ0)

∂θ∂θ′
≡ 1

n

n∑
i=1

∂2`i (θ0)

∂θ∂θ′
≡ Hn (θ0)

p→ E

[
∂2`i (θ0)

∂θ∂θ′

]
≡ H. (12)

We assume that H is a non-singular matrix and that Hn

(
θ̃
)

p→ H for any θ̃ such that θ̃
p→ θ0.

Now, using the mean value theorem:

0 =
∂L
(
θ̂
)

∂θj
=
∂L (θ0)

∂θj
+

p∑
`=1

∂2L
(
θ̃[j]

)
∂θj∂θ`

(
θ̂` − θ0`

)
(j = 1, ..., p) (13)

where θ̂` is the `-th element of θ̂, and θ̃[j] denotes a p × 1 random vector such that
∥∥∥θ̃[j] − θ0

∥∥∥ ≤∥∥∥θ̂ − θ0

∥∥∥.7
Note that θ̂

p→ θ0 implies θ̃[j]
p→ θ0 and also

1

n

∂2L
(
θ̃[j]

)
∂θj∂θ

′
`

p→ (j, `) element of H,

which leads to the asymptotic linear representation of the estimation error:8

√
n
(
θ̂ − θ0

)
= −H−1 1√

n

∂L (θ0)

∂θ
+ op (1) . (14)

Finally, using (11) and Cramér’s theorem we obtain:

√
n
(
θ̂ − θ0

)
d→ N (0,W ) (15)

where W = H−1V H−1 or at length:

W =

[
E

(
∂2`i (θ0)

∂θ∂θ′

)]−1

E

(
∂`i (θ0)

∂θ

∂`i (θ0)

∂θ′

)[
E

(
∂2`i (θ0)

∂θ∂θ′

)]−1

. (16)

Asymptotic standard errors A consistent estimator of the asymptotic variance matrix W is:

Ŵ =

 1

n

n∑
i=1

∂2`i

(
θ̂
)

∂θ∂θ′

−1 1

n

n∑
i=1

∂`i

(
θ̂
)

∂θ

∂`i

(
θ̂
)

∂θ′

 1

n

n∑
i=1

∂2`i

(
θ̂
)

∂θ∂θ′

−1

. (17)

7The expansion has to be made element by element since θ̃[j] may be different for each j.
8The notation op (1) denotes a term that converges to zero in probability.
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3 The information matrix identity

As long as f (w, θ) is a density function it integrates to one:∫
f (w, θ) dw = 1. (18)

Taking partial derivatives in (18) with respect to θ we get the zero mean property of the score:∫
∂ ln f (w, θ)

∂θ
f (w, θ) dw = 0. (19)

Next, taking partial derivatives again:∫
∂2 ln f (w, θ)

∂θ∂θ′
f (w, θ) dw +

∫
∂ ln f (w, θ)

∂θ

∂ ln f (w, θ)

∂θ′
f (w, θ) dw = 0. (20)

Therefore, if g (w) = f (w, θ0) we have

E

(
∂`i (θ0)

∂θ

∂`i (θ0)

∂θ′

)
= −E

(
∂2`i (θ0)

∂θ∂θ′

)
. (21)

This result is known as the information matrix identity. It says that when evaluated at θ0 the covari-

ance matrix of the score coincides with minus the expected Hessian of the log-likelihood function for

observation i. It is an identity in the sense of (20), but in general it need not hold if the expectations

in (21) are taken with respect to g (w) and g (w) 6= f (w, θ0).

The implication is that under correct specification V = −H in the sandwich formula (16) and

therefore:

√
n
(
θ̂ − θ0

)
d→ N

(
0, [I (θ0)]−1

)
(22)

where

I (θ0) = −E
(
∂2`i (θ0)

∂θ∂θ′

)
≡ − plim

n→∞

1

n

∂2L (θ0)

∂θ∂θ′
. (23)

The matrix I (θ0) is known as the information matrix or the Fisher information, after the work of

Ronald Fisher. It is called information because it can be regarded as a measure of the amount of

information that the random variable W with density f (w, θ) contains about the unknown parameter

θ. Intuitively, the greater the expected curvature of the log likelihood at θ = θ0 the greater the

information and the smaller the asymptotic variance of the maximum likelihood estimator, which is

given by the inverse of the information matrix.

The asymptotic Cramér-Rao inequality Under suitable regularity conditions, the matrix

[I (θ0)]−1 is a lower bound for the asymptotic covariance matrix of any consistent estimator of θ0.

Furthermore, this lower bound is attained by the maximum likelihood estimator.
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Estimating the information matrix There are a variety of consistent estimators of I (θ0).

One possibility is to use the observed Hessian evaluated at θ̂:

Î = − 1

n

∂2L
(
θ̂
)

∂θ∂θ′
. (24)

Another possibility is the expected Hessian evaluated at θ̂, as long as its functional form is known:

Ĩ = I
(
θ̂
)
, (25)

Yet another possibility in a conditional likelihood model f (y | x; θ) is to use a sample average of the

expected Hessian conditioned on xi and evaluated at θ̂:

˜̃
I = − 1

n

n∑
i=1

E

∂2 ln f
(
y | xi; θ̂

)
∂θ∂θ′

| xi

 . (26)

Finally, one can use the variance of the score-form of the information matrix to obtain an estimate:

̂̂
I =

1

n

n∑
i=1

∂`i
(
θ̂
)

∂θ

∂`i

(
θ̂
)

∂θ′

 . (27)

4 Example: Normal linear regression

Letting ui = yi − x′iβ0, the score at the true value for the log-likelihood function in (4) is

∂`i (θ0)

∂θ
=

1

σ2
0

 xiui
1

2σ20

(
u2
i − σ2

0

)
 .

The covariance matrix of the score is

V = E

 1
σ40
u2
ixix

′
i

1
2σ60

xiui
(
u2
i − σ2

0

)
1

2σ60
x′iui

(
u2
i − σ2

0

)
1

4σ80

(
u2
i − σ2

0

)2
 =

 1
σ40
E
(
u2
ixix

′
i

)
1

2σ60
E
(
u3
ixi
)

1
2σ60

E
(
u3
ix
′
i

)
1

4σ80

[
E
(
u4
i

)
− σ4

0

]
 .

The expected Hessian is

H = E

 − 1
σ20
xix
′
i − 1

σ40
xiui

− 1
σ40
x′iui − 1

2σ40
−
(
u2
i − σ2

0

)
1
σ60

 = −

 1
σ20
E (xix

′
i) 0

0′ 1
2σ40

 .

The sandwich formula in (16) is:

W =

(
σ2

0 [E (xix
′
i)]
−1 0

0′ 2σ4
0

) 1
σ40
E
(
u2
ixix

′
i

)
1

2σ60
E
(
u3
ixi
)

1
2σ60

E
(
u3
ix
′
i

)
1

4σ80

[
E
(
u4
i

)
− σ4

0

]
( σ2

0 [E (xix
′
i)]
−1 0

0′ 2σ4
0

)
.

Note that under misspecification the information matrix identity does not hold since V 6= −H.
The first block-diagonal components of V and −H will coincide under conditional homoskedasticity,
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that is, if E
(
u2
i | x

)
= σ2

0. The off-diagonal block of V is zero under conditional symmetry, that is, if

E
(
u3
i | x

)
= 0. Lastly, the second block-diagonal terms of V and −H will coincide under the normal

kurtosis condition E
(
u4
i

)
= 3σ4

0. These conditions are satisfied when model (4) is correctly specified

but not in general.

Under correct specification:

√
n
(
θ̂ − θ0

)
d→ N

[
0,

(
σ2

0 [E (xix
′
i)]
−1 0

0′ 2σ4
0

)]
. (28)

5 Estimation subject to constraints

We may wish to estimate parameters subject to constraints. Sometimes one seeks to ensure internal

consistency in a model that is required to answer a question of interest such as a welfare calculation, for

example enforcing symmetry of cross-price elasticities in a demand system. Another common situation

is an interest in the value or adequacy of economic restrictions, such as constant returns to scale in a

production function. Finally, one may be simply willing to consider a restricted version of a model as

a way of producing a simpler or tighter summary of data.

Constraints on parameters may be expressed as equation restrictions

h (θ0) = 0 (29)

where h (θ) is a vector of r restrictions: h (θ) = (h1 (θ) , ..., hr (θ))′. Alternatively, constrains may be

expressed in parametric form

θ0 = θ (α0) (30)

whereby θ is functionally related to a free parameter vector α of smaller dimension than θ such that the

number of restrictions is r = dim (θ)−dim (α). Depending on the problem it may be more convenient

to express restrictions in one way or the other (or in mixed form).

One way of obtaining a constrained estimator of θ0 is to maximize the log-likelihood function L (θ)

subject to the constraints h (θ) = 0:(
θ̃, λ̃
)

= arg max
θ,λ

[
1

n
L (θ)− λ′h (θ)

]
(31)

where λ is an r × 1 vector of Lagrange multipliers.

Alternatively, if the restrictions have been parameterized as in (30), the log-likelihood function can

be maximized with respect to α as in an unrestricted problem:

α̃ = arg max
α

L [θ (α)] . (32)

Restricted estimates of θ0 are then given by θ̃ = θ (α̃).
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Asymptotic normality of constrained estimators The asymptotic variance of
√
n (α̃− α0)

can be obtained as an application of the result in (15)-(17) to the log-likelihood L∗ (α) = L [θ (α)].

Letting G = G (α0) where G (α) = ∂θ (α) /∂α′, using the chain rule we have

∂L∗ (α0)

∂α
= G′

∂L (θ0)

∂θ
, (33)

and9

E

(
∂2L∗ (α0)

∂α∂α′

)
= G′HG. (34)

Moreover,

1√
n

∂L∗ (α0)

∂α

d→ N
(
0, G′V G

)
. (35)

Therefore,

√
n (α̃− α0)

d→ N
(

0,
(
G′HG

)−1
G′V G

(
G′HG

)−1
)
. (36)

The asymptotic distribution of θ̃ then follows from the delta method:

√
n
(
θ̃ − θ0

)
d→ N (0,WR) (37)

where WR is a matrix of reduced rank given by

WR = G
(
G′HG

)−1
G′V G

(
G′HG

)−1
G′. (38)

Under correct specification V = −H, so that the previous results become

√
n (α̃− α0)

d→ N
(

0,
(
G′I (θ0)G

)−1
)
. (39)

and

√
n
(
θ̃ − θ0

)
d→ N

(
0, G

(
G′I (θ0)G

)−1
G′
)
. (40)

Under correct specification, θ̃ is asymptotically more effi cient than θ̂ since the difference between

their asymptotic variance matrices is positive-semidefinite:

[I (θ0)]−1 −G
(
G′I (θ0)G

)−1
G′ = A−1

[
I −G∗

(
G∗′G∗

)−1
G∗′
]
A−1′ ≥ 0 (41)

where I (θ0) = A′A and G∗ = AG. However, under misspecification the sandwich matrix W =

H−1V H−1 and WR in (38) cannot be ordered.

9The matrix ∂2L∗(α0)
∂α∂α′ contains an additional term, which is equal to zero in expectation.
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The likelihood ratio statistic By construction an unrestricted maximum is greater than a

restricted one: L
(
θ̂
)
≥ L

(
θ̃
)
. It seems therefore natural to look at the log-likelihood change L

(
θ̂
)
−

L
(
θ̃
)
as a measure of the cost of imposing the restrictions. It can be shown that under correct

specification (or if the information matrix identity holds) and the r restrictions on θ0 also hold then

LR = 2
[
L
(
θ̂
)
− L

(
θ̃
)]

d→ χ2
r . (42)

This result is used to construct a large-sample test of the restrictions: the rule is to reject the restric-

tions if LR > κ where κ is the (1− α)-quantile of the χ2
r distribution and α is the chosen size of the

test.

The Wald statistic We can also learn about the adequacy of the restrictions by examining

how far the unrestricted estimates are from satisfying the constraints. We are thus led to look at

unrestricted estimates of the constraints given by h
(
θ̂
)
.

Letting D = D (θ0) and D̂ = D
(
θ̂
)
where D (θ) = ∂h (θ) /∂θ′, under the assumption that h (θ0) =

0, from the delta method we have

√
nh
(
θ̂
)

d→ N
(
0, DWD′

)
(43)

and

WR = n

[
h
(
θ̂
)′ (

D̂Ŵ D̂′
)−1

h
(
θ̂
)]

d→ χ2
r . (44)

The quantity WR is a Wald statistic. Like the LR statistic it can be used to construct a large-sample

test of the restrictions with a similar rejection region. However, while the calculation of LR requires

both θ̂ and θ̃, the calculation of WR only requires the unrestricted estimate θ̂.

Another difference is that, contrary to LR, WR still has a large-sample chi-square distribution

under misspecification if it relies on a robust estimate of the variance of θ̂ as in (44). A Wald statistic

that is directly comparable to the LR statistic would be a non-robust version of the form:

W = n

[
h
(
θ̂
)′(

D̂
[
I
(
θ̂
)]−1

D̂′
)−1

h
(
θ̂
)]

. (45)

The Lagrange Multiplier statistic Another angle on the cost of imposing the restrictions is

to examine how far the estimated Lagrange multiplier vector λ̃ is from zero. The first-order conditions

from the optimization problem in (31) are:

1

n

∂L
(
θ̃
)

∂θ
= D

(
θ̃
)′
λ̃ (46)

h
(
θ̃
)

= 0, (47)
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which lead to the asymptotic linear representation of λ̃:10

√
nλ̃ =

(
DH−1D′

)−1
DH−1 1√

n

∂L (θ0)

∂θ
+ op (1) (48)

and

√
nλ̃

d→ N
[
0,
(
DH−1D′

)−1
DH−1V H−1D′

(
DH−1D′

)−1
]
, (49)

and also

LMR = nλ̃
′
D̃H̃−1D̃′

(
D̃H̃−1Ṽ H̃−1D̃′

)−1
D̃H̃−1D̃′λ̃

d→ χ2
r (50)

where

D̃ = D
(
θ̃
)

H̃ =
1

n

n∑
i=1

∂2`i

(
θ̃
)

∂θ∂θ′
Ṽ =

1

n

n∑
i=1

∂`i

(
θ̃
)

∂θ

∂`i

(
θ̃
)

∂θ′
.

The quantity LMR is a Lagrange Multiplier statistic. Like the Wald statistic in (44) it can be

used to construct a large-sample test of the restrictions, which remains valid if the objective function

is only a pseudo likelihood function and it does not satisfy the information matrix identity.

In view of (46) we can replace D̃′λ̃ in (50) with n−1∂L
(
θ̃
)
/∂θ, which produces the score form of

the statistic. The score function is exactly equal to zero when evaluated at θ̂, but not when evaluated

at θ̃. If the constraints are true, we would expect both n−1∂L
(
θ̃
)
/∂θ and λ̃ to be small quantities,

so that the rejection region of the null hypothesis h (θ0) = 0 is associated with large values of LMR.

Under correct specification V = −H, we get

√
nλ̃

d→ N
[
0,
(
D [I (θ0)]−1D′

)−1
]

(51)

and

LM = nλ̃
′
D̃
[
I
(
θ̃
)]−1

D̃′λ̃ ≡ 1

n

∂L
(
θ̃
)

∂θ′

[
I
(
θ̃
)]−1 ∂L

(
θ̃
)

∂θ

d→ χ2
r . (52)

The statistic LM is a non-robust version of the Lagrange Multiplier statistic that is directly

comparable to the LR statistic.
10Using the mean value theorem for each component of the first-order conditions

D
(
θ̃
)′
λ̃ =

1

n

∂L (θ0)

∂θ
+

1

n

∂2L (θ∗)

∂θ∂θ′

(
θ̃ − θ0

)
0 = h

(
θ̃
)

= h (θ0) +D (θ∗∗)
(
θ̃ − θ0

)
and combining the two expressions using that h (θ0) = 0 we get:

D (θ∗∗)

(
1

n

∂2L (θ∗)

∂θ∂θ′

)−1
D
(
θ̃
)′
λ̃ = D (θ∗∗)

(
1

n

∂2L (θ∗)

∂θ∂θ′

)−1
1

n

∂L (θ0)

∂θ
.
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6 Example: LR, Wald and LM in the normal linear regression model

The model is the same as in (4). We consider the partitions X = (X1, X2) and β =
(
β′1, β

′
2

)′ where
X1 is of order n× r, X2 is n× (k − r), β1 is r × 1 and β2 is (k − r)× 1, and the r restrictions

β1 = 0. (53)

The unrestricted estimates are θ̂ = (β̂
′
, σ̂2)′ as in (5), whereas the restricted estimates are

β̃1 = 0, β̃2 =
(
X ′2X2

)−1
X ′2y, σ̃2 =

ũ′ũ

n
(54)

where ũ = y −X2β̃2.

The LR statistic is given by

LR = n ln

(
ũ′ũ

û′û

)
. (55)

If we modify the example to assume that σ2
0 is known, β̂ and β̃ remain unchanged but in this case

LRσ =
ũ′ũ− û′û

σ2
0

, (56)

which is exactly distributed as χ2
r under normality.

Turning to the Wald statistic, recall that

√
n
(
β̂ − β0

)
d→ N

(
0, σ2

0 plim
(
X ′X/n

)−1
)

and introduce the partition

(
X ′X

)−1
=

(
A11 A12

A21 A22

)
. (57)

Thus, if the restrictions hold

√
nβ̂1

d→ N
[
0, σ2

0 plim (nA11)
]

(58)

and therefore the (non-robust) Wald statistic is given by:

W =
β̂
′
1A
−1
11 β̂1

σ̂2 . (59)

It can be shown that β̂
′
1A
−1
11 β̂1 = ũ′ũ− û′û,11 so that also

W =
ũ′ũ− û′û

σ̂2 . (60)

11Using the partitioned inverse matrix result A−111 = X ′1 (I −M2)X1 and MM2 = M2 where M2 = X2 (X ′2X2)
−1
X ′2

and M = X (X ′X)
−1
X ′. Premultiplying y = Xβ̂ + û by (I −M2) and taking squares we get y′ (I −M2) y =

β̂
′
1X
′
1 (I −M2)X1β̂1 + û′ (I −M2) û, which equals ũ′ũ = β̂

′
1A
−1
11 β̂1 + û′û.
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Moreover, if σ2
0 is known

Wσ =
ũ′ũ− û′û

σ2
0

,

so that Wσ = LRσ. With unknown σ2
0 it can be shown that W ≥ LR even if both statistics have the

same asymptotic distribution.

Finally, turning to the LM statistic, the components of the score are:
∂L(θ)
∂β1

= 1
σ2
X ′1 (y −Xβ)

∂L(θ)
∂β2

= 1
σ2
X ′2 (y −Xβ)

∂L(θ)
∂σ2

= n
2σ4

[
1
n (y −Xβ)′ (y −Xβ)− σ2

]
,

(61)

which once evaluated at restricted estimates are
∂L(θ̃)
∂β1

= 1
σ̃2
X ′1ũ 6= 0

∂L(θ̃)
∂β2

= 1
σ̃2
X ′2ũ = 0

∂L(θ̃)
∂σ2

= n
2σ̃4

(
1
n ũ
′ũ− σ̃2

)
= 0.

(62)

Moreover, the information matrix in this case is

I (θ0) =

 1
σ20

plim
(
X′X
n

)
0

0′ 1
2σ40

 , (63)

so that using

I
(
θ̃
)

=

 1
σ̃2

(
X′X
n

)
0

0′ 1
2σ̃4

 , (64)

the LM statistic becomes

LM =
(

ũ′X1
σ̃2

0′ 0
) σ̃2

(
A11 A12

A21 A22

)
0

0

0′ 0 2σ̃4/n




X′1ũ

σ̃2

0

0

 (65)

and

LM =
ũ′X1A11X

′
1ũ

σ̃2 . (66)

It can be shown that

ũ′X1A11X
′
1ũ = β̂

′
1A
−1
11 β̂1 = ũ′ũ− û′û (67)

so that also

LR =
ũ′ũ− û′û

σ̃2 . (68)

Moreover, if σ2
0 is known

LMσ =
ũ′ũ− û′û

σ2
0

so that LMσ = Wσ = LRσ. With unknown σ2
0 it is easy to show that W ≥ LR ≥ LM .
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