UNCERTAINTY, PERSISTENCE, AND
HETEROGENEITY: A PANEL DATA
PERSPECTIVE

Manuel Arellano
CEMFI, Madrid

Abstract

The purpose of this paper is to review newly developed identification and estimation tools that are
relevant for the analysis of dynamic dependence structures of income risk. I present an application
to nonlinear permanent—transitory models of household income using data from the Panel Study
of Income Dynamics (PSID), but the empirical approach is more generally applicable. Household
income processes are of interest because the size of shocks, the nature of their persistence, and cross-
household heterogeneity are all important to understand how income inequality varies with age and
cohort and how it translates into consumption inequality. I argue that going from an econometrics of
autocovariances to an econometrics of flexible distributions is feasible and has the potential to reveal
richer aspects of risk—for example, nonlinear persistence of unusual shocks. (JEL: C23, D31, D12)

1. Introduction

Using panel data to separate out permanent from transitory components of variation
is the leading empirical approach in the analysis of individual earnings and the
productivity of firms. Important economic questions have been addressed within this
framework, including descriptive studies of inequality and mobility or structural links
between life-cycle income and consumption.

Typically, the starting point is a matrix of covariances between one or more
variables calculated at different points in time. A simple example is the error-
components model. Classic examples are Hall and Mishkin (1982) on household
income and consumption growth, and Abowd and Card (1989) on male earnings and
hours of work. An influential recent study is Blundell, Pistaferri, and Preston (2008).

To some extent the focus on covariances is unfortunate; firstly, because the objects
of economic interest are often probability distributions conditioned on past states
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rather than autocorrelations—this is so when a predictive distribution of income is
required to study the effect of income uncertainty on consumption decisions, or when
transition probabilities are needed to measure the extent of earnings mobility; and
secondly, because micro panels contain abundant information on the joint distribution
of a sequence of outcomes for different periods—for example, the joint distribution of
household earnings over five consecutive years.

The purpose of this paper is to review newly developed identification and estimation
tools that are relevant for the analysis of dynamic dependence structures of income
risk. I present an application to nonlinear permanent—transitory models of household
income using data from the Panel Study of Income Dynamics (PSID), but the empirical
approach is more generally applicable. Household income processes are of interest
because the size of shocks, the nature of their persistence, and cross-household
heterogeneity are all important to understand how income inequality varies with age
and cohort and how it translates into consumption inequality.

The outline of the paper is as follows. Section 2 introduces permanent—transitory
models of income risk, provides an overview of issues addressed in the literature, and
presents the nonlinear dynamic model studied in Arellano, Blundell, and Bonhomme
(2014, hereafter ABB). Section 3 discusses identification of two permanent—transitory
models; one is a fixed-effect model and the other is the ABB Markov process
model. Section 4 explains how to estimate the previous models using a simulation-
based sequential calculation of quantiles and quantile regressions, which illustrate
the estimation approach in Arellano and Bonhomme (2013). Section 5 reports some
estimates of a nonlinear permanent—transitory model of household labor income using
PSID data for the years 1998-2008. Finally, Section 6 presents the conclusions.

2. Income Processes

An income process is a central ingredient of quantitative macroeconomic models with
incomplete markets and heterogeneous households. These models are a standard tool to
quantify, for example, the welfare implications of changes in inequality or of changes
in tax policy.’

In this context, an “income process” is a representation of the uncertainty about
labor income in future periods that households face when deciding how much to
spend and save. Faced with uncertainty, households will postpone consumption and
accumulate assets to self-insure against future income shocks (precautionary savings).
Moreover, the more persistent the shocks are the more difficult it will be for households
to protect against those shocks.

2.1. Permanent-Transitory Models

The standard approach decomposes uncertain future income into a permanent
component and a transitory component. Permanent shocks come to stay while transitory

1. See Heathcote, Storesletten, and Violante (2009, 2013) for recent surveys.
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shocks only last one period. Households are assumed to be able to distinguish one type
of shock from the other and to form joint probabilities about their future occurrence.
The canonical permanent—transitory income process takes the form

Yip =mn +¢&;, (D
Mie = Nig—1 T Vi 2

where Y;, denotes log income of household i at age ¢, net of cohort effects (and
other demographic characteristics). The permanent component 7;, is a random walk,
while the transitory component ¢;, is independent over time and independent of the
permanent shock v;,.>

From a statistical point of view this is a standard unobserved components model
with a long tradition in time series and panel data analysis. Attractive aspects of this
formulation are its ability to distinguish between two sources of uncertainty, and the
fact that it can be easily calibrated using panel data on household income.

In a standard calibration the variance of permanent shocks is 0.01, the variance of
transitory shocks is 0.05, and the initial variance of the permanent component is 0.15
(Kaplan and Violante 2010). These figures imply that around 90% of the variation in
earnings changes is due to the transitory component.

Various extensions of the canonical model have been used in the macro literature.
For example, Storesletten, Telmer, and Yaron (2004) add a fixed effect to (1) and allow
an autoregressive coefficient that can be less than unity in (2).> Guvenen (2007) adds
another fixed effect interacted with an age trend and assumes that households learn
about their individual-specific income profile over time. Other extensions include
transitory shocks that last more than one period (a moving-average process) and
variances of shocks that vary with age.

There is a large literature on longitudinal earnings in labor economics, even if
some of these papers did not have an explicit objective to provide a representation
of income uncertainty. For example, Moffitt and Gottschalk (1995) documented the
changes in earnings inequality over the 1970s and 1980s by focusing on changes in
the covariance structure of earnings. Early contributions include Hause (1977), Lillard
and Willis (1978), and MaCurdy (1982), while the more recent ones include Meghir
and Pistaferri (2004), Browning, Ejrnas, and Alvarez (2010), and Altonji, Smith, and
Vidangos (2013).

One- or two-error formulations? The income process (1)—(2) is a two-error
model, but is well known to have an equivalent representation as a single-error
integrated moving-average model. The moving-average parameter is negative and can
be determined from the permanent—transitory variance ratio.* However, despite their

2. Inthe simplest form of the model 7, , €;,, and v, are normally distributed with age-invariant standard
deviations.

3. Note that (1)—~(2) already includes an additive fixed effect given by the initial condition: YI =
n;+ (viz +-+ vit) te,.
4. See for example Arellano (2003, Section 5.5).
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observational equivalence on income data, the two models are different representations
of household uncertainty with different implications for the response of consumption
to income (as noted in Quah 1990). In particular, a single income shock of moderate
persistence may have quite different implications for life-cycle consumption than two
shocks, one of which is highly persistent.’

Empirics of Consumption—Income Links. A strand of work that is closely connected
to both earnings dynamics and macro consumption has sought to establish the links
between income shocks and consumption choices from the joint covariance structure
of earnings and expenditures. Amongst others, the papers by Hall and Mishkin (1982),
Deaton and Paxson (1994), Blundell and Preston (1998), and Blundell, Pistaferri, and
Preston (2008) belong to this line of research.® Blundell et al. (2008) interpret the
degree of transmission of income shocks to consumption growth as a measure of the
extent of insurance opportunities (partial insurance) available to households. A major
lesson from this literature is that the degree of persistence in income shocks is key to
understanding the differences in the patterns of income and consumption inequality.

The empirical work on the consumption-income links using latent covariance
structures occupies a (quasi-structural) middle ground between quasi-experimental
approaches and structural model-based macro approaches. In a quasi-experimental
approach one seeks to estimate the response of consumption to an observable income
shock whose characteristics are clear cut.” If successful, the quasi-experimental
approach has the attraction of a strong context-specific causal claim. In contrast, a
latent-structure approach seeks to construct economy-wide measures of income risk,
and to understand the channels through which it affects consumption inequality.

Quasi-experiments and quasi-structures are complementary, since finding instances
of context-specific causality and finding ways of measuring and interpreting broad
economic concepts are both important. This is not to deny that measuring household
income risk is plagued with difficulties. Some of them are reviewed next.

Heterogeneity and Advance Information. A major difficulty of estimating uncertainty
from earnings data is that we cannot fully rule out the possibility of overstating
uncertainty because of unaccounted heterogeneity (omitted fixed effects) or because
what the model labels as a shock has been foreseen by the consumer (advance or
superior information).

The canonical model (1)—(2) includes a fixed effect given by the initial permanent
component, which in the Kaplan—Violante calibration accounts for 50% of the variation
in log earnings residuals ten years after entering the sample. However, a model
with heterogeneous growth and less persistent shocks is hard to distinguish from the

5. See for example Heathcote, Storesletten, and Violante (2009).
6. Meghir and Pistaferri (2011) contains an excellent survey of this literature.

7. For example, the response of consumption to tax rebates exploiting randomized timing in receiving
tax rebate checks by households (Johnson, Parker, and Souleles 2006). See also references in Meghir and
Pistaferri (2011, Section 4.4.2).
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canonical model, yet it implies a very different description of the uncertainty faced by
households. In fact, a fully unstructured distinction between unobserved heterogeneity
and individual dynamics in a finite-horizon panel is not possible.> Some papers have
used structural models of schooling, labor supply or consumption choices to try to
distinguish between predetermined heterogeneity and shocks taking place over the
working life. The list of papers includes those in the income—consumption covariance-
structure literature, and also Keane and Wolpin (1997), Cunha, Heckman, and Navarro
(2005) and Guvenen and Smith (2010), among others.

Similarly, earnings data alone cannot hope to conclusively identify to what extent
(if any) agents are able to anticipate the stochastic variation in the estimated process.
Even in joint income and consumption data, advance information and partial insurance
will be observationally equivalent in general (Kaufmann and Pistaferri 2009). In effect,
if agents partly anticipate the statistical innovations in the income model, an attenuated
response to those shocks will be estimated, similar to what would follow under suitable
insurance opportunities against those shocks.

Problems with the Quality of Earnings Data Available. First, there is an issue of
right tail error. The sample design of panel data on incomes such as the PSID makes
it difficult to capture variation in inequality driven by changes in the right tail of
the income distribution.” Surveys of household wealth that oversample the rich, such
as the Survey of Consumer Finances (SCF), are able to produce better measures of
cross-sectional inequality but typically lack a longitudinal dimension.

More generally, there has been a long-standing concern with measurement error in
survey data on earnings.'? Unfortunately, there are not many validation studies.!’ A
two-wave validation study of PSID was conducted in 1983 and 1987, which compared
the survey responses of workers in a particular manufacturing plant with the payroll
records of the same workers collected by the firm. It emerged that PSID earnings
tended to exaggerate the actual fluctuations in earnings by between 20% and 45%
depending on the year.

However, poor reliability ratios may still leave permanent—transitory
decompositions largely unaffected. This possibility was suggested in Pischke (1995),
whose analysis of the PSID validation data was consistent with offsetting effects of
additional noise and underreporting of transitory earnings, both brought about by
misreporting.

Univariate versus Multivariate Models of Earnings. Risk measures constructed from
earnings histories alone are necessarily coarse as they abstract from income variation
due to endogenous labor market choices rather than exogenous shocks. If households

8. See Arellano (2003, chapter 5) for a related discussion.

9. A point emphasized in Castafieda, Diaz-Giménez, and Rios-Rull (2003).
10. See Bound, Brown, and Mathiowetz (2001) for a survey.

11. Kapteyn and Ypma (2007) is a recent one.
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change hours worked or jobs in response to wage or unemployment shocks, we would
like to use this information in quantifying the uncertainty they face. Given data on
employment and wage histories of household members, one could consider a joint
model with a more detailed set of shocks than the canonical model. In an early
contribution, Abowd and Card (1989) examined the joint covariance structure of wages
and hours of work of male PSID employees.

Progress in this area has been held back partly because additional labor market
variables are discrete events, which are hard to combine with continuous variables in a
convenient statistical framework. Thus, it has proved difficult to formulate generalized
models of shock transmission that could replace standard univariate representations of
labor income uncertainty. More fundamentally, it is difficult to examine a detailed menu
of shocks without simultaneous consideration of a comparable menu of sequential
household choices, as future exposure to a particular type of shock may be contingent
on previous choices. Significant progress in this direction has been made in recent
approaches developed in Low, Meghir, and Pistaferri (2010) and Altonji, Smith, and
Vidangos (2013).

Recent papers that look at the transmission of wage shocks to consumption by
considering the joint covariance structure of consumption, hours of work and earnings
are Blundell, Pistaferri, and Saporta-Eksten (2012) and Heathcote, Storesletten, and
Violante (2012). In these models labor supply is endogenous, so that wages instead
of income become the exogenous source of uncertainty faced by households. In the
following sections, I will discuss distributional dependence structures in the context
of univariate models of earnings for simplicity, but the main ideas generalize to
multivariate contexts.

Using Subjective Probabilistic Questions to Measure Income Risk. Usually we
indirectly inferred risk from data on income realizations. An alternative is to directly
ask survey respondents about their subjective income expectations. That is, to ask a
question of the form: “What do you think is the percent chance that your total household
income, before taxes, will be less than y over the next 12 months?” Dominitz and
Manski (1997) report results from a survey that asked this question for four different
thresholds y, together with actual income and other variables. They used responses
to the probability questions to fit respondent-specific parametric distributions, which
they compared with those implied from the income processes used in Hall and Mishkin
(1982) and other papers in the literature. They found that subjective interquartile ranges
were neither constant across households nor proportional to subjective medians. This
finding is at odds with the properties of the canonical income process but not with
those of the distributional models that I consider in what follows.

Expectations data from subjective probability questions can help make decisive
progress on some of the key difficulties in measuring risk that we have discussed. The
available evidence is that individuals are willing and able to respond to probabilistic
questions about variables that are meaningful to them (Manski 2004). Much progress
has been made in understanding the implications of different methods of eliciting
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expectations. Unfortunately, probabilistic questions are still absent from most major
household income surveys.'?

Data on subjective expectations and data on realizations can play complementary
roles in constructing more credible measures of risk. Expectations data can be used
to assess the assumptions made in models of expectations based on realizations.
In turn those models should help fit probabilistic models to data from probabilistic
questions. In particular, the combination of subjective expectations and realizations
facilitates the estimation of robust measures of shock persistence (Attanasio and
Augsburg 2012). A case in point is Kaufmann and Pistaferri (2009), who combine both
types of data to disentangle information from insurance using the canonical income
process.

Progress in this area is a complex path that requires not only the input of researchers
but also of data producing agencies.

Beyond Covariance Restrictions. The mainstream approach to earnings dynamics
fits the canonical income process or one of its variants to autocovariances of household
income panel data. For all its limitations, the income history of a household and
other similar households should play a prominent role in measuring uncertainty and
persistence.

An advantage of the canonical model is its tractability. The model implies simple
restrictions that can be used for identification and estimation. Moreover, linearity leads
to simple approximations to consumption responses. However, a focus on covariance
restrictions is overly restrictive. For example, the canonical model rules out asymmetric
persistence and nonlinear transmission of shocks.

Some papers have considered income processes with heteroskedastic shocks,
and/or non-normal and mixing distributions, thereby going beyond covariance analysis
in significant ways. Papers in this category include Horowitz and Markatou (1996),
Chamberlain and Hirano (1999), Geweke and Keane (2000), Alvarez and Arellano
(2004), Meghir and Pistaferri (2004), Bonhomme and Robin (2010), Browning, Ejrnzes,
and Alvarez (2010), and Hospido (2012), among others.

Next I turn to a measuring framework that shifts the focus from covariances
and linear models to distributions and nonlinear transmission of income
shocks.

2.2. Nonlinear Dynamics

ABB retain the permanent—transitory decomposition

Yip =n; + &4

12.  The Survey of Household Income and Wealth from the Bank of Italy has been one of the few
exceptions (Guiso, Jappelli, and Terlizzese 1992). Recent progress on subjective expectation data in
developing countries is reviewed in Attanasio (2009).
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but model the law of motion of 7;, as an unrestricted Markovian process:

N = Qi(Mip—1. Vi), t=2,....T, 3)

where Q,(n,v) is strictly monotonic increasing in v. The innovation V;, given
Mit—1s---» Ny is uniformly distributed on (0, 1). In this setting Q,(1; ,_;, 7) is the tth
conditional quantile of n;, givenn; ,_;.

The distribution of the initial value n;, is left unrestricted. Moreover, the
function Q, (1, v) may be nonstationary (period-specific). This allows for age-specific
uncertainty and persistence, but also for aggregate shocks.

The transitory error ¢;, is assumed to be zero-mean, independent over time. While
this fits the application to the biannual PSID data well, generalizing identification
and estimation to serially correlated (e.g., moving-average) transitory shocks seems
important.

Another important generalization is to a richer specification of unobserved
heterogeneity. The only fixed effect in (3) is the initial condition 7;,. I will focus
on this model for simplicity, although the identification arguments in ABB allow for a
nonlinear fixed effect in (3).

Although separate realizations of the components of income are of course
unobservable, a nonparametric Markov process as well as the transitory shock and
initial condition densities are identified from (short) panel data on total income.
Identification critically hinges on the differential persistence between the components.
I will return to formal identification arguments later. For now note that an implication
is that a household can learn ex-ante about permanent and transitory risk not only
from its own earnings history but also from those of similar households. Moreover, an
economic statistician can hope to measure separate risks of different persistence based
on earnings histories without data on household choices.

Nonlinear Persistence. A parameter of interest is the function

pi() =E |:—an8(’71',;1’ f)i| .

Nit—1

The average derivative effect p,(r) measures the persistence of Nit—1
when the process is hit by a shock V;, that has rank t. The average is taken with
respect to the distribution of 7, ,_,. Besides the mean, other characteristics of the
distribution of the derivative effect are also of interest. For example, for a given shock,
the persistence of positive and negative 7, ,_, may differ.

In the canonical random walk model with normal shocks,

Qt(ni,z—l’ T) = Nij—1 T qu)il(f)v
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so p,(7) = 1, independent of 7. In contrast, in the current setup the persistence of 7;,
may depend on the magnitude and direction of the income shock V;,. In particular, this
setting allows for stochastic volatility and asymmetric persistence. Under asymmetric
persistence, the weight of the history of the process may differ according to the rank
of the current shock (Koenker and Xiao 2006)."3

A Measure of Uncertainty. Another parameter of interest is the function

o,(r)=E [Qt(ni,t—l’ )= 0,y 1= T)] .

The quantity o, (7) measures the uncertainty generated by the presence of shocks to
the persistent component of income. For example, 0,(0.75) is an average interquartile
range.

In the canonical random walk model with v;, ~ N(0,07),

0,(1) = 2O'UCD_1(T).
An analogous measure of the uncertainty generated by the transitory shocks is

0, () = F ' (0 = F ' (1= 7).

Conditional Skewness and Kurtosis. In a similar vein, the present framework leads
naturally to consideration of quantile-based measures of skewness and kurtosis, along
the lines of those discussed in Kim and White (2004). A measure of conditional
skewness is

0, 1.0+ Q,(n ;1. 1—7)=20,(n; ;_;.0.5)
0, -1, 0) = QM 1,1 =70 ’

sk (-1, 7) =

whereas a measure of conditional kurtosis is given by

0,(n;;-1,0.975) — Q,(n; ,_,0.025)
0,(1;,-1,0.75) — Q,(n; ;;,0.25)

kr,(n;,—y) =

Example: A Linear Quantile Model. A special case of model (3) is the following
specification:

Nis = a(Vit) + ﬂ(l/il)h(r]l',l_l)7

13.  Regime-switching models that produce asymmetric persistence are popular in the time series analysis
of business cycles. See for example Evans and Wachtel (1993)’s model of inflation uncertainty, or Kuan,
Huang, and Tsay (2005)’s model in which an unobserved-component innovation can have permanent
and transitory effects in different periods. See also Terasvirta (1994) on smooth-transition autoregressive
models.
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where V;, are i.i.d. uniform variables, independent of Mig—t1s--+s M1 In this model,
a(-) and B(-) are nonparametric functions, while /() is some pre-specified function
of the lagged permanent latent variable. For example, h(n;, ;) = [n;,_,| and
h(n; ,—y) = (nj:t_l . 1; ,—1) are panel data counterparts of the CAViaR models in Engle
and Manganelli (2004).

Since the persistence measure is given by

(1) = BOE[N (n; )],
this model allows shocks to affect the persistence of 7, ,_, in rather general ways.
This nonlinear persistence may be rich enough to capture empirically the effects
of the disparate variety of shocks (job changes, promotions, bad health, etc.), which
are aggregated into the latent permanent component of household earnings.

3. Identification
3.1. Fixed-Effect Model

Let us first consider a simpler model in which the permanent component is just a fixed
effectand T = 2:
Yii =n + e )

Yio =10 + &5 )

This model leads to the covariance structure

Y. 02+0? o2

Var( 1) =" ‘1 7
Y, 02  o02+402
2 n &

i n

The covariance between Y;, and Y;, identifies the permanent-component variance,
which subtracted from the data variances leads to identification of the transitory-shock
variances.

A similar argument can be made for the identification of the densities under the
assumption that the characteristic functions are nonvanishing (Kotlarski’s lemma).'*
The relationship between the (log) characteristic function of (Y;,,Y;,) and those of
n;, &1, and g;, is

K(s1.8) =InE [ei(slyn +S2Y2)] =ty (5) +53) + kg (1) + K, (55)

14.  Kotlarski (1967). See also Li and Vuong (1998) or Bonhomme and Robin (2010). The assumption of
nonvanishing characteristic functions can be relaxed somewhat or replaced by tail conditions on the densities
of the shocks, which may be more easily interpretable (Evdokimov and White 2012). A nonvanishing
characteristic function (cf) excludes uniform and triangular distributions but contains common parametric
distributions such as the normal, Student’s #, chi-squared, gamma, and double exponential.
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where 5, 5, are the arguments in the characteristic function and i denotes the imaginary
unit. Second partial derivatives are given by

321('(51 ,sz) 92k (s1 ,52)

352 a5, | ey (51 +55) + K (51) ey (51 +55)
82x(s],s2) 32K(s1,s2) - /(;]/ (51 + S2) K;)/ (Sl + S2) + Ké’ (SZ)
0s,0s, asg 2

The identification argument for second derivatives now mimics the previous one
for variances. Since «, (0) = 0 and «, (0) = 0 (due to zero mean), identification
J

J
of second derivatives ensures identification of the log cf, which can be obtained by
successive integration. Given the cf, densities follow from the inversion formula. For

example,
1 —ise+k, (s)
fo @ =5 [ Vs

3.2. Linear Markov Model

Now consider a case where the permanent component is a nonstationary linear
autoregression:

Yip =mn; +e&,

Nit = PeMiz—1 T Vig>

where transitory and permanent shocks are mutually independent at all times.">

The covariance structure when 7" = 4 is

2 2 2 2 2
Y, Oy, T 05, P20y, P3P0y PaP3P20%,
2 2 2 2
Var Yi2 _ { } _ 0172 + 082 )0307,2 p4p30n2
aly @1s o2 +o? o2
i3 s e, PaOn,
Y. 2 2
i4 oy, 1 0¢,

The transitory shock variances 0822, 0823 and the parameters (0,%2, 0,%3, p;) of the
covariance matrix of (1;,, ,5) are identified as long as p; and p, are not zero. The last-
period autoregressive parameter p, is also identified, but initial and terminal variances
are not identified and neither is p,, despite the model implying an overidentifying

restriction.'©

15. Thatis, n;, is independent of €, for all s, .
16. Note that p, = w,,/w,, and p, = w24/a)23,052 =w,,/p, andori = a)34/p4,0822 =w,, — 0,

P 2 2
and O’y} = w,, 0,73.
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3.3. Nonlinear Markov Model

Finally, consider the nonlinear Markovian model
Yie = mje + &5

Niz = Qt(ni,t—l’ Vie)-

When T = 4 the densities of ¢;,, ¢;; and the joint density of (1,,,7n;5) are
nonparametrically identified subject to suitable distributional dependence.

The argument proceeds by showing that the characteristic function of ¢;, is
identified in the first three waves. Similarly, the characteristic function of ;5 is
identified in waves two to four. Then, given these two characteristic functions, the
joint characteristic function of (7;,,7,5) can be identified from the characteristic
function of (Y;,, Y;5) using the relationship

wyz,y3 (55,83) = an,r,3 (525 Ss)wgz (52)‘»”53 (53)-

Some intuition and a sketch of the argument in ABB follows. This arguments
builds on and extends a result in Wilhelm (2012).

Some Intuition into how Identification Works. In the Gaussian linear case,
identification of the Markov process for n;, amounts to identification of p, and
03}. From an instrumental-variable perspective, we may consider the following
autoregressive model with measurement error:

Y, = ptYi,t—l + (vit + & — ptgi,t—l) . (6)

Using Y; ,_, as instrument identifies p, but not 03/ Only the variance of the
composite error v;, + &;, — p,&; ,_; is identified in the IV regression (6). Note that the
validity of Y; ,_, as instrument depends on the Markov assumption.

To identify 02 1
—
Yi,t—2:

(given p, # 0) we consider another I'V regression conditioned on
2 2
Y ;Y = P10, + 0¥+ Cir (7

where the error satisfies E({;, | ¥; ,_,) = 0 under the Markovian assumption.!” A
similar regression one period ahead identifies aezr (given p; , ; # 0). Having identified

o2 and 02 e the variance of v;, can be obtained from the residual variance in the first
t e
IV equation.

17. Theerroris givenby §, =Y, (v, +¢,)—p, (¥, & —0? ).

i1—1 &
[
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In the nonlinear case, we consider two nonparametric IV equations conditioned on
Y; ,_, using ¥;, or some bounded function g(¥;,):

i,t—l) + e E (eit | Yi,t—z) 0
Y, ;18 (th) =5 (Yi,t—l) + e E( ¢, 1Y = 2) = 0.

Here s, (-) is the functional parameter in the nonparametric I'V regression of g(Y;,)
onY;, ;using Y;, , as a conditioning instrument, whereas 5, (.) is a similar object
when the outcome is Y; ,_; g(¥;,).

The function s,() 1s the solutlon to E[g(Y;,) —s,(Y;,—1) | Y;,_5] = 0. The
solution exists and is unique if both the conditional dlstnbutlons ;s 1Y,y and
Y; ;1 1Y;, are complete. Completeness is in this context an instrument relevance
assumption It is the nonparametric counterpart to the nonzero covariance assumption
Cov(Y;,,Y;,_;) # O that is required for identification of the covariance structure.'®

It turns out that from s, (-) and 5, (.) we can identify the density of ¢; ,_;. Similarly,
from s, ;(-) and 5, | () we can identify the density of ¢; ,. Finally, given the densities
of &;,_; and ¢; ;, and the data distribution of (Y; ,_;,Y;,) one can identify the joint
dens1ty of n; ,_, and n;, by deconvolution.

AXkey stepin the argument s that s, () and §, (+) are also the IV functional parameters
in the same equations but using 7, ,_; as the conditioning instrument. This is so due
to conditional independence between (Y;,_,Y;,) and ¥, ,_, given n; ,_,, provided
the conditional distribution of n; ,_; given Y, ,_, is complete This situation implies

E (g (th) | ’71',1—1) =E (st ( ) | M1 )

N1 E (g(Y:) | ’li,z—l) = E (5, ( ~1) | t—l)

so that for every fixed 7 the following equation holds:

Eei,zfl [nsz (77 + 51‘,1—1)] =E, [gt (77 + Si,t—l)] . (®)

i.0—1

Using this equation, by a deconvolution-type argument the density of ¢; ,_; is
identified.

Sketch of the Deconvolution Argument.  Let the Fourier transforms of £ 1 [s,(n +
i,t—
&) and E;  [5,(n+&;,_)] be h,(u) and K, (u), respectively.”” They can be
’ i,01— ’

18. The distribution of Y, | Y,, is complete if E [ (Y,,) | ¥, | = 0 implies that ¢ (¥,,) = 0 for all
Y in some space of functions (Newey and Powell 2003). In a linear conditional mean model with normal
regression errors, completeness reduces to the usual rank condition for linear regressions.

19. Thatis,h, () = [ [s,(n +¢) f. (&) e""dedn with a similar expression for fz[ (n).
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written as the following products of the Fourier transform of the I'V functions and the
characteristic function of ¢; ,_;:

he ) = ¢ W)Y, (~u)
he ) = @5 Y, (-u)

1

where ¢ (u) = ['5,(y)e™dy and ¢; (u) = [5,(y)e™ dy, both of which are data
t t
objects. Moreover, because of (8) it turns out that the first derivative of 1, (1) satisfies

R, () = ih, (u),

so that we obtain the following first-order differential equation:

oY, (Cw)—p, Y (cw)=ig (Y, (). (9

1

Using that wf:q (0) = 1, equation (9) can be solved in closed form for wszq (u)
provided ¢s, (u) is nonvanishing.

When T = 4 the previous arguments identifies wgz (1) in waves one to three and
¥, (u) in waves two to four. The distributions of Y;, | n;5 and n;, | Y;; are also
identified. However, the distributions of the initial and terminal components €;,, 1,1,
¢;4 and 7, are not identified.

A Normal Example. As an illustration consider jointly normal data with 7 = 4 and
g(Y;3) = Y,5. In this case,

s (¥2) = p3),

5(v2) = ps (y§ — 032) :

So we have
@5 (u) = paky (u)
@5 (u) = _/730322’Co () + psicy (U),
where «; (u) = ijei”xdx. Using & (u) = ik, (u) and K, (u) = —iuk, (u), we

obtain the following special case of the differential equation (9):

Ve, ) gl (—u) —igy (—u) P30 UKy () .
= = = —uo; .
Wgz (u) (ps (_u) p3K1 (_u) 2
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The result corresponds to the N <0, oi) characteristic function wgz (u) =

—(1/2)02 u?
e 2,

Other Identification Results for Nonlinear Latent Variable Models in the Literature.
Hu and Schennach (2008) and Carroll, Chen, and Hu (2010) provide general
nonparametric identification results for measurement error models, and Hu and Shum
(2012) for Markovian dynamic models. They rely on completeness assumptions as
ABB do. The results in Hu and Schennach cover the fixed-effect model (and much
more) but not the nonlinear Markov model.

Wilhelm (2012) provides an identification result for nonparametric panel data
models with measurement error in a continuous explanatory variable. He restricts
either the structural or the measurement error to be independent over time in order to
allow past covariates or past outcomes to be used as instruments.

Hu and Shum (2012) allow for a Markov latent process, while requiring that
T > 5 (T > 4 under stationarity). In addition, their identification result depends on
a monotonicity assumption, such as E (Y¥;,, | n;, = 1) being increasing in 7. In
contrast, the identification proof in ABB exploits the additivity ¥;, = n;, + ¢;, and
only requires 7" > 4.

4. Estimation

One way of approaching estimation is by following the identification arguments
described in the previous section. However, we shall follow an alternative simulation-
based approach to directly estimate quantiles of the distributions of interest. A
simulation-based approach is well suited to estimate models with many latent variables.
As we saw in Section 2.2, natural measures of uncertainty and persistence can then be
constructed from quantiles of permanent and transitory shocks.

4.1. Fixed Effect Model: Estimation

The error-components model with a fixed effect (4)-(5) is a well-known example for
which alternative estimators exist, but one that serves as a simple illustration of the
Arellano—-Bonhomme (2013) estimation approach. We seek to estimate the quantiles of
the fixed effect n; and those of the transitory errors given dataon Y; = (Yi1 R ¢ iT)-
Let § (7) and p, (7) be the quantile functions of n; and ¢;, for T € (0, 1).

While the mean minimizes expected squared error, the median minimizes expected
absolute error and other quantiles minimize expected asymmetric absolute loss, so that
for example

te (@) = argmin Ey o, [pe (Vi = = )],

where p_ (1) = [t — 1(u < 0)]u is the so-called “check” function (see Koenker 2005).
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If we had data on both Y; and n; we would calculate sample quantiles of Y;, — 7,
and 7,. However, since 7; is unobservable, we apply the law of iterated expectations
and base estimation on the following expressions in which unobservables are integrated
out:

#e (r) = argmin Ey U pe (Yiy —=n—n) ffdn] (10)

() =aremin. £y, | [o.01-) fan]. (an

where f; = f(n|Y,;) is the posterior density of 1, given Y;. Since f; depends on
the model’s parameters ((-) and &, (-), we proceed in an iterative fashion. Given some
initial parameter values we compute f;. Next we compute u,(7) and §(7) from sample
counterparts of (10) and (11) and use those to re-evaluate f;, etc.

There are two difficulties with this approach: one is the need to compute integrals
with respect to the n; the other is the fact that the model contains a continuum of
parameters.

To address the first difficulty, given a value for f; we draw M imputations per

1
individual from f; say r]l(m), m=1,..., M. Then we compute u, (7) as

1
argmin } Y p, (Yl-, — " —u),

which is a standard quantile calculation. We compute () in a similar way. To draw
values from f; we use the random-walk Metropolis—Hastings algorithm.?’

To address the second difficulty, we follow Wei and Carroll (2009) and approximate
the posterior density of the latent variables using spline approximations of u,(t) and
d(r) with knots 0 < 7, <7, <--- < 7, <1, under the assumption that u,(r) and
d(t) are smooth functions. When using piecewise-linear splines, f; is available in
closed form (up to a multiplicative constant).

The end intervals (0,7;) and (r;,1) correspond to the tails of the
distributions. We specify the tails of &(r) as quantiles of exponential

distributions:
In (%) on (O, rl) ,
In (T_?) on (TL, 1) .
We proceed similarly for w, (7) and u, (r) with different parameters A and A

This estimation method is a special case of the EM algorithm for moment
conditions?! with a Monte Carlo E-step proposed in Arellano and Bonhomme (2013)

[

3(r) =

>l

20. The Metropolis—Hastings algorithm is a simulation technique to sample a (posterior) distribution
that proceeds by generating candidates that are either accepted or rejected according to some probability,
which is driven by a ratio of posterior evaluations (see for example Chib and Greenberg 1995).

21. The moment equations are the first-order conditions of integrated check function minimization.
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for panel quantile regression with unobserved individual effects. Sequential method-
of-moments extensions of the EM algorithm are considered in Arcidiacono and Jones
(2003) and Wei and Carroll (2009) amongst others. Arellano and Bonhomme (2013)
give conditions under which their (integral-based) estimator is consistentas N, L — oo
and L/N — 0. We conjecture that the simulation-based estimator with M fixed is also
consistent under similar conditions.

The large-N fixed-L asymptotic distribution of the quantile estimator is easily
obtained using results on GMM estimation with nonsmooth moments. This analysis
will provide asymptotically valid inference provided the true parameters u, (r) and
8 (7) are piecewise-linear functions with knots 7, ..., 7, . This is less general than the
consistency result where the number of knots was allowed to increase with N in order
to approximate flexible population functions. The nonparametric error-components
model has been widely studied (an early paper is Horowitz and Markatou, 1996).
Hall and Lahiri (2008) show that in general quantiles of 7; and ¢;, are not root-N
estimable.

4.2. Markovian Model: Estimation

Estimation of the model in which the permanent component is a Markov process instead
of a fixed effect proceeds along similar lines. Instead of following the identification
argument in estimation, ABB use the simulation-based sequential quantile approach,
which turns out to be a simple way of dealing with the fact that permanent shocks are
unobservable latent variables. We now wish to estimate the model:

Yie =m0+ &
nit = Qt (ni,t—la I/lt) t 22,...,T
Mi1 =8(Vil)

gy =m, (Uy) t=1,....T,

where V;,,...,V;r,U;;,...,U;r are mutually independent, marginally uniform on
(0,1).

We seek to estimate the quantile functions that describe households’ uncertainty
about their future income. Namely, (i) conditional quantiles of permanent shocks given
the past Q, (1, 7), (ii) unconditional quantiles of the initial condition: § (7), and (iii)
unconditional quantiles of transitory shocks: u, (r). Given Q, (1, T), measures of
persistence can be readily calculated as explained before.

Anonymous Models. To estimate Q, (n,7) we wish to use a flexible model that
is capable of approximating any quantile function arbitrarily well as a series
approximation with a sufficient number of terms. The model is

Qt (Tla T) =Y (T), (2 (77) s
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where the K components of ¢, (-) belong to a dictionary of functions, and

K

(SUP) 0,(m,1)— Z Yer () @ ()| — 0as K — oo.
n.T k=1

This approach can be described as based on “anonymous” models (borrowing
the term from Ellers and Marx 1996) in the sense that the model parameters have
no scientific interpretation. The interpretable objects will be summary measures of
derivative effects constructed from the estimated Q, (1, 7) function. See Chen (2007)
for a review of the literature on nonparametric estimation using the method of sieves.

Quantile Regression. Once again we approach estimation as an incomplete data
problem. If we had data on Y;; and 75,,, we would calculate sample quantiles of
Y;; — n;, and n; to estimate i, (r) and § (7), and quantile regressions of n;, onn; ,_;
to estimate Q, (., ). The difference with the fixed-effect model is that now we not
only compute unconditional quantiles but also quantile regressions to estimate the
conditional quantile function of the Markov process.

Quantile regression does not enforce monotonicity in estimation of conditional
quantile functions (the quantile crossing problem). We address this potential
complication by rearranging the estimated nonmonotonic curve into a monotonic
curve (Chernozhukov, Ferndndez-Val, and Galichon 2010).

The Simulation-Based Sequential Quantile Approach in Action. Since n; =
(’71‘1’ ey niT) is unobserved, we construct instead M imputed values n(m), m =
1,..., M, for each individual in the panel. Then we minimize sample check functions

averaged over imputed values:

m1n ZZ:‘%('_’%(:") p,) t=1,...,T.

i=1m=1

m1n Z Z o (nl('ln) )

i=1m=1

N M
min PIPINE (’71(:") v'e, (n,('f) 1)) t=2,....T

i=1m=1

For the imputed values to be valid they have to be draws from the distribution of 7,
conditioned on the data f; = f(n | Y;). As before, to draw from f; we use the random
walk Metropolis—Hastings algorithm. Variances of proposals are calibrated to yield an
acceptance rate of &~ 0.4. Post-simulation, a thinned sequence of draws is retained in
order to reduce autocorrelation.
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The trouble is that f; depends on the distributions of n;, | n; ,_, ;1> and &;,,
which in turn depend on all the parameters we are hoping to estimate: y, (-), ¥, (), and
8(-). In fact, by Bayes rule

T

T
fi & 1_[ fe, (Yie =) l_[ fn,\n,,, (i | 01021) I, (mi1) -

t=1 t=2

We solve this problem using an EM-type iteration, which alternates between QR
estimation and generation of imputed values based on an approximation to f;. To
approximate f; we use the Wei—Carroll spline approximations of i, (7), y, (7), and
8 (t). When using piecewise-linear splines, f; is available in closed form (up to a

1
multiplicative constant) also in the regression case.

The end intervals (0, rl) and (rL, 1) correspond to the tails of the various
distributions. The tails of u, () and § (7) are specified as quantiles of exponential
distributions. We do the same for the QR intercepts, while the other coefficients are
kept constant on the end intervals (0, 7,) and (. 1).

To sum up, the general idea is to pack together all estimates for each 7 and ¢ into an
updated estimate of the posterior (£ step). Given this, do T by t estimation for each ¢
(M step) and so on. Using the check function allows us to decompose the M step into
L different subproblems. Moreover, using the check function we get a globally convex
objective function in each M step. It should be noted that this is not a calculation
of maximum likelihood estimates but a method-of-moments, and that the numerical

convergence of the EM algorithm for moment equations is not guaranteed in general.

5. Empirical Results: Nonlinear Earnings Dynamics in the PSID

This section reports some estimates of a nonlinear permanent—transitory model of
household labor income using data from the PSID. The emphasis is on exploring the
consequences of unusual shocks (V;, that are close to 0 or 1) for the persistence of latent
earnings (7;,). Unusual shocks are important for measuring risk. A flexible model may
reveal empirical patterns of shock transmission that would pass unnoticed to location
or location-scale models.

Data. The estimates presented here are based on PSID data for the years 1998-2008
(every other year, six waves). We select a balanced subsample of 892 households
with nonzero income during the period. The PSID was collected each year until 1996
and biannually since 1997. PSID after 1999 has the advantage of including detailed
information on consumption expenditures and asset holdings.??

We regress log total household labor income (after taxes and transfers) on dummies
for year, year of birth, education, race, employment status (both members), number of

22. See Blundell, Pistaferri, and Saporta-Eksten (2012).
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FIGURE 1. Quantile autoregressions of log income: derivative effects. PSID, balanced subsample,
1998-2008, N = 892. Dashed lines: pointwise 95% confidence bands clustered by individual. Left
graph is f(-), right graph is (8, () + £,(-))/2.

kids, number of adults, income recipient other than husband/wife, state, big city, and
kids not in family unit. The variable we study, Y;,, is the residual in that regression,
for household i in period ¢.%3

Quantile Autoregressions. Figure 1 shows plots of autoregressive effects at different
percentiles for two quantile autoregressive models. The first one is linear in lagged
income Y; ,_,, while the second estimates separate effects for Y;;fl = max(Y; ,_;,0)
and Y, |, =min (Yl-,,_l,O). The results show strong nonlinearities. A marked
inverted U shape pattern is present, specially in the more flexible specification.
Persistence peaks around the median at about 0.8, but declines significantly outside
the central part of the distribution.

However, these results make no attempt to control for transitory shocks or
measurement error. Neglected transitory shocks would be expected to attenuate
nonlinearities and overall persistence.

Nonlinear Permanent-Transitory Estimates. We now take the following simple
nonlinear unobserved-components model to the PSID sample:

Yip =n; + &4

23. See Blundell, Pistaferri, and Preston (2008) for a more detailed discussion of a similar specification
of income residuals.
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FIGURE 2. Permanent-transitory model: coefficient estimates and average persistence measure. Left
graph shows B, (-) (solid) and B, (-) (dashed). Right graph shows (8, (-) + B,()))/2 ~ p(-).

where

& = n(U;,),
771'1 = S(I/ll)7

and
Ny =a(V;,) + ﬂl(ViZ)n?,_t—l + IBZ(Vit)nZt—l’ r=2,....T.

The functions «(-), B;(-), B,(-), 8(-), n(:), are piecewise-linear on (0, 1) with
eleven knots 7, = 1/12,..., 7y, = 11/12.

The parameters §,(-) and B,(-) are constant on (0, ;) and (z,,, 1), respectively,
while «(-), 8(-), and u(-) are modeled as quantiles of exponential distributions, with
shape parameters that are estimated together with the other parameters.

Figures 2 and 3 show the results. Figure 2 plots separate and average persistence
measures. In the central range of the distribution, measured persistence for positive
and negative values of 7, ,_, are of similar magnitude and not far from unity, so that
the unit root model would be an acceptable description for this part of the distribution.
However, a very negative shock reduces the persistence of a “positive history” (a
positive lagged level of 1) but preserves the persistence of a negative history. At the
other end, a very positive shock reduces the persistence of a negative history but
preserves (or actually increases) the persistence of a good history. On average the
model reproduces the inverted U shape that we saw in the quantile autoregressions,
only that now the nonlinearity is more accentuated and the overall persistence is
greater.

These results suggest a richer view of persistence, away from the conventional unit
root versus mean reversion dichotomy.



1148 Journal of the European Economic Association

0.8r

density

0.6-

0.4r

0.2r

it &t

Persistent component 7;, Transitory shock €;,

FIGURE 3. Estimated densities. Dashed lines are pointwise 95% confidence bands across 1,000
simulations. 0/(0.75) = 0.13, 0,.(0.75) = 0.11, E[Var(;, | ’7i,z—1)] = 0.038, Var(e;,) = 0.055.

Figure 3 shows estimated densities of n;, and ¢;,. There is evidence of non-
normality, especially in the density of transitory shocks, which is consistent with other
deconvolution estimates in the literature (e.g., Bonhomme and Robin 2010).

Further work is needed to better understand nonlinear persistence in earnings.
First, further robustness checks are needed (estimation by cohort, nonstationary
specifications, additional covariates, fixed effects). Secondly, more flexible
specifications of the Markov process need to be estimated. The current two-segment
model of the permanent component is unnecessarily restrictive, and it has the
undesirable feature of a kink at zero as a function of the lagged permanent component.
Finally, so far transitory shocks and measurement error are bundled together. An
external estimate of the measurement error distribution from validation data could be
imported to separate one from the other by deconvolution—extending the Arellano
and Bonhomme (2013) approach.

Assessing the Evidence from Simulated Data. 'We generated data from the estimated
nonlinear permanent—transitory model and used these data to estimate quantile
autoregressions. The results, reported in Figure 4, closely mimic those obtained on
the original data.

Next, we estimated the canonical model on our PSID sample:

Yy, =ny + 65
Nig = Mjs—1 T Vi

Using a covariance-based minimum distance approach we find

Var (;,) = 0.147, Var(v;,) = 0.018, and Var(g;,) = 0.083.



Arellano  Uncertainty, Persistence, and Heterogeneity 1149

0.9 0.9}

o

©
o
©

coefficient B(t)
1)
3

o

o
o
o

coefficient ﬁ1(t)/2+L32(r)/2
o
N

4 02 04 06 05 1 o4 02 04 06 00 1
percentile T percentile T
(@ Q(Yis—1,7)= 1) QY —1.7)=
+ —
a(z) +p(0)Yi - a(@)+i1(D)Y,,_+h2 (DY,

FIGURE 4. Dynamic QR estimates from simulated data (nonlinear permanent—transitory model).
Dashed lines are pointwise 95% confidence bands across 1,000 simulations of the nonlinear model.
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FIGURE 5. Dynamic QR estimates from simulated data (canonical model). Dashed lines are
pointwise 95% confidence bands across 1,000 simulations of the nonlinear model.

The variance of ¢;, will include a measurement error component, so it is expected
to be larger than the value in a standard calibration.

Assuming that the shocks and initial condition are normally distributed, we then
simulate 1,000 datasets according to the canonical model, and re-estimate the log-
income quantile regressions. The results are in Figure 5, which reassuringly show
no sign of nonlinearities, thus suggesting that the evidence is inconsistent with the
canonical model. Overall, these simulation results help us increase the confidence in
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our estimation methods, since they suggest that the nonlinearities that we find are not
a statistical artifact of the estimation method.

6. Conclusions

Income processes are routinely used as a representation of uncertainty in macro
and empirical micro analysis of consumption and savings. Typically the process is
univariate and it is fit to realized income data alone. I expect progress on measuring
risk to come from the use of more data but also from a more exhaustive use of income
data. One important avenue of progress is to use multivariate models that combine
income data with other sources of information about the uncertainty that households
face. The other important avenue is to use subjective expectations data in conjunction
with income histories. Using panel data on actual incomes will remain a central
ingredient to both lines of development.

I have argued that going from an econometrics of autocovariances to an
econometrics of flexible distributions is feasible and has the potential to reveal
richer aspects of risk—for example, nonlinear persistence of unusual shocks. An
econometrics of distributions will be also important in the way forward for finding
practical ways of combining income data with discrete-event data and data on
subjective expectations.

I have focused on a simple unobserved components model with a nonlinear Markov
process. Relying on results in ABB, I have argued that the model is nonparametrically
identified under standard conditions in the nonparametric literature. I have also
explained how a simulation-based sequential quantile regression method developed
in Arellano and Bonhomme (2013) can be used to estimate this model. Finally, I have
presented some evidence of nonlinear persistence of unusual income shocks in the
PSID.

The next step is to assess the implications of nonlinear income risk for consumption
behavior. An important methodological step is to extend the nonlinear latent structure
framework to joint examination of income and consumption. In particular, to the
estimation of the degree of partial insurance to permanent and transitory income
shocks. One would expect interesting interactions between nonlinear persistence of
income shocks and consumption insurance opportunities. Another interesting question
is to explore the extent to which consumers fully respond to nonlinearities, or whether
consumers that have experienced extreme shocks respond differently to those having
experienced only mid-range shocks. Further research on these issues will be hopefully
reviewed in another lecture.
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